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LOCAL M-ESTIMATION WITH DISCONTINUOUS CRITERION FOR

DEPENDENT AND LIMITED OBSERVATIONS

MYUNG HWAN SEO AND TAISUKE OTSU

Abstract. This paper examines asymptotic properties of local M-estimators under three sets of

high-level conditions. These conditions are sufficiently general to cover the minimum volume pre-

dictive region, conditional maximum score estimator for a panel data discrete choice model, and

many other widely used estimators in statistics and econometrics. Specifically, they allow for dis-

continuous criterion functions of weakly dependent observations, which may be localized by kernel

smoothing and contain nuisance parameters whose dimension may grow to infinity. Furthermore,

the localization can occur around parameter values rather than around a fixed point and the obser-

vation may take limited values, which leads to set estimators. Our theory produces three different

nonparametric cube root rates and enables valid inference for the local M-estimators, building on

novel maximal inequalities for weakly dependent data. Our results include the standard cube root

asymptotics as a special case. To illustrate the usefulness of our results, we verify our conditions for

various examples such as the Hough transform estimator with diminishing bandwidth, maximum

score-type set estimator, and many others.

1. Introduction

There is a class of estimation problems in statistics where a point (or set-valued) estimator is

obtained by maximizing a discontinuous and possibly localized criterion function. As a prototype,

consider the estimation of a simplified version of the minimum volume predictive region for y given

x = c (Polonik and Yao, 2000). Let I{·} be the indicator function, K(·) be a kernel function, and

hn be a bandwidth. For a significance level α, the estimator [θ̂± ν̂] is obtained by the M-estimation:

max
θ∈Θ

n∑
t=1

I{|yt − θ| ≤ ν̂}K
(
xt − c
hn

)
, (1)

where Θ is some parameter space and

ν̂ = inf

ν ∈ R : max
θ∈Θ

∑n
t=1 I{|yt − θ| ≤ ν}K

(
xt−c
hn

)
∑n

t=1K
(
xt−c
hn

) ≥ α

 .

Key words and phrases. Cube root asymptotics, Maximal inequality, Mixing process, Partial identification, Parameter-
dependent localization.
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This estimation exhibits several distinguishing features such as discontinuity of the criterion func-

tion, localization by kernel smoothing, and serial dependence in time series data, which have pre-

vented a full-blown asymptotic analysis of the M-estimator θ̂. Only the consistency is reported in

the literature.

This type of M-estimation has numerous applications. Since Chernoff’s (1964) study on estima-

tion of the mode, many papers raised such estimation problems such as the shorth (Andrews et

al., 1972), least median of squares (Rousseeuw, 1984), nonparametric monotone density estimation

(Prakasa Rao, 1969), and maximum score estimation (Manski, 1975). These classical examples are

studied in a seminal work by Kim and Pollard (1990), which explained elegantly how this type of

estimation problems induces the so-called cube root asymptotics in a unified framework by means

of empirical process theory. See also van der Vaart and Wellner (1996) and Kosorok (2008) for

a general theory of M-estimation via empirical processes. However, these works do not cover the

estimation problem in (1) due to their focus on cross-sectional data among others. It should be

emphasized that this is not a pathological example. We provide several other relevant examples

in Section 3 and the supplementary material, which include well-known Honoré and Kyriazidou’s

(2000) estimator for a dynamic panel discrete choice model. Furthermore, we propose a new binary

choice model with random coefficients and analyze a localized maximum score estimator in Section

3.2.

This paper covers a broader class of M-estimators than the above examples suggest. The baseline

scenario above (called local M-estimation due to the localization at x = c) is generalized into two

directions. First, we accommodate not only variables taking limited values (e.g., interval-valued

data) which typically lead to estimation of a set rather than a point, but also nuisance parameters

with growing dimension. Set estimation problems due to limited data are also known as partial

identification problems in econometrics literature (e.g., Manski and Tamer, 2002). It is also novel

to accommodate high-dimensional nuisance parameters in the M-estimation with discontinuous

criterion functions. Second, we allow for the localization to be dependent on the parameter θ instead

of a prespecified value c. For instance, the criterion function may take the form of
∑n

t=1 I{|yt−θ| ≤
hn} with hn → 0. Relevant examples include mode estimation (Chernoff, 1964, and Lee, 1989) and

the Hough transform estimator in image analysis (Goldenshluger and Zeevi, 2004). Henceforth,

we call this case parameter-dependent local M-estimation. Parameter-dependence brings some new

feature in our asymptotic analysis but in a different way from a classical example of parameter-

dependency on support such as the maximum likelihood estimator for Uniform[0, θ].

The main contribution of this paper is to develop a general asymptotic theory for such M-

estimation problems. Our theoretical results cover all the examples above and can be used to

establish limit laws for point estimators and convergence rates for set estimators. To this end,

we develop certain maximal inequalities, which enable us to obtain nonparametric cube root rates

of (nhn)1/3, {nhn/ log(nhn)}1/3, and (nh2
n)1/3, for the local M-estimation, limited variable case,

and parameter-dependent case, respectively. These inequalities are extended to establish stochastic
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asymptotic equicontinuity of normalized processes of the criterion functions so that an argmax

theorem delivers limit laws of the M-estimators. It is worth noting that all the conditions are

characterized through moment conditions that can be easily verified, as illustrated in the examples.

Thus, our results can be applied without prior knowledge on empirical process theory. It is often not

trivial to verify the entropy conditions such as uniform manageability in Kim and Pollard (1990).

Particularly for dependent data, the covering or bracketing numbers often need to be calculated

using a norm that hinges on the mixing coefficients and distribution of the data (e.g., the L2,β-norm

in Doukhan, Massart and Rio, 1995).

Another contribution is that we allow for weakly dependent data, which are associated with expo-

nential mixing decay rates of the absolutely regular processes. In some applications, the cube root

asymptotics has been extended to time series data such as Anevski and Hössjer (2006) for mono-

tone density estimation, Zinde-Walsh (2002) for least median of squares, de Jong and Woutersen

(2011) for maximum score, and Koo and Seo (2015) for the break estimation under misspecification.

However, it is not clear whether they are able to handle a general class of estimation problems in

this paper.

The paper is organized as follows. Section 2 develops an asymptotic theory for the local M-

estimation, and Section 3 provides some examples. In Section 4, we generalize the asymptotic

theory to the cases of limited variables (Section 4.1) and parameter-dependent localization (Section

4.2). Section 5 concludes. All proofs, detailed illustrations of our asymptotic theory for the examples

in Section 3, and some additional examples are contained in the supplementary material.

2. Local M-estimation with discontinuous criterion function

Let us consider the M-estimator θ̂ that maximizes

Pnfn,θ =
1

n

n∑
t=1

fn,θ(zt),

where {fn,θ : θ ∈ Θ} is a sequence of criterion functions indexed by the parameters θ ∈ Θ ⊆ Rd

and {zt} is a strictly stationary sequence of random variables with marginal P . We introduce a set

of conditions for fn,θ, which induces a possibly localized counterpart of Kim and Pollard’s (1990)

cube root asymptotics. Their cube root asymptotics can be viewed as a special case of ours, where

fn,θ = fθ for all n. Let Pf =
∫
fdP for a function f , | · | be the Euclidean norm of a vector, and

‖·‖2 be the L2(P )-norm of a random variable. The class of criterion functions of our interest is

characterized as follows.

Assumption M. For a sequence {hn} of positive numbers with nhn →∞, {fn,θ : θ ∈ Θ} satisfies

the following conditions.

(i): {hnfn,θ : θ ∈ Θ} is a class of uniformly bounded functions. limn→∞ Pfn,θ is uniquely

maximized at θ0. Pfn,θ is twice continuously differentiable at θ0 for all n large enough and
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admits the expansion

P (fn,θ − fn,θ0) =
1

2
(θ − θ0)′V (θ − θ0) + o(|θ − θ0|2) + o((nhn)−2/3), (2)

for a negative definite matrix V.

(ii): There exist positive constants C and C ′ such that

|θ1 − θ2| ≤ Ch1/2
n ‖fn,θ1 − fn,θ2‖2 ,

for all n large enough and all θ1, θ2 ∈ {θ ∈ Θ : |θ − θ0| ≤ C ′}.
(iii): There exists a positive constant C ′′ such that

P sup
θ∈Θ:|θ−θ′|<ε

hn|fn,θ − fn,θ′ |2 ≤ C ′′ε, (3)

for all n large enough, ε > 0 small enough, and θ′ in a neighborhood of θ0.

Although we are primarily interested in the case of hn → 0, we do not exclude the case of hn = 1.

When hn → 0, {hn} is usually a sequence of bandwidths for localization. Although we cover Kim

and Pollard’s setup as a special case, our conditions appear somewhat different from theirs. In fact,

our conditions consist of directly verifiable moment conditions without resorting to the notion of

empirical process theory such as uniform manageability.

Assumption M (i) contains boundedness, point identification of θ0, and a quadratic approxima-

tion of Pfn,θ at θ = θ0. Boundedness of {hnfn,θ} is a major requirement, but is satisfied for all

examples in this paper and Kim and Pollard (1990). In Section 4, we relax the assumption of

point identification of θ0. When the criterion function involves kernel smoothing for localization, it

typically takes the form of fn,θ(x, y) = 1
hn
K
(
x−c
hn

)
m(x, y, θ) (see (1) and examples in Section 3).

Despite of discontinuity of fn,θ, the population criterion function Pfn,θ is smooth and approx-

imated by a quadratic function as in (2). This distinguishes our estimation problem from that

of a change-point in the regression, which also involves a discontinuous criterion function but the

change-point estimator is super-consistent (e.g., Chan, 1993) unless the estimating equation is mis-

specified as in the split point estimator for decision trees (Bühlmann and Yu, 2002, and Banerjee

and McKeague, 2007).

Assumption M (ii) is used to relate the L2(P )-norm ‖fn,θ − fn,θ0‖2 for the criterion functions to

the Euclidean norm |θ−θ0| for the parameters. This condition is implicit in Kim and Pollard (1990,

Condition (v)) under independent observations and is often verified in the course of checking the

expansion in (2).

Assumption M (iii), an envelope condition for the class Fn = {fn,θ − fn,θ′ : |θ − θ′| ≤ ε}, plays

a key role for the cube root asymptotics. It should be noted that for the familiar squared root

asymptotics, the upper bound in (3) is of order ε2 instead of ε. It is often the case that verifying

the envelope condition for arbitrary θ′ in a neighborhood of θ0 is not more demanding than that

for θ0.
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In particular, Assumption M (iii) is used to guarantee an integrability condition on the metric

entropy with bracketing for Fn in the L2,β-norm so that the maximal inequality in Doukhan, Massart

and Rio (1995, Theorem 3) can be applied to establish Lemma M below. On the other hand, Kim

and Pollard (1990) used the concept of uniform manageability (Pollard, 1989) to control the size

of Fn, which is defined by the ε-capacity or metric entropy by covering numbers. Generally the

bracketing and covering numbers approaches are not directly comparable (see Section 2.5 of van der

Vaart and Wellner, 1996, for example). It would be interesting to explore how the symmetrization

argument combined with certain manageability concept can be applied in our setup.

We now study the limiting behavior of the M-estimator, which is precisely defined as a random

variable θ̂ satisfying

Pnfn,θ̂ ≥ sup
θ∈Θ

Pnfn,θ − op((nhn)−2/3). (4)

The first step is to establish weak consistency θ̂
p→ θ0, which is rather standard and usually shown

by establishing the uniform convergence supθ∈Θ |Pnfn,θ − Pfn,θ|
p→ 0. Thus, this section simply

assumes the consistency of θ̂. See Section 3 and the supplementary material for some illustrations.

The next step is to derive the convergence rate of θ̂. A key ingredient for this step is to obtain

the modulus of continuity of the centered empirical process {Gnh
1/2
n (fn,θ−fn,θ0) : θ ∈ Θ} by certain

maximum inequality, where Gnf =
√
n(Pnf − Pf) for a function f . If fn,θ does not vary with n

and {zt} is independent, several maximal inequalities are available in the literature (e.g., page 199

of Kim and Pollard, 1990). If fn,θ varies with n and {zt} is dependent, to the best of our knowledge,

there is no maximal inequality which can be applied to the class of functions in Assumption M. Our

first task is to establish such a maximal inequality.

To proceed, we now characterize the dependence structure of the data. Among several notions

of dependence, this paper focuses on an absolutely regular process. See Doukhan, Massart and Rio

(1995) for a discussion on empirical process theory of absolutely regular processes. Let F0
−∞ and

F∞m be σ-fields of {. . . , zt−1, z0} and {zm, zm+1, . . .}, respectively. Define the β-mixing coefficient as

βm = 1
2 sup

∑
(i,j)∈I×J |P{Ai∩Bj}−P{Ai}P{Bj}|, where the supremum is taken over all the finite

partitions {Ai}i∈I and {Bj}j∈J respectively F0
−∞ and F∞m measurable. Throughout the paper, we

maintain the following assumption on the data {zt}.

Assumption D. {zt} is a strictly stationary and absolutely regular process with β-mixing coeffi-

cients {βm} such that βm = O(ρm) for some 0 < ρ < 1.

This assumption obviously covers the case of independent observations and says the mixing

coefficient βm should decay at an exponential rate.1 For example, various Markov, GARCH, and

stochastic volatility models satisfy this assumption (Carrasco and Chen, 2002).

The maximal inequality for the empirical process Gnh
1/2
n (fn,θ − fn,θ0) is presented as follows.

1Indeed, polynomial decays of βm are often associated with strong dependence and long memory type behaviors in
sample statistics. See Chen, Hansen and Carrasco (2010) and references therein. In this case, asymptotic analysis for
the M-estimator will become very different.
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Lemma M. Under Assumptions M and D, there exist positive constants C and C ′ such that

P sup
θ∈Θ:|θ−θ0|<δ

|Gnh
1/2
n (fn,θ − fn,θ0)| ≤ Cδ1/2,

for all n large enough and δ ∈ [(nhn)−1/2, C ′].

This lemma implies the following result.

Lemma 1. Under Assumptions M and D, for each ε > 0, there exist random variables {Rn} of

order Op(1) and a positive constant C such that

|Pn(fn,θ − fn,θ0)− P (fn,θ − fn,θ0)| ≤ ε|θ − θ0|2 + (nhn)−2/3R2
n,

for all θ ∈ Θ satisfying (nhn)−1/3 ≤ |θ − θ0| ≤ C.

We now derive the convergence rate of θ̂. Suppose |θ̂ − θ0| ≥ (nhn)−1/3. Then by (4), Lemma 1,

and Assumption M (i), we can take a positive constant c such that

op((nhn)−2/3) ≤ Pn(fn,θ̂ − fn,θ0) ≤ P (fn,θ̂ − fn,θ0) + ε|θ̂ − θ0|2 + (nhn)−2/3R2
n

≤ (−c+ ε)|θ̂ − θ0|2 + o(|θ̂ − θ0|2) +Op((nhn)−2/3),

for each ε > 0. Taking ε small enough to satisfy c − ε > 0 yields the convergence rate θ̂ − θ0 =

Op((nhn)−1/3).

Given the convergence rate, the final step is to establish the limiting distribution of θ̂. To this

end, we apply a continuous mapping theorem of an argmax element (e.g., Theorem 2.7 of Kim and

Pollard, 1990). A key ingredient for this argument is to show weak convergence of the standardized

empirical process

Zn(s) = n1/6h2/3
n Gn(fn,θ0+s(nhn)−1/3 − fn,θ0),

for |s| ≤ K with any K > 0. Weak convergence of Zn may be characterized by its finite dimensional

convergence and tightness (or stochastic asymptotic equicontinuity). If fn,θ does not vary with n

and {zt} is independent as in Kim and Pollard (1990), a classical central limit theorem combined

with the Cramér-Wold device implies finite dimensional convergence, and a maximal inequality on

a suitably regularized class of functions guarantees tightness of the process of criterion functions.

We adapt this approach to our local M-estimation problem with dependent observations satisfying

Assumption D.

Consider a function β(·) such that β(t) = β[t] if t ≥ 1 and β(t) = 1 otherwise and denote

its càdlàg inverse by β−1(·). Let Qg(u) be the inverse function of the tail probability function

x 7→ P{|g(zt)| > x}. For finite dimensional convergence, we employ Rio’s (1997, Corollary 1)

central limit theorem for α-mixing arrays to our setup.

Lemma C. Suppose Assumption D holds true, Pgn = 0, and

sup
n∈N

∫ 1

0
β−1(u)Qgn(u)2du <∞. (5)
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Then Σ = limn→∞Var(Gngn) exists and Gngn
d→ N(0,Σ).

The finite dimensional convergence of Zn follows from Lemma C by setting gn as any finite

dimensional projection of the process {gn,s−Pgn,s : s} with gn,s = n1/6h
2/3
n (fn,θ0+s(nhn)−1/3−fn,θ0).

The requirement in (5) is the Lindeberg-type condition in Rio (1997, Corollary 1). This condition

excludes polynomial decay of βm. Noted that for criterion functions satisfying Assumption M, the

(2 + δ)-th moments P |gn,s|2+δ for δ > 0 typically diverge because gn,s usually involves indicator

functions. To verify (5), the following lemma is often useful.

Lemma 2. Suppose Assumptions M and D hold true, and there is a positive constant c such that

P{|gn,s| ≥ c} ≤ c(nh−2
n )−1/3, (6)

for all n large enough and s. Then (5) holds true.

In our examples, gn,s is zero or close to zero with high probability so that (6) is easily satisfied.

See Section 3.1 for an illustration.

We provide another maximal inequality that is useful to establish tightness of the process Zn.

Lemma M’. Suppose Assumption D holds true. Consider a sequence of classes of functions Gn =

{gn,s : |s| ≤ K} for some K > 0 with envelope functions Gn. Suppose there is a positive constant

C such that

P sup
s:|s−s′|<ε

|gn,s − gn,s′ |2 ≤ Cε, (7)

for all n large enough, |s′| ≤ K, and ε > 0 small enough. Also, assume that there exist 0 ≤ κ < 1/2

and C ′ > 0 such that Gn ≤ C ′nκ and ‖Gn‖2 ≤ C ′ for all n large enough. Then for any σ > 0, there

exist δ > 0 and a positive integer Nδ such that

P sup
(s,s′):|s−s′|<δ

|Gn(gn,s − gn,s′)| ≤ σ,

for all n ≥ Nδ.

Tightness of Zn is implied from Lemma M’ by setting

gn,s = n1/6h2/3
n (fn,θ0+s(nhn)−1/3 − fn,θ0).

Note that (7) is satisfied by Assumption M (iii).2 Compared to Lemma M used to derive the

convergence rate of θ̂, Lemma M’ is applied only to establish tightness of the process Zn. Therefore,

we do not need an exact decay rate on the right hand side of the maximal inequality.3

Finite dimensional convergence and tightness of Zn imply its weak convergence. Then the con-

tinuous mapping theorem for an argmax element (Theorem 2.7 of Kim and Pollard, 1990) yields

the limiting distribution of θ̂. The main theorem of this section is presented as follows.

2The upper bound in (7) can be relaxed to ε1/p for 1 ≤ p < ∞. However, it is typically satisfied with p = 1 for the
examples we consider.
3In particular, Zn itself does not satisfy Assumption M (ii).
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Theorem 1. Suppose that Assumptions M and D hold, θ̂ defined in (4) converges in probability to

θ0 ∈ intΘ, and (5) holds with gn,s − Pgn,s for each s. Then

(nhn)1/3(θ̂ − θ0)
d→ arg max

s∈Rd
Z(s), (8)

where Z(s) is a Gaussian process with continuous sample paths, expected value s′V s/2, and covari-

ance kernel H(s1, s2) = limn→∞
∑n

t=−n Cov(gn,s1(z0), gn,s2(zt)) <∞.

This theorem can be considered as an extension of the main theorem of Kim and Pollard (1990)

to the case where the criterion function fn,θ can vary with the sample size and the observations

{zt} can obey a dependent process. To the best of our knowledge, the (nonparametric) cube root

convergence rate (nhn)1/3 is new in the literature. It is interesting to note that similar to standard

nonparametric estimation, nhn still plays a role as the “effective sample size.”

2.1. Nuisance parameters. It is often the case that the criterion function contains some nuisance

parameters, which can be estimated with rates faster than (nhn)−1/3 such as ν̂ in (1). For the rest

of this section, let θ̂ and θ̃ satisfy

Pnfn,θ̂,ν̂ ≥ sup
θ∈Θ

Pnfn,θ,ν̂ + op((nhn)−2/3),

Pnfn,θ̃,ν0 ≥ sup
θ∈Θ

Pnfn,θ,ν0 + op((nhn)−2/3),

respectively, where ν0 is a vector of nuisance parameters and ν̂ is its estimator satisfying ν̂ − ν0 =

op((nhn)−1/3). Theorem 1 is extended as follows.

Theorem 2. Suppose Assumption D holds true. Let {fn,θ,ν0 : θ ∈ Θ} satisfy Assumption M and

{fn,θ,ν : θ ∈ Θ, ν ∈ Λ} satisfy Assumption M (iii). Suppose there exists some negative definite

matrix V1 such that

P (fn,θ,ν − fn,θ0,ν0) =
1

2
(θ − θ0)′V1(θ − θ0) + o(|θ − θ0|2) +O(|ν − ν0|2) + o((nhn)−2/3), (9)

for all θ and ν in neighborhoods of θ0 and ν0, respectively. Then θ̂ = θ̃+op((nhn)−1/3). Additionally,

if (5) holds with (gn,s−Pgn,s) for each s with gn,s being n1/6h
2/3
n (fn,θ0+s(nhn)−1/3,ν0

− fn,θ0,ν0), then

(nhn)1/3(θ̂ − θ0)
d→ arg max

s∈Rd
Z(s),

where Z(s) is a Gaussian process with continuous sample paths, expected value s′V1s/2 and covari-

ance kernel H(s1, s2) = limn→∞
∑n

t=−n Cov(gn,s1(z0), gn,s2(zt)) <∞.

A key step for the proof of this theorem is to confirm that the empirical process Gnfn,θ,ν0+c(nhn)−1/3

is well approximated by Gnfn,θ,ν0 over |θ − θ0| ≤ ε and |c| ≤ ε (see, (A.10) in the supplementary

material). This is shown by applying Lemma M’ with gn,s = n1/6h
2/3
n (fn,θ,c(nhn)−1/3 − fn,θ,ν0). The

condition (7) in Lemma M’ demands more precise control on the size of the envelope for the class
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of gn,s than the comparable condition in the Z-estimation with nuisance parameters (e.g., eq. (3)

of van der Vaart and Wellner, 2007).

2.2. Discussions.

2.2.1. Inference. Once we show that the M-estimator has a proper limiting distribution in Theorem

1 or 2, Politis, Romano and Wolf (1999, Theorem 3.3.1) justify the use of subsampling to construct

confidence intervals. Since Assumption D satisfies the requirement of their theorem, subsampling

inference based on s consecutive observations with s/n→∞ is asymptotically valid (in a pointwise

sense explained below). See Politis, Romano and Wolf (1999, Section 3.6) for a discussion on

data-dependent choices of s.

We note that the asymptotic validity of subsampling inference mentioned above is in a pointwise

sense rather than uniform. To be specific, suppose that {zt} is an independent and identically

distributed (iid) sample from the probability measure P that belongs to a class of probability

measures P. Also denote the true parameters by θ0(P ) to make explicit the dependence on P .

Based on Romano and Shaikh (2008), the confidence set Cn for θ0(P ) is called pointwise valid in

(1− α) level if

lim inf
n→∞

P{θ0(P ) ∈ Cn} ≥ 1− α,

for each P ∈ P, and is called uniformly valid in (1− α) level if

lim inf
n→∞

inf
P∈P

P{θ0(P ) ∈ Cn} ≥ 1− α.

Our Theorems 1 and 2 combined with Politis, Romano and Wolf (1999, Theorem 3.3.1) guarantee

the pointwise validity of the subsampling confidence set based on the quantiles of the subsample

statistic (shs)
1/3(θ̂s− θ̂), where s is the size of subsamples, and θ̂s and θ̂ are the M-estimators based

on the subsample and full sample, respectively. Also the pointwise valid confidence interval for each

element of θ0(P ) can be obtained in a similar manner.

To investigate whether we can construct a uniformly valid confidence set in our setup, we assume

that {zt} is iid and the distribution Jn(·, θ, P ) of Qn(θ) = (nhn)2/3{maxϑ∈Θ Pnfn,ϑ−Pnfn,θ} satisfies

lim sup
n→∞

sup
θ∈Θ

sup
P∈P:θ=θ0(P )

sup
x∈R
{Js(x, θ, P )− Jn(x, θ, P )} ≤ 0, (10)

Then, Romano and Shaikh (2008, Theorems 3.1 and 3.3) imply the uniform validity of the confidence

set

Cn = {θ ∈ Θ : Qn(θ) ≤ qs(θ, 1− α)},

over P, where qs(θ, 1 − α) is the (1 − α)-th quantile of the distribution of the subsample statistic

Qs(θ). By inspection of Romano and Shaikh (2008), we can see that (10) is satisfied if Qn(θ0(Pn))

converges in law to a unique continuous distribution for any sequence of Pn ∈ P yielding a row-wise

iid triangular array. Our lemmas to obtain Theorem 1 can be readily extended to the array setting

by restating Assumptions M and D and the additional conditions for Theorem 1 in the array setup.
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We note that the computation of Cn may require an extensive numerical search over θ ∈ Θ, where

the quantile qs(θ, 1− α) needs to be computed for each θ.

The above uniformity result relies upon the general results in Romano and Shaikh (2008, The-

orems 3.1 and 3.3), and there are at least three issues to be further considered. First, the iid

assumption for the sample does not allow serial dependence as in Assumption D. To accommodate

time series data, Romano and Shaikh (2008, Theorems 3.1) that provide high-level assumptions for

uniform validity should be modified. Second, it is not a trivial task to extend the results in Romano

and Shaikh (2008) to inference on subvectors (or functions) of θ except for a conservative projection

of Cn to lower dimension. Third, a key result in Romano and Shaikh (2008, Theorems 3.1) holds

for objects centered at the true parameter θ0(P ) instead of the estimator θ̂. Therefore, their result

does not apply to the subsample statistic (shs)
1/3(θ̂s − θ̂). All of these issues require full length

papers and are beyond the scope of this paper.

Another candidate to conduct inference based on the M-estimator is the bootstrap. However, even

for independent observations, it is known that the naive nonparametric bootstrap is typically invalid

under the cube root asymptotics (Abrevaya and Huang, 2005, and Sen, Banerjee and Woodroofe,

2010).

2.2.2. Generalization of Assumption D. All the results in this section build upon Assumption D

that requires {zt} to be strictly stationary and absolutely regular (or β-mixing) with exponential

decaying mixing coefficients. Assumption D is used for both the maximal inequality (Lemma M) and

central limit theorem (Lemma C), which are building blocks to derive the asymptotic distribution

of θ̂. It is of interest whether we can establish analogous results under more general setups, such

as α-mixing, by utilizing some recent developments in the empirical process theory for dependent

data. For instance, Merlevède, Peligrad and Rio (2009, 2011) obtained Bernstein type inequalities

for α-mixing processes. Baraud (2010) and Nickl and Söhl (2015, Section 3) explored the generic

chaining argument by Talagrand (2005) for Markov chains.

Since the central limit theorem in Rio (1997, Corollary 1) holds for α-mixing arrays, we can

modify Lemma C to accommodate α-mixing processes. Thus, we focus on extending Lemma M, the

maximal inequality. A crucial step for this extension is whether we can replace the key lemma in

Doukhan, Massart and Rio (1995, Lemma 3), which leads to the maximal inequality for β-mixing

(in eq. (6) of the supplementary material) through a chaining argument. Specifically, consider a

finite subclass F of bounded functions with cardinality p ≥ exp(1). By a decoupling technique for

β-mixing, Doukhan, Massart and Rio (1995, Lemma 3) showed that for positive constants c and c1,

there exists a universal positive constant C such that

P max
f∈F
|Gnf | ≤ C

(
c
√

log p+ c1q
log p√
n

+ c1βq
√
n

)
,

for all q = 1, . . . , n. Note that the above upper bound reduces to the first term Cc
√

log p for the

iid case. By properly choosing q, the first term still dominates in the β-mixing case even if log p

10



is close to n so that Lemma M can be established. In contrast, the maximal inequality implied

by Merlevède, Peligrad and Rio (2009, (2.1) in Theorem 1) for α-mixing would be written in the

form of C
(
c
√

log p+ c1 log n log logn log p√
n

)
. Therefore, as log p becomes close to n, the second term

will dominate. Since this order of cardinality p (i.e., log p close to n) is required in the proof of

Doukhan, Massart and Rio (1995, Theorem 2), the upper bound in Lemma M for α-mixing would

become larger.4

Another direction to extend our result is to accommodate Markov chains. To this end, the

chaining argument (see, Baraud, 2010, and Nickl and Söhl, 2015) based on the Bernstein type

inequalities for Markov chains (e.g., Adamczak, 2008, and Paulin, 2015) may yield an analog of

Lemma M. Although this is an intriguing question, existing time series examples on the cube root

asymptotics mostly focus on mixing data (e.g., Polonik and Yao, 2000, and de Jong and Woutersen,

2011) and also typically involve additional conditioning or exogenous variables. Thus, we leave this

extension for future work.

3. Examples

We provide several examples to demonstrate the usefulness of the asymptotic theory in the

last section. For the sake of space, we only sketch the arguments to verify the conditions to

apply the theorems in Section 2. Detailed verifications under primitive conditions are delegated to

the supplementary material. Also, the supplementary material contains two additional examples

(dynamic least median of squares and monotone density estimation) which are omitted for brevity.

3.1. Dynamic panel discrete choice. For a binary response yit and k-dimensional covariates xit,

consider a dynamic panel data model

P{yi0 = 1|xi, αi} = F0(xi, αi),

P{yit = 1|xi, αi, yi0, . . . , yit−1} = F (x′itβ0 + γ0yit−1 + αi),

for i = 1, . . . , n and t = 1, 2, 3, where αi is unobservable and both F0 and F are unknown. Honoré

and Kyriazidou (2000) proposed the conditional maximum score estimator for (β0, γ0)

(β̂, γ̂) = arg max
(β,γ)∈Θ

n∑
i=1

K

(
xi2 − xi3

bn

)
(yi2 − yi1)sgn{(xi2 − xi1)′β + (yi3 − yi0)γ},

where K is a kernel function and bn is a bandwidth. Kernel smoothing is introduced to deal with

the unknown link function F . Honoré and Kyriazidou (2000) obtained consistency of this estimator

but the convergence rate and limiting distribution are unknown. Since the criterion function varies

with the sample size through the bandwidth bn, the cube root asymptotic theory of Kim and Pollard

(1990) is not applicable here.

4Although full investigation is beyond the scope of this paper, we conjecture that it is also the case for the generic
chaining argument by Talagrand (2005). Indeed, Talagrand (2005, eq. (1.9) in p. 10) explains that the generic

chaining needs partitions of cardinality up to 22n .
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This open question can be addressed by Theorem 1. Let z = (z′1, z2, z
′
3)′ with z1 = x2 − x3,

z2 = y2 − y1, and z3 = ((x2 − x1)′, y3 − y0)′. The above estimator for θ0 = (β′0, γ0)′ can be written

as the M-estimator using the criterion function

fn,θ(z) = en(z)(I{z′3θ ≥ 0} − I{z′3θ0 ≥ 0}), (11)

where en(z) = b−kn K(b−1
n z1)z2. To apply Theorem 1, it is enough to show that fn,θ in (11) satisfies

Assumption M with hn = bkn and (6). Then the limiting distribution of Honoré and Kyriazidou’s

(2000) estimator is obtained as in (8).

Here we sketch the verification. See the supplementary material (Section B.1) for a detail and

primitive conditions. For Assumption M (i), {hnfn,θ} is bounded for the kernel K bounded, and

(2) is obtained by a Taylor expansion combined with the argument in Kim and Pollard (1990, pp.

214-215). For Assumption M (ii), take any θ1 and θ2 and note that

h1/2
n ‖fn,θ1 − fn,θ2‖2 =

(
P
{
hnE[en(z)2|z3]|I{z′3θ1 ≥ 0} − I{z′3θ2 ≥ 0}|

})1/2
≥

(
cP |I{z′3θ1 ≥ 0} − I{z′3θ2 ≥ 0}|

)1/2
≥ c1/2P{z′3θ1 ≥ 0 > z′3θ2 or z′3θ2 ≥ 0 > z′3θ1},

for some c > 0, where the first inequality follows from hnE[en(z)2|z3] > c (by a change of variables

and condition on the density z1|z2 6= 0, z3 bounded away from zero) and the second inequality

follows by Jensen’s inequality. The right hand side is probability for a pair of wedge shaped regions

with an angle of order |θ1− θ2|. Thus, Assumption M (ii) is satisfied if the density of z3 is bounded

away from zero in a neighborhood of 0. Assumption M (iii) can be verified in a similar way (by

considering the upper bound instead). The Markov inequality and boundedness of the density imply

(6).

3.2. Random coefficient binary choice. As a new statistical model which can be covered by our

asymptotic theory, let us consider the regression model with a random coefficient yt = x′tθ(wt) +ut.

Suppose we observe xt, wt, and only the sign of yt and wish to estimate θ0 = θ(c) at some given c.5

We propose a localized version of the maximum score estimator

θ̂ = arg max
θ∈S

n∑
t=1

K

(
wt − c
bn

)
[I{yt ≥ 0, x′tθ ≥ 0}+ I{yt < 0, x′tθ < 0}], (12)

where S is the surface of the unit sphere. Again, the cube root asymptotic theory of Kim and

Pollard (1990) is not applicable due to the bandwidth bn.

5Gautier and Kitamura (2013) studied identification and estimation of the random coefficient binary choice model,
where θt = θ(wt) is unobservable. Here we study the model where heterogeneity in the slope is caused by the
observables wt.
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Theorem 1 can be applied to obtain the limiting distribution of this estimator. Note that θ̂ in

(12) can be written as the M-estimator using the criterion function

fn,θ(x,w, u) =
1

hn
K

(
w − c
h

1/k
n

)
h(x, u)[I{x′θ ≥ 0} − I{x′θ0 ≥ 0}], (13)

for hn = bkn and h(x, u) = I{x′θ0 + u ≥ 0} − I{x′θ0 + u < 0}. Once we check Assumption M and

(6), Theorem 1 implies the limiting distribution.

The verification is sketched as follows. See the supplementary material (Section B.2) for a detail

and primitive conditions. Assumption M (i)-(ii) and (6) can be checked similarly as in Section 3.1.

Here we verify Assumption M (iii). By the change of variables and h(x, u)2 = 1, there exists a

positive constant C ′ such that

P sup
θ∈Θ:|θ−ϑ|<ε

hn|fn,θ − fn,ϑ|2

=

∫ ∫
K(s)2 sup

θ∈Θ:|θ−ϑ|<ε
|[I{x′θ ≥ 0} − I{x′ϑ ≥ 0}]|2p(x, c+ sbn)dxds

≤ C ′E

[
sup

θ∈Θ:|θ−ϑ|<ε
|[I{x′θ ≥ 0} − I{x′ϑ ≥ 0}]|2

∣∣∣∣∣w = c

]
,

for all ε > 0, ϑ in a neighborhood of θ0, and n large enough, where p is the joint density of (xt, wt).

Since the right hand side is the conditional probability for a pair of wedge shaped regions with an

angle of order ε, Assumption M (iii) is guaranteed by some boundedness condition on the conditional

density of xt given wt = c.

3.3. Minimum volume predictive region. As an illustration of Theorem 2, we now consider

the example in (1). Polonik and Yao’s (2000) minimum volume predictor for y at x = c in the class

I of intervals at level α is defined as

Î = arg min
S∈I

µ(S) s.t. P̂ (S) ≥ α,

where µ is the Lebesgue measure and P̂ (S) =
∑n

t=1 I{yt ∈ S}K
(
xt−c
hn

)
/
∑n

t=1K
(
xt−c
hn

)
is the

kernel estimator of P{yt ∈ S|xt = c}. Since Î is an interval, it can be written as Î = [θ̂ − ν̂, θ̂ + ν̂],

where

θ̂ = arg max
θ∈Θ

P̂ ([θ − ν̂, θ + ν̂]), ν̂ = inf

{
ν ∈ R : max

θ∈Θ
P̂ ([θ − ν, θ + ν]) ≥ α

}
. (14)

For notational convenience, assume θ0 = 0 and ν0 = 1. By applying Lemma M’, the convergence

rate of the nuisance parameter estimator is obtained as ν̂ − 1 = Op((nhn)−1/2 + h2
n) (see Section

B.3 in the supplementary material).

Note that θ̂ in (14) can be written as the M-estimator using the criterion function

fn,θ,ν̂(y, x) =
1

hn
K

(
x− c
hn

)
[I{y ∈ [θ − ν̂, θ + ν̂]} − I{y ∈ [−ν̂, ν̂]}].
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We apply Theorem 2 to obtain the convergence rate of θ̂. Details are provided in the supplementary

material (Section B.3). Assumptions M for fn,θ,1 and M (iii) for fn,θ,ν are verified similarly as in

Sections 3.1 and 3.2. To check (9), a Taylor expansion yields

P (fn,θ,ν − fn,0,1) = P (fn,θ,ν − fn,0,ν) + P (fn,0,ν − fn,0,1)

= −1

2
{−γ̇y|x(1|c) + γ̇y|x(−1|c)}γx(c)θ2 + {γ̇y|x(1|c) + γ̇y|x(−1|c)}γx(c)θν + o(θ2 + |ν − 1|2) +O(h2

n),

where γ and γ̇ mean the density and its derivative, respectively. Also, (9) holds with V1 =

{γ̇y|x(1|c)− γ̇y|x(−1|c)}γx(c).

Therefore, Theorem 2 implies θ̂− θ0 = Op((nhn)−1/3 +hn), which confirms positively the conjec-

ture of Polonik and Yao (2000, Remark 3b) on the exact convergence rate of Î.

3.4. Dynamic maximum score. To illustrate the derivation of the covariance kernel H in The-

orem 1 for dependent data, we consider the maximum score estimator (Manski, 1975) for the

regression model yt = x′tθ0 + ut, that is

θ̂ = arg max
θ∈S

n∑
t=1

[I{yt ≥ 0, x′tθ ≥ 0}+ I{yt < 0, x′tθ < 0}],

where S is the surface of the unit sphere. This estimator can be written as the M-estimator using

the criterion function

fθ(x, u) = h(x, u)[I{x′θ ≥ 0} − I{x′θ0 ≥ 0}],

where h(x, u) = I{x′θ0 + u ≥ 0} − I{x′θ0 + u < 0}. The conditions to apply Theorem 1 can be

verified similarly as in the above examples (see Section B.4 of the supplementary material). Here

we focus on the derivation of the covariance kernel for the limiting distribution under Assumption

D.

Let qn,t = fθ0+n−1/3s1
(xt, ut)−fθ0+n−1/3s2

(xt, ut). The covariance kernel is written as H(s1, s2) =
1
2{L(s1, 0) + L(0, s2)− L(s1, s2)}, where

L(s1, s2) = lim
n→∞

n4/3Var(Pnqn,t) = lim
n→∞

n1/3

{
Var(qn,t) +

∞∑
m=1

Cov(qn,t, qn,t+m)

}
.

The limit of n1/3Var(qn,t) is given in Kim and Pollard (1990, p. 215). For Cov(qn,t, qn,t+m), we note

that qn,t takes only three values, −1, 0, or 1. The definition of βm and Assumption D imply

|P{qn,t = j, qn,t+m = k} − P{qn,t = j}P{qn,t+m = k}| ≤ n−2/3βm,

for all n,m ≥ 1 and j, k = −1, 0, 1. Thus, {qn,t} is a β-mixing array with mixing coefficients

bounded by n−2/3βm. This in turn implies that {qn,t} is an α-mixing array with mixing coefficients

bounded by 2n−2/3βm. By applying the α-mixing inequality, the covariance is bounded as

Cov(qn,t, qn,t+m) ≤ Cn−2/3βm ‖qn,t‖2p ,
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for some C > 0 and p > 2. Note that

‖qn,t‖2p ≤ [P |I{x′(θ0 + s1n
−1/3) > 0} − I{x′(θ0 + s2n

−1/3) > 0}|]2/p = O(n−2/(3p)).

Combining these results, we get n1/3
∑∞

m=1 Cov(qn,t, qn,t+m)→ 0 as n→∞. Therefore, the covari-

ance kernel H is same as the independent case in Kim and Pollard (1990, p. 215).

3.5. Other examples. In the supplementary material, we present additional examples on the

dynamic least median of squares estimator (Section B.5) and monotone density estimator (Section

B.6).

4. Generalizations

In this section, we consider two generalizations of the asymptotic theory in Section 2. The first

concerns data taking limited values such as interval-valued regressors and the second is to allow for

the localization to depend on the parameter values.

4.1. Limited variables. We consider the case where some of the variables take limited values.

In particular, we relax the assumption of point identification of θ0 and study the case where the

limiting criterion function is maximized at any element of a set ΘI ⊂ Θ. The set ΘI is called the

identified set. In order to estimate ΘI , we consider a collection of approximate maximizers of the

sample criterion function

Θ̂ = {θ ∈ Θ : max
θ∈Θ

Pnfn,θ − Pnfn,θ ≤ ĉ(nhn)−1/2},

i.e., the level set based on Pnfn,θ from the maximum with a cutoff value ĉ(nhn)−1/2. This section

studies the convergence rate of Θ̂ to ΘI under the Hausdorff distance defined below. We assume

that ΘI is convex. Then the projection πθ = arg minθ′∈ΘI |θ′−θ| of θ ∈ Θ on ΘI is uniquely defined.

To deal with the partially identified case, we modify Assumption M as follows.

Assumption S. For a sequence {hn} of positive numbers satisfying nhn → ∞, {fn,θ : θ ∈ Θ}
satisfies the following conditions.

(i): {hnfn,θ : θ ∈ Θ} is a class of uniformly bounded functions. Also, limn→∞ Pfn,θ is max-

imized at any θ in a bounded convex set ΘI . There exist positive constants c and c′ such

that

P (fn,πθ − fn,θ) ≥ c|θ − πθ|
2 + o(|θ − πθ|2) + o((nhn)−2/3), (15)

for all n large enough and all θ ∈ {θ ∈ Θ : 0 < |θ − πθ| ≤ c′}.
(ii): There exist positive constants C and C ′ such that

|θ − πθ| ≤ Ch1/2
n ‖fn,θ − fn,πθ‖2 ,

for all n large enough and all θ ∈ {θ ∈ Θ : 0 < |θ − πθ| ≤ C ′}.
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(iii): There exists a positive constant C ′′ such that

P sup
θ∈Θ:0<|θ−πθ|<ε

hn|fn,θ − fn,πθ |
2 ≤ C ′′ε,

for all n large enough and all ε > 0 small enough.

We allow hn = 1 for the case without a bandwidth in the criterion function. Similar comments to

Assumption M apply. The main difference is that the conditions are imposed on the contrast fn,θ−
fn,πθ using the projection πθ. Assumption S (i) contains boundedness and expansion conditions. The

inequality in (15) can be checked by a one-sided Taylor expansion using the directional derivative.

Assumption S (ii) and (iii) play similar roles as Assumption M (ii) and (iii) and can be verified by

similar arguments to the point identified case.

We establish the following maximal inequality for the criterion functions satisfying Assumption

S. Let rn = nhn/ log(nhn).

Lemma MS. Under Assumptions D and S, there exist positive constants C and C ′ < 1 such that

P sup
θ∈Θ:0<|θ−πθ|<δ

|Gnh
1/2
n (fn,θ − fn,πθ)| ≤ C(δ log(1/δ))1/2,

for all n large enough and δ ∈ [r
−1/2
n , C ′].

Compared to Lemma M, the additional log term on the right hand side is due to the fact that the

supremum is taken over the δ-tube (or manifold) instead of the δ-ball, which increases the entropy.

This maximal inequality is applied to obtain the following analog of Lemma 1.

Lemma 3. Under Assumptions D and S, for each ε > 0, there exist random variables {Rn} of

order Op(1) and a positive constant C such that

|Pn(fθ − fπθ)− P (fθ − fπθ)| ≤ ε|θ − πθ|
2 + r−2/3

n R2
n,

for all θ ∈ {θ ∈ Θ : r
−1/3
n ≤ |θ − πθ| ≤ C}.

Let ρ(A,B) = supa∈A infb∈B |a − b| and H(A,B) = max{ρ(A,B), ρ(B,A)} be the Hausdorff

distance of sets A,B ⊂ Rd. Based on Lemmas MS and 3, the convergence rate of the set estimator

Θ̂ is obtained as follows.

Theorem 3. Suppose Assumption D holds true. Let {fn,θ : θ ∈ Θ} satisfy Assumption S and

{h1/2
n fn,θ : θ ∈ ΘI} be a P -Donsker class. Assume H(Θ̂,ΘI)

p→ 0 and ĉ = op((nhn)1/2). Then

ρ(Θ̂,ΘI) = Op(ĉ
1/2(nhn)−1/4 + r−1/3

n ).

Furthermore, if ĉ→∞, then P{ΘI ⊂ Θ̂} → 1 and

H(Θ̂,ΘI) = Op(ĉ
1/2(nhn)−1/4).

Note that ρ is asymmetric in its arguments. In contrast to the convergence rate of ρ(Θ̂,ΘI)

obtained in the first part of this theorem, the second part says P{ΘI ⊂ Θ̂} → 1 (i.e., ρ(ΘI , Θ̂) can
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converge to zero at an arbitrary rate) as far as ĉ → ∞. For example, we may set ĉ = log(nhn).

These results are combined to imply the convergence rate H(Θ̂,ΘI) = Op(ĉ
1/2(nhn)−1/4) under the

Hausdorff distance. The cube root term of order r
−1/3
n in the rate of ρ(Θ̂,ΘI) is dominated by the

term of order ĉ1/2(nhn)−1/4.

We next consider the case where the criterion function contains nuisance parameters. In par-

ticular, we allow that the dimension kn of the nuisance parameters ν can grow as the sample size

increases. For instance the nuisance parameters might be coefficients in sieve estimation. It is

important to allow the growing dimension of ν to cover Manski and Tamer’s (2002) set estima-

tor, where the criterion function contains some nonparametric estimate and its transform by the

indicator. The rest of this subsection considers the set estimator

Θ̂ = {θ ∈ Θ : max
θ∈Θ

Pnfn,θ,ν̂ − Pnfn,θ,ν̂ ≤ ĉ(nhn)−1/2},

with some preliminary estimator ν̂ and cutoff value ĉ.

To derive the convergence rate of Θ̂, we establish a maximal inequality over a sequence of sets of

functions that are indexed by parameters with increasing dimension. Let gn,s = h
1/2
n (fn,θ,ν−fn,θ,ν0)

with s = (θ′, ν ′)′ and consider Gn = {gn,s : |θ − πθ| ≤ K1, |ν − ν0| ≤ anK2} for some K1,K2 > 0

with the envelope function Gn = supGn |gn,s|. The maximal inequality in Lemma MS is modified as

follows.

Lemma MS’. Suppose Assumption D holds true. Suppose there exists a positive constant C such

that

P sup
s:θ∈Θ,|ν−ν0|≤ε

|gn,s|2 ≤ C
√
knε, (16)

sup
s:θ∈Θ,|ν−ν0|≤ε

|{|ν − ν0| − C ‖gn,s‖2} ≤ 0, (17)

for all n large enough and all ε small enough. Also assume that there exist 0 ≤ κ < 1/4 and C ′ > 0

such that Gn ≤ C ′nκ and ‖Gn‖2 ≤ C ′ for all n large enough. Then there exists K3 > 0 such that

P sup
gn,s∈Gn

|Gngn,s| ≤ K3a
1/2
n k3/4

n

√
log kna

−1
n ,

for all n large enough.

The increasing dimension kn of ν affects the upper bound via two routes. First, it increases the

size of envelope by the factor of
√
kn, which in turn increases the entropy of the space. Second, it

also demands us to consider an inflated class of functions to apply the more fundamental maximal

inequality by Doukhan, Massart and Rio (1995), which relies on the ‖·‖2,β norm. Note that the

envelope condition in (16) allows for step functions containing some nonparametric estimates.

Based on this lemma, the convergence rate of the set estimator Θ̂ is characterized as follows.

Theorem 4. Suppose Assumption D holds true. Let {fn,θ,ν0 : θ ∈ Θ} satisfy Assumption S and

{h1/2
n fn,θ,ν0 : θ ∈ ΘI} be a P -Donsker class. Assume ρ(Θ̂,ΘI)

p→ 0, ĉ = op((nhn)1/2), kn →∞, and
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|ν̂ − ν0| = op(an) for some {an} such that hn/an → ∞. Furthermore, there exist some ε > 0 and

neighborhoods {θ ∈ Θ : |θ − πθ| < ε} and {ν : |ν − ν0| ≤ ε}, where h
1/2
n (fn,θ,ν − fn,θ,ν0) satisfies the

conditions (16) and (17) in Lemma MS’ and

P (fn,θ,ν − fn,θ,ν0)− P (fn,πθ,ν − fn,πθ,ν0) = o(|θ − πθ|2) +O(|ν − ν0|2 + r−2/3
n ). (18)

Then

ρ(Θ̂,ΘI) = Op(ĉ
1/2(nhn)−1/4 + r−1/3

n + (nhna
−1
n )−1/4(log kn)1/2) + o(an). (19)

Furthermore, if ĉ→∞, then P{ΘI ⊂ Θ̂} → 1 and

H(Θ̂,ΘI) = Op(ĉ
1/2(nhn)−1/4 + (nhn)−1/4a1/4

n k3/8
n log1/4 n) + o(an). (20)

Compared to Theorem 3, we have two extra terms in the convergence rate of H(Θ̂,ΘI) due to

(nonparametric) estimation of ν0. However, they can be shown to be dominated by the first term

under standard conditions. Suppose that k4
n log kn/n→ 0 and the preliminary estimator ν̂ satisfies

|ν̂ − ν0| = Op(n
−1/2(kn log kn)1/2), which is often the case as in sieve estimation (see, e.g., Chen,

2007).6 Then we can set an = n−1/2(kn log kn)1/2 so that a
1/4
n k

3/8
n → 0. Now by choosing ĉ = log n,

the first term in (20) dominates the other terms.

4.1.1. Example: Binary choice with interval regressor. As an illustration of partially identified

models, we consider a binary choice model with an interval-valued regressor studied by Manski

and Tamer (2002). More precisely, let y = I{x′θ0 + w + u ≥ 0}, where x is a vector of observ-

able regressors, w is an unobservable regressor, and u is an unobservable error term satisfying

P{u ≤ 0|x,w} = α (we set α = .5 to simplify the notation). Instead of w, we observe the interval

[wl, wu] such that P{wl ≤ w ≤ wu} = 1. Here we normalize that the coefficient of w to determine

y equals one. In this setup, the parameter θ0 is partially identified and its identified set is written

as (Manski and Tamer 2002, Proposition 2)

ΘI = {θ ∈ Θ : P{x′θ + wu ≤ 0 < x′θ0 + wl or x′θ0 + wu ≤ 0 < x′θ + wl} = 0}.

Let x̃ = (x′, wl, wu)′ and qν̂(x̃) be an estimator for P{y = 1|x̃} with the estimated parameters ν̂.

Suppose P{y = 1|x̃} = qν0(x̃). By exploring the maximum score approach, Manski and Tamer

(2002) developed the set estimator for ΘI

Θ̂ = {θ ∈ Θ : max
θ∈Θ

Sn(θ)− Sn(θ) ≤ εn}, (21)

where

Sn(θ) = Pn(y − .5)[I{qν̂(x̃) > .5}sgn(x′θ + wu) + I{qν̂(x̃) ≤ .5}sgn(x′θ + wl)].

Manski and Tamer (2002) established the consistency of Θ̂ to ΘI under the Hausdorff distance. To

establish the consistency, they assumed the cutoff value εn is bounded from below by the (almost

6Alternatively ν0 can be estimated by some high-dimensional method (e.g. Belloni, Chen, Chernozhukov and Hansen,

2012), which also typically guarantees an = o(n−1/4).
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sure) decay rate of supθ∈Θ |Sn(θ) − S(θ)|, where S(θ) is the limiting object of Sn(θ). As Manski

and Tamer (2002, Footnote 3) argued, characterization of the decay rate is a complex task because

Sn(θ) is a step function and I{qν̂(x̃) > .5} is a step function transform of the nonparametric estimate

of P{y = 1|x̃}. Therefore, it has been an open question. Obtaining the lower bound rate of εn is

important because we wish to minimize the volume of the estimator Θ̂ without losing the asymptotic

validity. By applying Theorem 4, we can explicitly characterize the decay rate for the lower bound

of εn and establish the convergence rate of Θ̂.

A little algebra shows that the set estimator in (21) is written as

Θ̂ = {θ ∈ Θ : max
θ∈Θ

Pnfθ,ν̂ − Pnfθ,ν̂ ≤ ĉn−1/2},

where z = (x′, w, wl, wu, u)′, h(x,w, u) = I{x′θ0 + w + u ≥ 0} − I{x′θ0 + w + u < 0}, and

fθ,ν(z) = h(x,w, u)[I{x′θ + wu ≥ 0, qν(x̃) > .5} − I{x′θ + wl < 0, qν(x̃) ≤ .5}]. (22)

To apply Theorem 4, we check Assumption S with hn = 1 for {fθ,ν0 : θ ∈ Θ} in the supplementary

material (Section B.7). Here we illustrate the verification of (16). Let Iν(x̃) = I{qν(x̃) > .5 ≥
qν0(x̃) or qν(x̃) ≤ .5 < qν0(x̃)} and note that |fθ,ν − fθ,ν0 |2 ≤ I{x′θ ≥ −wu ≥ x′πθ or x′θ < −wu <
x′πθ}Iν(x̃) ≤ Iν(x̃). Also we have

P sup
ν∈Λ:|ν−ν0|<ε

I{qν(x̃) > .5 ≥ qν0(x̃)} ≤ CP sup
ν∈Λ:|ν−ν0|<ε

|qν(x̃)− qν0(x̃)| ≤ C
√
knε,

where the first inequality holds under boundedness of the conditional density of qν0(x̃) and the

second under smoothness of qν . This verifies (16). Also (17) is verified in the same manner as

Assumption S (ii).

For (18), note that

|P (fθ,ν − fθ,ν0)− P (fπθ,ν − fπθ,ν0)|

≤ P I{x′θ ≥ −wu ≥ x′πθ or x′θ < −wu < x′πθ}Iν(x̃)

+P I{x′θ ≥ −wl ≥ x′πθ or x′θ < −wl < x′πθ}Iν(x̃), (23)

for each θ ∈ {θ ∈ Θ : |θ − πθ| < ε} and ν in a neighborhood of ν0. For the first term of (23), the

law of iterated expectation and an expansion of qν(x̃) around ν0 imply

P I{x′θ ≥ −wu ≥ x′πθ or x′θ < −wu < x′πθ}Iν(x̃)

≤ P I{x′θ ≥ −wu ≥ x′πθ or x′θ < −wu < x′πθ}A(wu, x)|v − ν0|,

for some bounded function A. The second term of (23) is bounded in the same manner. Therefore,

|P (fθ,ν − fθ,ν0)− P (fπθ,ν − fθ,ν0)| = O(|θ − πθ||v − ν0|) and (18) is verified. Since all conditions of

Theorem 4 are satisfied, we conclude that the convergence rate of Manski and Tamer’s (2002) set

estimator Θ̂ in (21) is characterized by (19) and (20).
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Manski and Tamer (2002) proved the consistency of Θ̂ to ΘI in terms of the Hausdorff distance.

We provide a sharper lower bound on the their tuning parameter εn, which is ĉn−1/2 with ĉ→∞.

For example, if we set ĉ = log n, the convergence rate becomes H(Θ̂,ΘI) = Op(n
−1/4(log n)1/2).

We basically verify the high level assumption of Chernozhukov, Hong and Tamer (2007, Condition

C.2) in the cube root context. However, we mention that in the above setup, the criterion function

contains nuisance parameters with increasing dimension and the result in Chernozhukov, Hong and

Tamer (2007) does not apply.

Furthermore, our result enables us to construct the confidence set by subsampling as described

by Chernozhukov, Hong and Tamer (2007). Specifically, the maximal inequality in Lemma MS’ and

the assumption that {h1/2
n fn,θ,ν0 : θ ∈ ΘI} is P -Donsker are sufficient to satisfy their Conditions

C.4 and C.5.

4.2. Parameter-dependent local M-estimation. We consider a setup where localization of

the criterion function depends on the parameter values. A leading example is the mode esti-

mation. Chernoff (1964) studied the asymptotic property of the mode estimator that maximizes

(nh)−1
∑n

t=1 I{|yt−β| ≤ h} with respect to β for some fixed h. This estimator was extended to the

regression case by Lee (1989). Lee (1989) established consistency of the mode regression estimator

and conjectured the cube root convergence rate. To estimate β consistently for a broader family

of distributions, however, we need to treat h as a bandwidth parameter and let h → 0 as in Yao,

Lindsay and Li (2012) for example.

This parameter-dependent localization alters Assumption M (iii) because it increases the size

(in terms of the L2-norm) of the envelope of the class {h−1(I{|yt − β| ≤ h} − I{|yt − β0| ≤ h}) :

|β − β0| ≤ ε}. More precisely, we replace Assumption M (iii) with the following.

Assumption M (iii’). There exists a positive constant C ′′ such that

P sup
θ∈Θ:|θ−θ′|<ε

h2
n|fn,θ − fn,θ′ |2 ≤ C ′′ε,

for all n large enough, ε > 0 small enough, and θ′ in a neighborhood of θ0.

Under this assumption, Lemma M in Section 2 is modified as follows.

Lemma M1. Under Assumption M (i), (ii), and (iii’), there exist positive constants C and C ′

such that

P sup
θ∈Θ:|θ−θ0|<δ

|Gnh
1/2
n (fn,θ − fn,θ0)| ≤ Ch−1/2

n δ1/2,

for all n large enough and δ ∈ [(nh2
n)−1/2, C ′].

Parameter dependency arises in different contexts and may lead to different types of non-standard

distributions. For instance, the maximum likelihood estimator for Uniform[0, θ] yields super con-

sistency (see Hirano and Porter, 2003, for a general discussion). This contrast is similar to the

difference between estimation of a change point in regression analysis and mode regression.
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Once we have obtained Lemma 4.2, the remaining steps are similar to those in Section 2 by

replacing “hn” with “h2
n”. Here we present the result without nuisance parameters ν for the sake

of expositional simplicity.

Theorem 5. Let {fn,θ : θ ∈ Θ} satisfy Assumption M (i), (ii), and (iii’). Also suppose (5) holds

with (gn,s − Pgn,s) for each s, where gn,s = n1/6h
4/3
n (fn,θ0+s(nh2n)−1/3 − fn,θ0). Then

(nh2
n)1/3(θ̂ − θ0)

d→ arg max
s∈Rd

Z(s), (24)

where Z(s) is a Gaussian process with continuous sample paths, expected value s′V s/2 and covari-

ance kernel H(s1, s2) = limn→∞
∑n

t=−n Cov(gn,s1(z0), gn,s2(zt)) <∞.

4.2.1. Example: Hough transform estimator. In the statistics literature on computer vision algo-

rithm, Goldenshluger and Zeevi (2004) investigated the so-called Hough transform estimator for the

regression model

β̂ = arg max
β∈B

n∑
t=1

I{|yt − x′tβ| ≤ h|xt|}, (25)

where B is some parameter space, xt = (1, x̃t)
′ for a scalar x̃t, and h is a fixed tuning constant.

Goldenshluger and Zeevi (2004) derived the cube root asymptotics for β̂ with fixed h and discussed

carefully about the practical choice of h. However, for this estimator, h plays the role of the

bandwidth and the analysis for the case of hn → 0 is a substantial open question (see pp. 1915-

6 of Goldenshluger and Zeevi, 2004). Here we study the asymptotic property of β̂ in (25) with

h = hn → 0. The estimators by Chernoff (1964) and Lee (1989) with varying h can be analyzed in

the same manner.

Let z = (x, u). Note that θ̂ = β̂ − β0 is written as the M-estimator using the criterion function

fn,θ(z) = h−1
n I{|u− x′θ| ≤ hn|x|}.

The consistency of θ̂ follows from the uniform convergence supθ∈Θ |Pnfn,θ−Pfn,θ|
p→ 0 by applying

Nobel and Dembo (1993, Theorem 1).

To apply Theorem 5, we need to verify that {fn,θ} satisfies Assumption M (i), (ii), and (iii’). Here

we show it for (iii’) explicitly while other details are found in the supplementary material (Section

B.8). Observe that

P sup
θ∈Θ:|θ−ϑ|<ε

h2
n|fn,θ − fn,ϑ|2 ≤ P sup

θ∈Θ:|θ−ϑ|<ε
I{|u− x′ϑ| ≤ hn|x|, |u− x′θ| > hn|x|}

+P sup
θ∈Θ:|θ−ϑ|<ε

I{|u− x′θ| ≤ hn|x|, |u− x′ϑ| > hn|x|},

for all ϑ in a neighborhood of 0. Since the same argument applies to the second term, we focus on

the first term (say, T ). If ε ≤ 2hn, then an expansion around ε = 0 implies

T ≤ P{(hn − ε)|x| ≤ u ≤ hn|x|} = Pγ(hn|x|)|x|ε+ o(ε),
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assuming independence between u and x. Also, if ε > 2hn, then an expansion around hn = 0 implies

T ≤ P{−hn|x| ≤ u ≤ hn|x|} ≤ Pγ(0)|x|ε+ o(hn).

Therefore, Assumption M (iii’) is satisfied.

Finally, the covariance kernel is obtained by a similar way as Section 3.1. Let rn = (nh2
n)1/3 be

the convergence rate in this example. The covariance kernel is written by H(s1, s2) = 1
2{L(s1, 0) +

L(0, s2) − L(s1, s2)}, where L(s1, s2) = limn→∞Var(r2
nPngn,t) with gn,t = fn,s1/rn − fn,s2/rn . An

expansion implies n−1Var(r2
ngn,t) → 2γ(0)P |x′(s1 − s2)|. We can also see that the covariance

term n−1
∑∞

m=1 Cov(r2
ngn,t, r

2
ngn,t+m) is negligible. Therefore, Theorem 5 implies the limiting dis-

tribution of the Hough transform estimator with the bandwidth hn is obtained as in (24) with

V = γ̈(0)P (|x|xx′) and H(s1, s2) = 2γ(0)P |x′(s1 − s2)|.

5. Conclusion

This paper develops general asymptotic theory, which encompasses a wide class of non-regular

M-estimation problems. Many of these problems have been left without a proper inference method

for a long time. It is worthwhile to emphasize that our theory validates inference based on subsam-

pling for this important class of estimators, including the confidence set construction for set-valued

parameters in Manski and Tamer’s (2002) binary choice model with an interval regressor. An

interesting future research is to develop valid bootstrap methods for these estimators. Naive appli-

cations of the standard bootstrap resampling lead to inconsistent inference as shown by Abrevaya

and Huang (2005) and Sen, Banerjee and Woodroofe (2010) among others.

Supplementary material. This paper has an on-line supplementary material, which contains all

the proofs of the theorems and lemmas and additional examples.
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Annales de l’Institut Henri Poincaré, Probability and Statistics, 31, 393-427.

[20] Gautier, E. and Y. Kitamura (2013) Nonparametric estimation in random coefficients binary choice models,

Econometrica, 81, 581-607.

[21] Goldenshluger, A. and A. Zeevi (2004) The Hough transform estimator, Annals of Statistics, 32, 1908-1932.

[22] Hirano, K. and J. R. Porter, (2003) Asymptotic efficiency in parametric structural models with parameter-

dependent support, Econometrica, 71, 1307-1338.
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