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Abstract

Continuity or discontinuity of probability density functions of data often plays a fundamental
role in empirical economic analysis. For example, for identification and inference of causal effects in
regression discontinuity designs it is typically assumed that the density function of a conditioning
variable is continuous at a cutoff point that determines assignment of a treatment. Also, disconti-
nuity in density functions can be a parameter of economic interest, such as in analysis of bunching
behaviors of taxpayers. In order to facilitate researchers to conduct valid inference for these problems,
this paper extends the binning and local likelihood approaches to estimate discontinuity of density
functions and proposes empirical likelihood-based tests and confidence sets for the discontinuity.
In contrast to the conventional Wald-type test and confidence set using the binning estimator, our
empirical likelihood-based methods (i) circumvent asymptotic variance estimation to construct the
test statistics and confidence sets; (ii) are invariant to nonlinear transformations of the parameters
of interest; (iii) offer confidence sets whose shapes are automatically determined by data; and (iv)
admit higher-order refinements, so-called Bartlett corrections. First- and second-order asymptotic
theories are developed. Simulations demonstrate the superior finite sample behaviors of the proposed
methods. In an empirical application, we assess the identifying assumption of no manipulation of
class sizes in the regression discontinuity design studied by Angrist and Lavy (1999).
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1 Introduction

Continuity or discontinuity of probability density functions of data often play a fundamental role in

empirical economic analysis. For example, for identification and inference of causal effects in regression

discontinuity designs it is typically assumed that the density function of the conditioning variable is

continuous at a cutoff point of interest (see, e.g., Hahn, Todd and van der Klaauw, 2001, Porter, 2003,

Imbens and Lemieux, 2008, Lee, 2008, and McCrary, 2008). Given the continuity (or no manipulation)

of the conditioning variable, discontinuity of the conditional mean function enables us to identify a local

average treatment effect. Also, discontinuity (i.e. spread at a given discontinuity point) in the density

function can be a parameter of economic interest. For example, Saez (2010) investigated bunching

behaviors of taxpayers at kinked points in the US income tax schedule. In this case, the discontinuity of

the income density becomes an economic parameter of interest and is used to derive the compensated

reported income elasticity with respect to the marginal tax rate. For these empirical problems, effective

estimation and inference of such (dis)continuities in the density functions are of central importance,

which are the focus of the current paper.

This paper makes two contributions for inference problems on (dis)continuities of densities. First, we

suggest a nonparametric estimator for discontinuities of densities based on the local likelihood approach

(Loader, 1996, and Hjort and Jones, 1996). In the literature, McCrary (2008) proposed to estimate

discontinuities by applying a local polynomial regression method for binned data (Cheng, 1994, 1997).

Like Cheng and McCrary’s local linear binning estimator, the proposed local likelihood estimator shares

attractive performance in the presence of edge effects (i.e., estimation bias of densities at boundary

points), which is crucial in the current setup. On the other hand, unlike the local linear binning

estimator, the local likelihood density estimator is guaranteed to be non-negative by construction and

is free from choosing bin widths to create binned data. This non-negativity of the local likelihood

estimator is important when we are interested in regions with low densities. Simulations demonstrate

the superior finite sample behavior of the new estimator.

Second and more importantly, we provide a general framework for conducting inference on disconti-

nuities of densities based on the idea of empirical likelihood. We construct empirical likelihood functions

from the estimating equations of both the binning and local likelihood estimators, and propose empirical

likelihood tests and confidence sets for discontinuities of densities. Our empirical likelihood approach

has at least six attractive features. First, we do not need to specify parametric functional forms of

density functions since we construct the empirical likelihood functions from the first-order conditions of

the binning and local likelihood estimators. Second, we do not need to estimate the asymptotic variance

which is required in the Wald or t-statistic of McCrary (2008). The asymptotic variance estimation is

automatically incorporated in the construction of empirical likelihood (i.e., internally studentized) and

the derived empirical likelihood statistics are asymptotically pivotal, having chi-square limiting distribu-

tions. Third, our empirical likelihood-based inference methods are invariant to the formulations of the

parameter of interest. In contrast, the Wald statistic of McCrary (2008) depends on how the parameter
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of interest or null hypothesis is specified by the researcher. Fourth, the shapes of the empirical likelihood

confidence sets are automatically determined by data. In contrast, the Wald-type confidence sets are

restricted to be symmetric around the point estimates. Fifth, the empirical likelihood confidence sets

are well defined even if the local linear binning estimator of McCrary (2008) yields negative estimates for

the densities. Finally, our empirical likelihood tests admit higher-order refinements, so-called Bartlett

corrections. Simulation results indicate that the empirical likelihood tests have accurate finite sample

sizes, and are generally more powerful (especially those based on the local likelihood approach) than

the Wald test.

Angrist and Lavy (1999) exploited the so-called Maimonides’ rule, which stipulates that a class with

more than 40 pupils should be split into two, as an exogenous source of variation in class size to identify

the effects of class size on the scholastic achievement of pupils in Israel. An important assumption of

their study is no manipulation of class size by parents. Evidence of such manipulation casts doubt

on the identification strategy of the regression discontinuity design. Angrist and Lavy (1999) provided

intuitive arguments that manipulation is unlikely to happen in Israel. In this paper, we statistically

re-examine the assumption of no manipulation of class sizes by testing continuity of the enrollment

density (i.e., density continuity of the running variable). Using the proposed local likelihood estimator

and the associated empirical likelihood inference procedure, we find significant evidence of manipulation

at the first multiple of 40 but not clearly at other multiples. The progressively smaller estimates and

weaker evidence of discontinuity our empirical results discover at multiples of 40 coincides with the fact

that the parents are more likely to selectively manipulate the class size as just above 40 because they

could place their children in schools with smaller class sizes if the manipulation is successful, than they

do as just above 80, 120, or 160. These findings are not shared by using McCrary’s binning estimator

and Wald test.

This paper also contributes to the rapidly growing literature on empirical likelihood (see Owen, 2001,

for a review). In particular, we extend the empirical likelihood approach to the density discontinuity

inference problem by incorporating local polynomial fitting techniques such as Fan and Gijbels (1996)

and Loader (1996). We show that the empirical likelihood ratios for density discontinuities have an

asymptotically chi-squared distribution. Therefore, we can still observe the Wilks phenomenon (Fan,

Zhang and Zhang, 2001) in this nonparametric density discontinuity inference problem. Furthermore,

we study second-order asymptotic properties of the empirical likelihood statistics and show that the

empirical likelihood confidence tests admit Bartlett corrections in our setup. Since DiCiccio, Hall and

Romano (1991), Bartlett correctability of empirical likelihood is repeatedly observed in the literature

for various setups. We extend the Bartlett correctability result to the nonparametric inference problem

of density discontinuity.

This paper is organized as follows. Section 2 presents our basic setup and point estimation methods.

In Section 3.1 we construct empirical likelihood functions of discontinuities in densities. Sections 3.2 and

3.3 present the first- and second-order asymptotic properties of the empirical likelihood-based inference
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methods, respectively. The proposed methods are evaluated by Monte Carlo simulations in Section 4.

An empirical application to validation of regression discontinuity design is provided in Section 5. Section

6 concludes. Appendix A contains mathematical proofs, lemmas, and derivations.

2 Setup and Estimation

We first introduce our basic setup. Let {Xi}ni=1 be an iid sample of X ∈ X ⊆ R with the probability

density function f (x). Suppose that we are interested in (dis)continuity of the density f (x) at some

given point c ∈ X. Let fl = limx↑c f (x) > 0 and fr = limx↓c f (x) > 0 be the left and right limits of

f (x) at x = c, respectively. Our object of interest is the difference of the left and right limits:

θ0 = fr − fl. (1)

If θ0 = 0, then the density function f (x) is continuous at x = c. We wish to estimate, construct a

confidence set, and conduct a hypothesis test for the parameter θ0.

First, let us consider the point estimation problem of θ0. If the density is discontinuous at c (i.e.,

θ0 �= 0), we can regard the estimation problems for the limits fl and fr as the ones for nonparametric

densities at the boundary point c using sub-samples with Xi < c and Xi ≥ c. To reduce boundary

bias in nonparametric density estimation, it is reasonable to apply a local polynomial fitting technique,

which has favorable properties on boundaries (see, e.g., Fan and Gijbels, 1996). In density estimation

we do not have any regressands or regressors. However, there are at least two ways to adapt the local

polynomial fitting method to the density estimation problem, the binning and local likelihood methods.

The binning method (e.g., Cheng, 1994, 1997, and Cheng, Fan and Marron, 1997) creates regressands

and regressors based on binned data and then implements local polynomial regression. Let
{
XG

j

}J

j=1
={

. . . , c− 3
2b, c− 1

2b, c+
1
2b, c+

3
2b, . . .

}
, which plays the role of a regressor, be an equi-spaced grid of

width b, where the interval
[
XG

1 , XG
J

]
covers the support X. Let I {·} be the indicator function and

ZG
j = 1

nb

∑n
i=1 I

{∣∣∣Xi −XG
j

∣∣∣ < b
2

}
, which plays the role of a regressand, be the normalized frequency

for the j-th bin. The bin-based local linear estimators f̂G
l and f̂G

r for fl and fr are defined as solutions

to the following weighted least square problems with respect to al and ar, respectively,

min
al,bl

∑
j:XG

j <c

K

(
XG

j − c

h

)(
ZG
j − al − bl

(
XG

j − c
))2

, (2)

min
ar,br

∑
j:XG

j ≥c

K

(
XG

j − c

h

)(
ZG
j − ar − br

(
XG

j − c
))2

,

where K (·) is a symmetric kernel function and h is a bandwidth parameter. We may add higher-

order polynomials of
(
XG

j − c
)

in the regressors to further reduce the bias or to estimate higher-order

derivatives of f . Based on these regressions, the parameter θ0 can be estimated by θ̂G = f̂G
r − f̂G

l . Note

that we need to choose two tuning parameters, b and h to compute θ̂G. This estimator is adopted by
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McCrary (2008) to conduct the Wald test for the density continuity hypothesis H0 : θ0 = 0. See the

papers cited above for the properties of the bin-based density estimators.

As an alternative estimation method, we adapt the local likelihood approach (e.g., Copas, 1995,

Hjort and Jones, 1996, and Loader, 1996) to our context. The local likelihood method constructs some

localized versions of likelihood functions for fl and fr using kernel weights and then conducts likelihood

maximization. Let âl and âr be solutions to the following maximization problems with respect to al

and ar, respectively,

max
al,bl

{
1
n

∑
i:Xi<cK

(
Xi−c
h

)
(al + bl (Xi − c))− ´u<cK

(
u−c
h

)
exp (al + bl (u− c)) du

}
, (3)

max
ar,br

{
1
n

∑
i:Xi≥cK

(
Xi−c
h

)
(ar + br (Xi − c))− ´u≥cK

(
u−c
h

)
exp (ar + br (u− c)) du

}
.

The local (linear) likelihood estimators for the density limits fl and fr are defined as f̂l = exp (âl) and

f̂r = exp (âr), respectively. The discontinuity parameter θ0 is estimated by θ̂ = f̂r − f̂l. Higher-order

polynomials of (Xi − c) and (u− c) may be added to the linear terms.1 In contrast to the bin-based

estimator, the local likelihood estimator for densities is always positive by construction. This feature

of the local likelihood estimator is attractive particularly if we are interested in low density regions to

avoid negative density estimates, which are logically inconsistent.2 By adapting the arguments in Loader

(1996, Lemma 1 and Theorem 2) to boundary points and applying the delta method, the asymptotic

distribution of θ̂ is obtained as follows.

Theorem 2.1. Suppose that Assumptions 1-3 and 5 in Section 3.2 hold. Also assume h → 0 and

nh→∞ as n→∞. Then √
nh

(
θ̂ − θ −BL

)
d→ N (0, VL) ,

where BL = h2 (f ′′
r − f ′′

l )
K2

r21−Kr31Kr11

2(Kr21Kr01−K2
r11)

, VL = (fr + fl)
K2

r21Kr02−2Kr21Kr11Kr12+K2
r11Kr22

(Kr21Kr01−K2
r11)

2 , f ′′
l = limx↑c

d2 log f(x)
dx2 ,

f ′′
r = limx↓c

d2 log f(x)
dx2 , and Krj1j2 is defined in (12) in Appendix A.

Note that the bias term BL is of order h2 and cancels out if the density has a continuous second-order

derivative (i.e., f ′′
r = f ′′

l ).

Inference on possibly discontinuous density functions has been considered in the literature of non-

parametric statistics (e.g., Cline and Hart, 1991, Marron and Ruppert, 1994, and Cheng, Fan and

Marron, 1997). However, interests in the spread of densities at discontinuity points are not motivated
1In general, using a parametric function ψ (·, πl), the local likelihood estimator for fl can be defined by transforming

π̂l = argmaxπl

{
1
n

∑
i:Xi<c K

(
Xi−c

h

)
logψ (Xi, πl)−

´
u<c

K
(
u−c
h

)
ψ (u, πl) du

}
. An estimator for fr is defined in the same

manner. It reduces to the estimator defined by (3) when ψ (x, πl) = exp (al + bl (x− c)) with πl = (al, bl)
′. Note that when

ψ is a constant, we obtain the (normalized) kernel density estimator 2
nh

∑
i:Xi<c K

(
Xi−c

h

)
. In this sense, to implement

local likelihood estimation, we need to choose the bandwidth h and parametric function ψ. See Hjort and Jones (1996)

and Park, Kim and Jones (2002) for comparisons of difference choices of ψ.
2See, Hjort and Jones (1996, Section 6) and Loader (1996, Section 5) for asymptotic analyses of the local likelihood

estimators at boundaries and in tails, respectively.
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until recently. McCrary (2008) considered the testing problem for the density continuity in the context

of regression discontinuity designs.3 McCrary (2008) formulated the density continuity testing problem

as

H0 : log fl = log fr, H1 : log fl �= log fr,

and suggested the t-test statistic based on the binning estimator:

tG =

√
nh

(
log f̂G

r − log f̂G
l

)
σ̂K

, (4)

where σ̂2
K

is a consistent estimator for the asymptotic variance of the numerator
√
nh

(
log f̂G

r − log f̂G
l

)
.

Using the triangle kernel function K (a) = max {0, 1− |a|}, McCrary (2008) showed that the numera-

tor
√
nh

(
log f̂G

r − log f̂G
l −B

)
converges in distribution to N

(
0, σ2

K

)
with B = h2 1

20

(
f ′′
l
fl
− f ′′

r
fr

)
and

σ2
K
= 24

5

(
1
fl
+ 1

fr

)
. Thus, by undersmoothing (i.e., limn→∞ h2

√
nh = 0) to neglect the bias term and

estimating the standard error σK by σ̂K =

√
24
5

(
1
f̂G
l

+ 1
f̂G
r

)
, we can test H0 by the t-statistic tG using

the standard normal critical values.

There are at least four issues with McCrary’s (2008) Wald-type approach. First, since the asymptotic

variance σ2
K

and its estimator σ̂2
K

depend on the form of the kernel function K, we need to find the formula

and estimator of σ2
K

for each choice of K. Second, the local linear estimator based on a non-negative

sample may produce negative estimates at some design points (Xu and Phillips, 2011). When this

happens to either f̂G
l or f̂G

r , McCrary’s (2008) statistic tG cannot be used. Third, since the test statistic

tG is constructed essentially to test the log difference log fl − log fr, it does not automatically generate

a confidence set for θ0 = fr − fl. Finally, although the above Wald or t-test can be modified to test the

null hypothesis H̃0 : fl = fr, the Wald test statistic for H0 and H̃0 will take different values in finite

samples (i.e., lack of invariance to nonlinear hypotheses, see, e.g., Gregory and Veal, 1985). Similar

comments apply to the Wald test based on the local likelihood estimator θ̂. To address these issues we

propose a new framework for inference of θ0 in the following section.

3 Empirical Likelihood Inference

3.1 Construction of Test Statistics

In this subsection, we construct empirical likelihood functions for the parameter of interest θ0 = fr − fl

based on the estimation approaches presented in the last section. We first consider the binning approach.
3As McCrary (2008, p. 701) argued, continuous density of a running variable is neither necessary nor sufficient to

identify a causal parameter of interest without auxiliary assumptions. As a specific example, let us consider the framework

of Lee (2008, Propositions 2 and 3), where the running variable is under agent’s control but may contain some idiosyncratic

component. In Lee’s (2008) setup, if the density of the running variable is discontinuous, then we cannot identify even the

signs of some weighted average treatment effects (i.e., “ATE∗” and “ATE∗∗” in Lee, 2008) without imposing additional

assumptions.
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Let IGj = I

{
XG

j ≥ c
}

and XG
j,h =

XG
j −c

h . The bin-based local linear estimators f̂G
l and f̂G

r defined in

(2) satisfy the first-order conditions (see, p. 20 of Fan and Gijbels, 1996)

J∑
j=1

(
1− IGj

)
KG

lj

(
ZG
j − f̂G

l

)
= 0,

J∑
j=1

IGj KG
rj

(
ZG
j − f̂G

r

)
= 0, (5)

where

KG
lj = K

(
XG

j,h

){ J∑
k=1

(
1− IGk

)
K
(
XG

k,h

) (
XG

k,h

)2 − (XG
j,h

) J∑
k=1

(
1− IGk

)
K
(
XG

k,h

)
XG

k,h

}
,

KG
rj = K

(
XG

j,h

){ J∑
k=1

IGj K
(
XG

k,h

) (
XG

k,h

)2 −XG
j,h

J∑
k=1

IGk K
(
XG

k,h

)
XG

k,h

}
.

If we regard (5) as estimating equations or sample moment conditions for
(
E
[
f̂G
l

]
, E

[
f̂G
r

])
, the bin-

based empirical likelihood function for
(
E
[
f̂G
l

]
, E

[
f̂G
r

])
is constructed as

LG (al, ar) = sup
{pj}Jj=1

J∏
j=1

pj , (6)

s.t. 0 ≤ pj ≤ 1,
J∑

j=1

pj = 1,
J∑

j=1

pj
(
1− IGj

)
KG

lj

(
ZG
j − al

)
= 0,

J∑
j=1

pjI
G
j KG

rj

(
ZG
j − ar

)
= 0.

The weight pj can be interpreted as probability mass allocated to the observed value of ZG
j . By applying

the Lagrange multiplier method, under certain regularity conditions (see, Theorem 2.2 of Newey and

Smith, 2004), we can obtain the dual representation of the maximization problem in (6), that is

�G (al, ar) = −2
{
logLG (al, ar) + n log n

}
= 2 sup

λG∈ΛG
J (al,ar)

J∑
j=1

log
(
1 + λG′gGj (al, ar)

)
, (7)

where ΛG
J (al, ar) =

{
λG ∈ R

2 : λG′gGj (al, ar) ∈ VG for j = 1, . . . , J
}

, VG is an open interval containing

0, and gGj (al, ar) =
[(

1− IGj

)
KG

lj

(
ZG
j − al

)
, IGj KG

rj

(
ZG
j − ar

)]′
. Note that the J-variable maximiza-

tion problem in (6) with respect to {pj}Jj=1 reduces to the two-variable convex maximization problem in

(7) with respect to λG, which is easily implemented by a Newton-type optimization algorithm. Therefore,

in practice we use the dual formulation (7) to compute the (log) empirical likelihood function. Based

on the empirical likelihood function �G (al, ar), the concentrated likelihood function for the parameter

of interest θ0 = fr − fl is defined as

�G (θ) = min
{(al,ar)∈Al×Ar:θ=ar−al}

�G (al, ar) , (8)

for the parameter space Al ×Ar of (fl, fr).
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We now define the empirical likelihood function based on the local likelihood approach. Let Ii =

I {Xi ≥ c} and Xi,h = Xi−c
h . The first-order conditions for the local likelihood maximization problems

in (3) are written as

0 =
1

n

n∑
i=1

(1, Xi,h) (1− Ii)K (Xi,h)−
ˆ
x<c

(
1,

x− c

h

)
K

(
x− c

h

)
exp (al + bl (x− c)) dx,

0 =
1

n

n∑
i=1

(1, Xi,h) IiK (Xi,h)−
ˆ
x≥c

(
1,

x− c

h

)
K

(
x− c

h

)
exp (ar + br (x− c)) dx.

Based on these estimating equations, the empirical likelihood function is constructed as

L (al, ar, bl, br) = sup
{pi}ni=1

n∏
i=1

pi, (9)

s.t. 0 ≤ pi ≤ 1,
n∑

i=1

pi = 1,
n∑

i=1

pigi (al, ar, bl, br) = 0,

where gi (al, ar, bl, br) =

(
(1, Xi,h)

′ (1− Ii)K (Xi,h)−
´
x<c

(
1, x−c

h

)′
K
(
x−c
h

)
exp (al + bl (x− c)) dx,

(1, Xi,h)
′ IiK (Xi,h)−

´
x≥c

(
1, x−c

h

)′
K
(
x−c
h

)
exp (ar + br (x− c)) dx

)
.

The weight pi can be interpreted as probability mass allocated to the observed value of Xi. The dual

form of the empirical likelihood function (9) is

� (al, ar, bl, br) = 2 sup
λ∈Λn(al,ar,bl,br)

n∑
i=1

log
(
1 + λ′gi (al, ar, bl, br)

)
, (10)

where Λn (al, ar, bl, br) =
{
λ ∈ R

4 : λ′gi (al, ar, bl, br) ∈ V for i = 1, . . . , n
}

and V is an open interval

containing 0. Also, the concentrated likelihood function for the parameter of interest θ0 = fr − fl is

defined as

� (θ) = min
{(al,ar,bl,br)∈Al×Ar×Bl×Br:θ=exp(ar)−exp(al)}

� (al, ar, bl, br) , (11)

for some space Al ×Ar × Bl × Br of (al, ar, bl, br).

Note that the constructions of the empirical likelihood functions �G (θ) in (8) and � (θ) in (11) do

not require any parametric functional form of the density function. Precisely, the above constructions

give us the empirical likelihood functions for E
[
f̂r

]
−E

[
f̂l

]
, rather than for θ0 = fr − fl. However, by

introducing undersmoothed bandwidths (specifically, letting nh5 → 0), we can asymptotically neglect

the bias component (fr − fl) −
(
E
[
f̂r

]
− E

[
f̂l

])
, and employ the functions �G (θ) and � (θ) as valid

empirical likelihood functions for the parameter θ0.

One useful feature of the empirical likelihood approach is that it can easily incorporate additional

information (see, Chen, 1997, in the context of density estimation). Suppose we have prior information

about X specified in the form of E [m (X)] = 0, such as the mean, variance, or quantiles. Using the

weights {pi}ni=1, this information can be incorporated into the likelihood maximization problem (9) by

adding the restriction
∑n

i=1 pim (Xi) = 0, and the dual form (10) is re-defined by adding m (Xi) to

the moment function gi (al, ar, bl, br). The resulting empirical likelihood inference is more efficient if

additional information is valid.
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3.2 First-order Asymptotic Properties

We now investigate the first-order asymptotic properties of the proposed empirical likelihood statistics.

We impose the following assumptions.

Assumption.

1. {Xi}ni=1 is i.i.d.

2. There exists a neighborhood N around c such that f is continuously second-order differentiable on

N \ {c}. For the matrices V and G defined in (12), V is positive definite and G has full column

rank.

3. K is a symmetric and bounded density function with support [−k, k] for some k > 0.

4. As n → ∞, h → 0, nh → ∞, and nh5 → 0. Additionally, b/h → 0 for �G (θ) and nh3 → ∞ for

� (θ).

5. For �G (θ), Al and Ar are compact, fl ∈ int (Al), and fr ∈ int (Ar). For � (θ), Al, Ar, Bl, and

Br are compact, log fl ∈ int (Al), log fr ∈ int (Ar), f ′
l/fl ∈ int (Bl), and f ′

r/fr ∈ int (Br).

Assumption 1 is on the data structure. Although it is beyond the scope of this paper, it would

be interesting to extend the proposed method to weakly dependent data, where we are interested

in the discontinuity of the stationary distribution. For this extension, we would need to introduce a

blocking technique to handle the time series dependence in the moment functions (see, Kitamura, 1997).

Assumption 2 restricts the local shape of the density function around x = c. This assumption allows

discontinuity of the density function at x = c. Assumption 3 is on the kernel function K and implies the

second-order kernel. This assumption is satisfied by e.g., the triangle kernel K (a) = max {0, 1− |a|} and

Epanechnikov kernel K (a) = 3
4

(
1− a2

)
I {|a| ≤ 1}. Assumption 4 is on the bandwidth parameter h.

The requirement nh5 → 0 corresponds to an undersmoothing condition to remove the bias component

(fr − fl) −
(
E
[
f̂r

]
− E

[
f̂l

])
in the construction of empirical likelihood. The requirement b/h → 0 is

on the bin width b used for the binning estimator. The condition nh3 → ∞ is required to obtain the

consistency of the minimizers to solve (11). If we do not have the local linear terms (Xi − c) and (u− c)

in (3), this condition is unnecessary. Assumption 5 is similar to an assumption that would be used in a

parametric estimation problem.

Under these assumptions, the first-order asymptotic distributions of the empirical likelihood func-

tions �G (θ) and � (θ) evaluated at the true parameter value θ = θ0 are obtained as follows.

Theorem 3.1. Under Assumptions 1-5, it holds

�G (θ0)
d→ χ2 (1) , � (θ0)

d→ χ2 (1) .
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Note that even in this nonparametric hypothesis testing problem, we observe the convergence of the

empirical likelihood statistics to the pivotal χ2 distribution, i.e., the Wilks phenomenon emerges. The

null hypothesis H0 : θ0 = θ for some given θ can be tested by the test statistic �G (θ) or � (θ) with

the χ2 (1) critical value. For example, the null of density continuity is tested by �G (0) or � (0). Also,

by inverting these test statistics, the 100 (1− ξ)% empirical likelihood asymptotic confidence sets are

obtained as CSG =
{
θ : �G (θ) ≤ cξ

}
and CS = {θ : � (θ) ≤ cξ}, where cξ is the (1− ξ)-th quantile of

the χ2 (1) distribution.

We now compare our empirical likelihood approach with the Wald approach proposed by McCrary

(2008). First, in contrast to the t-test based on (4), the empirical likelihood test based on �G (0) or

� (0) does not require any asymptotic variance estimation, which is automatically incorporated in the

construction of the empirical likelihood function. Also, while the Wald test requires the derivation of

the asymptotic variance σ2
K

for each kernel function, the empirical likelihood tests do not require such

derivations. Second, the empirical likelihood confidence set CSG by the binning method does not require

the local linear (or polynomial) estimators of fl and fr. Thus, even if the binning estimate of fl or fr is

negative in finite samples, the confidence set CSG is still well defined. Third, the empirical likelihood

test statistics are invariant to the formulation of the nonlinear null hypotheses. For example, to test the

density continuity, we may specify the null hypothesis as H0 : log fl = log fr, H̃0 : fl = fr, H̄0 : fl
fr

= 1,

etc. For these hypotheses, the empirical likelihood test statistics are identical (i.e., �G (0) or � (0)). On

the other hand, the Wald test statistic is not invariant to the formulation of the null hypotheses and

may yield opposite conclusions in finite samples (see, e.g., Gregory and Veal, 1985).4 5

3.3 Second-order Asymptotic Properties

In this subsection, we study the second-order asymptotic properties of the empirical likelihood statistics

and confidence sets. For brevity, we only present the result for the empirical likelihood statistic based

on the local likelihood approach. Similar results are available for the binning approach. To study the

second-order properties of the empirical likelihood statistic � (θ) in (11), we adopt a similar approach
4An alternative inference approach is to employ some bootstrap method. The method can be applied to both the

binning and local likelihood estimators. Our preliminary simulations show that a bootstrap-based test, where we estimate

the standard error σ2
K by bootstrapping, improves McCrary’s (2008) t-test and has similar finite-sample size properties with

the bin-based empirical likelihood test, however, it is much more numerically expensive to implement. In our experiments,

when the bootstrap is applied to the binning estimator with 399 bootstrap replications, the test takes about ten times

longer than the bin-based empirical likelihood test. To our best knowledge, theoretical properties of the bootstrap method

are still unknown in the context of density discontinuity testing. Although it is beyond the scope of this paper, further

investigation into the bootstrap method and comparisons with the empirical likelihood approach are definitely worthwhile.
5In addition to the Wald-type approach by McCrary (2008) and likelihood ratio-type approach by this paper, we can

adopt the Lagrange multiplier- or score-type approach to test H0 (see, Smith, 1997). In our context, the maximizers in (7)

and (10) with respect to λG and λ, respectively, play the roles of the Lagrange multipliers. By adapting the result of Smith

(1997) to our setup, the Lagrange multiplier test statistics can be constructed as quadratic forms of these maximizers,

and are invariant to the formulation of the nonlinear null hypotheses.
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to Chen and Cui (2006), which studied Bartlett correctability of the empirical likelihood statistic in

the presence of nuisance parameters (al, bl and br in our case). Note that while Chen and Cui (2006)

considered moment functions for finite-dimensional parameters, our moment functions are used for the

nonparametric object θ0 = fr−fl and contain the bandwidth parameter h. Thus, although the basic idea

of the second-order analysis follows from Chen and Cui (2006), technical details are different from theirs.

Let cξ and f1 (·) be the (1− ξ)-th quantile and probability density function of the χ2 (1) distribution,

respectively. The main results are summarized as follows. See Appendices A.3 and A.4 for technical

details.

Theorem 3.2. Suppose that Assumptions 1-6 hold. Furthermore, assume that nh/ log n → ∞ as

n→∞, and there exists a partition −k = u0 < u1 < · · · < um = k such that for each j = 1, . . . ,m, the

derivative dK(u)
du is bounded and either strictly positive or strictly negative on (uj−1, uj). Then it holds

(i) Pr {� (θ0) ≤ cξ} = 1− ξ − cξf1 (cξ)Bc +O
(
(nh)−3/2 + (nh)−1 h2 + h4

)
,

(ii) Pr {� (θ0) ≤ cξ (1 +Bc)} = 1− ξ +O
(
n2h10 + (nh)−3/2 + (nh)−1 h2 + h4

)
,

where the Bartlett factor Bc is defined in (25) of Appendix A.3.

Additional assumptions are required to establish an Edgeworth expansion (see, Section 5.5 of Hall,

1992).6 Theorem 3.2 (i) says that the error in the null rejection probability of the empirical likelihood

test for θ0 using the critical value cξ based on the first-order χ2 (1) asymptotic distribution is of order

Bc = O
(
nh5 + (nh)−1

)
. Theorem 3.2 (ii) says that the error in the null rejection probability can be

reduced by modifying the critical value to cξ (1 +Bc), so-called the Bartlett correction. For example, if

h ∝ n−1/4, we have Pr {� (θ0) ≤ cξ} = 1−ξ+O
(
n−1/4

)
and Pr {� (θ0) ≤ cξ (1 +Bc)} = 1−ξ+O

(
n−1/2

)
.

In practice, the Bartlett factor Bc has to be estimated. The method of moments estimator of Bc can be

obtained by substituting all the population moments involved by their corresponding sample moments.

Chen and Cui (2006) suggested a bootstrap estimator for Bc.

Similar results are available for the bin-based empirical likelihood test statistic �G (θ0). In particular,

the same statements in Theorem 3.2 hold with a different Bartlett factor.7

4 Simulations

In this section we study the finite-sample behaviors of the aforementioned methods using simulations.

First we focus on the point estimators, i.e. the local linear binning estimator θ̂G and the local (log
6The additional assumption on the kernel function is introduced to guarantee a version of the Cramér condition. This

assumption excludes the uniform kernel, for example. As discussed in Hall (1992, Lemma 5.6), if there is an interval

where the kernel function becomes flat, then the current approach of the proof cannot guarantee the boundedness of some

characteristic functions. As conjectured by Hall (1992, p. 270), it may be possible to relax this assumption by the method

for lattice-valued random variables.
7Details are available from the authors upon request.
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linear) likelihood estimator θ̂ for θ0. For comparisons, we also consider the local constant binning

estimator θ̃G and the local (log constant) likelihood estimator θ̃. For the kernel function K, we use

the triangle kernel function K (a) = max {0, 1− |a|}. For the bandwidth h, we consider both fixed

bandwidths h = 1, 2, 3, 4 and data-dependent bandwidths h = αhdd, where hdd is the data-dependent

bandwidth used by McCrary (2008) and α = 1.5k for k = −1, 0, 1, 2.8 For the bin size b to implement

θ̂G and θ̃G, we employ a data-dependent method suggested by McCrary (2008). The data are generated

from normal distribution N (12, 3) (following McCrary, 2008) and Student’s t distribution 12+ 3√
5
t (5).

Both distributions have the same mean and variance. The sample size is n = 1000 and the suspected

discontinuity point is c = 13. Since the above densities are continuous, the true value is θ0 = 0. The

biases, variances and mean square errors (MSEs) of the above estimators are reported in Tables 1 and

2.

Among four estimators, θ̂ performs best in terms of MSEs. Its MSE is slightly smaller than that of

its competitor, θ̂G, when a small bandwidth is used, but is significantly smaller when the bandwidth is

relatively large. The dominance of θ̂ mainly comes from its superior bias performance on boundaries,

while its variance is comparable with that of θ̂G. The local constant estimators θ̃G and θ̃ generally have

smaller variances than θ̂G and θ̂, but have much larger biases and thus larger MSEs.9 All four estimators

are generally biased downwards.10 On the other hand, a preliminary simulation indicates that these

estimators are generally biased upwards if the discontinuity point suspected is on the left side of the

peak, e.g. c = 11. Typical bias-variance trade-offs for the bandwidth selection is also observed: the

biases are larger and the variances are smaller when the bandwidth increases. Compared to the case of

the normal distribution, the four estimators have significantly larger biases and slightly larger variances

in the case of the t-distribution. Again, θ̂ appears to have smaller MSEs than other estimators.

Next we look at the tests for (dis)continuity in the density function. We consider a general set-

up of mixture of normal distributions. Suppose that the random variable X is drawn from truncated

N
(
μ, σ2

)
on (−∞, c) with probability γ, and from truncated N

(
μ, σ2

)
on (c,+∞) with probability

1 − γ. Note that X is N
(
μ, σ2

)
distributed when γ = Φ(c), where Φ is the cumulative distribution

function of N
(
μ, σ2

)
. If γ �= Φ(c), the density function of X is discontinuous at c, e.g., if γ < Φ (c),

8The Monte Carlo average of hdd is around 1.7. Thus, the cases of h = 1 and 1.5−1hdd can be regarded as undersmoothed

bandwidths.
9These results can be explained by the asymptotic theory. Under the same assumptions in Theorem 2.1, we can derive√
nh

(
θ̃ − θ −BC

)
d→ N (0, VC), where BC = 2h (f ′

rKr11 − f ′
lKl11) and VC = 4 (fr + fl)Kr02. For the triangle kernel,

BC = h
3
(f ′

r + f ′
l ) and VC = 4

3
(fr + fl). On the other hand, from Theorem 2.1, the asymptotic bias and variance of θ̂ are

BL = h2

20
(f ′′

l − f ′′
r ) and VL = 24

5
(fr + fl). The bias of θ̃ tends to be larger than that of θ̂ because (i) BC and BL are of

order h and h2, respectively, and (ii) when the density function is continuously second-order differentiable, BL vanishes

but BC does not in general. Also, we can see that the asymptotic variance of θ̃ is smaller than that of θ̂ (note that

VC/VL = 5/18). Similar comments apply to the comparison of θ̃G and θ̂G.
10From the previous footnote, the asymptotic bias of θ̃ is written as BC ≈ −0.043h for the case of N (12, 3), and

BC ≈ −0.083h for the case of t (5). Similar results apply to θ̃G. Since BL = 0 in both simulation designs, we need to

analyze higher-order bias terms to characterize the downward biases in θ̂ and θ̂G.
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the density of X has an upward jump at c. As above, we set μ = 12, σ2 = 3, and c = 13. For sample

size n = 1000, 2000, 5000, we generate random samples of X when d = 0, 0.02, 0.04, 0.06, 0.08, 0.1, where

d = Φ(c) − γ measures the size of discontinuity. When d = 0, the rejection rate (over replications)

becomes the finite-sample size of the test.

We consider the Wald statistic WG using θ̂G and empirical likelihood statistics �G and �. All these

statistics have the χ2 (1) null limiting distribution. The bin size b and the bandwidth h are selected

data-dependently following McCrary (2008).

The simulation results are summarized in Table 3. It shows that all three tests have finite-sample sizes

that are reasonably close to the nominal ones (5% or 10% under consideration), with mild over-rejection

observed for the WG and � tests and sometime mild under-rejection for the �G test. Finite-sample

quantiles of the three test statistics are also reported. Comparing with the theoretical quantiles of

χ2 (1) distribution, we can see that the distributions of the empirical likelihood statistics �G and � are

better approximated by their limit distribution than that of the Wald statistic WG is. The p-value plots

and p-value discrepancy plots (Davidson and MacKinnon, 1998) for the three tests when n = 2000 are

displayed in Figure 1. Table 3 also shows that all three tests have monotonic power, and appear to

be consistent with power approaching one as sample size increases. The test based on � has uniformly

significantly higher power than the other two tests. The �G test is generally more powerful than WG

especially for small deviations from the null hypothesis.11

To summarize, we recommend to use the local likelihood method for point estimation and form tests

or confidence sets via empirical likelihood. They suffer from relatively less boundary biases and the

associated tests are more powerful than other existent procedures. For the binning estimator, the em-

pirical likelihood test appears to be more conservative (i.e. being very careful to report a discontinuity)

than the Wald test while not sacrificing power. These points are reinforced in the empirical example

analyzed below.

5 Empirical illustration

Class size is one of the main determinants of the economic cost of education and its effects on children’s

test scores and on adult earnings have attracted substantial interest. In a recent study, Angrist and

Lavy (1999) approached the problem for Israeli public schools and exploited the fact that, the so-called

Maimonides’ rule, which stipulates that a class with more than 40 pupils should be split into two, is

used to determine the division of enrollment cohorts into classes. This rule introduces a nonlinear and

non-monotonic relationship between class size and grade enrollment; there is significant drop of class

size at the values of enrollments that are just above multiples of 40, e.g., 41-45, 81-85, etc. Angrist and

Lavy (1999) used this rule as an exogenous source of variation in class size to identify the effects of class
11Note that the power comparison reported here is most favorable for the WG test as it over-rejects most under the null

hypothesis.
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size on the scholastic achievement of Israeli pupils.

An important identifying assumption of Angrist and Lavy (1999) is no manipulation of class size by

parents, which is the testing focus of this section. Precisely, there could be two kinds of manipulation.

The first one is that parents may selectively exploit the Maimonides’ rule by registering their children in

the schools with enrollments just above multiples of 40 so that their children are placed in classes with

smaller sizes. Following McCrary’s (2008) arguments, this would lead to an increase in the density of

enrollment counts around the point that is just above a multiple of 40. Angrist and Lavy (1999) argued

that this kind of manipulation is unlikely to happen for two reasons. First, Israeli pupils are required

to attend school in their local registration area. Also, principals are required to grant enrollment to

students within their district and are not permitted to register students from outside their district.

Second, even in exceptional cases that parents intentionally move to another school district hoping to

get a better draw in the enrollment lottery (e.g. 41-45 instead of 38), “there is no way to know (exactly)

whether a predicted enrollment of 41 will not decline to 38 by the time school starts, obviating the need

for two small classes” (Angrist and Lavy, 1999).

The second kind of manipulation of class size is that parents may extract their kids from the public

school system when they find the enrollments of the schools where their kids are registered are just

below multiples of 40. This would lead to a decrease of the enrollment density on the left side of the

multiples of 40. However, as argued by Angrist and Lavy, unlike in the United States private elementary

schooling is rare in Israel.

To assess the validity of the assumption of no manipulation of class size we test continuity of the

density function of enrollment counts. We consider fifth graders. In the end, our data contain 2029

schools (Angrist and Lavy, 1999). The histogram is displayed in Figure 2. It shows a sharp increase of

densities at the enrollment of 40 but such increase is not clearly observed for other multiples of 40. This

observation is reinforced in graphical analysis displayed in Figures 3 and 4, which show the estimated

enrollment density function using the data on the either side of 40 and 120 respectively.

We perform the binning and local likelihood estimation (θ̂G and θ̂) and the associated tests (WG,

�G, and �) of the discontinuities in enrollment densities that are suspected at the multiples of 40 over a

range of smoothing bandwidths. The results are summarized in Table 4.

The local likelihood method finds upward jumps of the enrollment density at c =40, 80, and 120

and a downward jump at c = 160. The associated empirical likelihood tests show that the discontinuity

at an enrollment of 40 is very significant with test statistics all valued larger than 20 for different

bandwidths. The evidence of discontinuity at 80 is relatively weak and significance depends on the

bandwidth used, while no evidence of discontinuity is found at 120 and 160. The progressively weaker

evidence of discontinuity coincides with the extent of decrement of class sizes at different multiples of

40. For example, according to Maimonides’ rule, the class size drops faster at the enrollment of 40 than

it does at 80. It in turns drops faster at 80 than it does at 120 and so on. Thus parents are more likely

to selectively manipulate class size as just above 40 because they could place their children in schools

14



with smaller class sizes if the manipulation is successful, than they do as just above 80, 120, or 160.

The binning method generally produces smaller estimates of the discontinuities than the local like-

lihood method. It estimates fl larger and estimates fr smaller, compared with the corresponding local

likelihood results.12 The binning estimates find a positive jump of the enrollment density only at c = 40

and negative jumps at c = 80, 120, 160. McCrary’s (2008) Wald test shows somewhat strong significance

of discontinuity at 40 but the significance disappears at even 10% level when a small bandwidth h = 15

is used. While no significance is found at c = 80, significance with at least 5% level is present at c = 120

and 160. Note that it does not support the existence of manipulation at enrollment of 120 and 160

since the point estimates of discontinuities are negative at these two points. The empirical likelihood

tests based on the binning estimators are more conservative than the Wald tests and they do not find

any significant evidence of manipulation even at the enrollment of 40.13 Table 5 gives the empirical

likelihood confidence sets of the discontinuity at 40 for both binning and local likelihood estimators. It

is noteworthy that McCrary’s (2008) Wald test cannot generate such interval estimates.

The analysis above provides a nonparametric data-based re-examination of the identifying assump-

tion in the regression discontinuity design used by Angrist and Lavy (1999). It is achieved via testing

density continuity of the running variable. Our statistical results show that validation of the no ma-

nipulation assumption hinges on the inference methods used and also the amount of smoothing the

practitioners decide on. Caution should be used when manipulation is detected, since it casts doubt

on nearly randomized assignment of treatment in the neighborhood of the cutoff point and thus makes

interpretation of the regression discontinuity application questionable.

6 Conclusion

This paper is concerned with estimation and inference of (dis)continuities of density functions, which

often play fundamental roles in empirical economic analysis. Several issues with existing inference

methods are addressed and competitive alternatives are suggested. In particular, we consider both the

binning and local likelihood estimators of the discontinuities. A novel framework for inference based

on the idea of empirical likelihood is introduced. We study the first- and second-order asymptotic

properties of the proposed test statistics. The benefits of the proposed methods are illustrated by a

simulation study and an empirical application involving the popular regression discontinuity design. It is

interesting to conduct higher-order analysis for the power properties of the empirical likelihood statistics

particularly to understand the desirable power properties of the local likelihood method reported in our

simulation study.

12Since both the binning and local likelihood estimators have the same dominant terms for the asymptotic biases, we

need to investigate the higher-order bias terms of these estimators to explain those finite sample phenomena.
13Although the test �G is significant at c = 120 at the 5% level when the bandwidth h = 15 or 20 is used, the point

estimate of θ is negative so the hypothesis of manipulation is not supported.
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A Mathematical Appendix

Hereafter “w.p.a.1” means “with probability approaching one”. Define f = f (c), γ = (al, bl, br)
′, Γ =

Al × Bl × Br,

γ0 = (α0, βl0, βr0)
′ =

(
log fl, lim

x↑c
d log f (x)

dx
, lim
x↓c

d log f (x)

dx

)′
,

γ̂ = argmin
γ∈Γ

� (al, log (θ0 + eal) , bl, br) ,

gi (γ) = gi (al, log (θ0 + eal) , bl, br) , Ai =

(
(1− Ii) , (1− Ii)

(
Xi − c

h

)
, Ii, Ii

(
Xi − c

h

))′
,

Klj1j2 =

ˆ
−k≤u<0

uj1Kj2 (u) du, Krj1j2 =

ˆ
0<u≤k

uj1Kj2 (u) du,

V =

[
Vl 0

0 Vr

]
, Vl = f

[
Kl02 Kl12

Kl12 Kl22

]
, Vr = f

[
Kr02 Kr12

Kr12 Kr22

]
,

G = f

⎡⎢⎢⎢⎢⎢⎣
Kl01 Kl11 0

Kl11 Kl21 0

Kr01 0 Kr11

Kr11 0 Kr21

⎤⎥⎥⎥⎥⎥⎦ , P̂ (γ, λ) =
1

nh

n∑
i=1

log
(
1 + λ′gi (γ)

)
. (12)

A.1 Proof of Theorem 3.1

Since the proof is similar, we only show the second statement, � (θ0) = minγ∈Γ � (al, log (θ0 + eal) , bl, br)
d→

χ2 (1). The proof of the first part is available from the authors upon request.

First, we show the consistency of γ̂ to γ0. By the change of variables and one-sided Taylor expansions,∣∣∣∣1hE
[
AiK

(
Xi − c

h

)]∣∣∣∣ = O (1) ,

∣∣∣∣1hE
[
AiA

′
iK

2

(
Xi − c

h

)]∣∣∣∣ = O (1) .

Thus, the Chebyshev inequality implies

sup
γ∈Γ

∣∣∣∣∣ 1nh
n∑

i=1

gi (γ)− 1

h
E [gi (γ)]

∣∣∣∣∣ =
∣∣∣∣∣ 1nh

n∑
i=1

AiK

(
Xi − c

h

)
− 1

h
E

[
AiK

(
Xi − c

h

)]∣∣∣∣∣ = Op

(
(nh)−1/2

)
.

(13)

By the triangle inequality, (13), Lemma 4, and h−1 (nh)−1/2 → 0 (by Assumption 4),∣∣∣∣ 1h2E [gi (γ̂)]

∣∣∣∣ ≤ 1

h

∣∣∣∣∣1hE [gi (γ̂)]− 1

nh

n∑
i=1

gi (γ̂)

∣∣∣∣∣+ 1

h

∣∣∣∣∣ 1nh
n∑

i=1

gi (γ̂)

∣∣∣∣∣ p→ 0.

Also, by the change of variables,

1

h2
E [gi (γ)] =

(
1

h

ˆ
u<0

(1, u)K (u) {f (c+ uh)− exp (al + bluh)} du,

1

h

ˆ
u≥0

(1, u)K (u) {f (c+ uh)− exp (log (θ0 + eal) + bruh)} du
)′

,
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and thus γ0 uniquely solves 0 = limn→∞ 1
h2E [gi (γ)] with respect to γ (which can be seen by a second-

order expansion of log f (c+ uh) around u = 0). Therefore, the convergence 1
h2E [gi (γ̂)]

p→ 0 implies

the consistency γ̂
p→ γ0.

Second, we derive an asymptotic expansion for the empirical likelihood function � (γ̂). From Lemma

3, the Lagrange multiplier λ̂ (γ̂) satisfies the first-order condition

0 =
1

nh

n∑
i=1

gi (γ̂)

1 + λ̂ (γ̂)′ gi (γ̂)
=

1

nh

n∑
i=1

gi (γ̂)− V̂1λ̂ (γ̂) , (14)

w.p.a.1, where V̂1 =
1
nh

∑n
i=1

gi(γ̂)gi(γ̂)
′

(1+λ̃′gi(γ̂))
2 with λ̃ on the line joining λ̂ (γ̂) and 0, and the second equality

follows from an expansion around λ̂ (γ̂) = 0. From Lemma 1 and 2 and the consistency of γ̂, we have

V̂1
p→ V . Since V is invertible (Assumption 2), V̂1 is invertible w.p.a.1. Thus, solving (14) for λ̂ (γ̂),

λ̂ (γ̂) = V̂ −1
1

1

nh

n∑
i=1

gi (γ̂) ,

w.p.a.1. From this and the second-order expansion of 2
∑n

i=1 log
(
1 + λ̂ (γ̂)′ gi (γ̂)

)
yields

� (γ̂) =
1√
nh

n∑
i=1

gi (γ̂)
′
[
2V̂ −1

1 − V̂ −1
1 V̂2V̂

−1
1

] 1√
nh

n∑
i=1

gi (γ̂) , (15)

where V̂2 =
1
nh

∑n
i=1

gi(γ̂)gi(γ̂)
′

(1+λ̄′gi(γ̂))
2 with λ̄ on the line joining λ̂ (γ̂) and 0.

Third, we derive the asymptotic distribution of 1√
nh

∑n
i=1 gi (γ̂). Since the derivative of the first-

order condition (14) with respect to λ̂ (γ̂) converges in probability to the positive definite matrix V , we

can apply the implicit function theorem, i.e., λ̂ (γ) is continuously differentiable with respect to γ in a

neighborhood of γ̂ w.p.a.1. The envelope theorem implies

0 =
1

nh

n∑
i=1

1

1 + λ̂ (γ̂)′ gi (γ̂)

(
∂gi (γ̂)

∂γ′

)′
λ̂ (γ̂) , (16)

w.p.a.1. On the other hand, an expansion of (14) around
(
γ̂, λ̂ (γ̂)

)
= (γ0, 0) yields

0 =
1

nh

n∑
i=1

gi (γ0) +

(
1

nh

n∑
i=1

1

1 + λ̃′gi (γ̃)
∂gi (γ̂)

∂γ′
H−1

)
H (γ̂ − γ0)− V̂3λ̂ (γ̂) , (17)

where H = diag (1, h, h),
(
γ̃, λ̃

)
is a point on the line joining

(
γ̂, λ̂ (γ̂)

)
and (γ0, 0), and V̂3 =

1
nh

∑n
i=1

gi(γ̃)gi(γ̃)
′

(1+λ̃′gi(γ̃))
2 is implicitly defined. Combining (16) multiplied H−1 from left and (17),

0 =

(
0

1
nh

∑n
i=1 gi (γ0)

)
+ M̂

(
H (γ̂ − γ0)

λ̂ (γ̂)

)
, where M̂ =

(
0 −Ĝ′

1

−Ĝ2 −V̂3

)
, (18)

where

Ĝ1 =
1

nh

n∑
i=1

1

1 + λ̂ (γ̂)′ gi (γ̂)
∂gi (γ̂)

∂γ′
H−1, , Ĝ2 = − 1

nh

n∑
i=1

1

1 + λ̃′gi (γ̃)
∂gi (γ̂)

∂γ′
H−1,

17



which satisfy Ĝ1, Ĝ2
p→ G by a similar argument to Lemma 1 and the consistency of γ̂. Also note that

V̂3
p→ V . Since G is full column rank and V is positive definite (Assumption 2), M̂ is invertible w.p.a.1.

By solving (18) for
√
nhH (γ̂ − γ0), we have

√
nhH (γ̂ − γ0) =

(
G′V −1G

)−1
G′V −1 1√

nh

n∑
i=1

gi (γ0) + op (1) .

From this and an expansion of 1√
nh

∑n
i=1 gi (γ̂) around γ̂ = γ0,

1√
nh

n∑
i=1

gi (γ̂) =
[
I −G

(
G′V −1G

)−1
G′V −1

] 1√
nh

n∑
i=1

gi (γ0) + op (1) . (19)

Combining (15), (19), 1√
nh

∑n
i=1 gi (γ0)

d→ N (0, V ) (Lemma 1), and 2V̂ −1
1 − V̂ −1

1 V̂2V̂
−1
1

p→ V −1 (by

Lemma 1 and 2 with the consistency of γ̂), we have

� (γ̂)
d→ φ′V 1/2

[
I −G

(
G′V −1G

)−1
G′V −1

]′
V −1

[
I −G

(
G′V −1G

)−1
G′V −1

]
V 1/2φ

= φ′
[
I −A

(
A′A

)−1
A′
]
φ = χ2 (1) ,

where φ ∼ N (0, I) and A = V −1/2G. Therefore, the conclusion is obtained.

A.2 Lemma for Theorem 3.1

Lemma. Under Assumptions 1-5,

1. 1
nh

∑n
i=1 gi (γ0) gi (γ0)

′ p→ V , 1√
nh

∑n
i=1 gi (γ0)

d→ N (0, V );

2. For each ζ ∈ (0,∞) and Λ̄n =
{
λ : |λ| ≤ n−ζ

}
, supγ∈Γ,λ∈Λ̄n,1≤i≤n |λ′gi (γ)| p→ 0 and for each

γ ∈ Γ, Λ̄n ⊆ Λn (γ) = Λn (al, log (θ0 + eal) , bl, br) w.p.a.1;

3. For any γ̄ satisfying γ̄ p→ γ0 and 1
nh

∑n
i=1 gi (γ̄) = Op

(
(nh)−1/2

)
, there exists λ̂ (γ̄) = argmaxλ∈Λn(γ̄) P̂ (γ̄, λ)

w.p.a.1.,
∣∣∣λ̂ (γ̄)

∣∣∣ = Op

(
(nh)−1/2

)
, and supλ∈Λn(γ̄) P̂ (γ̄, λ) = Op

(
(nh)−1

)
;

4. 1
nh

∑n
i=1 gi (γ̂) = Op

(
(nh)−1/2

)
.

Proof of 1. Proof of the first statement. Let V̂ =
[
V̂ab

]
= 1

nh

∑n
i=1 gi (γ0) gi (γ0)

′ for a, b =

1, . . . , 4. By the change of variables,ˆ
x<c

(
1,

x− c

h

)
K

(
x− c

h

)
exp (α0 + βl0 (x− c)) dx = h

ˆ
u<0

(1, u)K (u) exp (α0 + βl0uh) du = O (h) ,

ˆ
x≥c

(
1,

x− c

h

)
K

(
x− c

h

)
exp (α0 + βl0 (x− c)) dx = h

ˆ
u≥0

(1, u)K (u) exp (α0 + βl0uh) du = O (h) .

Thus, we have

V̂11 =
1

nh

n∑
i=1

(1− Ii)K
2

(
Xi − c

h

)
− 2

nh

n∑
i=1

(1− Ii)K

(
Xi − c

h

)
O (h) +O (h)

=
1

h
E

[
(1− Ii)K

2

(
Xi − c

h

)]
− 2

h
E

[
(1− Ii)K

(
Xi − c

h

)]
O (h) + op (1)

p→ fKl02,
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where the second equality follows from the weak law of large numbers and the convergence follows from

the change of variables and Taylor expansions. The similar argument yields

V̂22
p→ fKl22, V̂33

p→ fKr02, V̂44
p→ fKr22,

V̂12 = V̂21
p→ fKl12, V̂13 = V̂31

p→ 0, V̂14 = V̂41
p→ 0,

V̂23 = V̂32
p→ 0, V̂34 = V̂43

p→ fKr12.

The conclusion is obtained.

Proof of the second statement. Observe that

1√
nh

n∑
i=1

gi (γ0) =
1√
nh

n∑
i=1

{gi (γ0)− E [gi (γ0)]}+
√

n

h
E [gi (γ0)] . (20)

Let gi,1 (γ0) be the first element of gi (γ0). By the change of variables,√
n

h
E [gi,1 (γ0)] =

√
nh

ˆ
u<0

K (u) {f (c+ uh)− exp (α0 + βl0uh)} du

=
√
nhKl01 {f − exp (α0)}+

√
nh3Kl11

{
f ′
l − exp (α0)βl0

}
+O

(√
nh5

)
,

→ 0,

where the second equality follows from one-sided Taylor expansions and the convergence follows from

the definitions of α0 and βl0 and nh5 → 0 (Assumption 4). By applying the same argument, the second

term of (20) satisfies
∣∣√n

hE [gi (γ0)]
∣∣→ 0. For the first term of (20), the Lyapunov central limit theorem

implies 1√
nh

∑n
i=1 {gi (γ0)− E [gi (γ0)]} d→ N (0, V ), where the asymptotic variance is obtained from the

first statement of Lemma 1 and
∣∣√n

hE [gi (γ0)]
∣∣→ 0. Therefore, the conclusion is obtained.

Proof of 2. Pick any ζ ∈ (0,∞) and ζ̄ ∈ (0, ζ). Since E
[(
supγ∈Γ |gi (γ)|

)1/ζ̄]
<∞ (because K has

bounded support), the Markov inequality implies Pr
{
supγ∈Γ |gi (γ)| ≥ nζ̄

}
→ 0, i.e., supγ∈Γ |gi (γ)| =

Op

(
nζ̄
)
. Thus, supγ∈Γ,λ∈Λ̄n,1≤i≤n |λ′gi (γ)| ≤ Op

(
n−ζ+ζ̄

)
and the first statement is obtained. Also,

this implies that for each i = 1, . . . , n, γ ∈ Γ, and λ ∈ Λ̄n, λ′gi (γ) ∈ V, w.p.a.1. Thus, the second

statement follows.

Proof of 3. The basic steps are similar to Newey and Smith (2004, Lemma A2). Pick any ζ ∈
(0,∞) satisfying (nh)−1/2 nζ → 0. Since Λ̄n is compact and P̂ (γ̄, λ) is continuous in λ, there exists

λ̄ = argmaxλ∈Λ̄n
P̂ (γ̄, λ) w.p.a.1. Let ḡ = 1

nh

∑n
i=1 gi (γ̄). Observe that for some C > 0,

0 = P̂ (γ̄, 0) ≤ P̂
(
γ̄, λ̄

)
= λ̄′ḡ − 1

2
λ̄′

⎛⎜⎝ 1

nh

n∑
i=1

gi (γ̄) gi (γ̄)
′(

1 + λ̇′gi (γ̄)
)2
⎞⎟⎠ λ̄ ≤ ∣∣λ̄∣∣ |ḡ| − C

∣∣λ̄∣∣2 , (21)

w.p.a.1., where the first inequality follows from the definition of λ̄, the second equality follows from

a second-order expansion with λ̇ on the line joining λ̄ and 0, and the second inequality follows from
1
nh

∑n
i=1 gi (γ̄) gi (γ̄)

′ p→ V , positive definiteness of V , and Lemma 2. Since
∣∣λ̄∣∣ ≤ C |ḡ| and |ḡ| =
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Op

(
(nh)−1/2

)
by the assumption, we have

∣∣λ̄∣∣ = Op

(
(nh)−1/2

)
. Since ζ is chosen to satisfy (nh)−1/2 nζ →

0, we have λ̄ ∈ int
(
Λ̄n

)
, i.e., λ̄ is an interior solution. Thus, from concavity of P̂ (γ̄, λ) in λ, convexity

of Λn (γ̄), and Λ̄n ⊆ Λn (γ̄) (by Lemma 2), λ̄ = λ̂ (γ̄) = argmaxλ∈Λn(γ̄) P̂ (γ̄, λ) w.p.a.1., i.e., the first

statement is obtained. Since
∣∣λ̄∣∣ = Op

(
(nh)−1/2

)
, the second statement is also obtained. The third

statement is obtained from (21) with λ̄ = λ̂ (γ̄).

Proof of 4. The basic steps are similar to Newey and Smith (2004, Lemma A3). Pick any ζ ∈ (0,∞)

satisfying (nh)−1/2 nζ → 0. Let ĝ = 1
nh

∑n
i=1 gi (γ̂) and λ̃ = n−ζ ĝ/ |ĝ| for ζ. Observe that for some

C > 0,

P̂
(
γ̂, λ̃

)
= λ̃′ĝ − 1

2
λ̃′

⎛⎜⎝ 1

nh

n∑
i=1

gi (γ̂) gi (γ̂)
′(

1 + λ̇′gi (γ̂)
)2
⎞⎟⎠ λ̃ ≥ n−ζ |ĝ| − Cn−2ζ , (22)

w.p.a.1., where the equality follows from a second-order expansion with λ̇ on the line joining λ̄ and 0,

and the inequality follows from 1
nh

∑n
i=1 gi (γ̂) gi (γ̂)

′ p→ V , boundedness of V , and Lemma 2. Also note

that

sup
λ∈Λn(γ̂)

P̂ (γ̂, λ) ≤ sup
λ∈Λn(γ0)

P̂ (γ0, λ) = Op

(
(nh)−1

)
, (23)

w.p.a.1., where the inequality follows from the definition of γ̂, and the equality follows from Lemma 3

with γ̄ = γ0 and 1
nh

∑n
i=1 gi (γ0) = Op

(
(nh)−1/2

)
(by Lemma 1). Since λ̃ ∈ Λ̄n, Lemma 2 guarantees

λ̃ ∈ Λn (γ̂), w.p.a.1., which implies P̂
(
γ̂, λ̃

)
≤ supλ∈Λn(γ̂) P̂ (γ̂, λ). Thus, combining (22) and (23),

n−ζ |ĝ| − Cn−2ζ ≤ Op

(
(nh)−1

)
, (24)

w.p.a.1. Since we chose ζ to satisfy (nh)−1/2 nζ → 0, we have |ĝ| = Op

(
n−ζ

)
. Now, pick any εn → 0

and define λ̌ = εnĝ. From |ĝ| = Op

(
n−ζ

)
, we have λ̌ = op

(
n−ζ

)
and λ̌ ∈ Λ̄n ⊆ Λn (γ̂). Thus, we apply

the same argument to (22)-(24) after replacing λ̃ with λ̌. Then we obtain

εn |ĝ|2 − Cε2n |ĝ|2 ≤ P̂
(
γ̂, λ̌

) ≤ sup
λ∈Λn(γ̂)

P̂ (γ̂, λ) = Op

(
(nh)−1

)
,

which implies εn |ĝ|2 = Op

(
(nh)−1

)
. Since this results holds for any εn → 0, we obtain the conclusion.

A.3 Proof of Theorem 3.2

We introduce some notation. Let us denote the moment functions evaluated at θ = θ0 as gi (γ) =

gi (al, log (θ0 + eal) , bl, br), where γ = (al, bl, br)
′. Let γ0 =

(
log fl, limx↑c

d log f(x)
dx , limx↓c

d log f(x)
dx

)′
,

Ω = 1
hE

[
gi (γ0) gi (γ0)

′], and T be a 4 × 4 orthogonal matrix satisfying TΩ−1/2 1
hE

[
∂gi(γ0)
∂γ′

]
H−1U =

(Λ, 03×1)
′, where H = diag (1, h, h), U is a 3×3 orthogonal matrix and Λ is a 3×3 nonsingular diagonal

matrix. We orthogonalize the moment functions (evaluated at θ0) as wi (γ) = TΩ−1/2gi (γ) so that
1
hE

[
wi (γ0)wi (γ0)

′] = I. The (profile) empirical likelihood ratio in (11) can be rewritten as

� (θ0) = min
γ∈Al×Bl×Br

2
n∑

i=1

log
(
1 + λ̃ (γ)′wi (γ)

)
,
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where λ̃ (γ) solves
∑n

i=1
wi(γ)

1+λ′wi(γ)
= 0 with respect to λ for given values of γ. Let

γ̃ = argminγ∈Al×Bl×Br 2
∑n

i=1 log
(
1 + λ̃ (γ)′wi (γ)

)
and λ̃ = λ̃ (γ̃). The first-order conditions for

λ̃ and γ̃ are written as
(

1
nh

∑n
i=1

wi(γ̃)
′

1+λ̃′wi(γ̃)
, H−1 1

nh

∑n
i=1

λ̃′∂wi(γ̃)/∂γ
′

1+λ̃′wi(γ̃)

)′
= 0. The fourth-order Tay-

lor expansion of this condition around
(
λ̃, γ̃

)
= (04×1, γ0) and inversions yield expansion formulae

for λ̃ and H (γ̃ − γ0). By inserting those formulae to the fourth-order Taylor expansion of � (θ0) =

2
∑n

i=1 log
(
1 + λ̃′wi (γ̃)

)
around λ̃′wi (γ̃) = 0, we can obtain an expansion formula for � (θ0). Then

based on this expansion formula, further lengthy calculations yield the the signed root expansion for-

mula of � (θ0), which is defined by the following notation. Let UΛ−1 =
(
ωkl

)
3×3

, aj = j-th element of

a vector a,

αj1...jk = E

[
1

h
wj1
i (γ0) · · ·wjk

i (γ0)

]
, Aj1...jk =

⎧⎨⎩
1
nh

∑n
i=1w

jk
i (γ0) for k = 1

1
nh

∑n
i=1w

j1
i (γ0) · · ·wjk

i (γ0)− αj1...jk for k ≥ 2
,

γj1,m1;j2,m2 =
1

hd
E

[
∂wj1

i (γ0)

∂γm1

∂wj2
i (γ0)

∂γm2

]
, Cj1,m1;j2,m2 =

1

nhd

n∑
i=1

∂wj1
i (γ0)

∂γm1

∂wj2
i (γ0)

∂γm2

− γj1,m1;j2,m2 ,

γj,m1m2 =
1

hd
E

[
∂2wj

i (γ0)

∂γm1∂γm2

]
, Cj,m1m2 =

1

nhd

n∑
i=1

∂2wj
i (γ0)

∂γm1∂γm2

− γj,m1m2 ,

where

d =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if m1,m2 = 1

2 if m1 = 1, m2 = 2, 3, or m1 = 2, 3, m2 = 1

3 if m1,m2 = 2, 3

Hereafter, the ranges of the superscripts are fixed as k, l,m, n, o, p, q, r ∈ {1, 2, 3}. Also, by the conven-

tion, repeated superscripts are summed over (e.g.,ωklC4,kAl =
∑3

k=1

∑3
l=1 ω

klC4,kAl). Based on the

above notation, the signed root expansion of � (θ0) is obtained as

(nh)−1 � (θ0) = (R1 +R2 +R3)
2 +Op

({
(nh)−1/2 + h2

}5
)
,

where

R1 = A4,

R2 = −1

2
A4A44 +

1

3
α444A4A4 − ωklC4,kAl +

1

2
ωkmωlnγ4,klAmAn + ωlmγ4;4,lA4Am,
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R3 = ωklωmnCn,kC4,mAl +
1

2
ωklC4,kA44Al − 1

2
ωklωmlC4,kC4,mA4 +

3

8
A44A44A4 + ωklC4,kAl4A4

+

{
ωklγ4;4,kαl44 − 1

2ω
klωmlγ4;4,kγ4;4,m

+4
9α

444α444 − 1
4α

4444

}
A4A4A4

+ωmp

⎧⎪⎪⎨⎪⎪⎩
ωkl

(
γ4;l,m + γl;4,m

)
γ4;4,k + 3ωklγ4,kmαl44

+ωloγ4;4,l
(
γ4;o,m + γo;4,m − 3ωnoγ4,nm

)
+α444

(
2
3γ

4;4,m + γ4;4,m
)− γ4;4;4,m

⎫⎪⎪⎬⎪⎪⎭ApA4A4

+ωmpωnq

⎧⎪⎪⎨⎪⎪⎩
−1

2ω
klωolγ4,kmγ4,on + ωklγ4,km

(
γl,n;4 + γl;4,n

)
+1

2ω
klγl,mnγ4;4,k + 1

3γ
4,mnα444 − 1

2γ
4;4,mn − 1

2γ
4,m;4,n

+1
2γ

4;4,m
(
γ4;4,n + γ4;4,n

)
+ 1

2γ
4;4,mγ4;4,n

⎫⎪⎪⎬⎪⎪⎭ApAqA4

+
1

2
ωmpωnqωor

{
ωklω4,klωl,mn + γ4,mnγ4;4,o − 1

3
γ4;m,no

}
ApAqAr

−1

2
ωknωloωpmγm,klC4,pAnAo − 1

4
ωknωloγ4,klA44AnAo + ωkmωnmωloγ4,klC4,nAoA4

−ωkmωloγ4,klAm4AoA4 − ωkpωlnωmoγ4,klCp,nAnAo +
1

2
ωknωloC4,klAnAo +

1

3
A444A4A4

+ωlmωnmγ4;4,lC4,nA4A4 − ωlmγ4;4,lAm4A4A4 − ωlnωmoγ4;4,lCn,mAoA4

−ωlnωmk
(
γk;4,l + γ4;k,l

)
C4,mAnA4 − ωlnωmoγ4;4,lC4,mAnAo −

(
1

2
γ4;4,l + γ4;4,l

)
ωlnA44AnA4

+ωlmC4;4,lAmA4 − ωmkαk44C4,mA4A4 − 2

3
ωlmα444C4,lAmA4 − 5

6
α444A44A4A4.

Based on this formula, we compute the cumulants of R = R1 + R2 + R3. Let κj be the j-th cumulant

of R. In Appendix A.4, we derive

κ1 = α4 − (nh)−1

{
1

6
α444 − ωklγl;4,k +

1

2
ωkmωlmγ4,kl

}
+O

(
(nh)−2 + (nh)−1 h2 + h4

)
,

κ2 = (nh)−1 + (nh)−1

{
1

3
α4α444 + 2α4ωklγl;4,k − α4ωkmωlmγ4,kl

}
+ (nh)−2Δ+O

(
(nh)−3 + (nh)−2 h2

)
,

κ3 = O
(
(nh)−3 + (nh)−2 h2

)
,

κ4 = O
(
(nh)−4 + (nh)−3 h2

)
,

where Δ is defined in (27).

Based on these cumulants, we can apply a conventional argument to derive the Edgeworth expansion

and Bartlett correction for the empirical likelihood statistic � (θ0) (see, Chen and Cui, 2006, and Chen

and Qin, 2000). Thus, the conclusions are obtained with the Bartlet factor

Bc = (nh)
(
α4
)2

+ (nh)−1

{
Δ+

(
1

6
α444

)2

+
(
ωklγl;4,k

)2
+

(
1

2
ωkmωlmγ4,kl

)2
}
. (25)
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A.4 Computation of Cumulants

A.4.1 1st Cumulant

For R1 = A4, we have

E [R1] = E

[
1

nh

n∑
i=1

w4
i (γ0)

]
= α4.

For R2 = −1
2A

4A44 + 1
3α

444A4A4 − ωklC4,kAl + 1
2ω

kmωlnγ4,klAmAn + ωlmγ4;4,lA4Am, the first term

satisfies

E

[
−1

2
A4A44

]
= −1

2
E

[(
1

nh

n∑
i=1

w4
i (γ0)

)(
1

nh

n∑
i=1

(
w4
i (γ0)

)2 − 1

)]
= −1

2
(nh)−1 α444+O

(
(nh)−1 h3

)
,

the second term satisfies

E

[
1

3
α444

(
A4
)2]

=
1

3
α444E

[(
1

nh

n∑
i=1

w4
i (γ0)

)(
1

nh

n∑
i=1

w4
i (γ0)

)]
=

1

3
(nh)−1 α444 +O

(
h4
)
,

the third term satisfies

E
[
−ωklC4,kAl

]
= −ωklE

[(
1

nh

n∑
i=1

∂w4
i (γ0)

∂γk
− γ4,k

)(
1

nh

n∑
i=1

wl
i (γ0)

)]
= − (nh)−1 ωklγl;4,k+O

(
(nh)−1 h3

)
,

the fourth term satisfies

E

[
1

2
ωkmωlnγ4,klAmAn

]
=

1

2
ωkmωlmγ4,klE

[(
1

nh

n∑
i=1

wm
i (γ0)

)(
1

nh

n∑
i=1

wn
i (γ0)

)]

= (nh)−1 1

2
ωkmωlmγ4,kl +O

(
h4
)
,

and the fifth term satisfies

E
[
ωlmγ4;4,lA4Am

]
= ωlmγ4;4,lE

[(
1

nh

n∑
i=1

w4
i (γ0)

)(
1

nh

n∑
i=1

wm
i (γ0)

)]
= O

(
h4
)
.

Combining these results,

E [R2] = −1

6
(nh)−1 α444 − (nh)−1 ωklγl;4,k + (nh)−1 1

2
ωkmωlmγ4,kl +O

(
(nh)−1 h3 + h4

)
.

Also, similar but more lengthy calculation yields

E [R3] = O
(
(nh)−2 + (nh)−1 h2 + h6

)
.

Therefore, the 1st cumulant κ1 = E [R1] + E [R2] + E [R3] is written as

κ1 = α4 + (nh)−1

{
−1

6
α444 − ωklγl;4,k +

1

2
ωkmωlmγ4,kl

}
+O

(
(nh)−2 + (nh)−1 h2 + h4

)
.
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A.4.2 2nd Cumulant

Observe that

κ2 = E
[
R2
]− (E [R])2

=
{
E
[
R2

1

]− (E [R1])
2
}
+ E

[
R2

2

]
+ 2 {E [R2R1]− E [R1]E [R2]}+ 2E [R3R1]− (E [R2])

2

+O
(
(nh)−3 + (nh)−2 h2

)
. (26)

The first term of (26) satisfies

E
[
R2

1

]− (E [R1])
2 = (nh)−1 +O

(
(nh)−1h5

)
.

The second term of (26) satisfies

(nh)2E
[
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2

]
=

1

4
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4
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3
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(
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.

The third term of (26) is
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.

The fourth term of (26) is
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= ωklωmn
(
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(
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)
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(
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.
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Combining these results,

κ2 = (nh)−1+(nh)−1

{
1

3
α4α444 + 2α4ωklγl;4,k − α4ωkmωlmγ4,kl

}
+(nh)−2Δ+O

(
(nh)−3 + (nh)−2 h2

)
,

where

Δ =
1

2
α4444 − 13

36
α444α444 + 2ωklγl;4;4,k − ωkmωlnγ4,klαmn4 − ωlmγ4;4,lαm44

+ωkmωlm

(
−γ4,k;4,l + 1

6
γ4,klα444

)
− 1

3
ωklγ4,k;lα444 + 2ωklωmnωpnγ4,p;lγ4,km

−1

2
ωkmωlnωpmωqnγ4,klγ4,pq + ωklωmlγ4;4,kγ4,m;4. (27)

A.4.3 3rd Cumulant

Using the results to derive the first and second cumulants, the third cumulant is written as

κ3 = E
[
R3
]− 3E [R]E

[
R2
]
+ 2 (E [R])3

= E
[
(R1 +R2)

3
]
− 3E [R1 +R2]E

[
(R1 +R2)

2
]
+O

(
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)
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[
R3

1
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1
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[
R2R

2
1

]
+O

(
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.(28)

The first term of (28) satisfies{
E
[
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1

]− 3E [R1]E
[
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1

]}
= (nh)−2 α444 +O

(
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)
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.

The third term of (28) satisfies
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2
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.

Combining these results, we obtain κ3 = O
(
(nh)−3 + (nh)−2 h2

)
.

A.4.4 4th Cumulant

In this subsection, let t1 = α4444, t2 = 3, t3 = 4
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α444

)2, and t4 = 3
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)2. Using the results to obtain

the first, second, and third cumulants,

κ4 = E
[
R4
]− 3

(
E
[
R2
])2 − 4E [R]E

[
R3
]
+ 12 (E [R])2E

[
R2
]− 6 (E [R])4

=
{
E
[
R4

1

]− 3
(
E
[
R2

1

])2 − 4E [R1]E
[
R3

1

]
+ 12 (E [R1])

2E
[
R2

1

]− 6 (E [R1])
4
}

+
{
4E

[
R2R

3
1

]− 12E [R2R1]E
[
R2

1

]− 12E
[
R2R

2
1

]
E [R1]

}
+
{
6E

[
R2

2R
2
1

]− E
[
R2

2

]
E
[
R2

1

]}
+
{
4E

[
R3R

3
1

]− 12E [R3R1]E
[
R2

1

]}− {4E [R2]E
[
R3

1

]− 12E [R2]E
[
R2R

2
1

]
+ 12 (E [R2])

2E
[
R2

1

]}
+O

(
(nh)−4 + (nh)−3 h2

)
. (29)

25



The first term of (29) satisfies
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The second term of (29) satisfies
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The fourth term of (29) satisfies
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Using the results to derive the first, second, and third cumulants, the fifth term of (29) is of order

O
(
(nh)−4 + (nh)−3 h2

)
. Combining these results, we obtain κ4 = O

(
(nh)−4 + (nh)−3 h2

)
.
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Table 1: Finite-sample biases, standard deviations (Std.’s) and root mean square errors (RMSEs) of the

binning and the local likelihood estimators of θ. The data are generated from a N (12, 3) density and

the sample size n = 1000. The discontinuity point is c = 13.
Fixed bandwidth Data dependent bandwidth

Est. h = 1 h = 2 h = 3 h = 4 α = 1.5−1 α = 1 α = 1.5 α = 1.52

Bias θ̃G −.0403 −.0710 −.0886 −.0949 −.0462 −.0644 −.0825 −.0936
θ̂G −.0020 −.0148 −.0360 −.0624 −.0039 −.0108 −.0266 −.0577
θ̃ −.0408 −.0725 −.0907 −.0974 −.0478 −.0662 −.0841 −.0959
θ̂ .0016 −.0032 −.0094 −.0221 −.0024 −.0036 −.0057 −.0194

Std. θ̃G .0236 .0157 .0127 .0104 .0227 .0188 .0149 .0107

θ̂G .0468 .0312 .0254 .0217 .0409 .0345 .0296 .0262

θ̃ .0232 .0155 .0124 .0103 .0228 .0185 .0151 .0105

θ̂ .0452 .0326 .0292 .0283 .0425 .0354 .0316 .0291

RMSE θ̃G .0467 .0728 .0895 .0955 .0514 .0671 .0838 .0942

θ̂G .0468 .0345 .0441 .0661 .0411 .0362 .0398 .0633

θ̃ .0469 .0742 .0915 .0979 .0530 .0688 .0854 .0965

θ̂ .0453 .0328 .0307 .0359 .0426 .0356 .0321 .0350

h

Mean 1.7257

Std. 0.1975
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Table 2: Finite-sample biases, standard deviations (Std.’s) and root mean square errors (RMSEs) of

the binning and the local likelihood estimators of θ. The data are generated from a Student’s t density

(i.e., 12 + t (5) /
√

5/9) and the sample size n = 1000. The discontinuity point is c = 13.
Fixed bandwidth Data dependent bandwidth

Est. h = 1 h = 2 h = 3 h = 4 α = 1.5−1 α = 1 α = 1.5 α = 1.52

Bias θ̃G −.0759 −.1208 −.1355 −.1315 −.0887 −.1163 −.1319 −.1276
θ̂G −.0083 −.0394 −.0876 −.1254 −.0120 −.0369 −.0790 −.1274
θ̃ −.0762 −.1223 −.1378 −.1343 −.0899 −.1180 −.1343 −.1305
θ̂ .0036 −.0183 −.0492 −.0788 −.0060 −.0184 −.0442 −.0832

Std. θ̃G .0235 .0166 .0130 .0100 .0267 .0209 .0138 .0120

θ̂G .0455 .0333 .0262 .0219 .0444 .0399 .0381 .0305

θ̃ .0232 .0163 .0130 .0096 .0254 .0199 .0136 .0119

θ̂ .0456 .0358 .0320 .0296 .0421 .0374 .0377 .0380

RMSE θ̃G .0795 .1220 .1361 .1319 .0926 .1182 .1326 .1282

θ̂G .0462 .0516 .0915 .1273 .0460 .0543 .0877 .1310

θ̃ .0796 .1234 .1385 .1346 .0934 .1197 .1350 .1311

θ̂ .0457 .0402 .0587 .0842 .0425 .0417 .0581 .0914

h

Mean 1.9132

Std. 0.3560

30



Table 3: Finite-sample sizes, quantiles and powers of the WG (θ), �G (θ), and � (θ) tests of density

continuity, i.e., H0 : θ0 = 0 (nominal sizes: 5% and 10%). The powers are calculated when the data

are generated from a mixture of left and right truncated normal distributions at c with probability γ,

where γ = Φ(c)− d with d ∈ {0.02, 0.04, 0.06, 0.08, 0.10}
Power

(vs. value of d)

n Test Size
Finite Sample
Quantile

Asymptotic
Quantile 0.02 0.04 0.06 0.08 0.10

1000 WG, 5% .073 4.51 3.84 .058 .104 .202 .368 .545

�G, 5% .067 4.19 .059 .139 .244 .367 .491

�, 5% .067 4.29 .082 .190 .366 .578 .754

WG, 10% .138 3.27 2.71 .107 .176 .303 .489 .651

�G, 10% .137 3.19 .131 .211 .353 .505 .648

�, 10% .110 2.89 .152 .273 .474 .681 .841

2000 WG, 5% .074 4.53 3.84 .071 .191 .394 .642 .856

�G, 5% .047 3.79 .072 .191 .418 .636 .800

�, 5% .050 3.82 .112 .306 .604 .845 .973

WG, 10% .134 3.18 2.71 .126 .261 .530 .754 .924

�G, 10% .125 2.98 .144 .280 .541 .753 .909

�, 10% .104 2.75 .184 .418 .715 .898 .983

5000 WG, 5% .065 4.31 3.84 .108 .427 .796 .960 .995

�G, 5% .038 3.47 .112 .423 .769 .932 .987

�, 5% .062 4.54 .193 .593 .900 .990 1.00

WG, 10% .127 3.07 2.71 .185 .548 .864 .983 .998

�G, 10% .099 2.64 .185 .545 .861 .977 .995

�, 10% .112 2.85 .282 .690 .952 .996 1.00
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Table 4: Estimation and testing of the discontinuity of the density of enrollments at multiples of 40

(according to Maimonides’s rule, Angrist and Lavy, 1999) for fifth graders. The binning and local

likelihood methods are used with various smoothing bandwidths.
Binning method Local likelihood method

c h f̂l f̂r θ̂G Wald WG EL �G f̂l f̂r θ̂ EL �

40 15 .0056 .0080 .0024 2.666 0.444 .0039 .0114 .0075 20.67

20 .0052 .0089 .0037 7.888 1.331 .0040 .0114 .0074 26.94

25 .0050 .0094 .0044 13.57 2.321 .0040 .0114 .0074 33.28

30 .0054 .0099 .0045 16.23 2.856 .0045 .0116 .0072 36.36

80 15 .0115 .0095 −.0019 1.141 1.014 .0081 .0140 .0059 8.301

20 .0112 .0089 −.0024 2.389 1.964 .0085 .0116 .0030 3.366

25 .0108 .0087 −.0021 2.395 1.534 .0087 .0107 .0021 2.092

30 .0105 .0089 −.0016 1.698 1.001 .0088 .0107 .0020 2.350

120 15 .0092 .0050 −.0043 7.920 3.906 .0064 .0078 .0014 0.577

20 .0088 .0048 −.0039 9.355 3.977 .0066 .0070 .0003 0.045

25 .0075 .0047 −.0029 7.005 2.403 .0060 .0063 .0003 0.069

30 .0066 .0045 −.0021 4.988 1.263 .0055 .0060 .0005 0.178

160 15 .0027 .0010 −.0017 4.670 3.253 .0017 .0013 −.0003 0.142

20 .0025 .0010 −.0015 5.176 2.397 .0018 .0012 −.0006 0.730

25 .0023 .0010 −.0012 4.550 1.710 .0017 .0013 −.0005 0.586

30 .0021 .0011 −.0011 4.316 1.456 .0017 .0013 −.0004 0.473
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Table 5: Empirical likelihood confidence sets (EL CSs) of the discontinuity of the density of enrollments

at c = 40 for fifth graders. The binning and local likelihood methods are used with various smoothing

bandwidths.
Binning method Local likelihood method

h θ̂G EL CS Length θ̂ EL CS Length

15 .0024 [−.0104, .0152] .0256 .0075 [.0046, .0106] .0060

20 .0037 [−.0036, .0120] .0156 .0074 [.0049, .0101] .0052

25 .0044 [−.0014, .0108] .0122 .0074 [.0051, .0097] .0046

30 .0045 [−.0007, .0106] .0113 .0072 [.0051, .0096] .0045
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Figure 1: (a) P-value plots and (b) P-value discrepancy plots (Davidson and MacKinnon, 1998) for WG,

�G and � tests when n = 2000.

34



0 40 80 120 160 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Enrollments

F
re

qu
en

ci
es

Figure 2: Histogram of the enrollments of 2029 classes in Grade 5 (Data: Angrist and Lavy, 1999).
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Figure 3: The estimated density function of school enrollments for the fifth graders using the data on

left and right sides of c = 40. Binned data are also displayed.
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Figure 4: The estimated density function of school enrollments for the fifth graders using the data on

left and right sides of c = 120. Binned data are also displayed.
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