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Abstract

The conventional rational-expectations postulate rules out the pos-

sibility that agents will form systematically biased forecasts of eco-

nomic variables. I revisit this question under the assumption that

agents’expectations are based on a misperceived causal model. Specif-

ically, I analyze a model in which an agent forms forecasts of economic

variables after observing a signal. His forecasts are based on fitting a

subjective causal model - formalized as a direct acyclic graph, follow-

ing the “Bayesian networks” literature - to objective long-run data.

I show that the agent’s forecasts are never systematically biased if

and only if his graph is perfect - equivalently, if the direction of the

causal links he postulates has no empirical content. I demonstrate

the relevance of this result for economic applications - mainly a styl-

ized “monetary policy”example in which the inflation-output relation

obeys an expectations-augmented Phillips curve.
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1 Introduction

The outcome of many real-life interactions hinges on whether agents correctly

forecast particular variables. For instance, success of a police crackdown

on a drug-traffi cking operation hinges on its unpredictability. Likewise, the

immediate effect of a wage cut on worker morale may depend on whether it

comes as a surprise. Finally, well-coordinated team production relies on one

unit’s ability to anticipate how another unit will adapt to an observed shock.

In conventional models, an agent’s forecasts are constrained by the “ratio-

nal expectations”postulate - i.e., the agent fully understands the statistical

regularities in his environment and thus forms “optimal” forecasts of any

economic variable conditional on his information. His predictions may miss

the target, but the errors will cancel out on average. In other words, the

agent cannot be “systematically fooled”.

Indeed, economists sometimes identify this property with the rational-

expectations principle itself. The following quote from an 2010 interview

with John Cochrane is representative:

“What is rational expectations? It is the statement that you

[cannot] fool all the people all the time.”1

However, rational expectations involve more than the requirement that agents’

forecasts of individual variables are unbiased on average, because they de-

mand a correct perception of the entire joint distribution over all variables.

A priori, an agent’s beliefs may satisfy the former while violating the latter.

In this paper, I relax rational expectations and revisit the question of

whether agents can be systematically fooled. Of course, one can depart

from rational expectations in many directions. I focus on the role of causal

misperceptions in the formation of beliefs, and assume that the agent derives

his expectations by fitting a misspecified causal model to objective long-run

data.
1See http://www.newyorker.com/news/john-cassidy/interview-with-john-cochrane.
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Example 1.1: Exploiting a belief in monetary neutrality

Perhaps the most well-known manifestation of the question of whether eco-

nomic agents can be systematically fooled lies within monetary theory. In a

textbook model that goes back to Kydland and Prescott (1977) and Barro

and Gordon (1983), a central bank controls a policy variable that affects infla-

tion. The private sector forms an inflation forecast, possibly after observing

some signal regarding the central bank’s decision. Private-sector expecta-

tions are relevant because real output (or unemployment) is determined by

an “expectations-augmented”Phillips curve, such that the real effect of in-

flation is at least partly offset when inflation is anticipated. It follows that

monetary policy involves “expectations management”. To quote Woodford

(2003, p. 15):

“. . . successful monetary policy is not so much a matter of effec-

tive control of overnight interest rates as it is of shaping market

expectations of the way in which interest rates, inflation and in-

come are likely to evolve. . . ”

Thus, to the extent that the central bank wishes to maximize expected out-

put, it would like to set inflation systematically above private-sector expec-

tations. And to the extent that the central bank wishes to minimize output

fluctuations, it would like to avoid inflationary surprises.

Although this paper is a purely theoretical exercise, it will make use of a

running example that is based on a simple reformulation of the Barro-Gordon

model studied by Sargent (2001), Athey et al. (2005) and others. The central

bank chooses an action a. Inflation π is a stochastic function of a. The private

sector forms its inflation forecast e after observing the central bank’s move.

Real output y is given by a “New Classical”Phillips curve, y = π − e + η,

where η is independent Gaussian noise. Thus, only unanticipated inflation

has real effects. The central bank has a single motive: maximizing expected

output. If the private sector had rational expectations, e would be equal to

the true expected value of π conditional on a, and therefore ex-ante expected

output would be zero, independently of the central bank’s strategy.
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Now suppose that the private sector forms its expectations by reasoning in

terms of a causal model that links the relevant macro variables. The idea that

people reason about uncertainty via intuitive causal models has been studied

extensively by experimental psychologists (see Sloman (2005)). In the specific

context of macroeconomics, policy makers and private-sector actors often

believe in basic narratives about how macro variables are interconnected.

Such narratives are often causal - indeed, Hoover (2001) describes historical

controversies in macroeconomics in such terms. Furthermore, key financial-

sector actors employ statistical models to form macroeconomic forecasts.

These models sometimes take the form of a recursive system of equations,

which is consistent with a causal model. While the functional forms of these

equations may be tweaked from time to time for the sake of empirical fit,

their underlying causality assumptions are more likely to remain constant

during times of relative stability.2

To formalize the notion that agents rely on causal models to form expec-

tations, I employ a recent modeling framework (Spiegler (2015a)), which in

turn builds on the Statistics and Artificial-Intelligence literature on Bayesian

networks (Cowell et al. (1999), Pearl (2009)). A causal model is represented

by a directed acyclic graph (DAG); each node represents a variable, and a

direct link between two nodes signifies a perceived direct causal link between

the variables they represent.

Specifically, suppose that the private sector’s DAG, denoted R, is

a→ π ← y (1)

This DAG represents a causal model according to which inflation is a con-

sequence of two independent causes: output and the central bank’s action

(the model omits the private sector’s expectations). The causal model is en-

tirely non-parametric: it postulates direct causal relations between variables

without assuming anything regarding their sign or magnitude.

The causal model R is misspecified because it perceives output to be

2For a study of how macroeconomic forecasters rely on models, see Giacomini et al.
(2015).
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independent of monetary policy, whereas according to the true process it

is a consequence of the central bank’s action via the Phillips curve. Thus,

the private sector subscribes to a “classical”worldview that postulates the

absolute neutrality of monetary policy, whereas the true model allows for

non-neutrality via inflationary surprises.

How does the private sector employ its causal model to forecast inflation?

It simply fits the model to the true steady-state joint distribution p over

a, π, y. If p were consistent with R, p(a, π, y) could be written as

pR(a, π, y) = p(a)p(y)p(π | a, y) (2)

The formula pR(a, π, y) describes the private sector’s subjective belief as

a function of the true steady-state distribution p. It is an example of a

“Bayesian-network factorization formula”, which factorizes the steady-state

distribution p into a product of conditional-probability terms, as if p were

consistent with R. Because the private sector perceives statistical regulari-

ties through the prism of an incorrect causal model, the subjective belief pR
may systematically distort the true correlation structure of the steady-state

distribution p.

The private sector’s inflation forecast after observing the central bank’s

action a is

ER(π | a) =
∑
π

pR(π | a)π =
∑
π

(∑
y

p(y)p(π | a, y)

)
π (3)

This is in general different from the “rational”inflation forecast

Ep(π | a) =
∑
π

p(π | a)π =
∑
π

(∑
y

p(y | a)p(π | a, y)

)
π

The discrepancy arises because pR(π | a) involves an implicit expectation

over y without conditioning on a. Note that because the steady-state distri-

bution p is affected by the private sector’s expectations, it is essentially an

“equilibrium”distribution; the equilibrium requirement is that the private
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sector’s inflation forecast e is ER(π | a) as given by (3).

How does the private sector’s “non-rational”inflation forecast affect the

central bank’s considerations? In Section 3, I present a natural specification

of the mapping from a to π, for which the central bank can randomize over

a in a way that leads the private sector to systematically underestimate

inflation - i.e., ∑
a

p(a)ER(π | a) <
∑
π

p(π)π

Consequently, the central bank can use monetary policy to enhance expected

output.

Plan of the paper

In Section 2, I present a general model, in which an agent forms forecasts

of economic variables after observing the realization of one variable. The

agent’s subjective causal model is represented by a DAG over a set of nodes

that correspond to some subset of the economic variables. He fits this model

to a joint probability distribution over all variables, including possibly the

agent’s forecasts. The distribution satisfies an “equilibrium”condition that

the agent’s forecasts are consistent with his causal model.

I ask the following question: Can such an agent be systematically fooled?

The main result, given in Section 4, provides a simple answer: The agent’s

forecasts are always correct on average if and only if his DAG is perfect.

A DAG is perfect if any pair of direct causes of a given variable must be

directly linked themselves. The private sector’s DAG in Example 1.1 violates

perfection, because it perceives a and y as direct causes of π, and yet it does

not postulate a direct causal link between the two. As a result, we could find

some objective distribution for which the agent’s forecast of some variable is

biased on average. In contrast, the DAG a→ y → π is perfect, and therefore

cannot give rise to systematically biased forecasts of inflation or output.

Perfection is a familiar property in the Bayesian-networks literature. In

the present context, its significance is that in perfect DAGs (and only in

such DAGs), the direction of any given causal link is unidentified (in the

sense that there exists a DAG that induces the same mapping from objective

distributions to subjective beliefs, for which this link is reversed). Thus, the
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agent’s misspecified causal model renders him vulnerable to biased forecasts

if and only if it postulates empirically meaningful direction of causation.

Furthermore, Spiegler (2015b) showed that when R is perfect, pR can

also be interpreted as the outcome of an attempt (by the agent himself or

by an “analyst”he relies on) to extrapolate a subjective belief from partial

statistical datasets drawn from p, via an intuitive procedure (an iterative

variant on a method known as “conditional stochastic imputation”. From

this point of view, perfect DAGs capture implicit data limitations rather than

an explicit causal model. The main result thus implies that the extrapolation

procedure is “sound”, in the sense that it does not expose the agent to

systematic forecast errors.

The perfection requirement can be weakened when we are interested in

forecasts of specific variables, or when we restrict the domain of permissible

exogenous processes. In particular, in Section 5 I show that in our “monetary

policy”example, when π = a + ε and ε is independent Gaussian noise, the

agent’s inflation forecasts are consistent with rational expectations for any

realization of the central bank’s action. In this case, the classical result

regarding the non-exploitability of the Phillips relation continues to hold.

Impossibility results of this kind are intriguing, considering the heated

historical debates over the exploitability of the inflation-output relation (see

Klamer (1984)). The key assumption behind classical non-exploitability re-

sults (Lucas (1972), Sargent and Wallace (1975)) was allegedly the ratio-

nality of private-sector expectations. However, according to this paper, a

considerably milder assumption - namely that the private sector forms its

expectations by fitting a (potentially misspecified) causal model to long-run

data - reproduces results in a similar vein.

So far, our discussion focused on whether the agent’s forecasts are correct

on average. In many contexts, however, conditional forecast errors matter

even if they cancel out. In Section 6 I characterize the DAGs for which the

agent’s conditional forecast errors are always correct - a far more demanding

characterization than perfection. I also present two examples that demon-

strate the implications of DAGs that lead to conditional forecast errors, even

though forecasts are systematically unbiased. First, I study a monopoly
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pricing example, in which demand for the monopolist’s intrinsically useless

product stems from consumers’“reverse causality”misperception. Second, I

examine an elaborate version of the linear-normal specification of the “mon-

etary policy”example, in which the central bank trades off the variance of

real output and the mean square deviation of inflation from an exogenously

distributed target. The central bank’s optimal policy displays excess rigidity

relative to the rational-expectations benchmark, which is exacerbated as the

Phillips relation becomes less noisy.

2 The Model

Let x0, x1, ..., xn be a collection of real-valued economic variables. An agent

observes the realization of x0 and forms a subjective forecast ei of each of the

economic variables xi, i = 1, ..., n. I use p to denote a joint distribution over

all 2n+ 1 variables. In all the applications in this paper, x0 is interpreted as

the action of a principal, possibly taken after having observed the realization

of other variables. Therefore, I will often refer to x0 as an action and denote

it by a.

If the agent’s forecast is based on rational expectations, then p must

satisfy the restriction that for every i = 1, ..., n, p(ei | a) assigns probability

one to

Ep(xi | a) =
∑
xi

p(xi | a)xi

Other models of belief formation would imply other restrictions on p(ei | a).

Let us now introduce the idea that the agent forms his beliefs by fitting

a subjective causal model to long-run data. This will require basic con-

cepts from the literature on Bayesian networks. The following exposition

is standard (see Cowell et al. (1999) and Pearl (2009)), with a few minor

adjustments. I will sometimes denote ei = xi+n (for every i = 1, ..., n) and

x = (x0, x1, ..., x2n). For every M ⊆ {0, 1, ..., 2n}, denote xM = (xi)i∈M .

Define a directed acyclic graph (DAG) (N,R), where N ⊆ {0, ..., n} is
the set of nodes and R is the set of directed links. (A directed graph is

acyclic if it does not contain a directed path from a node to itself.) I use jRi
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or j → i interchangeably to denote a directed link from j into i. Observe

that the binary relation R is asymmetric and acyclic. Abusing notation, let

R(i) = {j ∈ N | jRi} be the set of “parents”of node i. I will usually refer
to R itself as the DAG.

Let R̃ be the skeleton (i.e., undirected version) of R - i.e., iR̃j if and only

if iRj or jRi. A subset M ⊆ N is a clique in R if iR̃j for every i, j ∈M . A
clique M is ancestral if R(i) ⊂M for every i ∈M . In particular, a node i is
ancestral if R(i) is empty. A node j is an ancestor of another node i in R if

R contains a directed path from j into i.

The agent is characterized by a DAG R. For any objective joint proba-

bility distribution p, the agent’s subjective belief over xN is

pR(xN) =
∏
i∈N

p(xi | xR(i)) (4)

Thus, R encodes a mapping that transforms every objective distribution p

into a subjective belief pR. A probability distribution p is consistent with R

if pR(xN) ≡ p(xN). When the DAG is fully connected, (4) is reduced to a

textbook chain rule, such that every p is consistent with R - i.e., the agent

has “rational expectations”. Note that in general, (4) may involve terms

that condition on zero-probability events; when analyzing the model, I will

need to rule out this possibility. The agent’s subjective distribution over any

variable xi, i = 1, ..., n, conditional on his observation of a is pR(xi | a) =

pR(a, xi)/pR(xi), where pR(xi) =
∑

x−i
pR(xi, x−i), as usual.

Following Pearl (2009), I interpret R as a causal model. The link j → i

means that the agent regards the variable xj to be an immediate cause of the

variable xi. While the agent presupposes the existence of this causal link,

he has no preconception regarding its sign or magnitude. In particular, this

effect could be measured to be null. In other words, R is a “non-parametric

model”. As a result, the agent is always able to perfectly fit it to any objective

distribution. For a concrete image to match this description, think of an

analyst who tries to fit data with a recursive system of equations. The

analyst holds the collection of R.H.S variables in each equation fixed, but

tweaks the exact functional form, until he gets good fit.
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From now on, I assume that 0 ∈ N . This motivation for this restric-

tion is that the agent’s causal model should acknowledge a variable that he

active conditions his forecast on. I also impose the following “equilibrium”

restriction on the objective distribution p.

Condition 1 The domain of permissible objective distributions is restricted
as follows. For every a and i = 1, ..., n, p(ei | a) assigns probability one to

ER(xi | a) =
∑
xi

pR(xi | a)xi (5)

The conditional expected value ER(xi | a) is the agent’s forecast of xi
after observing a. If the agent could - or felt the need to - test his causal

model against long-run data, he would discover any discrepancy between

ER(xi | a) and E(xi | a), thus refuting the model. I assume that no such

“test for model misspecification”occurs. See Spiegler (2015a) for a detailed

justification for this assumption.

Should we admit forecasts as variables in the agent’s causal model?

By assumption, the agent’s DAG does not admit his own forecasts as vari-

ables. However, forecasts are themselves variables that can play a role in

the determination of economic outcomes (e.g., see the expectational Phillips

curve in Example 1.1). Therefore, in principle they could enter the agent’s

causal model. Recall the notation ei = xi+n for every i = 1, ..., n. Allow the

set of nodes N in the agent’s DAG to be a subset of {0, 1, ..., 2n}. Thus,
when i ∈ N for some i > n, this means that the agent’s causal model admits

ei−n as a variable. Recall our earlier restriction that 0 ∈ N . When as admit
forecasts as variables, the following is a sensible additional restriction.

Condition 2 If i ∈ N for some i > n, then R(i) = {0} and i− n ∈ N .

This condition makes two requirements. First, it says that the agent

perceives x0 to be the only immediate cause of his own forecasts. The jus-

tification is that the agent actively conditions his forecasts on x0 alone; his

causal model should acknowledge this. Second, it requires that if the agent’s
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DAG includes a forecast of some variable, then it must also include the vari-

able itself.

These two domain restrictions imply the following result.

Remark 1 Suppose that the domain of permissible objective distributions
satisfies Condition 1 and that R satisfies Condition 2 (as well as the re-

quirement that 0 ∈ N). Then, there is a DAG R′ that omits the nodes

n + 1, ..., 2n altogether, such that pR′(xN−{n+1,...,2n}) ≡ pR(xN−{n+1,...,2n}) for

every p in the restricted domain. In particular, if jRi for some i ∈ {1, ..., n}
and j ∈ {n+ 1, ..., 2n}, then 0R′i.

Proof. Suppose that i + n ∈ N for some i = 1, ..., n. Then, by Condition

2, the factorization formula (4) contains the term p(ei | a). Also, i ∈ N .

By assumption, p(ER(xi | a) | a) = 1. Therefore, we can remove the term

p(ei | a) from (4) altogether, and plug ei = ER(xi | a) in any term in (4)

that conditions on ei - which effectively means that such a term conditions

on a. We have thus obtained a DAG representation in which the node e is

omitted, and any link from e to some node in R is replaced with a link from

a into the same node.

This result means that our original assumption that the agent’s DAG

omits his own forecasts is w.l.o.g - as long as we accept the domain restrictions

on p and R. Therefore, I will continue to follow this practice from now on.

3 The “Monetary Policy”Example

The general problem in this paper is: When will an agent with a misspecified

causal model form systematically biased economic forecasts? In applications,

this question will be relevant because it is implied by the principal’s objective

function. To illustrate the problem, let us return to Example 1.1. Recall

that in this example, there are three economic variables: the central bank’s

action a, inflation π and real output y. The private sector’s inflation forecast

is denoted e. Both π and a take values in {0, 1}, where π = 0 (1) represents

low (high) inflation. Assume that p satisfies p(π = 1 | a) = βa, where
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β ∈ (0, 1). Thus, the action a = 0 induces low inflation with certainty,

whereas the action a = 1 induces high inflation with probability β. Output

is given by y = π − e+ η, where η ∼ N(0, σ2η) is independently distributed.

Note that p is consistent with the following “true DAG”R∗:

a → π

↓ ↓
e → y

In contrast, the private sector’s DAG R is a → π ← y. In relation to the

true DAG R∗, R reverses the causal link between inflation and output, and

it neglects the effect of inflationary expectations on output. The private

sector’s conditional inflation forecast under R is (3).3

The central bank commits ex-ante to a probability distribution over a.

Its strategy is defined by p(a = 1) = α. Assume that the central bank has a

sole objective: maximizing expected output. Plugging the Phillips curve, we

obtain the following objective function:∑
a

p(a) [Ep(π | a)− ER(π | a)] = Ep(π)−
∑
a

p(a)ER(π | a)

If the central bank could not systematically fool the private sector, the value

of this objective function would be zero for any strategy that it might employ.

However, we will now see that the central bank can use a random strategy

to cause the private sector to systematically underestimate inflation, thus

enhancing expected output.

Proposition 1 As σ2η → 0, the maximal expected output converges to 1
4
β.

The level is attained by playing α = 1
2
.

Proof. Denote ER(π | a) = e(a). Because π ∈ {0, 1},

e(a) =
∑
y

p(y)p(π = 1 | a, y)

3Throughout the paper, I use simple summations rather than integration when writing
down expressions for ER(xi | x0), for notational clarity.
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Because η is normally distributed, p(a, y) has full support, such that e(a)

never involves conditioning on zero-probability events.

Let us first calculate e(0). Because p(π = 1 | a = 0) = 0, it follows that

p(π = 1 | a = 0, y) = 0 for all y. Therefore, e(0) = 0. This in turn means

that E(y | a = 0) = 0. It follows that if α = 0, the central bank cannot

induce strictly positive expected output. From now on, assume α > 0.

Let us now calculate e(1). First, note that y ∼ N(µ, σ2η), where µ is ran-

dom: µ = e(0) = 0 with probability 1−α, µ = 1− e(1) with probability αβ,

and µ = −e(1) with probability α(1− β). A priori, two of these three values

could coincide. However, we will now see that this is not the case. Because

the normal distribution is symmetrically distributed around its mean, the

ex-ante probability of y < −e(1) is at least α(1− β)/2, whereas the ex-ante

probability of y > 1 − e(1) is at least αβ/2. Moreover, as σ2η tends to 0,

p(π = 1 | a = 1, y < −e(1)) → 0 and p(π = 1 | a = 1, y > 1 − e(1)) → 1.

Therefore, in the σ2η → 0 limit,

0 <
αβ

2
≤ e(1) ≤ 1− α(1− β)

2
< 1

It follows that as σ2η approaches zero, µ gets exactly three values, −e(1),

0 and 1 − e(1), and the gap between these values is bounded away from

zero. In the σ2η → 0 limit, p(π = 1 | a = 1, y) → 1 in the neighborhood of

y = 1− e(1), whereas p(π = 1 | a = 1, y)→ 0 in the neighborhoods of y = 0

and y = −e(1). Consequently, e(1)→ p(π = 1) = αβ as σ2η → 0.

We have thus established that E(π) = αβ and
∑

a p(a)e(a) = α · αβ +

(1 − α) · 0 = α2β. The central bank will choose α to maximize αβ − α2β,
which immediately gives the solution.

The intuition behind the result is as follows. When the realization of the

central bank’s strategy is a = 0, it induces π = 0 with certainty. Therefore,

the private sector’s failure to properly account for variations in y does not

lead to a biased inflation estimate: because p(π = 0 | a = 0; y) = 1 for any y,

we have ER(π | a = 0) = 0. In contrast, when a = 1, inflation does fluctuate,

and the private sector’s error is that it tries to account for these fluctuations

by fluctuations in y, as if the latter are exogenous. Therefore, the private
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sector’s inflation forecast conditional on a = 1 involves summing over all

values of y, without conditioning y on a = 1. In the σ2η → 0 limit, this failure

to condition on a = 1 translates to the identityER(π | a = 1) = ER(π). Thus,

when the central bank plays a = 0, the private sector correctly updates its

belief downward, whereas when the central bank plays a = 1, the private

sector forms its inflation forecast as if it did not observe the central bank’s

action. This leads to systematic underestimation of expected inflation. Note

that β is irrelevant for the central bank’s strategy, due to the linearity of

ER(π | a = 1) in β.

4 General Analysis

In the previous section, we saw how a misspecified DAG may lead to a sys-

tematically biased forecast of some economic variable. However, other DAGs

always generate forecasts that are correct on average. A simple example is an

empty DAG (i.e., R(i) = ∅ for every i ∈ N). It is easy to see from (4) that

in this case, pR(xi | a) ≡ p(xi) and therefore
∑

a p(a)ER(xi | a) = Ep(xi).

Definition 1 A DAG R induces unbiased forecasts if∑
a

p(a)ER(xi | a) ≡ Ep(xi)

for every i ∈ N and every objective distribution p that has full support on

XN and satisfies Condition 1.

The role of the full-support restriction is to prevent pR from including

terms that condition on zero-probability events. Condition 1 plays no tech-

nical role, and I introduce it only for the sake of maintaining the equilibrium

interpretation of p. Our problem is to characterize the DAGs that induce un-

biased forecasts. For this purpose, we need to introduce a few basic concepts

and results from the Bayesian-networks literature.

Equivalent DAGs
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A DAG encodes a mapping from objective distributions to subjective beliefs,

which is given by (4). Two DAGs can be equivalent in the sense that they

encode the same mapping.

Definition 2 Two DAGs R and Q over N are equivalent if pR(xN) ≡
pQ(xN) for every p ∈ ∆(X).

For instance, the DAGs 1 → 2 and 2 → 1 are equivalent, by the basic

identity p(x1)p(x2 | x1) ≡ p(x2)p(x1 | x2). A DAG that involves intuitive

causal relations can be equivalent to a DAG that makes little sense as a causal

model (e.g., it postulates that a player’s action causes his information).

A v-collider in R is an ordered triple of nodes (i, j, k) such that iRk, jRk,

i /Rj and j /Ri (that is, R contains links from i and j into k, yet i and j are

not linked to each other). We say in this case that there is a v-collider into

k.

Proposition 2 (Verma and Pearl (1991)) Two DAGs R and Q are equiv-
alent if and only if they have the same skeleton and the same set of v-colliders.

To illustrate this result, all fully connected DAGs have the same skeleton

(every pair of nodes is linked) and an empty set of v-colliders, hence they

are all equivalent. In contrast, the DAGs 1 → 2 → 3 and 1 → 2 ← 3 are

not equivalent: although their skeletons are identical, the former DAG has

no v-colliders whereas (1, 3, 2) is a v-collider in the latter.

Perfect DAGs

The following class of DAGs will play an important role in this paper.

Definition 3 A DAG is perfect if it contains no v-colliders.

That is, a perfect DAG has the property that if iRk and jRk, then iR̃j -

i.e., if xi and xj are perceived as direct causes of xk, then there must be

a perceived direct causal link between them. If we think of a DAG as a

recursive system of structural (non-parametric) equations, then perfection
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means that if xi and xj appear as explanatory variables in the equation for

xk, then there must be an equation in which one of these two variables is

explanatory and the other is dependent.

The following is an immediate implication of Proposition 2.

Corollary 1 Two perfect DAGs are equivalent if and only if they have the
same skeleton. In particular, if M ⊆ N is a clique in a perfect DAG R, then

M is an ancestral clique in some DAG in the equivalence class of R.

This corollary means that the causal links postulated by a perfect DAG are

unidentified: if iRj, there exists a DAG R′ that is equivalent to R, such that

jR′i. A DAG contains empirically meaningful causal links only when they

are part of a v-collider.

The following lemma establishes that if C is an ancestral clique in some

DAG in the equivalence class of R, then the objective and subjective marginal

distributions over xC always coincide. Otherwise, we can find a distribution

for which the two will diverge.

Lemma 1 (Spiegler (2015b)) Let R be a DAG and let C ⊆ N . Then,

pR(xC) ≡ p(xC) for every p with full support on XN if and only if C is an

ancestral clique in some DAG in the equivalence class of R.

Thanks to Corollary 1, the lemma implies that in a perfect DAG, pR(xC) is

always correct for any clique C.

We are now ready to state the paper’s main result.

Proposition 3 A DAG R induces unbiased forecasts if and only if it is per-

fect.

Proof. (If). Assume that R is perfect. Then, by Corollary 1, we can take 0

or i to be ancestral w.l.o.g. By Lemma 1, pR(x0) ≡ p(x0) and pR(xi) ≡ p(xi).

Therefore, we can write∑
x0

p(x0)pR(xi | x0) ≡
∑
x0

pR(x0)pR(xi | x0) ≡ pR(xi) ≡ p(xi)
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which implies the claim.

(Only if). Consider the special case in which Xi = {0, 1} for every i,

such that the expected value of any xi w.r.t any distribution is equal to

the probability that xi = 1. I will comment at the end of the proof on how it

can be extended to arbitrarily large X. When R is imperfect, it must contain

a v-collider i → j ← k. Let us consider objective distributions p with full

support on XN , for which all other variables are independent, such that

pR(xN) = p(xi)p(xk)p(xj | xi, xk) ·
∏

i′∈N−{i,j,k}

p(xi′)

This allows us to ignore all variables i′ ∈ N − {i, j, k} when calculating
marginal or conditional distributions over xj that are derived from pR.

There are three cases to consider. First, suppose that 0 /∈ {i, j, k} - i.e.,
0 is not part of the v-collider. Then, pR(xj | x0) ≡ pR(xj). By Proposition

2, j is not an ancestral node in any DAG in the equivalence class of R.

Therefore, by Lemma 1, we can find p for which pR 6= p. (Our restrictions on

p are w.l.o.g in this regard, because we can ignore all nodes i′ 6= i, j, k and

set R : i→ j ← k.)

Second, suppose that i = 0. Then,

pR(xj = 1 | x0) =
∑
xk

p(xk)p(xj = 1 | x0, xk)

Impose the following additional structure on p. First, p(x0 = 1) = 1
2
. Second,

xk = xj = x0 with arbitrarily high probability. Third, p(xj = 1 | x0 6= xk) is

arbitrarily low. Then,∑
x0

p(x0)pR(xj = 1 | x0) =

1

2

{∑
xk

p(xk) [p(xj = 1 | x0 = 0;xk) + p(xj = 1 | x0 = 1;xk)]

}

is arbitrarily close to 1
4
, whereas p(xj = 1) = 1

2
.
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Finally, suppose that j = 0. Then,

pR(xi = 1 | x0) =

∑
xk
p(xk)p(xi = 1)p(x0 | xi = 1;xk)∑
xk
p(xk)

∑
xi
p(xi)p(x0 | xi;xk)

Impose the following additional structure on p. First, p(xk = 1) = 1
2
. Second,

p(xi = xk) with arbitrarily high probability. Third, p(x0 = 1 | xi, xk) is
arbitrarily high when xixk = 1 and arbitrarily low when xixk = 0. Then,

pR(xi = 1 | x0 = 1) is arbitrarily close to 1, and pR(xi = 1 | x0 = 0) is

arbitrarily close to 1
3
, such that

∑
x0
p(x0)pR(xi = 1 | x0) is arbitrarily close

to 2
3
, whereas p(xi = 1) = 1

2
.

Extending the proof to arbitrarily large X is straightforward - we only

need to assume that the marginal of p over each of the variables xi, xj, xk
assigns arbitrarily high total probability to two arbitrary values, and that the

small probability that is assigned to each of the other values is independently

distributed.

Thus, as long as the agent’s DAG is perfect, he cannot be systematically

fooled. Even if his conditional forecasts are incorrect, the errors cancel out

on average. For instance, in our running “monetary policy”example, if the

private sector’s DAG were a→ y → π or π ← a→ y, its output and inflation

forecasts would be unbiased on average, even though the causal models these

DAGs represent are misspecified. Conversely, if the agent’s DAG is imperfect,

there are objective distributions for which the agent’s average forecast of at

least one of the economic variables is biased.

As mentioned earlier in this section, perfect DAGs have the property that

the causal links they postulate are unidentified, and in this sense completely

spurious. Thus, the significance of Proposition 3 is that it demonstrates that

the agent’s misspecified causal model exposes him to systematic fooling if

and only if the causal assumptions he makes are non-trivial.

Selective forecasts

The definition of unbiased forecasts that I utilized in this section is very

demanding, because it requires the forecast of all variables to be unbiased.

However, not all forecasts need to be economically relevant. For example,
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in the “monetary policy” example of Section 3, I assumed that the true

process follows Sargent (2001). In particular, this meant that while the pri-

vate sector’s inflation forecast has implications for the realization of economic

variables, its output forecast was irrelevant. In other conventional models of

monetary policy - specifically, the so-called New Keynesian model - both

inflation and output forecasts matter for the realization of macroeconomic

variables (see Woodford (2003)). Thus, the forecasts that matter economi-

cally depend on the true model that underlies the objective distribution.

The following result is a suffi cient condition for the agent’s forecast of

a given xi to be unbiased. Fix a DAG (N,R) and consider a node i ∈ N .
Define a binary relation P as follows. For every distinct i, j ∈ N , iP j if

at least one of the following conditions hold in R: (i) i is an ancestor of j;

(ii) i and j have a common ancestor and j is not an ancestor of i. Denote

LR(i) = {j ∈ N | iP j}. Observe that i /∈ LR(i).

Proposition 4 Let i ∈ N − {0}. Suppose further that the subgraph induced
by R over N − LR(i) is perfect and contains 0. Then,∑

x0

p(x0)ER(xi | x0) = Ep(x0)

Proof. It is immediate from the factorization formula (4) that if iP j, then

xj is irrelevant for the calculation of pR(xN−LR(i)). Therefore, we can ignore

all such variables. By assumption, the subgraph over N − LR(i) induced by

R is perfect. Because 0, i ∈ N − LR(i), Proposition 3 implies the result.

Thus, as long as the violations of perfection occur “below”0 and i in the

causal hierarchy, they do not cause biased forecasts of xi.

5 Linear-Normal Models

Proposition 3 means that an imperfect DAG exposes the agent to being

systematically fooled for some objective distribution. However, in applica-

tions we typically impose additional structure that restricts the domain of
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permissible objective distributions. Such domain restrictions extend the im-

possibility of systematically fooling an agent with causal misperceptions. In

this section I focus on a common domain restriction, which assumes that

variables are linked by a system of linear equations with Gaussian noise.

Example 5.1: A linear-normal “monetary policy”example

Modify the example of Section 3 by assuming that π and y are given by the

following equations:

π = a+ ε (6)

y = γπ − e+ η

where γ ≥ 1 is a constant, and ε ∼ N(0, σ2ε) and η ∼ N(0, σ2ε) are indepen-

dent. This example changes the mapping from a to π, and also introduces

the new parameter γ. When γ > 1, fully anticipated inflation has real effects.

Throughout this example, I use µz to denote the true expected value of any

variable z.

Proposition 5 Suppose that the private sector’s DAG is R : a → π ← y.

Then, the private sector’s forecasts are unbiased for every objective distribu-

tion that satisfies (6).

Proof. Because y is an ancestral node in R, Proposition 4 implies that

the private sector’s output forecast is unbiased. Let us turn to the private

sector’s inflation forecast. As in Section 3, I use e(a) to denote the forecast

after observing the realization a. By the definition of R,

e(a) =
∑
π

pR(π | a)π =
∑
π

∑
y

p(y)p(π | a, y)π =
∑
y

p(y)E(π | a, y)

Since π = a+ ε, E(π | a, y) = a+E(ε | a, y). By the second equation in (6),

we have

γε+ η = y − γa+ e(a)

For given a and y, the R.H.S is a constant, whereas the L.H.S is a sum of

two independent variables that are normally distributed with mean zero (and
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recall that the variance of γε is γ2σ2ε). Therefore, to calculate E(ε | a, y),

we can apply the standard formula for E(X | X + Y ) when X and Y are

independent normal variables, and obtain

E(ε | a, y) =
β

γ
(y − γa+ e(a))

where

β =
γ2σ2ε

γ2σ2ε + σ2η
(7)

We can now write

e(a) =
∑
y

p(y)

[
a+

β

γ
y − βa+

β

γ
e(a)

]
= a(1− β) +

β

γ
e(a) +

β

γ
µy

Since π = a + ε and E(ε) = 0, µπ = µa. Plugging the Phillips curve, we

obtain

e(a) = (1− β)a+
β

γ
e(a) +

β

γ
[γµa − E(e(a))]

This functional equation defines e(a). Taking expectations, we obtain

E(e(a)) = (1− β)µa +
β

γ
E(e(a)) + βµa −

β

γ
E(e(a))

such that

E(e(a)) =
∑
a

p(a)e(a) = µa = µπ

This completes the proof. Nevertheless, it also enables us to get the

following explicit solution for e(a):

e(a) =
γ − γβ
γ − β a+

γβ − β
γ − β µa

Plugging the expression for β, we obtain

e(a) =
σ2η

γ(γ − 1)σ2ε + σ2η
a+

γ(γ − 1)σ2ε
γ(γ − 1)σ2ε + σ2η

µa (8)
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This expression will be useful in Section 6.2.

Equation (8) implies that when γ = 1, e(a) ≡ a ≡ Ep(π | a). Thus,

under the linear-normal specification with γ = 1, the private sector always

makes optimal conditional inflation forecasts - as if it has rational expecta-

tions. When γ > 1, its conditional forecasts are incorrect because they assign

positive weight to the ex-ante expected action. Nevertheless, the forecasts

are correct on average.

Example 5.1 suggests that linear-normal specifications may give rise to

unbiased forecasts, even when the agent’s subjective DAG is imperfect. Let

us now elaborate on this observation. Return to the general environment

with n + 1 variables x0, x1, ..., xn. Suppose that p is consistent with some

true DAG R∗. Moreover, for every i = 0, 1, ..., n,

xi =
∑

j∈R∗(i)

αijxj + εi

where αij 6= 0, and εi ∼ N(µi, σ
2
i ) is independently distributed. Thus, p

is given by a recursive system of linear equations with independent normal

error terms. We will say in this case that p is consistent with a linear-normal

model. Note that this is not a generalization of Example 5.1, because the

latter did not require the central bank’s random strategy to be normally

distributed.

Proposition 6 Suppose that 0 is an ancestral node in some DAG in the

equivalence class of R. Then, for every i = 1, ..., n,∑
x0

p(x0)ER(xi | x0) = Ep(xi)

for every p that is consistent with a linear-normal model.

Proof. When p is consistent with a linear-normal model, we can rewrite the
system of equations such that for every i,

xi =
∑

j∈R∗∗(i)

γijεj
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where R∗∗ is an extension of R∗ into a linear ordering (i.e., jR∗∗i whenever

R∗ contains a directed path from j into i), and γij is some constant. Thus,

every xi can be expressed as a sum of independent normal variables.

From now on, I will assume that µi = 0 for every i. To see why this is

w.l.o.g, note that this assumption means that

yi = xi + ci

for every i, where ci is a constant that involves µ and γ coeffi cients. It is

therefore clear that ER(yi | y0) ≡ ER(xi | x0) + ci and Ep(yi) ≡ Ep(xi) + ci,

such that we can restate our result for yi instead of xi. This simplification

means that Ep(xi) = 0 for every i = 0, ..., n.

By assumption, we can regard 0 as an ancestral node in R. Also, it will

simplify exposition if we align R with the natural order over 0, ..., n, such

that jRi implies j < i. Therefore, we can write

pR(xi | x0) =
∏

j=1,...,i

p(xj | xR(j))

such that

ER(xi | x0) =
∑
x1

· · ·
∑
xi−1

(
i−1∏
k=1

p(xk | xR(k))
)∑

xi

p(xi | xR(i))xi

The vector of random variables xR(i) can be expressed as a product of some

matrix and the vector (ε0, ..., εn). Because all the εi’s are independent normal

variables, xR(i) is jointly normal. Therefore, the expression∑
xi

p(xi | xR(i))xi = E(xi | xR(i))

is the expectation of a zero-mean normal variable conditional on the realiza-

tion of a zero-mean multi-variate normal distribution. Hence,

E(xi | xR(i)) =
∑
j∈R(i)

δijxj
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where δij is some constant. We have thus reduced ER(xi | x0) to

∑
j∈R(i)δij

∑
x1

· · ·
∑
xi−1

(
i−1∏
k=1

p(xk | xR(k))
)
xj

Consider the term that corresponds to some j ∈ R(i). We can ignore the

summation over all variables k > j, such that the term is reduced to

∑
x1

· · ·
∑
xj−1

(
j−1∏
k=1

p(xk | xR(k))
)∑

xj

p(xj | xR(j))xj

We can now repeatedly carry out this simplification in the same manner for

each of these terms, until we eventually obtain

E(xi | x0) = bx0

where b is some constant (potentially zero). Because E(x0) = 0, it then

immediately follows that∑
x0

p(x0)ER(xi | x0) = 0 = Ep(xi)

which completes the proof.

The condition that 0 is an ancestral node in some DAG in the equivalence

class ofR is significantly weaker than perfection (recall that in a perfect DAG,

every node can be regarded as ancestral). The subjective DAG in Section

3 satisfies this weaker property. Under this restriction, the agent’s forecasts

are unbiased when the objective distribution is generated by a linear-normal

model.

6 Conditional Forecast Errors

So far, the question we addressed was whether the agent’s forecasts of eco-

nomic variables are unbiased on average. Indeed, in our running “monetary
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policy” example, this is all that mattered because the central bank’s sole

objective was to maximize expected output. However, for many purposes,

it also matters whether the agent’s conditional forecasts are consistent with

rational expectations for all realizations of a. The following is a suffi cient

condition for this stronger requirement to hold for a given variable.

Suppose that R satisfies the suffi cient condition of Proposition 4. If, in

addition, 0Ri, then ER(xi | x0) ≡ Ep(xi | x0). The reason is as follows. By
assumption, the subgraph over N −LR(i) is perfect and contains both 0 and

i. Because {0, i} is a clique in the subgraph, perfection implies that we can
regard it as ancestral. Therefore, pR(x0, xi) - and consequently pR(x0) as well

- are all unbiased, which immediately implies the result.

In the remainder of this section, I present two principal-agent examples in

which the agent’s misspecified causal model generates conditional forecasts

errors, and I analyze the implications of these errors for the principal’s choice

of strategy.

6.1 Monopoly Pricing

This sub-section is a variation on the “Dieter’s Dilemma”example of Spiegler

(2015a). A monopolistic firm facing one consumer produces a food supple-

ment at a constant marginal cost k > 0. The firm’s action a takes values

in {0, 1}, where a = 1 means that the firm sells the supplement. There are

two other relevant variables: the consumer’s health (denoted h), and the

level of some chemical in his blood (denoted c). Both c and h take values in

{0, 1}, where h = 1 means that the consumer is in good health, and c = 1

means that the chemical’s level is abnormal. According to the true process,

p(h = 1) = 1
2
, independently of a, and c is a deterministic consequence of a

and h given by c = (1− a)(1− h). The true process is thus consistent with

a “true DAG”a→ c← h.

The assumption that h is independent of a implies that if consumers had

rational expectations, their willingness to pay for the supplement would be

zero. Now suppose that the consumer’s DAG is R : a → c → h. This DAG

reverses the direction of causation between h and c relative to the true DAG.
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Because the consumer’s DAG is perfect, it leads to health forecasts that

are unbiased on average. However, as we shall see, the conditional health

forecasts are typically incorrect.

Because the firm has monopoly power, it fully extracts the consumer’s

willingness to pay for the supplement, which is pR(h = 1 | a = 1) − pR(h =

1 | a = 0). The firm commits to a mixture over actions, which is interpreted

as the long-run frequency with which it sells the supplement. Its objective is

to maximize the total profit

p(a = 1) · [pR(h = 1 | a = 1)− pR(h = 1 | a = 0)− k]

Denote p(a = 1) = α. Spiegler (2015a) shows that

pR(h = 1 | a) =
1

(1 + α)(2− a)

for every a = 0, 1, such that the consumer’s willingness to pay for the sup-

plement is 1/2(1 + α) - note that it decreasing in the selling frequency. The

firm’s problem is thus reduced to choosing α to maximize

α ·
(

1

2(1 + α)
− k
)

It follows that when k ≥ 1
2
, the firm is unable to profit from the consumer’s

causal misperception. For k < 1
2
, the optimal solution is given by

α∗ = min

{
1,

√
1

2k
− 1

}

such that the consumer’s willingness to pay for the supplement is 1
4
for k ≤ 1

8
,

and
√

2k(1−
√

2k)/2 for k ∈ (1
8
, 1
2
).

At first glance, the comparative statics w.r.t k depicts a conventional

response to changes in marginal cost: as k goes down, the firm sells a greater

total quantity at a lower price. Normally, we would interpret this response

as sliding down a downward sloping demand curve. However, the logic is

different here. A decrease in k increases the firm’s incentive to produce; a
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larger selling frequency leads to a lower endogenous willingness to pay for

the supplement, and therefore the firm needs to lower the price.

6.2 Rigid Monetary Policy

For the last time in this paper, let us revisit the “monetary policy”, adopting

the linear-normal specification of Example 5.1. Unlike previous examples,

here the central bank does not wish to exploit the private sector’s conditional

inflation-forecast errors. Rather, these errors are an impediment to achieving

the central bank’s objectives, and they constrain its ability to adapt monetary

policy to changing circumstances.

Extend the basic example by adding an exogenous variable θ, which the

central bank privately observes θ before taking its action. This variable

represents the inflation target that the central bank would like to implement.

The other two economic variables, π and y, are independent of θ conditional

on a. In particular, they obey the linear-normal equations (6). No structure

is imposed on the distribution of θ. The true process is consistent with the

true DAG
θ → a → π

↓ ↓
e → y

(9)

Let µz denote the true expected value of any variable z.

The central bank’s objective is to minimize

V ar(y) + k · E(π − θ)2 (10)

where k > 0 is a constant that captures the central bank’s trade-off between

two motives: minimizing output variance and minimizing the mean square

deviation of inflation from the target.

As a benchmark, suppose that the private sector has rational expecta-

tions. Then, its inflation forecast conditional on a is Ep(π | a) = a. There-

fore,

y = (γ − 1)a+ γε+ η
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Since ε and η are independent variables with mean zero, we can ignore them

in the calculation of the objective function, which is reduced to

(γ − 1)2E(a− µa)2 + k · E(a− µθ)2

Solving this problem is standard. The strategy that minimizes this objective

function is

a∗(θ) =
k

(γ − 1)2 + k
θ +

(γ − 1)2

(γ − 1)2 + k
µθ

for every θ. This solution does not rely on the normality of ε and η.

The optimal policy under rational expectations exhibits some rigidity:

it is a weighted average of the realized inflation target θ and the ex-ante

average target µθ. A higher weight on the former corresponds to a policy

that is more responsive to fluctuations in the target. As γ approaches 1 -

such that anticipated inflation matters less for output - the central bank’s

policy approaches perfect targeting.

The private sector’s DAG is

R : θ → a→ π ← y

Thus, the private sector’s causal model agrees with the true model about the

way θ and a are jointly distributed; the only disagreement is about the way

output and inflation are determined, along the same lines as in Section 3.

Proposition 7 Given the private sector’s DAG R, the central bank’s optimal

policy is

a∗∗(θ) =
k

λ(γ − 1)2 + k
θ +

λ(γ − 1)2

λ(γ − 1)2 + k
µθ

where

λ =

(
γ2σ2ε + σ2η

γ(γ − 1)σ2ε + σ2η

)2
Proof. The central bank’s problem is to choose a strategy (i.e., a potentially
stochastic mapping from θ to a) that minimizes (10) subject to the constraints

that π = a+ε and y = γπ−e(a)+η. (Recall the notation e(a) = ER(π | a).)
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In Section 5, we saw that e(a) is given by (8). Because the true process in

the current example has the feature that π, y ⊥ θ | a, the same expression
for e(a) continues to hold. Therefore,

E(y | a) = (γ − δ)a− (1− δ)µa

where

δ =
σ2η

γ(γ − 1)σ2ε + σ2η

Thus, µy = (γ − 1)µa.

Because ε and η are independent variables with mean zero, we can ignore

them in the calculation of the objective function, which is reduced to

(γ − δ)2E(a− µa)2 + kE(a− θ)2 (11)

This is exactly the same as in the rational-expectations case, except that

the coeffi cient (γ − δ)2 replaces (γ − 1)2. The policy that minimizes this

expression is a∗∗(θ), as given in the statement of the proposition. Again, the

derivation is standard and therefore omitted.

This result has a few noteworthy features. First, as observed in Section

5, the expression for e(a) given by (8) implies that when γ = 1, the private

sector’s inflation forecasts are consistent with rational expectations, hence

the optimal policy fully tracks θ. Deviations from the rational-expectations

prediction occur when γ > 1. In this case, the private sector’s inflation

forecast is a weighted average of a and its ex-ante expected value µa. That is,

private-sector forecasts are not fully responsive to the central bank’s action.

The intuition is the same as in Section 3: the private sector erroneously

regards y as an exogenous variable that affects π, and therefore assigns some

weight to the ex-ante expected value of y when forming its inflation forecast.

Because y is in fact a consequence of a, the private sector ends up assigning

weight to µa, thus failing to fully condition on the actual realization of a.

The extent of this failure depends on the relative magnitudes of σ2ε and

σ2η. As the Phillips relation becomes more reliable (relative to the reliability
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of the effect of monetary policy on inflation), the erroneous weight on µa
increases and the deviation from rational expectations is exacerbated.

The private sector’s “expectational rigidity”impels the central bank to-

ward a more rigid policy than in the rational-expectations benchmark. This

can be immediately seen from the effective objective function (11). Since

δ ≤ 1 by definition, the central bank places a larger weight on the considera-

tion of minimizing the variance of a, compared with the rational-expectations

benchmark. Excess rigidity of the optimal policy increases with σ2ε/σ
2
η.

7 Discussion

In this section I briefly discuss a few variations and extensions of the model,

as well as the paper’s relation to some works on non-rational expectations.

7.1 Ex-ante Forecasts

Throughout this paper, I assumed that the agent forms forecasts after ob-

serving a signal. A natural variant would assume that the agent forms his

forecasts without observing anything. In this case, the question becomes

whether the agent’s marginal subjective distribution over any given economic

variable (including the unobserved action) is unbiased on average.

Formally, we will say that a DAG R induces unbiased ex-ante forecasts if

ER(xi) ≡ Ep(xi). The following result is a simple corollary of Proposition 2

in Spiegler (2015b): R induces unbiased ex-ante forecasts if and only if it is

perfect. Thus, perfection turns out to characterize the property of unbiased

forecasts, whether or not the agent conditions his forecast on a signal.

7.2 The Principal’s Commitment Problem

In all the versions of the “monetary policy”example that appeared in this

paper, we looked for the central bank’s ex-ante optimal strategy. This im-

plicitly assumed that the central bank is able to commit ex-ante to a random

policy. Of course, the original Kydland-Prescott and Barro-Gordon models
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were developed to highlight the role of commitment when the private sector

has rational expectations. However, note that I assumed that the private

sector observes the central bank’s actions. If the private sector had rational

expectations, there would be no role for ex-ante commitment, because the

central bank would never be tempted to deviate from the ex-ante optimal

action: the private sector would be able to monitor any deviation from the

pre-committed action and adapt its rational forecasts accordingly.

In contrast, when the private sector has a misspecified causal model, a

commitment problem does arise despite the perfect monitoring of the central

bank’s actions. Suppose that R : a → y ← π. By our analysis in Section 4,

the private sector’s inflation forecast is correct on average. Yet, at the same

time it is entirely unresponsive to the realization of a. In other words, the

private sector forms its inflation forecast as if it has rational expectations

but cannot monitor the central bank’s action - exactly as in the original

Kydland-Prescott and Barro-Gordon models! To conclude, principal-agent

situations are vulnerable to a time-consistency problem when the agent has

causal misperceptions, even if he perfectly monitors the principal’s move.

7.3 Relevance to Dynamic Models

The model of this paper does not make any explicit assumptions regarding

the temporal realization of economic variables. Yet all the applications we

have seen were static. Nevertheless, the formalism can be applied to dynamic

models. Consider a discrete-time environment with an infinite horizon. There

is a collection of exogenous variables, θ = (θ1, ..., θm), and a collection of

endogenous variables y = (y1, ..., yr). Let θ
t and yt denote the realizations of

θ and y at period t.

Imagine that the agent believes that the exogenous variables θ evolve

according to some stochastic process with bounded memory, such that the

realization of θt is a stochastic function of θt−1, ..., θt−K , where K is con-

stant. In addition, the agent postulates that the endogenous variables evolve

according to a “Markov equilibrium”, such that yt is a stochastic function of

(θt−K , ..., θt). These assumptions imply a belief that exogenous and endoge-
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nous variables jointly evolve according to a Markov process, whose invariant

distribution plays the role of the objective distribution p in our model. The

DAG R - defined over nodes that correspond to current and lagged variables

- represents structural assumptions regarding this Markov process.

7.4 Related Literature

This paper contributes to a literature (reviewed in Spiegler (2015a)) that

studies strategic interaction among agents who base their decisions on mis-

specified subjective models. Within this literature, Piccione and Rubinstein

(2003) share the “expectations management”aspect of the examples in the

present paper. In their model, the principal is a seller who commits to a de-

terministic temporal sequence of prices, taking into account that consumers

can only perceive statistical patterns that allow the price at any period t to

be a function of price realizations at periods t − 1, ..., t − k, where k is a

constant that characterizes the consumer. When the value of k is negatively

correlated with consumers’willingness to pay, the seller may want to gen-

erate a complex price sequence as a price-discrimination device. Relatedly,

Ettinger and Jehiel (2010) study a bargaining model, in which a sophisti-

cated seller employs deception tactics that lead a buyer who exhibits coarse

reasoning to have a biased estimate of the object’s value.

The paper is also related to a few works that examine monetary policy

when the rational-expectations assumption is relaxed. Evans and Honkapo-

hja (2001) andWoodford (2013) review dynamic models in which agents form

non-rational expectations, and explore implications for monetary policy. See

Garcia-Schmidt and Woodford (2015) for a recent exercise in this tradition.

Sargent (2001), Cho et al. (2002) and Esponda and Pouzo (2015) study

models in which it is the central bank who forms non-rational expectations,

whereas the private sector is modeled conventionally.
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