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Beyond Lebesgue and Baire IV:
Density topologies and a converse Steinhaus-Weil Theorem

by
N. H. Bingham and A. J. Ostaszewski

On the centenary of Hausdorff ’s Mengenlehre (1914) and Denjoy’s
Approximate continuity (1915)

Abstract.
The theme here is category-measure duality, in the context of a topologi-

cal group. One can often handle the (Baire) category case and the (Lebesgue,
or Haar) measure cases together, by working bi-topologically: switching be-
tween the original topology and a suitable refinement (a density topology).
This prompts a systematic study of such density topologies, and the corre-
sponding σ-ideals of negligibles. Such ideas go back to Weil’s classic book,
and to Hashimoto’s ideal topologies. We make use of group norms, which
cast light on the interplay between the group and measure structures. The
Steinhaus-Weil interior-points theorem (‘on AA−1’) plays a crucial role here;
so too does its converse, the Simmons-Mospan theorem.

Key words. Steinhaus-Weil property, Weil topology, shift-compact, density
topology, Hashimoto ideal topology, group norm
Mathematics Subject Classification (2000): Primary 26A03; 39B62.

1 Introduction

This paper originates from several sources. The first three are our earlier
studies ‘Beyond Lebesgue and Baire I-III’ ([BinO1,2], [Ost3]), the general
theme of which is the similarity (indeed, duality) between measure and cat-
egory, and the primacy of category/topology over measure in many areas.
The second three are recent studies by the second author on the Effros Open
Mapping Principle ([Ost4,5,6]; §6.4 below).
The Steinhaus-Weil property (critical for regular variation: see [BinGT,

Th. 1.1.1]) of a set S in a topological group G is that 1G is an interior point
of SS−1 when S is non-negligible (as in the classic examples in the additive
group R: Baire non-meagre, or measurable non-null). This is implied by the
compactness-like property (called shift-compactness in [Ost3], cf. [MilO]),
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that any null sequence zn (i.e. zn → 1G) has a ‘translator’ s ∈ S and
subsequence zn(m) with {s · zn(m) : m ∈ N} ⊆ S. This is not only a stronger
property, but also better adapted for use in many proofs.
Results of Steinhaus-Weil type go back to Steinhaus [Ste] on the line

and Weil [Wei, p. 50] in a locally compact topological group (see e.g.
Grosse-Erdmann [GroE]), and to Kemperman [Kem] (cf [Kuc, Lemma 3.7.2],
and [BinO1, Th. K], where this is ‘Kemperman’s Theorem’, [BinO6, Th.
1(iv)]). For present purposes it is natural to call shift-compactness a strong
Steinhaus-Weil-like property. A first study of the closeness of the two Steinhaus-
Weil-like properties appears most recently in [Ost6] by way of the Effros
Opening Mapping Principle. Recently, in [BinO8], in work on subadditivity
and mid-point convexity, with ‘negligibility’interpreted via the Christensen
Haar-null subsets of a Banach space, we replaced shift-compactness by the
already established Steinhaus-Weil property due to Christensen [Chr1,2], or
its extension due to Solecki [Sol2]. (Boundedness of a subadditive func-
tion on A and B yields its boundedness on AB and hence on an open set,
provided AB has the interior-point property —see §6.9.) This new perspec-
tive motivates the present return to the question of when the Steinhaus-
Weil property implies shift-compactness, and hinges on two themes. The
first is the Lebesgue density theorem, which Kemperman [Kem] used to re-
prove the Steinhaus-Weil theorem, very much a local property. The second
was our reliance [BinO8] on a localized version of the Steinhaus-Weil prop-
erty: in S the relative open neighbourhoods of all points were to have the
Steinhaus-Weil property. Taken together, these suggested the need to charac-
terize in a topological group those analogues of the Lebesgue density topology
([HauP], [GofNN], [GofW]) that imply shift-compactness, a matter we turn
to in §2. Here we prove Theorems 1 and 2: we study category analogues of
the Lebesgue density topology. We turn in §3 to Hashimoto ideal topologies
and in §4 to properties of Steinhaus-Weil type and converses (cf. Prop. 2).
We establish in §5 the equivalence of weak and strong Steinhaus-Weil-like
properties in the presence of three topological restrictions, taking what we
call the Kemperman property in §2 as a weak form of the Steinhaus-Weil
property (see §4). This is reminiscent of the characterization of Borel mea-
sures on R having the Steinhaus-Weil property, for which see [Mos] ([Sim] for
the Haar case) and the recent [Dan]. We close in §6 with some complements.
We remind the reader of the tension between two of our themes here:

density topologies and topological groups. The real line is not a topologi-
cal group under the (Lebesgue) density topology (see e.g. [Sch, Prop. 1.9],
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[BinO7, § 4]). Instead, what is relevant here is semi-topological group struc-
ture [ArhT], in which it is the shift (one argument), rather than multiplication
(two arguments) which is continuous.
The Lebesgue Density Theorem, which underlies the density topology (or

topologies) crucial here, is already relevant to (though less well known than)
the Lebesgue Differentiation Theorem, on the relationship between differen-
tiation and the Lebesgue integral —see Bruckner’s classic survey [Bru]. The
first is usually obtained from the second by specializing to indicator functions
1A. Relevant here are Vitali’s covering lemma and weak L1-estimates for the
Hardy-Littlewood maximal function; for textbook treatment see e.g. [Rud,
Th. 8.8], [SteiS, 3.1.2]. Latent here is the relation between a general measure
µ and its translation xµ (defined via xµ(B) = µ(xB)). That, in turn, is en-
capsulated in the Radon-Nikodym derivative dxµ/dµ (wherever defined) and
is related to the relative interior-point property, which arises when studing
the difference set S − S relative to the Cameron-Martin subspace of a topo-
logical vector space; see [Bog, §2.2, 2.4]. This is a matter we hope to return
to elsewhere.
In sum: as well as the historical references to Hausdorff in 1914 [Hau]

and Denjoy in 1915 [Den], the paper relates to Lebesgue’s approach to the
fundamental theorem of calculus. Its roots may thus be traced back to the
roots of calculus itself.

2 Density topologies

As usual, we write ZF for Zermelo-Fraenkel and DC for Dependent Choice,
which we recall enables standard proofs by induction. All our results here fol-
low from ZF+DC rather than ZFC=ZF+AC (Axiom of Choice), as through-
out we deal with separable metrizable topological groups, so that there is
then a countable basis for the topology. This will be understood throughout
(though we state it explicitly in Th. 3 for emphasis). In particular, our
maximality arguments in the context of such a basis need only DC, rather
than AC via Zorn’s Lemma. Our point of view is dictated by the focus here
(and in other work elsewhere) on the primary role of category and the equiv-
alence of Baire’s Category Theorem with DC [Bla]; for a wider discussion see
[BinO10].
Thus throughout (G, T ) be a separable topological group metrized by a

right-invariant metric d = dGR, allowing the topology to be denoted either as
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Td, or T . (This is possible by the Birkhoff-Kakutani metrization theorem,
[HewR, II.8, p. 70 Th., p. 83 Notes], [Ost3].) We make free use of

||t|| := dGR(1G, t),

referred to as the group norm of G, for which see the textbook account in
[ArhT, §3.3] or [BinO4], and denote by Bδ(g) := {h : ||hg−1|| < δ} = Bδ(1G)g
the open δ-ball centred at g, briefly the open δ-neighbourhood (δ-nhd) of g;
we use Bδ to denote Bδ(1G). For G locally compact, we denote (left) Haar
measure by η, or context permitting by |.|, by analogy with the group norm
in view of their close relationship (cf. §6.1). We have in mind, as canonical
examples, R or R+ under the usual (Euclidean) topology, denoted E . For any
topology τ onG, we write F(τ),Fσ(τ),Gδ(τ) for the corresponding closed sets
etc., B(τ) for the Baire sets, i.e. the sets with the Baire Property (BP), B0(τ)
for the corresponding meagre sets, and B+(τ) for the non-meagre members
of B(τ). If (G, T ) is suppressed, (R, E) or (R+, E) is to be understood.
Thus B denotes the usual Baire sets and B0 its negligible sets, the σ-ideal of
meagre sets; analogously, L denotes the Lebesgue (Haar) measurable sets and
L0 its negligible sets, the σ-ideal of null (measure-zero) sets. We denote by
M(G) the Borel regular σ-finite measures on G, with P(G) the subfamily of
probability measures; here regularity is taken to imply both inner and outer
regularity (i.e. compact inner approximation and open outer approximation);
these play a significant role in §4. We say that a property holds at quasi all
points of a set if it holds except on a negligible set (in the category or measure
sense).
We will refer to the action of G on itself by t(x) 7→ tx (or t(x) = t + x

in the case of R —we will feel free to move at will between (R, +) and (R+,
·) via the exponential isomorphism). Say that a topology τ on G is (left)
shift-invariant if tV ∈ τ for all t ∈ G and all V ∈ τ ; equivalently: each shift
t : τ → τ is continuous.
A weak τ -base for τ is a subfamilyW such that for each non-empty V ∈ τ

there is W ∈ W with ∅ 6= W ⊆ V. When W above consists of sets analytic
under Td (continuous images of the irrationals —see §5 below), the topology
is called in [Ost1] a generalized Gandy-Harrington topology, by analogy with
its classical antecedent (for a textbook treatment of which see [Gao, Ch. 1]);
in such a case the topology τ satisfies the Baire Theorem (see [Oxt2, Ch.
9], [Kec, III.26.18,19, p. 203-4], [Ost1, §2.2]). Here we consider a stronger
property generalizing the two observations that
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(a): modulo L0 each measurable set is an Fσ;
(b): modulo B0 each Baire set is a Gδ ([Oxt2, Th. 4.4], cf. [Kec, 8.23])
(these are the forms in which the results are usually stated; it is the sim-
ilarities, rather than the distinctions, between Fσ and Gδ that are relevant
here).
Say that τ has the strong Gandy-Harrington property if modulo B0(τ)

each B(τ) set is analytic under Td. (Again see the references above.)
Denote byDL the family of all setsM all of whose points are density points

(i.e. have Lebesgue (Haar) density 1, in the sense of Martin [Mar1,2] or in
the more general context Mueller [Mue] —see the more recent development in
[Ost3]; cf. [BinO4] for normed groups, [Oxt2] for R). As noted by Haupt and
Pauc [HauP] in R, DL forms a topology, the (Lebesgue) density topology.
It is related to Denjoy approximate continuity. It can be generalized to
Haar measure. It is a fine topology (refining topology); see [CieLO], [EvaG],
[KanK], and [LukMZ], for background on such fine topologies. (For other
topologies derived from notions of ‘density point’see [Wil] and e.g. [FilW];
for aspects of translation invariance see [WilK].)
We list below a number of qualitative properties of DL, (i)-(viii), all of

them classical. We name property (iv) the Kemperman property: see §1 for
the motivation, and (vii) the Nikodym property ([Ost6]; [Rog, §2.9], [Nik]).
Property (viii) suggests a category analogue DB of DL; we prove the category
analogues of (i)-(vii) in Theorems 1 and 2 below.

(i) DL is a fine topology (i.e. refining Td ) which is shift-invariant:

S ⊆ DL =⇒
⋃
S ∈ DL,

V, V ′ ∈ DL =⇒ V ∩ V ′ ∈ DL,
T ⊆ DL,
tV ∈ DL (t ∈ G, V ∈ DL);

(ii) the sets in DL are measurable: DL ⊆ L;
(iii) the DL-boundary of a measurable set is null:

M\intDL(M) ∈ L0 (M ∈ L);

(iv) the Kemperman property, that any DL-open neighbourhood of the iden-
tity meets its own small displacements non-meagerly: for 1G ∈ U ∈ DL there
is δ > 0 with

U ∩ (tU) ∈ B+(DL) (||t|| < δ);

5



(v) DL is a strong generalized Gandy-Harrington topology: modulo B0(DL)
each B(DL) set is analytic under Td and in fact Fσ(Td)∩DL is a weakDL-base,
so that DL is a Baire space;
(Proof: Any set M ∈ DL contains a Td-closed set F of positive measure.

Let H be a G(T d)δ-null set covering the null set of non-density points; then
F\H ∈ DL ∩ Fσ(Td).)
(vi) the DL-Baire sets/meagre sets are identical with respectively, the mea-
surable sets and the null sets:

B(DL) = L, B0(DL) = L0;

(vii) the Nikodym property of preservation of category under displacements
(see [Ost2,6] for background and references):
(a) tU ∈ B(DL) (t ∈ G,U ∈ B(DL)), and
(b) tU ∈ B0(DL) iff U ∈ B0(BL) (t ∈ G);
(viii) x is a density point of a measurable set M iff x ∈intDL(M).
So DL yields a topological characterization of local behaviour w.r.t. mea-

sure. Property (viii) calls for the Haar generalization of the Lebesgue Density
Theorem [Oxt2, Ch. 3]. Below this will be viewed as a special case of the Ba-
nach Localization Principle (or Banach Category Theorem, [Oxt2, Ch. 16];
cf. [Ost1]).

We now define a topology DB with properties analogous to (i)-(viii) in
respect of B; here (viii) is a definition of category-density point.

Definitions. 1. Call H τ -locally comeagre at x ∈ H if there is a τ -open nhd
U of x such that U\H is meagre.
2. Say that H is τ -locally comeagre at all of its points if for each x ∈ H there
is a τ -open nhd U of x such that U\H is meagre.

Remarks. If, as in (1), U witnesses the property of H at some point x ∈ H,
then each point of H∩U has this property; note the monotonicity: if H ⊆ H ′

and H has the property at x, then also H ′ has it at x.
If (2) holds forH, thenH is open under the refinement topology generated

by the family {U\L : U ∈ τ , L ∈ B0(τ)}. We consider ‘ideal topology’
refinements such as this, generated by a general σ-ideal in place of B0(T ), in
the next section.

Theorem 1. For T = Td let DB(T ) be the family of sets which are T -locally
co-meagre at all of their points. Then:
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(i) tDB(T ) ⊆ DB(T ), for all t ∈ G and T ⊆ DB(T );
(ii) DB(T ) ⊆ B(T );
(iii) H\intDB(H) ∈ B0(T ) for H ∈ B(T ); in fact, if S is Baire, then S has a
non-empty DB(T )-interior in each nhd on which it is dense and non-meagre;
(iv) Kemperman property: for 1G ∈ H ∈ DB(T ) there is δ > 0 with

H ∩ (tH) ∈ B+(DB(T )) (||t|| < δ);

(v)DB is a strong generalized Gandy-Harrington topology: modulo B0(DL(T ))
each B(DL(T )) set is analytic under T , and in fact DB(T )∩Gδ(T ) is a weak
DB(T )-base, so (G,DB(T )) is a Baire space.

In words: parts (i)-(iii) assert that DB(T ) is a shift-invariant topology
refining T , the sets in DB(T ) are T -Baire, and the boundary points of any
T -Baire set H form a T -meagre set.

Proof. (i) EvidentlyG and ∅ are inDB(T ). For an arbitraryH ⊆ DB(T ), the
union H :=

⋃
H is T -locally co-meagre at each element of H, by monotonic-

ity. Next, suppose x ∈ H ∩ H ′, with H,H ′ ∈ DB(T ). Choose V, V ′ open
nhds of x meeting H,H ′ in comeagre sets. Then x ∈ W = V ∩ V ′ is an open
nhd of x. As H ∩W and H ′ ∩W are co-meagre on W, by Baire’s Theorem,
so is their intersection on W ; so H ∩H ′ is T -locally co-meagre at x.
(ii) Suppose H is T -locally comeagre at all x ∈ H. Being metrizable

and separable, G is hereditarily Lindelöf [Dug, VIII §6 and Th. 7.3], so H
is Baire; indeed, if {Un} is a countable open cover of H, with each Un\H
meagre, then H =

⋃
n(Un ∩H) =

⋃
n Un\(Un\H), which is Baire, since each

set Un\(Un\H) is Baire.
(iii) If S is non-meagre, it is dense in some open nhd I. Then T := I\S is

meagre: for otherwise, T is (Baire and) non-meagre. Then T is dense on
some (non-empty) open J ⊆ I. Being Baire, both S and T are, modulo
meagre sets, Gδ(T )-sets dense on J. So they meet, by Baire’s Theorem —a
contradiction.
Let I be a maximal family of nhds I on which S is co-meagre. Then⋃
{I ∩ S : I ∈ I} is T -open. Put S ′ = S\

⋃
{I ∩ S : I ∈ I}. Then S ′ is

meagre; otherwise, as before S ′ is dense in some nhd I and co-meagre on I,
contradicting maximality of I.
(iv) If 1G ∈ H ∈ DB(T ), and H = U\N, choose δ > 0 such that Bδ(1G) ⊆
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U. Then ∅ 6= {t} ⊆ Bδ(1G) ∩ tBδ(1G), for ||t|| < δ, so

H ∩ (tH) ⊇ Bδ(1G) ∩ tBδ(1G)\(N ∪ tN) ∈ B+(DB(T )).

(v) If H ∈ DB(T ), and H = U\N with U ∈ T and N meagre (in the
sense of T ) we may choose a larger meagre Fσ(T )-set M ⊇ N, and then
H ′ = U\M ∈ Gδ(T ) ∩ DB(T ). �

Recall the observation of Haupt and Pauc [HauP] that (writing nwd for
nowhere dense)

M is meagre in DL iffM is nwd in DL iffM is null (H-P )

[Kec, 17.47] (the left equivalence as DL is a topology). This shows very
clearly how changing from the original topology T (E in the Euclidean case)
to the density topology D turns qualitative measure considerations into Baire
(or topological) considerations. This is the basis for the use of bitopology in
[BinO2].
Theorem 2 below extends the list (i)-(v) in Theorem 1 to (vi), (vii) (as

noted above (viii) becomes a matter of definition), in particular yielding an
abstract form of (H-P).

Theorem 2. As in Theorem 1, for T = Td:
(vi) Haupt-Pauc property: B0(DB(T )) = B0(T ) and B(DB(T )) = B(T );
(vii) Nikodym property: for all t ∈ G
(a) tU ∈ B(DB(T )) for U ∈ B(DB(T )), and
(b) tU ∈ B0(DB(T )) iff U ∈ B0(BD(T )).

Proof. Let D be DB(T )-nwd. Let W be a maximal family of pairwise
disjoint T -sets W with D ∩ W meagre. By Banach’s Category Theorem⋃
{D ∩ W : W ∈ W} is meagre . Put D′ = D\

⋃
{D ∩ W : W ∈ W}.

Suppose that D′ is non-meagre. Then for some open nhd U the set D′ is
non-meagre on every open subset of U ; but D′ is DB(T )-nwd, so there is an
open nhd V and meagreMV with V \MV disjoint fromD′. ThenD′∩V ⊆MV ,
a contradiction. So D′ is indeed meagre, and so is D.
If D is a countable union of DB(T )-nwd sets, then it is meagre in T .
The remaining assertions are now clear. �
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3 Hashimoto ideal topologies

As in (H-P ) above, a key role is played by the family of meagre sets (in E , or
BL) and (Lebesgue-) null sets. Each forms a σ-ideal of small sets and gives
rise to a Hashimoto topology (= ‘ideal topology’according to [LukMZ, 1.C]),
to which we turn in this section. For an illustration of its use in a Banach
space exploiting the σ-ideal HN of Haar-null subsets (defined in §5 below,
cf. §6.6) —see [BinO8]. Also relevant here is the study [CieJ] of topologies τ
for which a given σ-ideal is identical with the σ-ideal B0(τ) of τ -meagre sets.

Definition. For I a σ-ideal of subsets of X and τ a topology on X, say that
a set S is I-nearly τ -open if for some τ -open set U and elements M,N in I

S = (U\N) ∪M.

We make the blanket assumption that {x} ∈ I for all x ∈ X —see [Hay] ,
and also [Sam, especially Ex. 2]).
The following result is an embellishment of Hashimoto’s early insight

[Has]; there is a readable account by Jankovíc and Hamlett in [JanH] intro-
ducing the topology via a Kuratowski closure operator, rather than via an
ideal, as was first done in [Sam], albeit anticipated by [Sch] using L in R, as
noted in the Introduction.

Theorem 3 (ZF+DC; cf. [Has], [JanH], [Sam, Cor 2]). For a topology τ
with countable basis β and a σ-ideal I, the (Hashimoto) topology generated
by the sets

H := {V \M : V ∈ τ ,M ∈ I}
is H itself, so that, in particular, each W ∈ H is I-nearly τ -open and has
the representation

W =

(⋃
B∈βW

B

)
\M, for some M ∈ I,

where
βW := {B ∈ β : B\L ⊆ W for some L ∈ I}.

Furthermore, if no non-empty τ -open set is in I, then:
(i) a set is H-nowhere dense iff it is the union N ∪M of a τ -nowhere

dense set and an I set;
(ii) the H-Baire sets are the I-nearly τ -Baire sets;
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(iii) for I the meagre sets of τ , if τ is a Baire topology, then so is H.

Proof. For a fixed non-empty set W that is a union of sets in H, put

βW := {B ∈ β : B\L ⊆ W for some L ∈ I}.

As this is countable, by DC (see [TomW, Ch. 15]) there is a selector L(.)
defined on βW such that L(B) ∈ I for each B ∈ βW ; then B\L(B) ⊆ W . Set
M(B) := B∩L(B)\W, so that B\M(B) = B\L(B)∪ (B∩L(B)∩W ) ⊆ W .
Then M(B) ∩W = ∅. So putting

M :=
⋃

B∈βW
M(B),

M ∩W = ∅. Also M ∈ I as M(B) ⊆ L(B) ∈ I. Then, as B\M(B) ⊆ W
for each B ∈ βW , (⋃

B∈βW
B

)
\M ⊆ W.

In fact, equality holds: indeed, if x ∈ W, then x ∈ B\L for some B ∈ βW
and L ∈ I (and B\L ⊆ W ). Then x /∈M as x ∈ W, and so x ∈ B\M.
So in particular W is I-nearly τ -open.
(i) This follows since the I-nearly τ -open sets are a σ-ideal containing H.
(ii) If N is H-nowhere dense, then so is its H-closure N̄ . So W := X\N̄

is H-open and H-everywhere dense. Write W = (V \M) with V ∈ τ and
M ∈ I. It is enough to show now that V is τ -everywhere dense. Indeed, for
τ -open U, as U is also H-open, U ∩ (V \M) = (U ∩ V )\M is non-empty, as
otherwise U ∩ V ⊆M, a contradiction.
Conversely, if V is τ -everywhere dense and M ∈ I, then we are to show

that (X\V )∪M is H-nowhere dense. For non-empty τ -open U and M ′ ∈ I,
the set (U\M ′) ∩ (V \M) = (U ∩ V )\(M ∪ M ′) is non-empty (otherwise
M ∪M ′ covers the non-empty set U ∩ V ). So V \M is H-everywhere dense,
and so X\(V \M) is H-nowhere dense and X\(V \M) = (X\V ) ∪M.
(iii) Straightforward, since if Wn for n ∈ N is H-everywhere dense, then

X\Wn is H-nowhere dense, and so

X\Wn = X\Gn ∪Mn

for some Gn τ -open τ -everywhere dense, and Mn ∈ I. That is: the topology
is Baire. �
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Cautionary example. For I = L0, the Lebesgue null sets, decompose R
into a meagre and a null set [Oxt2, Th. 1.6] to see that starting with τ the
usual topology of R yields a Hashimoto topology that is not Baire, by (i)
above.

4 Steinhaus-Weil-like properties

The Kemperman property (iv) of Theorem 1 above, for the D-open sets U :

U ∩ (tU) ∈ B+(D) (||t|| < δ),

yields the Steinhaus-Weil property Bδ ⊆ A−1A for a set A (see e.g. [BinO6],
[BinGT, 1.1.2], [BinO9]), provided the Kemperman property extends to A,
since

ta = a′ ⇔ t = a′a−1 ∈ AA−1.

So we regard the Kemperman property as a weak Steinhaus-Weil-like prop-
erty. The extension beyond D-sets to B+(D) will indeed hold in the presence
of the Nikodym property (§2 above), when U\A ∈ B0(D) for some U ∈ D,
as then t(U\A) ∈ B0(D). The fact that this is so for A a Haar-measurable
set, or a Baire set, is the source of the most direct proofs, recalled below
for completeness, of the Steinhaus-Pettis Theorem (see e.g. [BinO4, Th.
6.5]). These generalize (from the Euclidean case) a Lemma first observed by
Kemperman ([Kem]; cf. [Kuc, Lemma 3.7.2]).
In Lemma 2 below we take a more direct approach —a streamlined version

of the ‘uniformity’approach in [Hal, Th. 61.A] —inspired by Stromberg [Str],
but with translational subcontinuity of measure µ ∈ M(G) (its definition
below motivated by the upper semicontinuity of the map x 7→ µ(xK)), in
place of translation-invariance of measure, and referring to the group norm,
more thematic here. This is followed by its Baire-category analogue. Below,
for η a left Haar measure of a locally compact group G,M+(η) denotes the
left Haar measurable sets of positive (finite) measure, by analogy with the
notation B+ = B+(T ) for the non-meagre Baire sets.
A key tool is provided by a form of the ‘telescope’or ‘tube’lemma (cf.

[Mun, Lemma 5.8]). Our usage of upper semicontinuity in relation to set-
valued maps follows [Rog], cf. [Bor].

Lemma 1. (cf. [BeeV]). For compact K ⊆ G, the map t 7→ tK is upper
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semicontinuous; in particular, for µ ∈M(G),

mK : t 7→ µ(tK)

is upper semicontinuous, hence µ-measurable. In particular, if mK(t) = 0,
then mK is continuous at t.

Proof. For compact K and open V ⊇ K, pick for each k ∈ K, an r(k) > 0
with B2r(k)(k) = B2r(k)k ⊆ V . By compactness, there are k1, ..., kn with

K ⊆
⋃

j
Br(kk)kj ⊆ V ; then for δ := minj r(kj) > 0

tK ⊆
⋃

j
tBr(kj)kj ⊆

⋃
j
B2·r(kj)kj ⊆ V (||t|| < δ).

To prove upper semicontinuity of mK , fix t ∈ G. For ε > 0, as tK is
compact, choose by outer regularity an open U ⊇ tK with µ(U) < µ(tK)+ε;
by the first assertion, there is an open ball Bδ at 1G with BδtK ⊆ U , and
then µ(Bδ(t)K) ≤ µ(U) < µ(K) + ε. �

Of course, in a locally compact group G with left Haar measure µ, mK

is constant. By Luzin’s theorem, the restriction of mK (for K compact) to
appropriate non-null subsets of G is (relatively) continuous; but of greater
significance, as emerges in [BinO9], is a form of subcontinuity relativized to
a fixed sequence tn → 1G, linking the concept to Solecki’s amenability at
1 [Sol2] (see §8.5), and the latter, like outright continuity at 1G, yields the
Steinhaus-Weil property (of non left-Haar null universally measurable sets).
Regularity of measure also plays a part; it is likewise key in establishing in
[Kom] the connection between the (wider) Steinhaus-Weil property concern-
ing AB−1 (for which see §6.9) and certain forms of metric transitivity of
measure (specifically, the co-negligibility/ ‘residuality’of AD for any count-
able dense D cf. [Kuc, Th. 3.6.1], [CichKW, Ch. 7]), known as the Smítal
property ([KucS], cf. [BarFN]). We begin with a

Cautionary example. In any separable group G, forD := {d(n) : n ∈ N} a
dense subset, define a regular probability measure by µD :=

∑
n∈N 2−nδd(n),

with δg the Dirac measure at g (unit point-mass at g); then µD(U) > 0
for all non-empty U , as µD(d(n)) = 2−n. However, there exist arbitrarily
small translations t with µD(tD) = 0 (since D is meagre —cf. [MilO]). This
is particularly obvious in the case G = R with D = Q, on taking small
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irrational translations; while the situation here is attributable to µD having
atoms (not just being singular w.r.t. Lebesgue measure —see the Mospan
property below), its obverse occurs when µ(U) = 0, for some non-atomic
µ ∈ P(G) and U non-empty open, as there is a translation t = d(n) such that
µ(tU) > 0 (as {d(n)U : n ∈ N} covers G). Then tµ(U) > 0 for tµ(·) = µ(t·),
which is non-atomic.
Motivated by this last comment, and with Proposition 3 below in mind, let

us note a non-atomic modification µ of µD making all open sets µ-non-null.
In P(G), under its (separable, metrizable) weak topology, the non-atomic
measures form a dense Gδ (see e.g. [Par, II.8]). So for a non-atomic µ̃ take
µ :=

∑
n∈N 2−n d(n)µ̃, which is non-atomic with µ(U) > 0 for any non-empty

open U.
It is inevitable that the significance of small changes in measure relates

to amenability (see the Reiter condition in [Pat, Prop. 0.4], cf. §6.5).

Definition. For µ ∈ P(G) and compact K ⊆ G, noting that µδ(K) :=
inf{µ(tK) : t ∈ Bδ} is weakly decreasing in δ, put

µ−(K) := sup
δ>0

inf{µ(tK) : t ∈ Bδ}.

Then, as 1G ∈ Bδ,
0 ≤ µ−(K) ≤ µ(K).

We will say that the measure µ is translation-continuous, or just continuous,
if µ(K) = µ−(K) for all compact K; evidently mK(.) is continuous if µ is
translation continuous, since mK(st) = mtK(s) and tK is compact whenever
K is compact. For G locally compact this occurs for µ = η, the left-Haar
measure, and also for µ absolutely continuous w.r.t. to η (see below). We call
µ maximally discontinuous at K if 0 = µ−(K) < µ(K). That a measure µ
singular w.r.t. Haar measure is just such an example was first discovered by
Simmons [Sim] (and independently, much later, by Mospan [Mos]). The in-
termediate situation when µ(K) ≥ µ−(K) > 0 for all µ-non-null compact K
is of significance; then we call µ subcontinuous. The notion of subcontinuity
for functions goes back to [Ful] (cf. [Bou]): as applied to the function mK(t),
regarded as a map into the positive reals (0,∞), subcontinuity at t = 1G
requires that for every sequence tn → 1G there is a subsequence tm(n) with
mK(tm(n)) convergent (to a positive value). Thus our usage, applied to a mea-
sure µ, is equivalent to demanding, for each µ-non-null compact K and any
null sequence {tn} (i.e. with tn → 1G, as in §1), that there be a subsequence
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µ(tm(n)K) bounded away from 0. This is already reminiscent of amenability
at 1G —again see §6.5. In Lemma 2 below (H-K) is for ‘Haar-Kemperman’,
as in Proposition 1 below.

Lemma 2. Let µ ∈ P(G). For µ-non-null compact K ⊆ G, if µ−(K) > 0
(i.e. µ is subcontinuous at K), then there is δ > 0 with

tK ∩K ∈M+(µ) (||t|| < δ), (H-K)

so in particular,
Bδ ⊆ KK−1

(so that B has compact closure), or, equivalently,

tK ∩K 6= ∅ (||t|| < δ).

Proof. Choose ∆ > 0 with µ∆(K) > µ−(K)/2. By outer regularity of
µ, choose U open with K ⊆ U and µ(U) < µ(K) + µ−(K)/2. By upper
semicontinuity of t 7→ tK, w.l.o.g. BδK ⊆ U for some δ < ∆. Then (H-K)
holds for this δ: otherwise, for some t ∈ Bδ, as µ(tK ∩K) = 0,

µδ(K) + µ(K) ≤ µ(tK) + µ(K) = µ(tK ∪K) ≤ µ(U) < µ(K) + µ−(K)/2,

so µ−(K)/2 < µ∆(K) ≤ µδ(K) < µ−(K)/2, a contradiction. Given ||t|| < δ
and tK ∩ K ∈ M+, take s ∈ tK ∩ K 6= ∅; then s = ta for some a ∈ K,
so t = sa−1 ∈ KK−1. Conversely, t ∈ Bδ ⊆ KK−1 yields t = a′a−1for some
a, a′ ∈ K; then a′ = ta ∈ K ∩ tK. �

Proposition 1M/1B below, which occurs in two parts (measure and Baire
category cases), unifies and extends various previous results due to among
others Steinhaus, Weil, Kemperman, Kuczma, Stromberg, Weil, Wilczyński,
Simmons [Sim] and Mospan [Mos] —see [BinO6,9] for references.

Proposition 1M (Haar-Kemperman property). Let µ ∈ P(G) with
each map mK : t 7→ µ(tK), for non-null compact K ⊆ G, continuous at 1G.
Then for µ-measurable A with 0 < µ(A) <∞ there is δ > 0 with

tA ∩ A ∈M+(µ) (||t|| < δ), (H-K)

so in particular,
Bδ ⊆ AA−1,
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or, equivalently,
tA ∩ A 6= ∅ (||t|| < δ).

Proof. By inner regularity of µ, there exists a compact K ⊆ A with 0 <
µ(K) ≤ µ(A) <∞. Now apply the previous lemma. �

We can now give a general form of a result of Mospan (sharpened by
provision of a converse).

Corollary 1 (Mospan property, [Mos, Th. 2]). For µ-non-null
compact K, if 1G /∈ int(KK−1), then µ−(K) = 0, i.e. µ is maximally
discontinuous at K; equivalently, there is a ‘null sequence’ tn → 1G with
limn µ(tnK) = 0.
Conversely, if µ(K) > µ−(K) = 0, then there is a null sequence tn → 1G

with limn µ(tnK) = 0, and there is C ⊆ K with µ(K\C) = 0 with 1G /∈
int(CC−1).

Proof. The first assertion follows from Lemma 2. For the converse, as in
[Mos]: suppose that µ(tnK) = 0, for some sequence tn → 1G. By passing
to a subsequence, we may assume that µ(tnK) < 2−n−1. for all n ∈ N. Put
Dm := K\

⋂
n≥m tnK ⊆ K; then µ(K\Dm) ≤

∑
n≥m µ(tnK) < 2−m, so

µ(Dm) > 0 provided 2−m < µ(K). Now choose compact Cm ⊆ Dm, with
µ(Dm\Cm) < 2−m. So µ(K\Cm) < 21−m. Also Cm ∩ tnCm = ∅, for each n ≥
m, as Cm ⊆ K; but tn → 1G, so the compact set CmC−1

m contains no interior
points. Hence, by Baire’s theorem, neither does CC−1 for C =

⋃
mCm which

differs from K by a null set. �

The significance of Corollary 1 is that in alternative language it asserts a
Converse Steinhaus-Weil Theorem:

Proposition 2. A regular Borel measure µ on a topological group G has the
Steinhaus-Weil property iff either of the following holds:
(i) for each non-null compact subset K the map mK : t→ µ(tK) is subcon-
tinuous at 1G;
(ii) for each non-null compact subset K there is no ‘null’sequence tn → 1G
with µ(tnK)→ 0.

Remark. In the locally compact case, Simmons and Mospan both prove
that this is equivalent to µ being absolutely continuous w.r.t. Haar measure
η; see §6.2 below. For the more general context of a Polish group see [BinO9].
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For the Baire-category version, which goes back to Piccard and Pettis (see
[BinO6] for references), we recall that the quasi-interior, here conveniently
denoted Ã (or Aq) of a set A with the Baire property, is the largest (usual)
open set U such that U\A is meagre; it is a regularly-open set (see [Dug, Ch.
3 Problems, Section 4 Q22], §6.3). We note that (aA)q = aAq.We learn from
Theorem 4 below that the counterpart of this ‘quasi-interior’for measurable
sets is provided by the open sets of the density topology.

Proposition 1B (Baire-Kemperman property) ([BinO4, Th. 5.5B/M],
[BinO3, §5, Th. K]). In a normed topological group G, Baire under its norm
topology, if A is Baire non-meagre, then there is δ > 0 with

tA ∩ A ∈ B+ (||t|| < δ);

so in particular,
Bδ ⊆ AA−1.

Proof. If a ∈ Aq, the quasi-interior of A, then 1G ∈ a−1Ã, which is open.
So w.l.o.g. we may take a = 1G. Choose δ > 0 so that B := Bδ ⊆ Ã. Then
for t ∈ B, since t ∈ tB ∩B,

tÃ ∩ Ã ⊇ tB ∩B 6= ∅,

so being open, tB ∩ B is non-meagre (as G is Baire). But, modulo meagre
sets, A and Ã are identical. For the remaining assertion, argue as in the
measure case. �

Propositions 1M and 1B are both included in Theorem 4 below in the
topology refinement context with B+(DL) =M+, and B+(DB) = B+(Td); we
apply the result in Theorem 5. (Recall the discussion in §2 of their properties,
enlisted below.)

Theorem 4 (Displacements Theorem). In a topological group under
the topology of dGR, let D be a topology refining dGR and having the following
properties:
(i) D is shift-invariant: xD = D for all x;
(ii) B0(D) is left invariant for all x;
(iii) ‘Localization property’: H\intD(H) ∈ B0(D) for H ∈ B(D);
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(iv) the (left) ‘Kemperman property’: for 1G ∈ U ∈ D there is δ = δU > 0
with

tU ∩ U ∈ B+(D) (||t|| < δ);

(v) D is a strong generalized Gandy-Harrington topology: modulo B0(D) each
B(D) set is analytic under dXR , so that D is a Baire space.
Then for A ∈ B+(D) and quasi all a ∈ A, there is ε = εA(a) > 0 with

axa−1A ∩ A ∈ B+(D) (||x|| < ε);

so in particular, with γa(x) := axa−1,

γa(Bε) ⊆ AA−1 off a B0(D)-set of a ∈ A.

Proof. For some U ∈ D and N,A′ ∈ B0(D), A\A′ = U\N ; by (i) and (ii),
Ua = a−1U ∈ D and Na = a−1N ∈ B0(D), so a−1A ⊇ Ua\Na for a ∈ A\A′.
By the Kemperman property, for a ∈ A\A′ there is ε = εA(a) > 0 with

xUa ∩ Ua ∈ B+(D) (||x|| < ε).

Fix a ∈ A\A′. Working modulo B0(D)-sets which are left invariant (by the
Nikodym property), xa−1A ⊇ xUa and

a−1A ∩ xa−1A ⊇ Ua ∩ (xUa), (||x|| < ε).

So, since also axa−1A ∈ B(D), again by the Nikodym property

axa−1A ∩ A ∈ B+(D) (||x|| < ε).

For the remaining assertion, argue as in Prop. 1M above. �

Remark. The map γa : x 7→ axa−1 in the preceding theorem is a homeo-
morphism under the dGR topology of the topological group (being continuous,
with continuous inverse γa−1), so γa(BεA(a)) is open, and also open under the
finer topology D.

Theorem 4 above identifies additional topological properties enabling the
Kemperman property to imply the Steinhaus-Weil property. So we regard
it as a weak Steinhaus-Weil property; the extent to which it is weaker is
clarified by Proposition 3 below. For this we need a σ-algebra. Recall that
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E ⊆ G is universally measurable (E ∈ U(G)) if E is measurable with respect
to every measure µ ∈ P(G) —for background, see e.g. [Kec, §21D], cf. [Fre,
434D, 432]; these form a σ-algebra. Examples are analytic subsets (see e.g.
[Rog, Part 1 §2.9], or [Kec, Th. 21.10], [Fre, 434Dc]) and the σ-algebra that
they generate. Beyond these are the provably ∆1

2 sets of [FenN], [Kan, Ch.
3 14.4].

Proposition 3 (cf. BinO8, Cor. 2]). For H a left invariant σ-ideal in G,
put

U+(H) = U(G)\H.
If U+(H) has the Steinhaus-Weil property, then U+(H) has the Kemperman
property.

Proof. Suppose otherwise. Then, for some E ∈ U+(H) and some tn → 1G,
each of the sets E ∩ tnE is in H, and so

E0 := E\
⋃

n
tnE = E\

⋃
n
(E ∩ tnE) ∈ U(G),

which is in U+(H) (as otherwise E = E0∪
⋃

[E ∩ tnE] ∈ H). So 1G ∈
int(E0E

−1
0 ). So, for ultimately all n, tn ∈ E0E

−1
0 , and then E0 ∩ tnE0 6= ∅.

But, as E0 ⊆ E, E0 ∩ tnE0 ⊆ E0 ∩ tnE = ∅, a contradiction. �

Of interest above is the case H of left-Haar-null sets [Sol2] of a Polish
group G (cf. §6.5,6). We close with a result on the density topology Dµ
generated in a Polish group G from an atomless measure µ; this is an im-
mediate corollary of [Mar1]. Unlike the Hashimoto ideal topologies, which
need not be Baire topologies, these are Baire. The question of which sets
have the Steinhaus-Weil property under µ, hinges on the choice of µ (see the
earlier cautionary example of this section), and indeed on further delicate
subcontinuity considerations, related to [Sol2], for which see [BinO9]. In this
connection see [Oxt1] and [DieS, Ch. 10].

Proposition 4. For G a Polish group with metric topology Td, β a countable
basis, and atomless µ ∈ P(G) with µ(U) > 0 for all non-empty U ∈ β, then,
with density at g ∈ G computed by reference to βg := {B ∈ β : g ∈ B}, the
Lebesgue density theorem holds for µ. So the generated density topology Dµ
refines Td and is a Baire topology.
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Proof. As β comprises open sets, the Vitali covering lemma applies (see
[Bru, §6.3-4]), and implies that the measure µ obeys a density theorem (that
µ-almost all points of a measurable set are density points —cf. [Kuc, Th.
3.5.1]). So by results of Martin [Mar1, Cor. 4.4], the family Dµ of sets all of
whose points have (outer) density 1 are µ-measurable, and form a topology
on G [Mar1, Th. 4.1]. It is a Baire topology, by [Mar1, Cor. 4.13]. It refines
Td: the points of any open set have density 1, because the differentiation
basis consists of open sets, and these all are µ-non-null. �

Remark. The assumption of regularity subsumed in µ ∈ P(G) is critical; in
its absence the density theorem may fail: see [Kha, Ch.8 Th. 1], where for µ
non-regular there is a µ-measurable set with just one density point.

5 A Shift Theorem

Theorem 5 below establishes a compactness-like property of a density topol-
ogy D which, according to Corollary 2 below, implies the Steinhaus-Weil
property for sets in A ∈ B+(D). So we may regard it as a strong Steinhaus-
Weil-like property. Its prototype arises in the relevant infinite combinatorics
(the Kestelman-Borwein-Ditor Theorem, KBD: see [BinO6], [Ost3]). The
setting for the theorem is that of the Displacements Theorem (Th. 4 above),
a key ingredient of which is the Kemperman property, a weak Steinhaus-
Weil-like property, as noted in §4. So Theorem 5 establishes the equivalence
of a strong and a weak Steinhaus-Weil-like property in the presence of addi-
tional topological restrictions on the relevant refinement topology: invariance
under shift, localization and some analyticity (namely, a weak base of an-
alytic sets). We raise and leave open the question as to whether the three
topological restrictions listed above are minimal here.

Theorem 5 (Fine Topology Shift Theorem). In a topological group
under the topology of dGR, let D be a topology refining dGR and having the
following properties:
(i) D is shift-invariant: xD = D for all x;
(ii) ‘Localization property’: H\intD(H) ∈ B0(D) for H ∈ B(D);
(iii) the (left) ‘Kemperman property’: for 1G ∈ U ∈ D there is δ = δU > 0
with

U ∩ (tU) ∈ B+(D) (||t|| < δ);
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(iv) D is a strong generalized Gandy-Harrington topology: modulo B0(D)
each B(D) set is analytic under dGR, so that D is a Baire space.
Then, for zn → 1G (“null sequence”) and A ∈ B+(D), for quasi all a ∈ A

there is an infinite set Ma such that

{zma : m ∈Ma} ⊆ A.

Proof of Theorem 5. Since the asserted property is monotonic, we may
assume by the strong Gandy-Harrington property that A is analytic in the
topology of dGR. So write A = K(I) with K upper-semicontinuous and single-
valued. Below, for greater clarity we writeB(x, r) for the open r-ball centered
at x. For each n ∈ ω we find inductively integers in, points xn, yn, an with
an ∈ A, numbers rn ↓ 0, sn ↓ 0, analytic subsets An of A, and closed nowhere
dense sets {F n

m : m ∈ ω} w.r.t. D and Dn ∈ D such that:

K(i1, ..., in) ⊇ anxna
−1
n An ∩ An ∈ B+(D),

K(i1, ..., in) ⊇ anxna
−1
n An ∩ An ⊇ Dn ∩B(yn, sn)\

⋃
m∈ω

F n
m,

yn ∈ B(anxn, rn) and Dn ∩B(yn, sn) ∩
⋃

m,k<n
F k
m = ∅.

Assuming this done for n, since K(i1, ..., in) =
⋃
kK(i1, ..., in, k) is non-

negligible, there is in+1 withK(i1, ..., in, in+1)∩anxna−1
n An∩An non-negligible.

Put An+1 := K(i1, ..., in, in+1) ∩ anxna−1
n An ∩ An ⊆ K(i1, ..., in+1). As An+1

is non-negligible, we may pick an+1 ∈ An+1 and ε(an+1, An+1) as in Theorem
4 above; also pick m(n) so large that ||zm|| < ε(an+1, An+1) for m ≥ m(n)
and that for xn+1 := an+1z

−1
m(n)a

−1
n+1 also ||xn+1|| ≤ 2−n (the latter is possible,

as G is a topological group in the group-norm topology). Then

K(i1, ..., in+1) ⊇ an+1xn+1a
−1
n+1An+1 ∩ An+1 ∈ B+(D).

So by the Banach Category Theorem, for some Dn+1 ∈ D and some positive
rn+1 < rn/2

K(i1, ..., in+1) ⊇ an+1xn+1a
−1
n+1An+1∩An+1 ⊇ Dn+1∩B(an+1xn+1, rn+1)\

⋃
m∈ω

F n+1
m ,

for some closed nowhere dense sets {F n+1
m : m ∈ ω} of D. Since the set⋃

m,k<n+1 F
k
m is closed and nowhere dense, there is yn+1 ∈ Dn+1∩B(an+1xn+1, rn+1)
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and positive sn+1 < sn/2 so small that B(yn+1, sn+1) ⊆ B(an+1xn+1, rn+1)
and Dn+1 ∩B(yn+1, sn+1) ∩

⋃
m,k<n+1 F

k
m = ∅. So

Dn+1∩B(an+1xn+1, rn+1)\
⋃

m∈ω
F n+1
m ⊇ Dn+1∩B(yn+1, sn+1)\

⋃
m∈ω

F n+1
m ,

completing the induction.
By the Analytic Cantor Theorem [Ost1, Th. AC, Section 2], there is t

with
{t} = K(i) ∩

⋂
n
B(yn, sn) ⊆

⋂
n
anxna

−1
n An ∩ An.

So t ∈ A. Fix n; then t /∈
⋃
m∈ω F

n
m (since Dm+1∩B(ym+1, sm+1)∩

⋃
k<m F

n
k =

∅ for each m), and so t ∈ T and

t ∈ Dn ∩B(yn, sn)\
⋃

m∈ω
F n
m ⊆ anxna

−1
n An ∩ An ⊆ K(i1, ..., in) ⊆ A.

As t ∈ an+1xn+1a
−1
n+1An+1, an+1x

−1
n+1a

−1
n+1t = zm(n)t ∈ An+1 ⊆ A. So {zm(n)t :

n ∈ ω} ⊆ A.
Now dGR(anxn, t) ≤ dGR(anxn, yn)+dGR(yn, t)→ 0, so an → t, since xn → 1G

and so

dGR(an, t) = dGR(anxn, txn) ≤ dGR(anxn, t) + dGR(1G, txnt
−1)→ 0,

again as G is a topological group under the dGR-topology. �

Corollary 2. In the setting of Theorem 5 above, the sets of B+(D) have the
Steinhaus-Weil property (§1).

Proof (cf. [Sol1, Th. 1(ii)], [BinO4, Th. 6.5]). Otherwise, for some set
A ∈ B+(D) we may select zn /∈ AA−1 with ||zn|| < 1/n. Then there are a ∈ A
and a subsequence m(n) with zm(n)a ∈ A; so zm(n) ∈ AA−1, a contradiction.
�

6 Complements

1. Weil topology ([Wei, Ch. VII, §31], cf. [Hal, Ch. XII §62]). We recall
that for G a group with a σ-finite left-invariant measure |.| on a σ-ring M
of left-invariant sets and (x, y) 7→ (x, xy) measurability-preserving, the Weil
topology is generated by the family of pseudo-norms

||g||E := |gE4E|,
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for E ∈ M+ (with M+ the family of measurable sets with finite positive
measure), so that ||g||E ≤ 2|E|. Provided the pseudo-norms are separating
(i.e. ||g||E > 0 for any g 6= 1G and some E ∈ M+ as in (iii) above), G
is a topological group under the Weil topology [Hal, 62E]; equivalently, the
topology is generated by the neighbourhood base N1 := {DD−1 : 1G ∈
D ∈ M+}, reminiscent of the Steinhaus-Weil Theorem. The proof relies
on a kind of fragmentation lemma (see [BinO9]). That in turn depends on
Fubini’s Theorem [Hal, 36C], via the average theorem [Hal, 59.F]:∫

G

|g−1A ∩B|dg = |A| · |B−1| (A,B ∈M),

(g = ab−1 iff g−1a = b), and may be interpreted as demonstrating the conti-
nuity at 1G of ||.||E under the density topology.
2. Steinhaus-Weil property of a Borel measure. In a locally compact group
G, the familyM+(µ) of finite non-null measurable sets of a Borel measure µ
on G fails to have the Steinhaus-Weil property iff there are a null sequence
zn → 1G and a non-null compact set K with limn µ(tnK) = 0, as observed
by Mospan [Mos] (in R). Equivalently, this is so iff the measure µ is not
absolutely continuous with respect to Haar measure —cf. [Sim] and [BinO9].
3. Regular open sets. Recall that U is regular open if U =int(clU), and
that int(clU) is itself regular open; for background see e.g. [GivH, Ch. 10],
or [Dug, Ch. 3 Problems, Section 4 Q22]. For D = DB the Baire-density
topology of a normed topological group, let DROB denote its regular open
sets. For D ∈ DROB , put

ND := {t ∈ G : tD ∩D 6= ∅} = DD−1, N1 := {ND : 1G ∈ D ∈ DRO};

then N1 is a base at 1G (since 1G ∈ C ∈ DRO and 1G ∈ D ∈ DRO yield
1G ∈ C ∩D ∈ DRO) comprising T -neighbourhoods that are DB-open (since
DD−1 =

⋃
{Dd−1 : d ∈ D}. We raise the (metrizability) question, by anal-

ogy with the Weil topology of a measurable group: with DB above replaced
by a general density topology D on a group G, when is the topology gen-
erated by N1 on G a norm topology? Some indications of an answer may
be found in [ArhT, §3.3]. We note the following plausible answer: if there
exists a separating sequence Dn, i.e. such that for each g 6= 1G there is n
with ||g||Dn = 1, then

||g|| :=
∑

n
2−n||g||Dn
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is a norm, since it is separating and, by the Nikodym property, (D∩g−1D) =
g−1(gD ∩D) ∈ B+.
4. The Effros Theorem asserts that a transitive continuous action of a Polish
groupG on a spaceX of second category in itself is necessarily ‘open’, or more
accurately is microtransitive (the (continuous) evaluation map ex : g 7→ g(x)
takes open nhds E of 1G to open nhds that are the orbit sets E(x) of x). It
emerges that this assertion is very close to the shift-compactness property:
see [Ost6]. The Effros Theorem reduces to the Open Mapping Theorem when
G,X are separable Banach spaces regarded as additive groups, and G acts
on X by way of a linear surjection L : G→ X via g(x) = L(g) + x. Indeed,
here e0(E) = L(E). For a neat proof, choose an open neighbourhood U of 0
in G with E ⊇ U − U ; then L(U) is Baire (being analytic) and non-meagre
(since {L(nU) : n ∈ N} covers X), and so L(U) − L(U) ⊆ L(E) is an open
nhd of 0 in X.
5. Amenability at 1. Solecki defines G to be amenable at 1 if given µn ∈ P(G)
for n ∈ N with 1G ∈ supp(µn) there are ν and νn in P(G) with νn � µn and

νn ∗ ν(K)→ ν(K) (K ∈ K(G)).

(The origin of the term may be traced to a localization, via the restriction of
supports to contain 1G, of a Reiter-like condition [Pat, Prop. 0.4] character-
izing amenability itself.) It is proved in [Sol2, Th. 1(ii)] that, in the class of
Polish groups G that are amenable at 1G, the Steinhaus-Weil property holds
for universally measurable sets that are not left-Haar-null; this includes Pol-
ish abelian groups [Sol2, Prop. 3.3]. The relativized notion of subcontinuity:
on a compact K along a null sequence {tn} (which requires some subse-
quence µ(tm(n)K) to be bounded away from 0, provided µ(K) > 0) yields a
connection to amenability at 1G, which we explore elsewhere [BinO9].
6. Haar-null and left-Haar-null. The two families coincide in Polish abelian
groups, and in locally compact second countable groups (where they also
coincide with the sets of Haar measure zero —by an application of the Fubini
theorem). The former family, however, is in general smaller; indeed, (uni-
versally measurable) non-Haar-null sets need not have the Steinhaus-Weil
property, whereas the (universally measurable) non-left-Haar-null sets do —
see [Sol2].
7. Left-Haar-null Kemperman property. We note, as this is thematic, that
the family of (universally measurable) non-left-Haar-null sets has the left
Kemperman property [BinO9, Lemma 1].
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8. Beyond local compactness: Haar category-measure duality. In the absence
of Haar measure, the definition of left-Haar-null subsets of a topological group
G requires U(G), the universally measurable sets —by dint of the role of the
totality of (probability) measures on G. The natural dual of U(G) is the class
UB(G) of universally Baire sets, defined, for G with a Baire topology, as those
sets B whose preimages f−1(B) are Baire in any compact Hausdorff space K
for any continuous f : K → G. Initially considered in [FenMW] for G = R,
these have attracted continued attention for their role in the investigation of
axioms of determinacy and large cardinals —see especially [Woo]; cf. [MarS]
and [Kan].
Analogously to the left-Haar-null sets, define in G the family of left-Haar-

meagre sets,HM(G), to comprise the setsM coverable by a universally Baire
set B for which there are a compact Hausdorff space K and a continuous
f : K → G with f−1(gB) meagre in K for all g ∈ G. These were introduced,
in the abelian Polish group setting with K metrizable, by Darji [Dar], cf.
[Jab1], and shown there to form a σ-ideal of meagre sets (co-extensive with
the meagre sets for G locally compact); as HM(G)⊆ B0(G), the family is
not studied here.
9. Steinhaus AA−1 and AB−1 properties. If the subsets of G lying in a family
H have the property that AA−1 for A ∈ H has non-empty τ -interior, for τ a
translation invariant topology, and furthermore, as in the Haar-Kemperman
property, for A,B ∈ H there is g ∈ G such that C := gA ∩ B ∈ H, then
of course g−1CC−1 ⊆ AB−1, and so the latter has non-empty τ -interior. By
the Average Theorem (§6.1 above), this is the case for G locally compact
with τ = Td and H = L+ the Haar-measurable non-null sets [Hal, §59F] (cf.
[TomW, §11.3], and [BinO5] for G = R); other examples of families H are
provided by certain refinement topologies τ —see [BinO9] and the extended
arXiv version of the current paper arXiv1607.00031v2.
17.12 At end of line add: In a non-abelian setting, note that a left Haar

null set need not be right Haar null: for one example see [81], and for more
general non-coincidence see Solecki [83, Cor. 6].. However, Matoŭsková and
Zelený [MatZ] show that in any non-locally compact abelian Polish group
there are closed non (left) Haar null sets A,B such that A + B has empty
interior. Recently, Jabłońska [Jab2] has shown that likewise in any non-
locally compact abelian Polish group there are closed non-Haar meager sets
A,B such that A+B has empty interior.
10. Non-separability. The links between the Effros theorem above, the Baire
theorem and the Steinhaus-Weil theorem are pursued at length in [Ost6].
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There, any separability assumption is avoided. Instead sequential methods
are used, for example shift-compactness arguments.
11. Metrizability and Christensen’s Theorem. In connection with the role of
analyticity in the generalized Gandy-Harrington property of §2, note that an
analytic topological group is metrizable; so if it is also a Baire space, then it
is a Polish group [HofT, Th. 2.3.6].
12. Strong Kemperman property: qualitative versus quantitative measure
theory. We note that property (iv) of Theorem 1 corresponds to the follow-
ing quantitative, linear Lebesgue-measure property, which we may name the
strong Kemperman property (see [Kem], [Kuc, Lemma 3.7.2]):
(iv)* for 0 ∈ U ∈ DL there is δ > 0 such that for all |t| < δ

|U ∩ (t+ U)| ≥ ε.

This is connected with the continuity of a Weil-like group norm on (R,+).
Indeed, since

|U ∩ (t+ U)| = |U | − |U4(t+ U)|/2,
the inequality above is equivalent to

||t||U := |U4(t+ U)| ≤ 2(|U | − ε).

The latter holds for any 0 < ε < |U | and for suffi ciently small t, by the
continuity of the norm ||t||U .
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