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1 Introduction

“We would like to understand the real, macroeconomic, aggregate, nondiver-
sifiable risk that is proxied by the returns of the HML and SMB portfolios.”
(pp. 442 Cochrane (2005))

The literature is yet to find a compelling macroeconomic explanation behind the cross-
sectional variation of asset returns. Numerous macroeconomic variables have been pro-
posed as pricing factors, with most of these variables being reduced-form objects: they
are subject to common structural shocks and are therefore correlated with one another.
Using reduced-form variables such as output or inflation innovations, as often done in
the empirical asset pricing literature, can thereby pose an insurmountable challenge to
estimate risk exposures and risk prices associated with stochastic macroeconomic forces.

My paper aims to solve this problem by proposing the following econometric strategy
in a vector autoregression (VAR) model: instead of starting with economic assumptions
and testing their asset pricing implications, I start by using a given asset portfolio to
construct an orthogonal shock that has the highest risk premium when pricing the given
portfolio. Equivalently, this shock is the best possible approximation of the stochastic
discount factor (SDF) that can be recovered from the space of residuals of a given VAR
model when pricing the given portfolio. Only then I check the macroeconomic charac-
teristics of the resulting shock by inspecting the associated impulse response functions,
forecast error variance decomposition and the estimated time-series of the shock.

The method is general and could be applied to any VAR and any test assets. It can be
used as a unifiying framework to model the joint dynamics of any reduced-form variables
that individually have been found to price the cross-section of returns, and to link the
common stochastic drivers of these variables to a single orthogonal shock. When applying
the method to a simple five-variable macroeconomic VAR and to the 25 portfolios of Fama
and French (1993) augmented with the 30 industry portfolios as prescribed by Lewellen,
Nagel, and Shanken (2010) (FF55 henceforth), the obtained shock, which I refer to as a
λ-shock, closely resembles well-known structural shocks, studied by the macroeconomic
literature. The shock triggers a delayed reaction in consumption and has a sharp impact
on the short-term interest rate and the term spread. These features make the λ-shock
similar to monetary policy shocks and also to what macroeconomists refer to as news
shocks about future total factor productivity (TFP).

In fact, as shown by Figure 1, the correlation between the λ-shock series and the TFP
news shock series, estimated by Kurmann and Otrok (2013), and the monetary policy
shock series identified by Romer and Romer (2004) and Sims and Zha (2006) is around
80%. This is striking given that my orthogonalisation strategy, as explained further
below, has nothing to do with the strategies used to identify monetary policy or TFP
news shocks, as my VAR model does not even contain a measure of TFP as an observable.
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When applying the method to other equity portfolios such as size-operating profitability
or size-investment or to a cross-section of US treasury bonds with different maturities, I
find that the economic properties of the λ-shock are largely unchanged. Moreover, using
the test assets constructed by Dimson, Nagel, and Quigley (2003) for the UK that are
comparable to those constructed by Fama and French (1993) for the US, I find that the
properties of the λ-shock are similar across the two countries.

Figure 1: The λ-shock and Well-known Structural Shocks
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Notes: The construction of the λ-shock is explained in Section 2. The TFP news shock series are the ones plotted in
Figure 5 on pp. 2625 of Kurmann and Otrok (2013) who apply the method of Uhlig (2004) to identify a TFP news shock
over the period 1959Q2-2005Q2. The monetary policy shock series in the middle panel are originally proposed by Romer
and Romer (2004) and updated by Tenreyro and Thwaites (2016) to the period 1969Q1-2007Q4. The monetary policy
shock series in the bottom panel are from Sims and Zha (2006) as documented in Stock and Watson (2012).

In contrast, the obtained macroeconomic shock is markedly different when using the
same VAR model but applying the orthogonalisation method to momentum portfolios.
In this case, the λ-shock induces reactions in consumption, the interest rate and the term
spread that are of opposite sign compared to the λ-shock implied by the FF25 portfolios.
These results confirm the recent findings by Lettau, Ludvigson, and Ma (2017) and
suggest that momentum premia are inversely exposed to the “macroeconomic, aggregate,
nondiversifiable risk proxied by the returns of the HML and SMB portfolios”.

The Orthogonalisation Strategy The starting point of my analysis is a standard
VAR including a small set of macroeconomic variables. The finance literature often
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used Cholesky decomposition to obtain triangularised innovations in the spirit of the
Intertemporal CAPM (Merton, 1973)1. Triangularisation is merely one of the infinite
number of identification strategies to transform the reduced-form variance-covariance
matrix to a structural form. I build on this point by exploring the entire space of possible
orthogonalisations, given the estimated time-series of reduced-form residuals, with the
aim to find the best approximation of the SDF from linear combinations of these residuals.
Mechanically, the λ-shock is constructed as the one that, if used as a factor in the two-
pass procedure of Fama and MacBeth (1973) applied to the given test portfolios, would
generate the highest estimated factor risk premium in absolute value.

My approach does not make any of the assumptions that macroeconometricians tend
to make when identifying structural shocks, e.g. restrictions regarding the short/long-run
effects of the shock, or regarding the shock’s contribution to the forecast error variance
(FEV) of a target variable in the VAR over a pre-specified horizon. Compared to these
approaches, my method can be thought of as much more agnostic. Hence, there is no
direct reason to believe that the obtained structural λ-shock should capture any of the
economic forces studied by the structural VAR literature. The fact that it does, by
closely resembling the statistical features of well-known macroeconomic shocks, could
provide strong evidence on the relevance of those shocks in not only driving business
cycles but also in explaining the cross-section of stock returns.

In addition, approximating the SDF with VAR residuals may have a possible advan-
tage over standard no-arbitrage methods of estimating the SDF. The VAR framework and
its rich machinery allows one to explore the link between the SDF and macroeconomic
dynamics in more detail, making full use of the traditional macroeconometric toolkit.
Impulse response function (IRF) analysis can be used to estimate how the λ-shock prop-
agates through the economy in comparison with structural shocks traditionally identified
in the macroeconomic literature. FEV decomposition can be used to estimate the con-
tribution to business cycle dynamics of shocks that do not demand risk compensation,
according to the given test portfolios, compared to shocks that do (λ-shock). These are
just two of the examples of how the proposed framework can potentially provide a better
understanding of the links between asset prices and business cycles.

Related Literature My paper is related to the finance literature on finding macroeco-
nomic factors that drive the cross-sectional variation of risk premia. A partial list includes
Chen, Roll, and Ross (1986), Ferson and Harvey (1991), Campbell (1996), Cochrane
(1996), Vassalou (2003), Brennan, Wang, and Xia (2004), Petkova (2006), Liu and Zhang
(2008), Maio and Santa-Clara (2012), Koijen, Lustig, and van Nieuwerburgh (2012),
Boons and Tamoni (2015), He, Kelly, and Manela (2017). In addition, consumption
based asset pricing (CCAPM) models also had success in explaining the cross-section of

1See Campbell (1996), Petkova (2006) and Boons (2016) amongst others.
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returns by introducing conditioning variables (Jagannathan and Wang 1996; Lettau and
Ludvigson 2001; Lustig and Nieuwerburgh 2005; Santos and Veronesi 2006; Yogo 2006)
or focusing on the long-run component of consumption risk (Bansal and Yaron 2004;
Parker and Julliard 2005; Hansen, Heaton, and Li 2008; Constantinides and Ghosh 2011;
Bryzgalova and Julliard 2015).

A number of recent papers explored factors that are less reduced-form and are more
tied to macroeconomic primitives. Modern macroeconomic models interpret business cy-
cles as the outcome of simultaneous realisations of various structural disturbances with
potentially very different quantities and prices of risk (Smets and Wouters 2007; Jus-
tiniano, Primiceri, and Tambalotti 2010; Rudebusch and Swanson 2012; Borovicka and
Hansen 2014; Campbell, Pflueger, and Viceira 2015; Greenwald, Lettau, and Ludvigson
2015; Ludvigson, Ma, and Ng 2015; Kliem and Uhlig 2016). In this spirit, more recent
explanations of the cross-sectional variation of returns involve macroeconomic surprises
related to monetary policy (Weber 2015; Ozdagli and Velikov 2016) and production tech-
nology (Papanikolaou 2011; Kogan and Papanikolaou 2014; Garlappi and Song 2016)
among others. My paper builds on these developments, and the results from applying
my orthogonalisation strategy to the FF55 portfolios are consistent with the empirical
findings of these two literatures.

Further, the method I propose builds heavily on the structural VAR literature (Sims
1980; Stock and Watson 2001). More specifically, the implementation of my orthogonali-
sation theme draws on the more recent identification themes that use sign restrictions to
identify structural shocks (Uhlig 2005; Rubio-Ramirez, Waggoner, and Zha 2010; Fry and
Pagan 2011). As mentioned, finance papers using VARs (Campbell, 1996; Petkova, 2006;
Boons, 2016) typically applied Cholesky decomposition to the estimated reduced-form
variance covariance matrix. While the obtained innovations had success in explaining
the cross-section of returns, it has been difficult to assign macroeconomic interpretations
to these innovations. Moreover, the idea of using observed asset prices to select a struc-
tural shock draws on the long-standing literature of no-arbitrage estimation of the SDF
(Hansen and Singleton 1982; Ait-Sahalia and Lo 2000; Rosenberg and Engle 2002; Cher-
nov 2003; Ross 2015; Ghosh, Julliard, and Taylor 2016). Building on these papers, my
method to explore the entire space of possible orthogonalisations in a VAR and to find
the structural shock based on approximating the SDF given a set of portfolios is, to the
best of my knowledge, novel in the literature.

Structure of the Paper The remainder of the paper is as follows: Section 2 explains
my empirical approach, Section 3 presents the empirical results and Section 4 concludes.
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2 The Econometric Framework

2.1 The Geometry of the λ-shock

Before presenting the VAR model, it is instructive to first summarise the intuition behind
finding the λ-shock. To do so and to highlight the geometrical nature of the ideas, I try
to map some of the relevant mathematical background into a simplified 3-dimensional
graph shown in Figure 2. There is an underlying probability space, and L2 denotes the
collection of all random variables with finite variances defined on that space. L2 is a
Hilbert-space with the associated norm ‖p‖ = (E (p2))1/2 for p ∈ L2. Let P denote the
space of portfolio excess returns (zero-price payoffs) that is assumed to be a closed linear
subspace of L2.2 P is represented by the red plane in Figure 2. An admissible stochastic
discount factor is a random variable m in L2 such that the inner product of the excess
return and m satisfies 0 = E (mp) for all p ∈ P . The set of all admissible SDFs denoted
by M is represented by the black line which goes through the origin and perpendicular
to the red plane in Figure 2.3

Figure 2: A Simplified Geometry of Finding the λ-shock

Let S denote the set of reduced-form innovations from a VAR (the blue solid arrows
in the Figure) and denote D the space spanned by these innovations. D is assumed
to be a closed subspace of L2, and it is represented by the blue plane in the Figure.
The Gram-Schmidt orthogonalisation procedure allows the reduced-form innovations that
span D to be transformed into a set of orthonormal vectors that also span D. The blue

2See Hansen and Jagannathan (1991, 1997) for a detailed discussion.
3As is well known, all SDFs can be represented as the sum of the minimum norm SDFs (the intersection

of the black line and the red plane in Figure 2) and of a random variable that is orthogonal to the space
P of excess returns (Hansen and Richard (1987); Cochrane (2005)).
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dashed arrows in Figure 2 represent two possible elements of the infinite sequence of
orthogonalisations. The set of the all admissible orthogonalisations is denoted by O and
is represented by the blue circle with unit radius in the Figure.

The space of VAR innovations is unlikely to contain an SDF because of model mis-
specification or measurement error associated with observing SDFs (Roll (1977)). Loosely
speaking, the tilted nature of the blue plane prevents all elements of O to be orthogonal
to the space of excess returns, i.e. M ∩ O = ∅. Nevertheless, one can find an element in
O that is closest to M in the spirit of Hansen and Jagannathan (1997) by applying the
classical Projection Theorem.4 This has important implications for linear models of the
SDF that use structural innovations from VAR models as pricing factors: there is one
particular orthogonalisation of the reduced-form VAR residuals that delivers a structural
shock, which is closer to the SDF than all the other structural shocks in the VAR. This
is the blue arrow labelled as the λ-shock in Figure 2, whose projection onto the space
of SDFs is the magenta line. Given that this shock is the best possible approximation
of the SDF, it summarises all the relevant information contained in all the reduced-form
residuals of the VAR model. The next proposition for the two-dimensional case highlights
that it is in fact easy to find the rotation which generates the λ-shock.

Proposition 1 Given the linear combination: m = af1 + bf2, where a, b ∈ R, m, f1, f2 ∈

R2, ‖f1‖ = ‖f2‖ = 1 and 〈f1, f2〉 = 0, there exists a rotation rθ =
 cos θ − sin θ

sin θ cos θ

 with

0 < θ < 2π such that m = a?f ?1 + b?f ?2 , where a? 6= 0, b? = 0 and f ?i = rθfi for i = 1, 2.

While the proposition may seem a trivial piece of linear algebra (see Section A of the
Appendix), it has important implications for using orthonormalised shocks from VAR
models as pricing factors in linear pricing models. It is a well known theorem that beta
pricing models are equivalent to linear models for the SDF (pp. 106-107 Cochrane (2005)).
Denoting the SDF, the pricing factor, the excess returns and the first- and second-stage
regression coefficients from a linear pricing model by m, f , Re, β and λ, respectively, I
re-state the version of the theorem when the test assets are all excess returns:

Theorem 2 (Cochrane 2005) Given the model

m = 1 + [f − E (f)]′ b

0 = E (mRe) ,
(2.1)

one can find λ such that
E (Re) = β′λ, (2.2)

4That is, assuming that O is a complete linear subspace of H, there exists a unique vector m0 ∈ O,
corresponding to any vector x ∈ M , such that ‖x −m0‖ ≤ ‖x −m‖ for all m ∈ O. See pp. 50-51 of
Luenberger (1969) for a classic treatment and pp. 608-609 of Hansen and Richard (1987) for a conditional
version of the theorem.
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where β are the multiple regression coefficients of excess returns Re on the factors. Con-
versely, given λ in 2.2, we can find b such that 2.1 holds.

It is shown by Cochrane (2005) that λ and b are related λ = −var (f) b. This result sim-
plifies greatly when working with pricing factors (such as orthonormalised VAR residuals)
that have zero mean and unit variance. In this case, λ = −b and E (f) = 0.

The following section will highlight that finding the orthonormalised shock in a VAR
of any dimension that demands the highest price of risk (λ) when pricing a given portfolio
of assets is equivalent to finding a single time series that is a linear combination of the
reduced form innovations of the VAR which summarises all the information relevant to
pricing the given portfolio.5 More importantly, it is then possible to apply the struc-
tural VAR methodology to learn about the causal effect of the shock on macroeconomic
dynamics.

2.2 The VAR Model

Given aK×1 time series denoted byXt, the p-th order structural VAR can be represented
as follows6:

Xt = k + A1Xt−1 + A2Xt−2 + · · ·+ ApXt−p +HΣet

et ∼ (0, IK) , Σ =


σ11 0 . . . 0
0 σ22 0 0
... ... . . . 0
0 0 . . . σKK

 , σjj ≥ 0 ∀j,
(2.3)

where the structural shocks et have zero mean, unit variance and are serially and mutually
uncorrelated. Knowing the structural form 2.3 would be useful for both asset pricing and
macroeconomic purposes. For example, the asset pricing literature (Cochrane, 2011) may
want to see whether elements of et can explain risk premia, whereas the macroeconomic
literature (Sims, 1980) tends to focus on the causal effects of components of et on the
VAR dynamics. The latter is typically done by writing out the MA (∞) representation
of 2.3:

Xt = µ+ Ψ (L)HΣet, (2.4)

where Ψ (L) is a lag polynomial of infinite order. The dynamic effects of structural shocks
can then be studied by computing impulse response functions (IRF), ∂XT+s/∂ejt. The
reduced form corresponding to the structural form representation (2.3–2.4) can be written

5Another way of saying this is that the cross-sectional R2-measure associated with a pricing model
that includes all the reduced-form residuals from the VAR is the same as the R2-measure associated
with the one-factor model which uses the appropriately orthonormalised shock. This will be confirmed
during the empirical application of the method (Panel A and B of Tables 2–5.)

6The exposition follows Ludvigson, Ma, and Ng (2015, 2017) amongst others.
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as:
Xt = µ+ Ψ (L) ηt
ηt ∼ (0,Ω) , Ω = E (ηtη′t) ,

(2.5)

where ηt are the reduced form innovations that are related to the structural shocks et by
an invertible matrix H:

ηt = HΣet ≡ Bet, (2.6)

As is well-known in the literature, structural VARs (2.3) are not identified. The data
provides information about the reduced form (2.5), but this information is not sufficient
to uniquely determine the elements of B. Estimates of ηt and Ω provides k (k + 1) /2
pieces of information about B, hence k (k − 1) 2 additional restrictions are necessary
to fully identify B. Sims (1980) originally proposed applying Cholesky decomposition
to the reduced form variance covariance matrix (B = chol (Ω)) to obtained a unique,
triangularise structure in the spirit of Wold (1954). This was subsequently used in the
asset pricing literature as well (Campbell, 1996; Petkova, 2006; Boons, 2016). Over the
last decades, a plethora of new techniques have been proposed to provide full or partial
identification of B, which involved both point and set identification of the elements of B.7

Having introduced the VAR terminology, the method proposed in this paper essentially
finds the elements of a single column of B which can be used to estimate the causal
effect of an orthogonal macroeconomic shock which is the best approximation of the SDF
according to a given cross-section of test assets. The following example highlights the
intuition.

Example 3 (A Two-variable VAR Model) Let R be a T×n matrix of excess returns
of n test portfolios. Take a two-variable VAR model (k = 2) and suppose that the pricing
factors are the orthonormalised shocks implied by Cholesky decomposition (ft = [f1t |f2t] =
ηtB

−1 = ηt (chol (Ω))−1). Given a linear pricing model 2.2, the estimated model for the
SDF (m) is written as a linear combination of the two innovation series:

mt = λ1f1t + λ2f2t, (2.7)

where λ1 and λ2 are the estimated prices of risk associated with f1 and f2. The λs can
easily be obtained with the two-stage procedure of Fama and MacBeth (1973): (i) estimate
n time series regressions, Rit = ai+ftβi+εit, i = 1 . . . n, and (ii) estimate a cross-section
regression, R̄i = β̃i × λ + αi, where R̄i = 1

T

∑T
t=1 Rit, β̃i is the OLS estimate obtained in

the first stage and αi is a pricing error. Because f1 ⊥ f2 and var(f1) = var (f2) = 1, the
variance of the SDF is simply the sum of the squared values of the estimates of prices of

7See Kilian and Lutkepohl (2016), Ramey (2016) and Ludvigson, Ma, and Ng (2017) for a recent
review of the literature.
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risk associated with each one of the two VAR shock series:

var (mt) = λ2
1 + λ2

2. (2.8)

Rotation does not affect the overall information content in the VAR, that is, the volatility
of the implied SDF is determined by the specification of the VAR and not by rotating
the variance-covariance matrix of the residuals. The main implication of proposition 1 is
that the information contained in the VAR residuals can be summarised by merely one
structural shock after applying an appropriate rotation to the variance-covariance matrix.

To put it simply, there exists a rotation rθ =
 cos θ − sin θ

sin θ cos θ

 such that using f ?i = rθfi

for i = 1, 2 as pricing factors, one of the estimated prices of risk would be λ?1 =
√
var (m),

as the other one corresponding to the rotated factor f ?2 would be zero λ?2 = 0. This implies
that the best approximation of the SDF is found, f ?1 = m, and rθ can be used to perform
structural analysis in the VAR, i.e. the corresponding column of the new structural impact
matrix B? = Brθ can be used to compute IRFs.

It is important to note that finding rθ is of course not needed to find the time-series λ-
shock. Applying the Fama and MacBeth (1973) procedure to any set of orthonormalised
residuals from a VAR will produce a unique time-series of the λ-shock that can be obtained
as the fitted values of the second-stage regression. This is highlighted by lemma 6 of
the Appendix. A linear model of the SDF, that uses arbitrarily orthonormalised VAR
residuals, uniquely pins down one of the rows of the matrix (B?)−1. However, this in
itself is not sufficient to carry out structural VAR analysis, because to do so one needs to
know the column in the structural impact matrix B? (and not its inverse (B?)−1) that
corresponds to the λ-shock. Building on the example above, the following proposition
establishes the relationship between the angle θ needed to compute the IRFs associated
with the λ-shock.

Proposition 4 Given the two-variable VAR model described above with a reduced form

variance-covariance matrix Ω =
 ω11 ω12

ω12 ω22

, the column of B? =
 B?

11 B?
12

B?
21 B?

22

 corre-

sponding to the contemporaneous effect of the λ-shock is given by:

B?
11 = √ω11 cos (θ)

B?
21 = ω12√

ω11
cos (θ) +

√
ω22 − ω2

12/ω11 sin (θ)
(2.9)

with the rotation angle θ determined by the estimated prices of risks, θ = arcsin
(
λ2/

√
(λ2

1 + λ2
2)
)
.

To gain interpretation of this statement, consider the following empirical example.
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Example 5 (A Two-variable VAR and the Consumption-CAPM) Let the two vari-
ables in a quarterly VAR(2) be the log of consumption and the term spread, and let the
test assets be the 25 Fama-French (FF25) portfolios. An OLS regression using data from

1970Q1 to 2012Q2 yields an estimated variance-covariance matrix Ω̂ =
 0.38 −0.07
−0.07 0.78

.
Following the calculations in Proposition (4), the given test assets and the reduced-form
residuals, uCt and uTermt , imply the following estimated model of the SDF:

mt = 0.21uCt + 1.14uTermt ,

which suggests that reduced-form innovations in the term-spread load substantially more
than reduced-form consumption innovations. The difference is much more striking when
looking at the contemporaneous impact of the shock on consumption and the term spread.
Using the appropriate angle θ, the elements of the B? are as follows:

B̂?
11 = 0.006 B̂?

12 = 0.61

B̂?
21 = 0.88 B̂?

22 = −0.12.
(2.10)

The values in the first column suggest that a one standard deviation λ-shock induces a
large (0.88%-points) immediate jump in the term spread, but the shock has virtually no
contemporaneous effect (<0.01%) on consumption. This confirms the results of recent
Consumption-CAPM models (Bryzgalova and Julliard, 2015) as discussed further below.
Moreover, the second column shows the contemporaneous effect of the second shock in
the system that is by construction orthogonal to the SDF implied by FF25 portfolios and
VAR model (the λ-shock) and thereby demands zero risk premia. This shock has a large
(0.61%) contemporaneous effect on consumption which implies that virtually all of the
one period ahead forecast error variance in consumption is explained by a shock, exposure
to which demands zero risk compensation according to the FF25.

3 The Empirical Results

3.1 VAR Estimation and Data

To implement the orthogonalisation strategy in a larger model, I start by estimating the n-
variable reduced-form VAR (2.5) and applying Cholesky decomposition to the estimated
variance-covariance matrix Ω̂ = B̂B̂

′ where B̂ is lower triangular. As discussed, one can
take any orthonormal matrix Q to obtain a new structural impact matrix B̂

? = B̂Q,
thereby obtaining a new set of structural shocks, which conforms to the reduced-form
variance covariance matrix, i.e. Ω̂ = B̂

? (
B̂
?)′ = B̂Q

(
B̂Q

)′
= B̂B̂

′. To find Q which
delivers the unique column in B̂

? corresponding to the contemporaneous impact of the

11



λ-shock, I span the space of n-dimensional orthonormal matrices that are rotations with
an n-dimensional Givens rotation.8 I choose the Euler-angles of the Givens rotation
appropriately such that, given the test assets, the corresponding λ estimate in the second-
pass Fama and MacBeth (1973) regression is maximised. The construction of the Q
matrix is described in Section B of the Appendix.

To operationalise the VAR model, one needs to specify the variables to be included
in the state vector. I opt for a parsimonious model with the following five (n = 5), com-
pletely standard state variables: aggregate consumption, aggregate price level, the policy
interest rate, the default spread and the term spread. Consumption is measured as total
personal consumption expenditure as in Greenwald, Lettau, and Ludvigson (2015). Data
on the following three series are from the Federal Reserve Bank of St. Louis (FRED):
output is measured as quarterly seasonally adjusted real GDP (FRED code: GDPC1),
price level is measured as the personal consumption expenditures (chain-type) price index
(FRED code: PCEPI), the policy interest rate is the Federal Funds Rate (code: FED-
FUNDS) and the default spread is the difference between the AAA (FRED code: AAA)
and BAA (FRED code: BAA) corporate bond yields. The term spread is defined as the
difference between the long term yield on government bonds and the T-bill as used in
Goyal and Welch (2008). These five variables have long been recognised as good candi-
dates for state variables within the ICAPM framework, and they frequently appear as
key variables in macroeconomic forecasting models as well. When estimating the VAR,
I deliberately avoid using financial variables such as aggregate excess returns or various
valuation ratios, that are known to increase the overall fit of cross-sectional asset pricing
models. The specification of the state vector is motivated by the desire to stay as close
as possible to macroeconomic explanations of the cross-section of stock returns, in the
spirit of Chen, Roll, and Ross (1986) and subsequent papers. The baseline VAR model
includes two lags as suggested by the Schwarz Information criterion.

The sample period for the estimation is 1963Q3-2008Q3 and the data are at quarterly
frequency. The start of the estimation period is chosen by the majority of empirical asset
pricing studies of the cross-section. The end of the estimation period is chosen to exclude
the Great Recession period when the Federal Funds Rate hit the zero-lower bound. As
for the FF55 portfolios, 25 of them (FF25 henceforth) are formed from independent sorts
of stocks into five size groups and five B/M groups as described in Fama and French
(1993). The other 30 portfolios are four-digit SIC code level industry portfolios. The
monthly returns in excess of the one-month U.S. Treasury bill rate are transformed into
quarterly series. As studied extensively by the empirical asset pricing literature, average
returns typically fall from small stocks to big stocks (size effect), and they rise from
portfolios with low to large book-to-market ratios (value effect). Augmenting the FF25
with the 30 industry portfolios follows prescription 1 (pp. 182) of Lewellen, Nagel, and

8See Fry and Pagan (2011) for further details on Givens rotations in the context of sign restrictions.
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Shanken (2010), thereby relaxing the tight factor structure of Size-B/M. Moreover, I
apply the orthogonalisation method to additional test portfolios such as the 25 portfolios
sorted on size and operating profitability, the 25 portfolios sorted on size and investment,
and the 10 momentum portfolios sorted on the cumulative returns of stocks from 12
months before to one month before the formation date using a one-month gap before the
holding period. All the portfolios are value-weighted and are taken from Ken French’s
data library. As an alternative, I also use the 10 momentum portfolios as constructed in
Daniel and Moskowitz (2016).9

3.2 The Economic Characteristics of the λ-shock

Using the OLS estimates of the VAR, I compute impulse response functions (IRF) after
performing the orthogonalisation strategy described in Section 2. This is to understand
the macroeconomic impact of the λ-shock which is by construction the structural shock
that best approximates the SDF given the 5-variable VAR(2) model and the FF55 port-
folios. Section D of the Appendix describes a Bayesian treatment of the computation of
the IRFs in order to explore the role of parameter uncertainty in the VAR model.

Figure 3: Impulse Responses to a λ-shock
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Notes: The vertical axes are %-deviations from steady-state, and the horizontal axes are in quarters.

Figure 3 displays the IRFs of the five variables to a one standard deviation structural
innovation. The term spread jumps by about 70 basis points on impact and there is a

9As explained in Daniel and Moskowitz (2016) the biggest difference is that the portfolio breakpoints
for the portfolios constructed by Ken French are set so that each of the portfolios has an equal number of
NYSE firms. In contrast, Daniel and Moskowitz (2016) set their breakpoints so that there are an equal
number of firms in each portfolio. This mainly affects the low-momentum returns.
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very sharp and persistent drop in the Federal Funds Rate. The initial drop in the price
level is lower than the drop in the Federal Funds Rate, suggesting a sharp drop in the
real interest rate. Interestingly, the λ-shock has virtually no effect on GDP on impact,
but the effect increases substantially with the horizon from the third quarter onwards
and reaching a peak impact of about 0.7% approximately 12-15 quarters after the shock
hits. As shown by Figure 10 in the Appendix, the shape of these IRFs is similar when the
lag length is changed or when output is replaced by consumption in the VAR. A robust
finding is that the λ-shock does not trigger a positive comovement between consumption
and the short-term interest rate that is generated by most demand-type shocks proposed
by the recent macroeconomic literature (Christiano, Motto, and Rostagno, 2014).

To assess the contribution of the λ-shock to business cycles, in comparison with other
structural shocks that have zero covariance with the implied SDF, I compute FEV de-
composition over different horizons. Table 1 shows that the λ-shock explains about 1%
of consumption fluctuations over the six-month horizon, but the shock explains around
50-65% of fluctuations over longer (4-9 years) horizon. While these number are substan-
tial, there is some unexplained fraction of output fluctuations that is driven by structural
shocks exposures to which do not demand risk compensation according to the given test
assets. Moreover, Table 1 also shows that the λ-shock drives around 70-80% of interest

Table 1: The Contribution of the λ-shock to Business Cycles: FEV Decomposition

Consumption CPI FFR Def. Spread Term Spread
2Q 1.3 15.8 85.8 8.4 73.1
4Q 13.3 22.2 83.1 8.2 72.3
8Q 38.3 30.1 80.4 21.0 70.3
16Q 50.6 34.6 79.2 29.2 69.4
24Q 62.1 39.6 78.2 34.2 68.8
36Q 64.7 40.1 78.0 34.2 68.6

Notes: The table shows the % fraction of the total forecast error variance that is explained by the λ-shock over different
forecast horizons. The FF55 portfolios are used as test portfolios for the VAR model.

rate and term spread fluctuations and around 20-40% of fluctuations in the aggregate
price level and the default spread. The explained variation in the FEV in the interest
rate and the term spread seems to decrease over the forecast horizon, whereas it increases
for consumption, the price level and the default spread.

To place these results in the literature, the delayed response of aggregate consumption
in response to innovations that are relevant to asset pricing is a phenomenon that has
been documented by the consumption based macro-finance (Parker and Julliard, 2005)
and long run risk literatures (Bansal and Yaron, 2004). More recently, Bryzgalova and
Julliard (2015) have shown that “slow consumption adjustment shocks” account for about
a quarter of the time series variation of aggregate consumption growth, and its innovations
explain most of the time series variation of stock returns. My results are consistent with
their findings. In addition, my multivariate time-series framework is somewhat richer
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than their reduced-form consumption growth model, so it can possibly shed further light
on the macroeconomic drivers of the slow consumption adjustment shocks that are the
main source of aggregate risk.

One possible interpretation of Figure 3 is that the λ-shock behaves like a supply-type
shock with aggregate quantities moving in the opposite direction compared to the price
level and the short-term interest rate. However, the delayed expansion of consumption
would make the λ-shock clearly distinct from a positive unanticipated technology shock
which would have an immediate positive impact on output and consumption, as tradi-
tionally studied by the Real Business Cycle (RBC) and the subsequent New Keynesian
literature.10 However, a news-type technology shock that typically triggers a delayed
reaction in aggregate quantities may be perfectly consistent with Figure 3.11 Indeed,
Figure 4 of Kurmann and Otrok (2013) shows results for an identified TFP news shock
with very similar IRFs to mine. The striking similarity between my Figure 3 and their
findings occurs in spite of the fact that they identify a TFP news shock, following Barsky
and Sims (2011), by searching for a shock that accounts for most of the forecast error
variance of TFP over a given forecast horizon, and they force this shock to be orthogonal
to contemporaneous movements in TFP.

An alternative interpretation of Figure 3 is that a positive λ-shock behaves like an
expansionary monetary policy shock to the extent that it generates an immediate jump
in the short-term interest rate and the term spread and a delayed but persistently ex-
pansionary reaction in output. Though CPI goes the ’wrong’ way, but it is somewhat
consistent with the ’price puzzle’ (Sims, 1992) associated with early methods of Cholesky
orthogonalisation to identify monetary policy shocks as in Christiano, Eichenbaum, and
Evans (1999) and others.

To formally show the similarity between the λ-shock and some well-known structural
shocks studied by macroeconomists, Figure 1 in the Introduction plots the time-series
of the λ-shock against the TFP news shocks identified by Kurmann and Otrok (2013)
(upper panel) and against the monetary policy shocks identified by Romer and Romer
(2004) (lower panel). Based on the overlapping estimation period 1963Q4–2005Q2, the
correlation coefficient between the TFP news shock series (red dashed line) as identified

10Though technology shocks had some theoretical success in explaining aggregate excess returns in an
RBC framework (Jermann, 1998), the most recent empirical evidence by Greenwald, Lettau, and Lud-
vigson (2015) finds that the contribution of unanticipated TFP shocks to the variance of aggregate stock
market wealth is close to zero. These authors identify three mutually orthogonal observable economic
disturbances that are associated with over 85% of fluctuations in real quarterly stock market wealth.
They find that the third triangularised shock from a cointegrated three-variable VAR (including con-
sumption, labor income, and asset wealth) is the main driver of the variance of aggregate stock market
wealth. Their identifying assumption implies zero contemporaneous impact on consumption – an as-
sumption that is consistent with the IRF results implied by the more agnostic orthogonalisation theme
adopted in this paper.

11A partial list of the rapidly increasing macroeconomic literature on news shocks includes Beaudry
and Portier (2006, 2014), Jaimovich and Rebelo (2009), Barsky and Sims (2011), Schmitt-Grohe and
Uribe (2012), Kurmann and Otrok (2013), Malkhozov and Tamoni (2015).
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in Kurmann and Otrok (2013) and the λ-shock series (blue solid line) is 0.79. Based on
the overlapping estimation period 1969Q1–2007Q4, the correlation coefficient between
the monetary policy shock series (black dashed line) as identified in Romer and Romer
(2004) (and updated by Tenreyro and Thwaites (2016)) and the λ-shock series is 0.79.
The correlation with the monetary policy shock series identified by Sims and Zha (2006)
is 0.85 over the period 1963Q4–2003Q1.

To reiterate, my orthogonalisation strategy is unrelated to those frequently used in the
macroeconomic literature as it (i) makes no assumption about the λ-shock’s contribution
to the forecast error variance of any of the variables like Kurmann and Otrok (2013)
does12, (ii) does not rely on any narrative measures such as FOMC records like Romer
and Romer (2004) does, (iii) does not impose any zero-type or sign restrictions like Sims
and Zha (2006) does and (iv) does not even include TFP as an observable in the VAR.
Not to mention the additional differences of my empirical model in terms of lag structure,
sample period and variables used in the VAR. The fact that I come close to reconstructing
the object the TFP news literature and the monetary policy literature have studied (by
applying a completely different and relatively more agnostic methodology) could provide
strong empirical support for the relevance of these shocks in driving business cycles as
well as asset price dynamics.

3.3 Extensions

Other Equity Portfolios and Government Bond Returns To check the robustness
of the findings above, I explore how the behaviour of the λ-shock changes when the same
VAR model and the orthogonalisation method are applied to other test assets. A natural
choice is the 25 portfolios double sorted on size-profitability and size-investment. These
portfolios feature prominently in the most recent empirical asset pricing studies (Fama
and French, 2015, 2016). In addition, I also compute the IRFs for the λ-shock implied
by the benchmark FF25 portfolios, sorted on size-B/M, that have been the most studied
test assets to date.

The upper panel of Figure 4 shows the IRFs for these three sets of equity portfolios.
The results suggest that the economic behaviour of the λ-shock implied by these portfolios
is very similar to the λ-shock implied by the baseline FF55 as shown in Figure 3. The
only quantitative difference is that the baseline results imply a larger peak effect on
consumption and a more delayed effect on the default spread compared to Figure 4.

Moreover, I also use government bond returns that are calculated using the zero
coupon yield data constructed by Gurkaynak, Sack, and Wright (2007) that fit Nelson-
Siegel-Svensson curves on daily data. The parameters for backing out the cross-section

12The latter type of restriction has been increasingly popular (since its development by Uhlig (2004)),
particularly in the context of the identification of news shocks.
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Figure 4: Impulse Responses to a λ-shock, Implied by other Equity Portfolios and Gov-
ernment Bond Returns

(a) FF25, 25 Profitability-Size and 25 Investment-Size Portfolios
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(b) FF25 and US Government Bond Returns
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Notes: The vertical axes are %-deviations from steady-state, and the horizontal axes are in quarters. The upper panel
uses the VAR(2), as estimated in Subsection 3.2, and employs alternative equity portfolios to the construction of the
λ-shock. The lower panel estimates the same VAR(2) on a subsample 1975Q2-2008Q3, and employs the FF25 and
holding period excess returns on 18 US treasury bonds with different maturities.
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of yields are published on their website. The sample period is 1975Q2-2008Q3 so that
I have sufficiently large cross-section of yields. I use maturities for n = 18, 24, . . . , 120
months and compute one-month holding period excess returns which I then transform into
quarterly series. The resulting 18 bond portfolios are used to construct the λ-shock. The
lower panel of Figure 4 shows the results, confirming that the shock responsible for pricing
equities is virtually identical to the shock that prices government bonds. This is consistent
with the relatively small but growing literature on the joint pricing of stocks and bonds
(Lettau and Wachter 2011; Koijen, Lustig, and van Nieuwerburgh 2012; Bryzgalova and
Julliard 2015).

Adding More Variables to the VAR A natural extension of the baseline model is to
add more variables to the VAR. One advantage of the present multivariate set-up is that
one can use it as a unifiying framework to model the joint dynamics of any reduced-form
variables that individually have been found to price the cross-section of returns, and to
link the common stochastic driver of these variables to a single orthogonal shock.13

Figure 5 shows the results from an eight-variable VAR with each one of the eight
variables individually found to be relevant to asset pricing: early studies (Sharpe, 1964)
on the CAPM focused on the covariance with the market return, the consumption-CAPM
and long-run risk literatures (Bansal and Yaron 2004; Parker and Julliard 2005; Hansen,
Heaton, and Li 2008; Constantinides and Ghosh 2011; Bryzgalova and Julliard 2015;
Boons and Tamoni 2015) focused on specific innovations in the consumption process, the
ICAPM (Chen, Roll, and Ross, 1986; Liu and Zhang, 2008) emphasised output inno-
vations and also the role of the term spread and default spread (Hahn and Lee, 2006),
inflation risk has also been proposed as an important pricing factor (Bekaert and Wang,
2010; Boons, Duarte, de Roon, and Szymanowska, 2013), and the balance sheet position
of financial intermediaries has recently been proposed (He, Kelly, and Manela, 2017) as
a key determinant of the pricing kernel.

As emphasised in the introduction, these variables are reduced-form objects and often
exhibit high correlations with one another. For example, consumption innovations and
output innovations extracted from individual AR(1) models have around 66% correlation,
term spread innovation and federal funds rate innovations have around -82% correlation,
the intermediary capital risk factor constructed by He, Kelly, and Manela (2017) and
excess returns on the market (their second pricing factor) have a 78% correlation.14 A
main finding of this paper is that the VAR framework and the rotation of the variance-

13Increasing the size of the VAR introduces only computational challenges. For example, in an 8-
variable (10-variable) VAR one needs to find 420 (4725) angles to span the 8-dimensional space of
rotations. See section B of the Appendix.

14These number are based on estimates of individual AR(1) models on consumption, GDP, the term
spread and the Federal Funds rate covering the period 1963Q3-2008Q3. The correlation between the
intermediary capital risk factor and market excess returns are for 1970Q1-2012Q4 as in He, Kelly, and
Manela (2017).
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covariance make it possible to find a single, meaningful stochastic driver behind these
reduced-form innovations.

Figure 5: Impulse Responses to a λ-shock
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Notes: The vertical axes are %-deviations from steady-state, and the horizontal axes are in quarters. The VAR(2) is
estimated on a subsample 1970Q1-2008Q3 given the availability of the intermediary capital ratio series of He, Kelly, and
Manela (2017) that starts in 1970. I use the FF25 to construct the λ-shock.

Figure 5 confirms that all these variables respond to the λ-shock the way consistent
with the papers mentioned above that tried to explain the FF25. Aggregate quantities
react slowly, the intermediary equity capital ratio reacts sharply and persistently, realised
excess returns jump on impact and revert in the next period, and the other variables
behave similarly to the baseline model presented above. Overall, these results suggest
that the average returns of the equity portfolios and bond returns studied so far can be
explained by the different degrees of positive exposure to approximately a common source
of macroeconomic risk. As shown in the next subsection, these results change markedly
when using momentum portfolios to construct the λ-shock.

3.4 Momentum

Since it was first documented (Asness, 1994; Jegadeesh and Titman, 1993), momentum
returns have been challenging to explain with pricing factors that worked well in pricing
the traditional Fama-French portfolios. As a result, many linear factors models since
Carhart (1997) included a momentum factor explicitly in their pricing models in order to
explain momentum. Even the most recent generation of pricing models such as the five-
factor model of Fama and French (2015, 2016) fail badly as descriptions of average returns
on momentum portfolios without including a momentum factor in their model. This is
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particularly puzzling given that momentum is a pervasive phenomenon that appears in
many diverse markets and asset classes (Asness, Moskowitz, and Pedersen, 2013).

To explore the potentially different structural macroeconomic risks underlying mo-
mentum portfolios, I apply the same VAR and orthogonalisation technique to the 10
momentum (Prior 2-12) portfolios constructed by Ken French and to the 10 momentum
portfolios used in Daniel and Moskowitz (2016). Figure 6 shows the impact of a one
standard deviation λ-shock implied by the momentum portfolios compared with the λ-
shock implied by the FF55 portfolios. The results suggest that the λ-shock implied by
momentum has a markedly different dynamic effect on the economy. Most of the IRFs
flip sign compared to the λ-shock implied by the value and size portfolios.

Figure 6: Impulse Responses to a λ-shock, Implied by Momentum Portfolios
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Notes: The vertical axes are %-deviations from steady-state, and the horizontal axes are in quarters.

These results are in line with the recent evidence of Lettau, Ludvigson, and Ma (2017)
who shows that momentum premia are inversely exposed to the factors that explain value
and size. Relatedly, it is well known that momentum strategies and more traditional
trading strategies such as value are negatively correlated.15 In the present framework this
would suggest that the time-series of the macroeconomic shock exposures to which these
two strategies have delivered large risk premia historically must be quite distinct. Indeed,
the correlation between the time-series of the λ-shock implied by the FF55 portfolios and
of the λ-shock implied by the 10 momentum portfolios of Ken French and Daniel and
Moskowitz (2016) is -0.60 and -0.68, respectively.

15For example, Table I of Asness, Moskowitz, and Pedersen (2013) shows that value and momentum
strategies in the US have had an average correlation about -0.60 over the period 1972/1-2011/7.
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3.5 Pricing the Cross-section of Stock Returns

It is worth noting that the focus of this paper is not the asset pricing performance of
the λ-shock. Conditional on the VAR model 2.3 being an accurate representation of the
economy, the λ-shock itself is the SDF by construction. Put it differently, the pricing
performance of the given λ-shock can easily be improved by changing the specification of
the VAR (e.g. including additional variables such as the intermediary capital ratio of He,
Kelly, and Manela (2017) as in Section 3.3 or valuation ratios16) but not by changing the
orthogonalisation assumption. Though the baseline five-variable macroeconomic VAR
model is far from being an accurate representation of the economy, but it is a standard
and parsimonious way of summarising macroeconomic dynamics.

For the interested reader, I do summarise in this subsection the asset-pricing perfor-
mance of the λ-shock implied by each test portfolios studied above. As argued above,
this only is a test as to whether the variables included in the VAR contain information
relevant to pricing the given portfolios. Tables 2–5 of the Appendix present the results
from the two-pass regression technique of Fama and MacBeth (1973). During this ex-
ercise, I treat the uncovered λ-shock as a known factor when estimating the two-pass
regression model. To estimate the risk premium associated with the λ-shock, I apply the
GMM procedure described in Cochrane (2005) and implemented by Burnside (2011).

Overall, the pricing performance of the VAR (or equivalently, the λ-shock) is com-
parable with the 3-factor model of Fama and French (1993).17 Moreover, as explained
in Section 2, finding the λ-shock implies that the other four structural shocks have zero
covariance with the implied SDF, and therefore the associated estimated prices of risk are
numerically zero, as shown in panel B of Tables 2–5. Relatedly, the R2 associated with
the one-factor model using the λ-shock is identical to the R2 for the model using any set
of five orthogonalised shocks or in fact the model which uses the five reduced-form VAR
residuals.

Moreover, the results are also consistent with Lewellen, Nagel, and Shanken (2010)
who pointed out the strong factor structure of the FF25 portfolios which makes it rela-
tively easy to find factors that generate high cross-sectional R2s. Hence, they prescribed
to augment the FF25 with the 30 industry portfolios of Fama-French in order to relax
the tight factor structure of the FF25. Indeed, the cross-sectional R2 drops drastically
from 0.86 to 0.25 for the 1-factor model without a common constant, and it drops from
0.77 to 0.20 for the 3-factor model of Fama-French without a common constant. This can
be interpreted as the relevant information content of the VAR being much smaller for
pricing the FF55 portfolios than for pricing the FF25 portfolios. This may of course lead
to a critique of the (lack of) relevant information content of the VAR for pricing the FF55

16These results are available upon request.
17Applying the 3-factor model to the FF25 portfolios (Table 3) yields similar results to those obtained

in the literature (e.g. Petkova (2006)).
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portfolios, which may call for enriching the information set by adding valuation ratios to
the VAR. Nevertheless, changing the VAR may be unnecessary because this poor pricing
performance is unlikely to undermine the results of this application of my orthogonalisa-
tion strategy: the macroeconomic shock that captures all relevant information for pricing
the cross section (irrespective of whether the information content is relatively small or
large) bears virtually the same economic characteristics as the λ-shock using the FF25
portfolios. The IRFs are similar for the λ-shock using the FF25 and the FF55 (Figures 3
and 4), and the time-series of the shocks implied by the two portfolios have a high (0.82)
correlation coefficient.

3.6 The λ-shock and the Fundamentals

An application of my proposed orthogonalisation strategy to the stock portfolios of FF55
led to the result that the estimated λ-shock bears a close empirical relationship both
with TFP news shocks and with monetary policy shocks. This ambiguity of the result
might seem an awkward outcome: after all, how can the resulting λ-shock have such a
high correlation with two, seemingly distinct structural disturbances? To convince the
reader that this is not a fault of my orthogonalisation strategy, I propose one possible
and simple explanation for such an ambiguity: TFP news shocks and monetary policy
shocks are in fact highly correlated in the data.

To provide some suggestive evidence for this argument, I use the VAR model of
Kurmann and Otrok (2013) to identify a monetary policy shock using Cholesky orthogo-
nalisation as done by Sims (1980), Christiano, Eichenbaum, and Evans (1999) and many
others in the monetary policy literature. In this case, I deliberately use exactly the same
VAR specification as used by Kurmann and Otrok (2013) when they identified a TFP
news shock so that I can learn about differences and similarities across the two iden-
tification themes without changing the information set. The upper panel of Figure 7
plots the estimated time-series of the TFP news shocks (black dashed line) against the
monetary policy shock series identified with Cholesky orthogonalisation (red solid line).
The correlation between the two series is strikingly high (0.96), raising questions about
the orthogonality of these shocks with respect to one another.

Of course, the identification of monetary policy shocks with Cholesky orthogonali-
sation is only one of the many possible identification strategies. Therefore, I provide
additional evidence from the structural model of Smets and Wouters (2007) which is a
dynamic stochastic general equilibrium (DSGE) model estimated with Bayesian methods.
Monetary policy shocks in this framework are the estimated innovations in a Taylor-type
monetary policy rule. The estimated time-series of these structural innovations from the
DSGE model are plotted in the lower panel of Figure 7 (blue solid line) against the TFP
news shocks (black dashed line) of Kurmann and Otrok (2013). The correlation between
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Figure 7: Comparing TFP News Shocks against Monetary Policy Shocks: Results from
Kurmann and Otrok (2013)’s VAR and from Smets and Wouters (2007)’s DSGE Model.
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Notes: The TFP news shock series (black dashed line) are the ones plotted in Figure 5 on pp. 2625 of Kurmann and
Otrok (2013) who apply the method of Uhlig (2004) to identify a TFP news shock over the period 1959Q2-2005Q2. The
monetary policy shock series in the upper panel (red solid line) are identified with Cholesky identification as in
Christiano, Eichenbaum, and Evans (1999), using the same variables and lag length as Kurmann and Otrok (2013). The
monetary policy shock series in the lower panel (blue solid line) are the estimated time-series of innovations in the
Taylor-rule in the DSGE model of Smets and Wouters (2007).

these two series is still remarkably high (0.81).
I interpret these findings as confirmation that the somewhat ambiguous characteri-

sation of the obtained λ-shock is not an outcome of the potential weakness of my or-
thogonalisation theme, but it is a result of the high empirical correlation between the
two, well-known structural disturbances that the λ-shock resembles. To the best of my
knowledge, this empirical regularity has not been documented in the literature yet, and
it could be subject to further research.

3.7 Results from the UK

To check whether the results are robust to countries other than the US, I re-estimate the λ-
shock using data for the UK covering the period 1975Q1-2001Q4. One advantage of using
data for the UK is related to the availability of both comparable monetary policy shock
series and comparable test assets across the two countries in question. The accounting
and share price information was collected by Dimson, Nagel, and Quigley (2003) which
they used to construct test assets sorted on size-B/M over the 1955-2001 period. I use
the 16 test assets (UK16) constructed by them, whereby breakpoints were applied to
the 40th, 60th and 80th percentiles of market capitalisation and to the 25th, 50th and
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75th percentiles of book-to-market.Their portfolio formation closely follows Fama and
French (1993). The UK monetary policy shock series is taken from Cloyne and Hurtgen
(2016) that uses the methodology of Romer and Romer (2004) to try to eliminate much of
the endogenous movement between the interest rate and other macroeconomic variables
as well as to control for the effects related to current expectations of future economic
conditions. To keep the empirical model close to the US counterpart presented above,
I estimate a VAR(2) model with five macroeconomic variables: log of consumption, log
of CPI, the Bank of England policy rate, the unemployment rate and the term spread
defined as the difference between the 10-year and 1-year constant maturity Gilt rates.
The first four series are from the dataset of Cloyne and Hurtgen (2016), and the term
spread are from the Bank of England database.

Figure 8: Comparing the Effect of the λ-shock: US vs UK
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Figure 8 compares the IRFs for the λ-shock implied by the UK data to those presented
by the US benchmark case. Remarkably, the results are quantitatively very similar across
the two countries. The average excess returns on the value and size portfolios in the UK
seem to compensate for risks that trigger slow consumption responses and sharp price
responses. Moreover, similar to the US case, the estimated time-series of the λ-shock
is empirically related to monetary policy shocks. Figure 12 in the Appendix plots the
monetary policy shock series of Cloyne and Hurtgen (2016) against the estimated λ-shock
series. The two series have a reasonably high (63%) correlation.
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4 Conclusion

This paper proposed a new orthogonalisation theme in a VAR framework based on the
ability of the obtained shock to explain the cross section of asset returns. The orthog-
onalisation theme is motivated by the long-standing challenge to link the origins of the
cross-sectional variation in stock returns to macroeconomic primitives. When applying
the method to the FF55 portfolios, the obtained shock is found to exhibit meaningful
economic characteristics, closely resembling well-known structural shocks studied by the
macroeconomic literature. These results have some direct implications for business cycle
and asset price dynamics. First, the structural shock that is responsible for the aggre-
gate risk captured by the FF55 portfolios is related to aggregate shocks that tend to
generate a delayed response in aggregate quantities. In contrast, most traditional unan-
ticipated macroeconomic shocks tend to trigger immediate jumps in aggregate quantities.
My results are consistent with the recent macroeconomic literature (Schmitt-Grohe and
Uribe, 2012) that emphasise the role of anticipated shocks as sources of business cycles.
Second, a robust feature of the λ-shock is the implied negative comovement between
consumption and the short-term interest rate. This is in contrast with the comovement
implied by most demand-type shocks studied by macroeconomists (Christiano, Motto,
and Rostagno, 2014; Ramey, 2016).

To investigate these issues further, the method proposed in this paper can be extended
in various ways. For example, one can try to link the common stochastic drivers of the
reduced-form pricing factors to multiple orthogonal shocks instead of linking them to a
single shock. This can be done by splitting the λ-shock into two (or more) orthogonal
shocks while forcing the rest of the shocks in the VAR to remain orthogonal to the SDF.
’Splitting’ can be introduced by imposing additional identification assumptions (such as
sign restrictions) so that the structural shocks that demand non-zero risk premia can be
economically distinguishable from each other. Similar to principal component analysis
(PCA), my method can be an effective way of reducing the dimensionality of the space.
However, in contrast with PCA that reduces the space via purely statistical means,
dimensionality reduction in the present framework relies strongly on the information
contained in the cross-section of asset prices and on finance theory, 0 = E (mp).

Moreover, the method I propose is not restricted to equity or bond portfolios and
could easily be used to study the macroeconomic forces behind aggregate risks underlying
portfolios in other asset classes and markets. This could potentially help bridge some
of the gap between the macroeconomic and the financial market anomalies literatures
(Harvey, Liu, and Zhu, 2016; Bryzgalova, 2015; Fama and French, 2016; Novy-Marx and
Velikov, 2016). Equally, the simple linear VAR framework could easily be extended to
incorporate time-varying parameters, regime-switching, stochastic volatility and other
forms of non-linearities.
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Appendix

A Additional Results and Omitted Proofs

Proof of Proposition 1. It suffices to find an angle θ? and associated rotation rθ? such
that m will be a scaled multiple of any one of the rotated vectors denoted by f ?1 . If θ?

exists then b? = 0 because f1⊥f2 and rθ? is an orthonormal transformation. The angle
θ? = arctan

(
b
a

)
satisfies f ?1 = rθ?f1 so that m = a?f ?1 + b?f ?2 with the associated scalars

a? = ‖m‖
‖f?1 ‖

= ‖m‖ and b? = 0.
Figure 9 provides a graphical illustration of a simple example, whereby a linear

model m = 2f1 + f2 with f1⊥f2 is transformed to m = ‖m‖f ?1 + 0 · f ?2 with rθ = cos θ? − sin θ?

sin θ? cos θ?

, θ? = arctan
(

1
2

)
, ‖f1‖ = ‖f2‖ = ‖f ?1‖ = ‖f ?2‖ = 1 and ‖m‖ =

√
5.

Figure 9: Graphical illustration of Proposition 1
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Lemma 6 Suppose the SDF is modelled as linear combinations of structural shocks from
a VAR. The estimated prices of risk are dependent on identifying assumptions about B?,
but the estimated time-series of the SDF is independent of them.

This statement highlights that structural shocks in a VAR are merely different linear
combinations of the reduced-form residuals, thereby containing the same information set
as the reduced-form innovation when pricing the cross-section of returns. In the language
of empirical asset pricing: assumptions about VAR identification determine risk exposures
and factor risk premia, but they do not affect the overall cross-sectional (R2-type) fit of
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the transformed residuals, if all the structural shocks were to be used for pricing the
cross-section of returns.
Proof of Lemma 6. The proof proceeds in three simple steps: (i) I apply arbitrary
identifying assumptions to obtain a set of structural shocks (ii) I derive the estimator of
the price of risk associated with the structural shocks as pricing factors (iii) and show
that the implied SDF is independent of the identifying assumptions.

Let Y be an 1× n vector of average excess returns, Ỹ is a T × n matrix of demeaned
time-series of excess returns, and η is a T × k matrix of reduced-form residuals from
a k-variable VAR of any order with variance-covariance matrix Ω. Apply Cholesky de-
composition to obtain triangularised innovations as pricing factors Z = η

(
(B)−1

)′
=

η
(
(chol (Ω))−1

)′
. The estimated risk exposures are given by the first-stage βs from time-

series regressions:
β̂ = (Z ′Z)−1

Z ′Ỹ .

To estimated prices of risk are obtained by the second-stage cross-sectional regression:

λ̂ = (ββ′)−1
βY
′

=
[
(Z ′Z)−1

Z ′Ỹ
(
Ỹ ′Z

) (
(Z ′Z)−1)]−1

(Z ′Z)−1
Z ′Ỹ Y

′

= (Z ′Z)
(
Z ′Ỹ

(
Ỹ ′Z

))−1
(Z ′Z) (Z ′Z)−1

Z ′Ỹ Ȳ ′

= (Z ′Z)
(
Z ′Ỹ

(
Ỹ ′Z

))−1
Z ′Ỹ Ȳ ′.

(A.1)

Express the reduced-form innovations in terms of structural shocks, Z = η
(
(B)−1

)′
≡ η∆

re-write A.1:

λ̂ = (∆′η′η∆)
(
∆′η′Ỹ

(
Ỹ ′η∆

))−1
∆′η′Ỹ Y ′

= (∆′ (η′η) ∆)
(
∆′
(
η′Ỹ Ỹ ′η

)
∆
)−1

∆′η′Ỹ Y ′

= ∆′ (η′η) ∆ (∆)−1
((
η′Ỹ Ỹ ′η

))−1
(∆′)−1 ∆′η′Ỹ Y ′

= ∆′ (η′η)
(
η′Ỹ Ỹ ′η

)−1
η′Ỹ Y

′
,

(A.2)

which proves that the estimated prices of risk depend on ∆ ≡
(
(B)−1

)′
which in turn

depends on the identifying assumptions imposed on structural impact matrix B. The
implied linear model for the SDF is written as:

m = Zλ̂

= η∆∆′ (η′η)
(
η′Ỹ Ỹ ′η

)−1
η′Ỹ Ỹ ′Y

′

= ηΩ (η′η)
(
η′Ỹ Ỹ ′η

)−1
η′Ỹ Ỹ ′Y

′
,

(A.3)

which shows that the implied SDF depends on the reduced-form variance covariance
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matrix, Ω, and does not depend on structural identification of the VAR.

Proof of Proposition 5. The proof proceeds in three simple steps: (i) I derive a general
form of the structural impact matrix B? and its inverse B?−1 without any reference to
asset pricing; (ii) I use the linear model of the SDF (2.7) to express the elements in the
row of B?−1 corresponding to the λ-shock, i.e. this row determines the linear relationship
between the reduced form residuals and the SDF; finally (iii) I match the values obtained
in step (i)-(ii).

Step 1 Apply the Cholesky algorithm to the reduced form variance covariance matrix

Ω =
 ω11 ω12

ω12 ω22

 to obtain a candidate for B. Because Ω is positive definite, B exists

and can be written as:

B = chol (Σ) =


√
ω11 0
ω12√
ω11

√
ω22 −

(
ω12√
ω11

)2

 . (A.4)

It is known (Fry and Pagan, 2011) that one can take any orthonormal matrix Q to
obtain a new structural impact matrix B? = BQ, with the associated set of structural
shocks e?t = ηt

(
B?−1

)′
, which conforms to the reduced-form variance covariance matrix,

i.e. Ω = B? (B?)′ = BQ (BQ)′ = BQ (Q′B′) = BB′. Let Q be a rotation rθ = cos θ − sin θ
sin θ cos θ

, so B? = BQ = Brθ implies:

B? =
 √

ω11 cos (θ) −√ω11 sin (θ)
ω12√
ω11

cos (θ) + ξ sin (θ) − c√
ω11

sin (θ) + cos (θ) ξ

 , (A.5)

where ξ =
√
ω22 − ω2

12/ω11. Matrix inversion yields:

B?−1 = 1
ω11ψ

 −ω12 sin(θ) +√ω11 cos(θ)ψ ω11 sin(θ)
−ω12 cos(θ)−√ω11 sin(θ) ψ ω11 cos(θ)

 , (A.6)

where ψ ≡ ω11

√
ω11ω22−ω2

12
ω11

.

Step 2 The linear model of the SDF (2.7) can be re-written in terms of the reduced
form residuals, ηt = [η1t |η2t], by using the identity ft = [f1t |f2t] = ηtB

−1 = ηt (chol (Ω))−1

and the definition A.4:

mt = λ1f1t + λ2f2t

=
(
λ1

1
√
ω11
− λ2

ω12

ψ

)
η1t +

(
λ2

1
ψ

)
η2t.

(A.7)
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Applying proposition 1 implies that the SDF can be expressed by a single structural
shock, e?1t, where e?t = [e?1t |e?2t] = ηtB

?−1:

mt = λ1f1t + λ2f2t

=
(√

λ2
1 + λ2

2

)
e?1t + 0 · e?2t.

(A.8)

[Note that designating the λ-shock to be the first column of e?t is arbitrary, but this does
not play a role given the orthogonality of the columns of e?t .] Hence A.7 together with
A.8 determines the first row of B?−1 written as:

B?−1
1,1:1,2 =

[
λ1

1√
ω11
−λ2

ω12
ψ√

λ2
1+λ2

2

λ2
1
ψ√

λ2
1+λ2

2

]
. (A.9)

Step 3 Matching values of the top right elements of A.6 and A.9 yields:

θ = arcsin
 λ2√

(λ2
1 + λ2

2)

 .

B Rotation Matrices

To select matrix Q in a n-variable VAR model (Subsection 3.1), one needs to span the
n-dimensional space of rotations. In the case of a four-variable VAR model, I write Q as
the product of three auxiliary Givens matrices:

Q = Q1 ×Q2 ×Q3, (B.1)

where:

Q1 =


cos(θ1) − sin(θ1) 0 0
sin(θ1) cos(θ1) 0 0

0 0 cos(θ2) − sin(θ2)
0 0 sin(θ2) cos(θ2)



Q2 =


cos(θ3) − sin(θ3) 0

0 cos(θ4) 0 − sin(θ4)
sin(θ3) 0 cos(θ2) 0

0 sin(θ4) 0 cos(θ4)
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Q3 =


cos(θ5) − sin(θ5)

0 cos(θ6) − sin(θ6) 0
sin(θ6) cos(θ6) 0

sin(θ5) 0 0 cos(θ5)

 .

The six Euler-angles θ1, θ2, θ3, θ4, θ5, θ6 are then chosen appropriately so that the
objective function is satisfied. A similar construction can be used for higher dimensions.
The general formula for even number of dimensions, k ≥ 4, is written as:

1
2k

k/2∏
s=2

(2s− 1) , (B.2)

which implies that the number of angles needed to span the space rapidly increases as we
add more variables to the VAR. For example, while a 4-variable VAR requires merely six
angles (B.1), an 8-variable VAR requires 420 angles, whereas a 10-variable VAR requires
4725 angles to be found.
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C Alternative Lag Structure and VAR with Output

Figure 10: Impulse Responses to a λ-shock: Output and Consumption

(a) VAR with Output
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(b) VAR with Consumption
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Notes: The vertical axes are %-deviations from steady-state, and the horizontal axes are in quarters. In the upper panel,
the IRFs (Figure 3) are shown against the IRFs implied by VAR(1) and VAR(3) models where consumption is replaced
by GDP. In the lower panel IRFs for VAR(1), VAR(2) and VAR(3) models are plotted. In all cases, the FF55 portfolios
were used as test assets.
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D Results from a Bayesian VAR

To explore the role of parameter uncertainty in the VAR model 2.3, I re-estimate the
model with Bayesian methods. I use Minnesota-type normal inverted Wishart priors that
I impose using the dummy observation approach of Sims and Zha (1998), as implemented
in Banbura, Giannone, and Reichlin (2010). To approximate the posterior marginal
distribution of the VAR parameters, I set up the Gibbs-sampler whereby I use the well-
known analytical formulae for the conditional distributions of the dynamic parameters
and the variance covariance matrix of the VAR. To construct a probability distribution
for the impulse response functions of the λ-shock, I proceed as follows: (i) I burn the first
N1 draws from the conditional distributions to avoid potential problems of initial values,
(ii) draw a B −Σ pair of VAR parameters from the conditional distributions, (iii) apply
the orthogonalisation method to these draws and save the resulting IRFs, and (iv) and
repeat the Gibbs-iteration and the orthogonalisation for another N2 times. The posterior
distribution of IRFs is then constructed based on the N2 draws.

Figure 11: Impulse Responses to a λ-shock: Results from a Bayesian VAR(2)

Quarters

Consumption

%

5 10 15 20 25 30
0

0.5

1

Quarters

Price Level

%

5 10 15 20 25 30

−1.5

−1

−0.5

0

Quarters

Federal Funds Rate

%

5 10 15 20 25 30

−1

−0.5

0

Quarters

Default Spread

%

5 10 15 20 25 30

−0.05

0

0.05

Quarters

Term Spread

%

5 10 15 20 25 30

0
0.2
0.4
0.6
0.8

Notes: The sample period is 1963Q3 - 2008Q3. The Minnesota-type normal inverted Wishart priors are implemented
following Banbura, Giannone, and Reichlin (2010). The figure shows the pointwise median and 5th-95th percentiles of
N2 = 1000 draws (after burning the first N1 = 5000 draws) from the posterior distribution of the impulse responses. The
vertical axes are %-deviations from steady-state, and the horizontal axes are in quarters.

Figure 11 shows the posterior distribution of IRFs of the λ-shock. A one standard
deviation expansionary λ-shock continues to have a delayed effect on aggregate consump-
tion. The 5th − 95th probability bands suggest that at a 15-quarter horizon consumption
rises around 0.4% above steady-state with 95% probability but does not rise more than
1% above steady-state with the same probability. The rest of the IRFs can be interpreted
in a similar fashion.
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E Pricing Performance

Table 2: Results from the Two-pass Regressions, FF55 Portfolios

Factor prices (λ) R2

Panel A: 1-factor Model with the λ-shock
Constant λ-shock

0.58 0.61 0.31
(0.58) [0.68] (0.24) [0.28]

0.85 0.25
(0.30) [0.40]

Panel B: 5-factor Model with the λ- and the Other VAR Shocks
λ-shock Shock 2 Shock 3 Shock 4 Shock 5
0.85 0.00 0.00 0.00 0.00 0.25

(0.18) [0.24]
Panel C: The Fama-French 3-factor Model
Constant MKT HML SMB

2.99 -1.47 0.90 0.64 0.37
(0.97) [1.01] (1.12) [1.15] (0.46) [0.46] (0.45) [0.45]

1.50 0.88 0.50 0.20
(0.64) [0.64] (0.46) [0.46] (0.45) [0.45]

Notes: This table reports the cross-sectional regressions using the excess returns on the FF55 portfolios. The coefficients
are expressed as percentage per quarter. Panel A presents results for the 1-factor model where the identified λ-shock is
used as the sole pricing factor. Panel B presents the results for five-factor model using all structural shocks from the
VAR. Panel C presents results for the Fama-French 3-factor model. MKT is the market factor, HML is the
book-to-market factor and SMB is the size factor. OLS standard errors are in parentheses, whereas standard errors,
computed with the Shanken procedure are in brackets.

Table 3: Results from the Two-pass Regressions, FF25 Portfolios

Factor prices (λ) R2

Panel A: 1-factor Model with the λ-shock
Constant λ-shock

0.15 1.27 0.86
(0.79) [1.30] (0.28) [0.45]

1.35 0.86
(0.43) [0.72]

Panel B: 5-factor Model with the λ- and the Other VAR Shocks
λ-shock Shock 2 Shock 3 Shock 4 Shock 5
1.35 0.00 0.00 0.00 0.00 0.86

(0.26) [0.44]
Panel C: The Fama-French 3-factor Model
Constant MKT HML SMB

2.95 -1.56 1.41 0.76 0.80
(1.18) [1.22] (1.34) [1.37] (0.45) [0.44] (0.44) [0.44]

1.30 1.40 0.80 0.77
(0.64) [0.64] (0.45) [0.44] (0.44) [0.44]

Notes: See notes under Table 2.
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Table 4: Results from the Two-pass Regressions, 25 Profitability-Size Portfolios

Factor prices (λ) R2

Panel A: 1-factor Model with the λ-shock
Constant λ-shock
-0.02 1.67 0.65

(0.69) [1.37] (0.55) [1.08]
1.65 0.65

(0.59) [1.16]
Panel B: 5-factor Model with the λ- and the Other VAR Shocks

λ-shock Shock 2 Shock 3 Shock 4 Shock 5
1.65 0.00 0.00 0.00 0.00 0.65

(0.46) [0.90]
Panel C: The Fama-French 3-factor Model
Constant MKT HML SMB

2.17 -0.77 1.46 0.73 0.69
(1.01) [1.06] (1.20) [1.24] (0.76) [0.79] (0.45) [0.46]

1.27 2.15 0.70 0.66
(0.63) [0.64] (0.81) [0.88] (0.45) [0.46]

Notes: See notes under Table 2.

Table 5: Results from the Two-pass Regressions, 25 Investment-Size Portfolios

Factor prices (λ) R2

Panel A: 1-factor Model with the λ-shock
Constant λ-shock

0.18 1.45 0.73
(0.73) [1.32] (0.41) [0.73]

1.57 0.72
(0.52) [0.99]

Panel B: 5-factor Model with the λ- and the Other VAR Shocks
λ-shock Shock 2 Shock 3 Shock 4 Shock 5
1.57 0.00 0.00 0.00 0.00 0.72

(0.28) [0.53]
Panel C: The Fama-French 3-factor Model
Constant MKT HML SMB

3.04 -1.48 1.52 0.60 0.79
(1.38) [1.46] (1.50) [1.57] (0.57) [0.58] (0.45) [0.45]

1.44 2.08 0.59 0.75
(0.63) [0.63] (0.52) [0.54] (0.45) [0.45]

Notes: See notes under Table 2.
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F The λ-shock in the UK

Figure 12: Comparing the λ-shock, implied by the UK16, to the Monetary Policy Shock
Series of Cloyne and Hurtgen (2016) (Correlation: 63%).
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Notes: The monetary policy shock series (red solid line) are from Cloyne and Hurtgen (2016), the λ-shock is from a
VAR(2) estimated over 1975Q1-2001Q4.
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