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NONPARAMETRIC INSTRUMENTAL REGRESSION WITH
ERRORS IN VARIABLES

KARUN ADUSUMILLI AND TAISUKE OTSU

Abstract. This paper considers nonparametric instrumental variable regression when the en-

dogenous variable is contaminated with classical measurement error. Existing methods are

inconsistent in the presence of measurement error. We propose a wavelet deconvolution estima-

tor for the structural function that modifies the generalized Fourier coefficients of the orthogonal

series estimator to take into account the measurement error. We establish the convergence rates

of our estimator for the cases of mildly/severely ill-posed models and ordinary/super smooth

measurement errors. We characterize how the presence of measurement error slows down the

convergence rates of the estimator. We also study the case where the measurement error density

is unknown and needs to be estimated, and show that the estimation error of the measurement

error density is negligible under mild conditions as far as the measurement error density is

symmetric.

1. Introduction

This paper is concerned with estimation of the nonparametric instrumental regression function

where the explanatory variable is measured with error

Y = m(X∗) + U, E[U |W ] = 0, (1)

X = X∗ + ε, ε ⊥⊥ (X∗,W ).

We wish to estimate the functionm based on the observables of (Y,X,W ), where Y is a response

variable, X is a mismeasured version of the explanatory variable X∗ due to the measurement

error ε, andW is an observable instrumental variable. The variables (X∗, U, ε) are unobservable.

The disturbance U may be correlated with the error-free but unobservable X∗ so that E[U |X∗]

does not vanish (i.e., X∗ may be endogenous). However, we can access an instrumental variable

W that is observable and satisfies mean independence E[U |W ] = 0. The measurement error ε

enters additively and is independent from X∗ and W , but it is allowed to be correlated with Y .

When X∗ is observable, the structural function m can be identified by solving the integral

equation E[Y |X∗ = ·] = m(·) under certain conditions. This is typically an ill-posed inverse

problem that calls for some regularization scheme to obtain a useful estimator for m. Several

regularized estimators have been proposed in the literature, such as Newey and Powell (2003),
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Hall and Horowitz (2005), Blundell, Chen and Kristensen (2007), Darolles, Fan, Florens and

Renault (2010), Horowitz (2011, 2012), and Gagliardini and Scaillet (2012). However, these

existing methods are generally invalid when the explanatory variable contains a measurement

error.1

On the other hand, when the disturbance U satisfies mean independence E[U |X∗] = 0, then

the estimation problem of m turns into one of nonparametric regression with errors in variables.

This is another kind of ill-posed inverse problem and various deconvolution estimation methods

are available in the literature, such as Fan and Truong (1993), Hall and Meister (2007), and De-

laigle and Hall (2008). See also Schennach (2004b) for nonparametric regression when repeated

observations on the mismeasured (exogenous) explanatory variable are available. However, these

estimation methods are generally inconsistent when the explanatory variable is endogenous.2

In reality the issues of endogeneity and measurement error in X∗ can occur at the same time.

For instance, in Engel curve estimation, Blundell, Chen and Kristensen (2007) pointed out the

importance of instrumenting for the endogenous regressor of total expenditure on non-durable

goods by nonparametric instrumental variable methods. Concurrently there may be substantial

measurement error issues in the expenditure data as observed by Hausman, Newey and Powell

(1995) and Newey (2001). For example, using the 1982 Consumer Expenditure Survey (CES),

Hausman, Newey and Powell (1995) found that measurement error could account for as much

as 42% of the variation in the logarithm of the measured expenditure. Thus it would appear

important to account for both measurement error and endogeneity issues in practice. Currently

there is no valid estimation method for m in the model (1) that is available in the literature.3

In this paper we propose an estimation method for m based on the orthogonal series esti-

mation method (Horowitz, 2011, 2012) and the wavelet deconvolution technique (Pensky and

Vidakovic, 1999, and Fan and Koo, 2002) to deal with endogeneity and measurement error,

respectively. In particular, we propose a wavelet deconvolution estimator for the structural

function m that modifies the generalized Fourier coefficients of the orthogonal series estimator

to take into account the measurement error. A convenient feature of the wavelet approach is that

a single smoothing parameter is shown to be sufficient to characterize the mean squared error

1On the other hand, for the case where X∗ is correctly measured but the instrumental variableW is mismeasured,
we can apply the conventional estimation methods using noisy measurements of W as far as the measurement
error in W is independent from other variables.
2See Meister (2009) for a review on deconvolution methods. More recent developments for measurement error
models may be found in Chen, Hong and Nekipelov (2011), Carroll, Ruppert, Stefanski and Crainiceanu (2012),
Schennach (2013), and Hu (2016).
3Song, Schennach and White (2015) investigated identification and estimation of average marginal effects in non-
separable models that involve mismeasured endogenous covariates. They achieve identification based on control
variables and repeated measurements on the mismeasured covariates. Also, Schennach, White and Chalak (2012)
studied properties of the local indirect least squares estimation for average marginal effects in nonseparable mod-
els when the instrumental variables are mismeasured. This paper is concerned with estimation of the structural
function for the separable model and can be considered as complementary to these papers.
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(MSE) risk under both endogeneity and measurement error. We establish the convergence rates

of our estimator for the cases of mildly/severely ill-posed models and ordinary/super smooth

measurement errors. Furthermore, we characterize how the presence of measurement error slows

down the convergence rates of the estimator. Indeed we find that it does so in a fashion that is

strikingly similar to the way ill-posedness of the instrumental regression model also affects the

rates.

We also study the case where the measurement error density is unknown but can be estimated

by repeated measurements. We show that the estimation error of the measurement error density

is negligible under mild conditions as far as the measurement error density is symmetric. In

particular, we find that the convergence rates under known and unknown error distributions are

equivalent if either the joint density of (X∗,W ) is smoother than the error density, or the error

density is supersmooth.

Several estimation methods based on repeated measurements (or other auxiliary data) to deal

with measurement errors have been developed in econometrics and statistics (e.g., Hausman et

al., 1991, Li and Vuong, 1998, Li, 2002, Schennach, 2004a, Delaigle, Hall and Meister, 2008).

Repeated measurements have also been employed in various empirical economic analyses (e.g.,

Bowles, 1972, Borus and Nestel, 1973, Freeman, 1984, Ashenfelter and Krueger, 1994, Hausman,

Newey and Powell, 1995, Morey and Waldman, 1998). See also Biemer et al. (1991) for other

examples from social science.

The rest of the paper is organized as follows. Section 2 introduces the setup and wavelet

deconvolution estimator. Section 3 studies the asymptotic properties of the estimator when the

measurement error density is known. Section 4 considers the case where the measurement error

density is unknown and needs to be estimated. Section 5 concludes. Appendix A collects the

proofs of all our theoretical results, and Appendix B presents an extension to the case of vector

explanatory variables and instruments.

Notation. Throughout the paper, let |·| be the Euclidean norm for the Euclidean space Rd and

complex space Cd, ‖f‖2 = (
∫
|f(x)|2dx)1/2 be the L2-norm of a function f : Rd → C, L2(Rd) =

{f : ‖f‖2 < ∞} be the L2-space, and 〈f, g〉 =
∫
f(x)g(x)dx be the inner product in L2(Rd),

where c̄ denotes the complex conjugate of c ∈ C. Also, let i =
√
−1 and f ft(t) =

∫
eitxf(x)dx

be the Fourier transform of f .
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2. Estimator

2.1. General construction. Suppose we observe a random sample {Yi, Xi,Wi}ni=1 of (Y,X,W ) ∈

R × R × R.4 For simplicity we focus on the case where both X and W are scalar. We refer to

Appendix B for a generalization to the vector case. Let fX∗W be the joint density of (X∗,W ),

and define the integral operator A : L2(R)→ L2(R) as

(Ag)(w) =
∫
g(x)fX∗W (x,w)dx. (2)

Denote r(w) = E[Y |W = w]fW (w), where fW is the density of W . If m, r ∈ L2(R) and

fX∗W ∈ L2(R2), then the relation in (1) may be described by the following integral equation

(which is a Fredholm equation of the first kind)

Am = r. (3)

In order to estimate the function m of interest that solves (3), we replace the operator A and

the function r with some series estimators and then solve the empirical counterpart of (3).

More precisely, we choose a complete orthonormal basis {ψk}k∈J of real-valued functions for

L2(R). For standard orthonormal bases such as splines or cosines, we set J = N. In the next

subsection, we argue that a wavelet basis is particularly suitable for deconvolution problems.

Using the basis {ψk}k∈J , we can expand

r =
∑
k∈J

akψk, m =
∑
l∈J

blψl, fX∗W =
∑
k,l∈J

ck,lψkψl, (4)

where ak = 〈r, ψk〉, bl = 〈m,ψl〉, and ck,l = 〈fX∗W , ψkψl〉. We note that {ψjψk}j,k∈J forms a

complete orthonormal basis for L2(R2). Since the generalized Fourier coefficient ak is written

as ak = E[Y ψk(W )], we estimate it by the sample counterpart

âk = 1
n

n∑
i=1

Yiψk(Wi). (5)

On the other hand, the coefficient ck,l involves the joint density fX∗W of the observable W

and unobservable X∗. Therefore, its recovery requires a deconvolution technique. From the

assumption ε ⊥⊥ (X∗,W ), we can see that f ft
XW (t, s) = f ft

X∗W (t, s)f ft
ε (t) for all t, s ∈ R, where

f ft
ε is the Fourier transform of fε, the density of ε. Assuming f ft

ε does not vanish anywhere on

the real line, f ft
X∗W may be identified by f ft

X∗W = f ft
XW /f

ft
ε . Thus, using the Plancherel isometry

4In the literature of nonparametric instrumental regression, several papers assumed that X and W are compactly
supported (e.g., Hall and Horowitz, 2005, Horowitz, 2011, 2012, and Darolles, Fan, Florens and Renault, 2011).
However, since X contains measurement error in our setup, the compact support assumption is restrictive.
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(see, e.g., Meister, 2009, Theorem A.4), the coefficient cj,k can be expressed as

ck,l = 1
(2π)2

〈
f ft
XW

f ft
ε

, ψft
k ψ

ft
l

〉
. (6)

Suppose that f ft
ε is known (the case of unknown f ft

ε will be discussed in Section 4). Then

by estimating f ft
XW (t, s) with the sample counterpart f̂ ft

XW (t, s) = 1
n

∑n
i=1 e

i(tXi+sWi), we can

estimate ck,l as follows

ĉk,l = 1
(2π)2

〈
f̂ ft
XW

f ft
ε

, ψft
k ψ

ft
l

〉
= 1
n

n∑
i=1

ξk(Xi)ψl(Wi), (7)

where ξk(X) = 1
2π
∫
eitX ψft

k
(t)

f ft
ε (t)dt. Based on these estimators of the generalized Fourier coefficients,

the function r and operator A can be estimated as

r̂(w) =
Jn∑
k=1

âkψk(w), (Âg)(w) =
Jn∑
k=1

Jn∑
l=1

gk ĉk,lψl(w),

for g ∈ L2(R), where gk = 〈g, ψk〉 and the integer Jn is a smoothing parameter satisfying Jn →∞

at a suitable rate. Then our estimator of m in the model (1) is obtained by solving the sample

analog Âm̂ = r̂ of (3) with respect to m̂. In particular, the solution m̂ may be explicitly written

as

m̂(x) =
Jn∑
k=1

b̂kψk(x), (8)

where the coefficients b̂ = (b̂1, . . . , b̂Jn)′ are given by

b̂ = (W′X)−1W′Y,

where Y = (Y1, . . . , Yn)′, and W and X are n×Jn matrices whose (i, k)-th elements are ψk(Wi)

and ξk(Xi), respectively.

Note that the above formula for b̂ is identical to the conventional instrumental variable

estimator. Our estimator takes the same form as the modified orthogonal series estimator of

Horowitz (2011, 2012) except for the matrix X. If there is no measurement error, the (i, k)-th

element of X becomes ψk(Xi). To deal with the measurement error, we replace the elements of

X with their deconvolution counterparts ξk(Xi) = 1
2π
∫
eitXi ψ

ft
k

(t)
f ft
ε (t)dt.

2.2. Wavelet deconvolution estimator. In order to implement our series-based estimator in

(8), we have to choose a basis for L2(R). In this paper, we suggest employing the wavelet basis.

In particular, the band limited Meyer-type wavelet is useful for deconvolution problems (see,

Pensky and Vidakovic, 1999, and Fan and Koo, 2002).
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Define the functions

φj;k(x) = 2j/2φ(2jx− k), ϕj′;k(x) = 2j′/2ϕ(2j′x− k),

for j, j′ ∈ N and k ∈ Z, where φ, ϕ ∈ L2(R) are chosen to satisfy some particular properties so as

to make them father and mother wavelets, respectively. Take some j0 ∈ N. The multi-resolution

expansion theorem states that {φj0;k, ϕj′;k}j′≥j0,k∈Z form an orthonormal basis for L2(R) and

thus any function f ∈ L2(R) can be represented as

f =
∑
k∈Z

cj0,kφj0;k +
∑
j′≥j0

∑
k∈Z

dj′,kϕj′;k.

Intuitively, the index j accounts for the resolution (fine scale structure) captured by the wavelets

while k is simply a translation term.

We still have to choose the father and mother wavelets, φ and ϕ. Following Pensky and

Vidakovic (1999), φ and ϕ are defined using their Fourier transforms as

φft(t) = (P [t− π, t+ π])1/2, ϕft(t) = e−it/2(P [|t|/2− π, |t| − π])1/2, (9)

for some probability measure P compactly supported on [−π/3, π/3]. We choose P such

that its density is symmetric around 0. This ensures that φ, ϕ, and the orthonormal basis

{φj;k, ϕj′;k}j′≥j,k∈Z are all real valued. In addition, we may take P smooth enough so that

φft and ϕft are q times continuously differentiable. We call the wavelets satisfying the above

properties as wavelets of order q.

In this paper we use only the linear part of the multi-resolution expansion. In other words, we

employ the linear space L(n)
φ spanned by {φjn;k}|k|≤Ln for some resolution level jn and length Ln.

Thus, our wavelet estimator of m is given by (8), where {ψj}j∈Jn is replaced with {φjn;k}|k|≤Ln .

The linear wavelet space L(n)
φ based on (9) is particularly convenient for deconvolution prob-

lems. Let Jn = 4π2jn/3. Indeed the space L(n)
φ satisfies

L(n)
φ ⊆ {h ∈ L2(R) : hft is supported on Cn ≡ [−Jn, Jn]}, (10)

for any Ln , with the equivalence holding if Ln = ∞ (see, Meister, 2009, p. 17). Therefore,

any function in L(n)
φ has a compactly supported Fourier transform (known as the band limited

property) and Jn plays the role of a smoothing parameter. This property is important to control

the estimation variance of the deconvolution estimators whose upper bound typically involves the

term
{

min|t|≤Jn |f ft
ε (t)|

}−1
(see, Theorem 1 below). Thus, without the band limited property,

it is not easy to control such a term without additional smoothing, such as a ridge parameter.

We present two approximation properties of the linear wavelets, which are generalizations of

Pensky and Vidakovic (1999, Lemma 2 and Theorem 3). These lemmas are used to establish
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the convergence rate of the wavelet deconvolution estimator for m. Define L̄(n)
φ as the space

spanned by {φjn;k}k∈Z. Let Pjn : L2(R) → L(n)
φ and P̄jn : L2(R) → L̄(n)

φ denote the projection

operators onto the spaces spanned by{φjn;k}|k|≤Ln and {φjn;k}k∈Z respectively.

Lemma 1 (Multivariate version of Pensky and Vidakovic, 1999, Lemma 2). Suppose f ∈ L2(Rd)

satisfies
∫

(1 + |t|2)α|f ft(t)|2e2ρ|t|vdt = C <∞ for some α, ρ, v ≥ 0. Then for some c > 0,∥∥∥f − P̄jnf∥∥∥2
≤ cC2−jnα exp{−ρ(2π/3)dv2jnv}.

Lemma 2. Suppose f ∈ L2(Rd) satisfies supx∈Rd |x|(1+η)/2|f(x)| < ∞ for some η > 0. Then

for wavelets {φj;k, ϕj′;k}j′≥j,k∈Z of order q ≥ (1 + η)/2, it holds

∥∥∥P̄jnf − Pjnf∥∥∥2
=

d∑
h=1

∑
|kh|≥Ln

|cjn;k1...,kd |
2 = O(2jnd/Lηn).

Lemma 1 bounds the approximation error from leaving out the nonlinear part {ϕj′;k}j′≥j,k∈Z
from the multi-resolution expansion. This error depends on the smoothness of f characterized

by the decay rate of its Fourier transform. Lemma 2 bounds the approximation error from

truncating the linear wavelet estimator after a particular number of terms, Ln. In this case

the approximation error depends on the decay rate of the function f in the tail. The proof of

Lemma 1 is a straightforward generalization of Pensky and Vidakovic (1999, Lemma 2) and is

therefore omitted. We refer to the Appendix for a proof of Lemma 2.

In the context of wavelet methods, the resolution level jn (or equivalently Jn) plays the role

of a standard smoothing parameter and should be chosen carefully to take into account the

bias and variance trade-off. In contrast to the usual series estimation, the series length Ln of

the linear part of the wavelet series should ideally be taken to infinity to obtain good approx-

imation properties. Intuitively, jn determines the smoothness of the approximation while Ln
determines the range on the real line over which the approximation is being made. Therefore

theoretically we can, and would like to, choose Ln as large as possible. Only practical consid-

erations prevent us from taking Ln very large and Lemma 2 provides the bound on the error

due to a finite Ln. For example, the conventional linear wavelet density estimator (say, for

fX) is defined by setting Ln = +∞, and takes the form of f̃jn(x) =
∑
k∈Z c̃jn,kφjn;k(x), where

c̃jn,k = n−1∑n
i=1 2j/2φjn;k(Xi). This estimator has been studied in the statistics literature (see,

e.g., Donoho et al., 1996, and Vidakovic, 1999). Intuitively, this estimator may be represented as

f̃jn(x) = n−1∑n
i=1 2jn/2κ(2jnXi, 2jnx), where κ(X,x) =

∑
k∈Z φ(X − k)φ(x− k) (see, Remark

4 of Kerkyacharian and Picard, 1992). Therefore, the linear wavelet estimator f̃jn(x) can be

interpreted as a kernel estimator with the kernel function κ and bandwidth 2jn .
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In the next section, we will see that to derive the convergence rate of our estimator for m,

there is no constraint on the upper bound of the rate at which Ln is allowed to diverge to infinity.

Consequently for the analysis in the next section, we shall suppress the dependence of Ln except

for providing a minimum rate on Ln, as specified in Theorem 1, to make its effect negligible.

2.3. Other estimation methods. The wavelet based estimator is not the only estimation

method that is conceivable. A convenient feature of the wavelet method presented in Section 2.2

is that it provides a unified and simple framework to tackle both endogeneity and measurement

error issues with a single tuning parameter Jn. Here we provide a brief summary of other possible

methods and their relative merits and drawbacks.

Hall and Meister (2007) provided a ridge parameter approach to density deconvolution. We

may adapt this approach to the series estimation method of Section 2.1 to obtain an alternative

estimate, c̆k,l, of ck,l:

c̆k,l = 1
(2π)2

〈
f̂ ft
XW

max{f ft
ε , h}

, ψft
k ψ

ft
l

〉
. (11)

Here h is the ridge parameter function of the form h(t) = n−ς |t|a, where ς > 0 and a ≥ 0

are tuning parameters. In contrast to the wavelet series approach of Section 2.2, this approach

remains valid even if f ft
ε (t) = 0 at some t, and for arbitrary orthonormal bases including wavelets.

However such an estimation method requires choosing two or more tuning parameters (i.e., the

smoothing parameter Jn and other ridge tuning parameter).5

An alternative approach to sieve based methods for nonparametric instrumental variable

regression is using kernel methods (Hall and Horowitz, 2005, and Darolles, Fan, Florens and

Renault, 2011). Supplementing them with the deconvolution kernel (e.g., Stefanski and Carroll,

1990, and Fan, 1991) can enable us to extend these methods to allow for measurement error.

However the essential difficulty in this case seems to stem from the fact that the kernel methods

suggested so far are based on the assumption of compact support for X∗ and W . Extensions of

the kernel methods to unbounded support, as we require here, would necessitate the presence of

a trimming function in the kernel density.

In this paper we focus on the linear part of the wavelet series. In the context of density

estimation, there is large body of literature on using the nonlinear part of the wavelet series

to achieve adaptivity through thresholding or shrinkage (e.g., Donoho et al., 1995, and Fan

5In the literature of nonparametric deconvolution methods, to the best of our knowledge, most papers using series
approximation employ the wavelet basis (e.g., Pensky and Vidakovic, 1999, Fan and Koo, 2002, and Meister,
2009, for a review). One major reason for the prevalence of wavelets in deconvolution problems is due to the
band limited property of the wavelet basis in (10). Other basis functions such as polynomials and splines are not
band limited in general. Thus if we employ other basis functions, we typically need to introduce an additional
smoothing parameter, such as the ridge parameter h in (11). However, although the single smoothing parameter
is a convenient feature of the wavelet method, we do not claim that it is theoretically desirable. Intuitively, as
shown in (3), the structural function m is estimated based on two objects A and r. Therefore, the additional
smoothing may be helpful to flexibly control the estimator error.
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and Koo, 2002). In these papers adaptivity is achieved by thresholding the coefficients in the

nonlinear part of the wavelet expansion. In our setup, the function of interest is defined as a

solution of a linear inverse problem and direct thresholding of the wavelet coefficients is not

possible. Nevertheless for the case of a known operator, Donoho (1995) proposed the so-called

Wavelet-Vaguelette Decomposition (WVD) that basically expands the target function in terms

of a wavelet series (whose coefficients depend on the operator). Furthermore, Donoho (1995)

also showed using a Gaussian white noise model that thresholding or shrinkage of the wavelet

coefficients could achieve almost minimax rates of convergence simultaneously over a large class

of functional spaces. While this is a very important adaptivity result, its application in our

context is hindered by the fact that the operator is not known in the nonparametric instrumental

regression and has to be estimated using f̂XW .6 We are not aware of any results on minimax

estimation using wavelet shrinkage when the operator has to be estimated. Thus we leave this

as an interesting avenue for future research.

3. Asymptotic theory: Case of known fε

We now study the asymptotic properties of the estimator m̂ in (8) using the linear wavelet

space L(n)
φ spanned by {φjn;k}|k|≤Ln . In this section, we consider the case where the density fε

of the measurement error in X∗ is known. The case of unknown fε will be studied in the next

section.

Let us introduce some notation. Define the Sobolev space of order s as

S(Rd, s) =

 {h ∈ L2(Rd) :
∥∥∥(1 + | · |2)s/2hft(·)

∥∥∥
2
<∞} for s ∈ (−∞,∞)

{h ∈ L2(Rd) :
∫
|hft(t)|2ec|t|γdt <∞ for some c, γ > 0} for s = ±∞

Let f (n)
X∗W =

∑
|k|,|l|≤Ln ck,lφjn;kφjn;l and define the operator An : L2(R) → L2(R) such that

(Ang)(w) =
∫
g(x)f (n)

X∗W (x,w)dx. Also, denote the sieve measure of ill-posedness (Blundell,

Chen and Kristensen, 2007, and Horowitz, 2012) to be

ρn = sup
h∈L(n)

φ
:h6=0

‖h‖2∥∥(A∗A)1/2h
∥∥

2
,

where A∗ is the adjoint (or dual) operator of A defined in (2). Since A is assumed to be

injective, the object ρn is well-defined. Note that ρn depends on the smoothing parameter jn
(or equivalently Jn = 4π2jn/3) through the linear space L(n)

φ .7 Let ζn =
{

min|t|≤Jn |f ft
ε (t)|

}−1
.

Specifically, we note that ρn characterizes the degree of ill-posedness inherent in the integral

6An additional difference from the paper is that Donoho’s (1995) results are based on the Tikhonov regularization
in contrast to the sieve regularization used here.
7From (10), we can see that the upper bound on ρn is set by Ln = ∞, consequently it is independent of Ln.
Primitive conditions on the rate of ρn, provided below, are based on this upper bound.
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equation (3), while ζn characterizes the same for the problem of deconvolution. We impose the

following assumptions.

Assumption 1. (i) fX∗W ∈ S(R2, s), m ∈ S(R, s1), and r ∈ S(R, s+s1) for some s ∈ [2,∞] and

s1 ∈ [2,∞). (ii) supw∈RE[Y 2|W = w] ≤ C <∞. (iii) f ft
ε (t) 6= 0 for all t ∈ R. (iv) There exists

some η > 0 such that supx,w∈R |x2 + w2|(1+η)/4|fX∗W (x,w)| <∞, supx∈R |x|(1+η)/2|m(x)| <∞,

and supx∈R |x|(1+η)/2|r(x)| <∞.

Assumption 2. (i) The operator A is injective. (ii) ρn = O(Jsn) for s ∈ [2,∞) and ρn = O(ecJ
γ
n )

for s =∞. (iii) ρn sup
ν∈L(n)

φ
:ν 6=0

‖(A−An)ν‖2
‖ν‖2

= O(J−s1
n ).

Assumption 1 gives a set of smoothness and boundedness conditions. In particular, Assump-

tion 1 (i) requires that r = Am should be much smoother than m. Assumption 1 (ii) is a mild

condition on the conditional variance of U given W that allows heteroskedasticity. Assumption

1 (iii) is a common requirement for deconvolution methods. Assumption 1 (iv) places some

conditions on the decay rates of the functions fX∗,W , m, and r in the tails (cf. Lemma 2). We

also note that some of our assumptions on m are weaker than those in Horowitz (2011) which

assumes compact support on the data.

Assumption 2 collects conditions on the operator A in (2). Assumption 2 (i) is equivalent to

the completeness condition employed by Newey and Powell (2003), Blundell, Chen and Kris-

tensen (2007) among others. Combined with Assumption 1 (iii), Assumption 2 (i) identifies the

function m of interest from the model (1). Assumptions 2 (ii) and (iii) are high level assump-

tions on the sieve measure of ill-posedness ρn that are commonly used in the literature (Blundell,

Chen and Kristensen, 2007, and Horowitz, 2011).8 For the case of s ∈ [2,∞), Assumption 2

(ii) is satisfied for wavelet series of order greater than s if we assume there exists some c > 0

such that ‖Ah‖2 ≥ c
∥∥∥(1 + | · |2)−s/2hft(·)

∥∥∥
2
for all h ∈ L2(R) (Blundell, Chen and Kristensen,

2007, Theorem 3). A sufficient condition for Assumption 2 (iii) is that A is a mapping from

S(R2, s) to S(R2, s+ s1). Indeed, this follows by an application of Lemmas 1 and 2 after noting

‖(A−An)ν‖2 =
∥∥∥(I − P̄jn)Aν

∥∥∥
2

+ o(J−(s+s1)
n ) for some choice of Ln that is sufficiently large

(given the conditions on the decay rate for fX∗W in Assumption 1 (iv)). Depending on the

smoothness s of fX∗W and associated sieve measure of ill-posedness ρn, we have two categories:
8Since we choose the order of wavelets q ≥ s1, it follows L(n)

φ ⊆ S(R, s1). Thus Assumptions 2 (ii) and (iii) are
equivalent to the corresponding assumption in Blundell, Chen and Kristensen (2007). Horowitz (2011) also makes
a similar assumption but further restricts the space to satisfy ‖ν‖S(R,s1) =

∥∥(1 + | · |2)s1/2νft(·)
∥∥

2
< C0 for some

constant C0 < ∞. This is again equivalent to our definition: Indeed, since ‖ν‖S(R,s1) < ∞ for any ν ∈ L(n)
φ , it

follows

sup
ν∈L(n)

φ
:ν 6=0

∥∥(Ã− Â)ν
∥∥

2
‖ν‖2

= sup
ν∈L(n)

φ
:ν 6=0

∥∥(Ã− Â)ν/ ‖ν‖s
∥∥

2∥∥ν/ ‖ν‖s∥∥2

= sup
ν∈L(n)

φ
:ν 6=0,

‖ν‖S(R,s1)≤1

∥∥(Ã− Â)ν
∥∥

2
‖ν‖2

.

A similar result also holds for assumption 2 (ii).
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(i) s ∈ [2,∞) and ρn = O(Jsn) (called mildly ill-posed case), and (ii) s = ∞ and ρn = O(ecJ
γ
n )

(called severely ill-posed case).

The following theorem establishes the convergence rates of our estimator m̂ in (8) using the

linear wavelets {φjn;k}|k|≤Ln when the measurement error density fε is known.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Consider the estimator m̂ in (8) us-

ing the linear wavelets {φjn;k}|k|≤Ln of order greater than s1. Furthermore, assume Jn → ∞,

ρnζn(Jn/n)1/2 → 0 and either (i) s ∈ [2,∞) and J2(s+s1)+1
n /Lηn → 0 or (ii) s =∞ and n/Ln → 0

as n→∞. Then

‖m̂−m‖2 = Op
(
J−s1
n + ρnζn(Jn/n)1/2

)
. (12)

It should be noted that the L2 convergence rate of the conventional nonparametric series re-

gression estimator (i.e., whenX∗ is exogenous and correctly measured) is Op
(
J−s1
n + (Jn/n)1/2

)
.

Compared to this, it is clear that the additional component ρnζn reduces the convergence rate

of the estimator. Obviously the component ρn is associated with the ill-posedness of the integral

equation in (3), and the component ζn is due to the existence of measurement error in X∗. See

Blundell, Chen and Kristensen (2007, pp. 1629-1632) and Chen and Reiss (2011) for details on

the characterization of the rate of ρn. In Sections 3.1 and 3.2 below, we consider some special

cases to characterize the convergence rate of ζn.

We note that the convergence rate does not depend on the truncation constant Ln. This is a

common feature for wavelet-based estimators, e.g., Donoho et al. (1996) for density estimation,

Pensky and Vidakovic (1999) for deconvolution density estimation, and Antoniadis, Gregoire

and McKeague (1994) and Donoho and Johnstone (1998) for nonparametric regression. Indeed

these papers derived the convergence rates for the case of Ln = +∞.

The condition on the order of the linear wavelets guarantees that its linear space L(n)
φ is a

subset of the Sobolev space S(R, s1). Note that the only requirement on the tuning parameter

Ln is J2(s+s1)+1
n /Lηn → 0. This condition is fairly weak since we can let Ln grow arbitrarily fast.

Only computational considerations prevent us from taking Ln too large.

Previous literature on nonparametric instrumental variable regression using the orthonormal

series approach (e.g., Horowitz, 2011, 2012) has sometimes used the additional condition that

the search space for m̂ be restricted to a compact Sobolev ball {ν : ‖ν‖s ≤ C} for some

C < ∞. Chen and Pouzo (2012) carefully studied asymptotic properties of the penalized

sieve minimum distance estimator in a general setup that includes nonparametric instrumental

regression (without measurement error) as a special case, and allow for a possibly non-compact

infinite dimensional parameter space. They also showed that lower semicompact penalties may

convert ill-posed problems into well-posed ones. Using a different method of proof than used

previously, we are able to show that for the estimation method proposed here, the compactness

11



restriction may be dispensed with. Whether this relaxation can be extended to all possible

orthonormal bases is however unclear since our proof is specific to wavelet series.

In order to characterize detailed properties of the convergence rate of m̂, we consider some

special cases categorized by the tail properties of the measurement error density fε.

3.1. Ordinary smooth case. Suppose that fε is ordinary smooth of order α, that is

C1(1 + |t|)−α ≤ |f ft
ε (t)| ≤ C2(1 + |t|)−α for all t ∈ R, (13)

for some constants C2 > C1 > 0 and α > 1/2. Typical examples of ordinary smooth densities

are the Laplace and gamma densities. In this case, the component ζn =
{

min|t|≤Jn |f ft
ε (t)|

}−1

appearing in (12) is of order Jαn .

For the mildly ill-posed case (i.e., s ∈ [2,∞) and ρn = O(Jsn)), the convergence rate in

(12) becomes Op
(
J−s1
n + (J2(α+s)+1

n /n)1/2
)
. Therefore, the optimal choice of Jn is given by

Jn = O(n1/(2(α+s+s1)+1)) and the optimal rate of convergence is

‖m̂−m‖2 = Op(n−s1/(2(α+s+s1)+1)). (14)

We can see that the presence of measurement error is equivalent to changing the smoothness

of fX∗,W from s to α + s. Intuitively, in the presence of measurement error, the degree of ill-

posedness should be characterized not by the smoothness of fX∗,W for the unobservable X∗, but

rather by that of fX,W for the observable X.

For the severely ill-posed case (i.e., s = ∞ and ρn = O(ecJ
γ
n )), the rate in (12) becomes

Op
(
J−s1
n + ecJ

γ
n (J2α+1

n /n)1/2
)
. The optimal choice of Jn is given by Jn = (cb logn)1/γ for some

cb ∈ (0, 1/2c) and the optimal rate of convergence is

‖m̂−m‖2 = Op((logn)−s1/γ). (15)

Therefore, in this case, the presence of measurement error no longer has any effect on the rate

of convergence. Also note that the optimal choice of Jn does not depend on α and s1.

3.2. Supersmooth case. Suppose now that fε is supersmooth, that is

C1 exp(−d1|t|σ) ≤ |f ft
ε (t)| ≤ C2 exp(−d2|t|σ), (16)

for some constants C2 > C1 > 0, d2 > d1 > 0, and σ > 0. Typical examples of supersmooth

densities are the normal and Cauchy densities. In this case, the component ζn is of order ed1Jσn .

12



For the mildly ill-posed case, the convergence rate in (12) becomesOp
(
J−s1
n + ed1Jσn (J2s+1

n /n)1/2
)
,

and the optimal choice of Jn is Jn = (cb logn)1/σ for some cb ∈ (0, 1/2d1), which yields the op-

timal convergence rate

‖m̂−m‖2 = Op((logn)−s1/σ). (17)

In this case, the optimal choice of Jn does not depend on s and s1.

For the severely ill-posed case, the rate in (12) becomes Op
(
J−s1
n + ecJ

γ
n+d1Jσn (J1

n/n)1/2
)
, and

the optimal choice of Jn is Jn = (cb logn)1/(σ∧γ) for some cb ∈ (0, 1/(2d1 + 2c)), which yields the

optimal convergence rate

‖m̂−m‖2 = Op((logn)−s1/(σ∧γ)). (18)

Thus, measurement error affects the rate of convergence only if ζn (which can be taken as a

measure of ill-posedness of the deconvolution problem) dominates ρn. In this case, the optimal

choice of Jn does not depend on s1.

4. Asymptotic theory: Case of unknown fε

The assumption of known measurement error density fε is unrealistic in most applications.

Thus this section considers the situation where fε is unknown and needs to be estimated. In

general, with single measurements, fε cannot be identified. Identification of fε can be restored

however if we have two or more independent noisy measurements of the variable X∗. More

specifically suppose that we observe

Xi,j = X∗i + εi,j for j = 1, . . . , Ni and i = 1, . . . , n,

where X∗i is the ‘true’ observation and {εi,j} are independently distributed errors from the

same error density fε. We thus have Ni repeated measurements of each variable X∗i . We shall

assume that the number of repeated observations is bounded above (i.e., Ni ≤ C <∞ for all i).

The boundedness assumption is not critical for our theory but allows us to simplify the proofs

considerably. Since in practice the number of repeated measurements is small anyway, we do

not pursue the generalization to growing C.

We impose the following assumptions on fε.

Assumption 3. (i) fε is symmetric around 0. (ii) There exist some δ ∈ (0, 1) and M < ∞

such that P (|ε| ≥ L) ≤M(logL)−1/δ for all L > 0.

Assumption 3 (i) implies that f ft
ε is real-valued for all t ∈ R and can be estimated as follows

(Delaigle, Hall and Meister, 2008):

f̂ ft
ε (t) =

∣∣∣∣∣∣ 1
N

n∑
i=1

Ni∑
j1,j2=1

exp{it(Xi,j1 −Xi,j2)}

∣∣∣∣∣∣
1/2

,
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where N = 1
2
∑n
i=1Ni(Ni− 1) and we ignore all the observations with Ni = 1. For more general

situations where fε could be asymmetric, we can still estimate the Fourier transform f ft
ε via

Kotlarski’s identify as in Li and Vuong (1998) and Comte and Kappus (2015). See also Li

(2002) and Schennach (2004b) for extensions to regression models. The estimators by Li and

Vuong (1998) and Comte and Kappus (2015) take more complicated forms and the asymptotic

analysis using these estimators is beyond the scope of this paper.9

Assumption 3 (ii) is a mild condition on the tail decay of fε and is required for establishing

uniform convergence of f̂ ft
ε to f ft

ε over some expanding interval. In particular, it is a much weaker

condition than assuming bounded moments for ε.

Using the estimator f̂ ft
ε in place of f ft

ε , we can estimate the coefficients ck,l in (6) using the

linear wavelet basis {φjn;k}|k|≤Ln as

c̃k,l = 1
(2π)2

〈
f̂ ft
XW

f̂ ft
ε

, ψft
k ψ

ft
l

〉
, (19)

where f̂ ft
XW (t, s) = 1

N

∑n
i=1

∑Ni
j=1 e

i(tXi,j+sWi). Based on c̃k,l, the estimator m̂ in (8) is defined in

the same manner as in the previous sections.

As in the last section, we consider both the cases where f ft
ε is ordinary smooth and super-

smooth. For the ordinary smooth case, we add the following assumption.

Assumption 4. f ft
ε satisfies (13) for some α > 1/2. Furthermore, s > α− 1/2.

In the context of (univariate) density deconvolution, Delaigle, Hall and Meister (2008) imposed

a similar condition in order to show that the blind deconvolution with the optimal smoothing

parameter achieves the minimax optimal rate of convergence under the pointwise mean-squared

error criterion. It should be noted however that the smoothness class in Delaigle, Hall and

Meister (2008) is different from the one we impose here. In particular the smoothness parameter

s in our paper roughly corresponds to ‘β−1’ in Delaigle, Hall and Meister (2008). The following

theorem shows that the estimation of fε does not change the convergence rate attained by the

estimator m̂ for the case of known fε.

Theorem 2. Suppose that Assumptions 1-4 hold. Consider the estimator m̂ in (8) using the

linear wavelets {φjn;k}|k|≤Ln of order greater than s1 and the estimated coefficients c̃k,l in (19).

9Another interesting extension, suggested by an anonymous referee, is for the case where X1 = X∗ + ε1 but
a repeated measurement is generated by X2 = a + bX∗ + ε2 and both ε1 and ε2 are drawn from the identical
symmetric density fε. The parameters a and b can be estimated by the method of moments (see, e.g., Fuller,
1987). Also, based on the knowledge of a and b, f ft

ε may be identified from

f ft
ε (t) =

∣∣∣∣f ft
Z3 (t̃) · f ft

Z1 (t̃)
f ft
Z2

(t̃)

∣∣∣∣1/2

,

where t̃ = 1+b
2b t, Z1 = X2−a−bX1, Z2 = X2−a+bX1, and Z3 = 2b

1+b (X1 +X2−a). Under additional conditions,
we can expect that the estimator of f ft

ε converges fast enough to guarantee the same conclusions as in Theorems
2 and 3 below.
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Then for s ∈ [2,∞), any choice of Jn satisfying Jn → ∞ and J4α
n {Jn ∧ logn}/n → 0 achieves

the convergence rate in (12). Also, for s = ∞, any choice of Jn satisfying Jn → ∞ and

Jn = O(logn)τ for some τ <∞ achieves the convergence rate in (12).

The condition J4α
n {Jn∧logn}/n→ 0 is not stringent since as shown in Section 3.1, the optimal

choice of Jn for ordinary smooth fε with s < ∞ is Jn = O(n1/(2(s+s1+α)+1)). Thus, Theorem

2 demonstrates that we can achieve the optimal rate of convergence using blind deconvolution

under a few additional assumptions. A similar remark also holds for the case when s =∞.

Clearly Assumption 4 fails if fε is too smooth, i.e., α ≥ s + 1/2. In this case the estimation

error for fε is not negligible, and we will not achieve the convergence rate of m̂ in Section 3.1

when fε is assumed to be known. Indeed similar arguments as in the proof of Theorem 1 allow

us to bound the variance term of m̂ as O(J2α
n /
√
n). Then the optimal choice of Jn is given by

Jn = O(n1/(4α+2s1)), which implies the convergence rate

‖m̂−m‖2 = Op(n−s1/(4α+2s1)).

However, as noted by Delaigle, Hall and Meister (2008), the strategy of recovering f ft
ε from the

differences Xi,j1 −Xi,j2 may not be optimal in this context and alternative approaches such as

Li and Vuong’s (1998) estimator, as modified by Comte and Kappus (2015), are expected to

achieve faster rates. At the same time the estimator based on Li and Vuong (1998) is expected

to do slightly worse when Assumption 4 does hold (i.e., s > α − 1/2); see for instance the

discussion in Comte and Kappus (2015, Section 3.2). The asymptotic analysis for the case of

α ≥ s+ 1/2 using Li and Vuong’s (1998) estimator is more involved and left for future research.

We now consider the case of supersmooth fε. Because of the slow rate of convergence, the

variance term is dominated by the bias and consequently blind deconvolution does not affect

the convergence rates. We formalize this in the next theorem.

Theorem 3. Suppose that Assumptions 1-3 hold and fε satisfies (16). Consider the estimator

m̂ in (8) using the linear wavelets {φjn;k}|k|≤Ln of order greater than s1 and the estimated

coefficients c̃k,l in (19). Then for s ∈ [2,∞), any choice of Jn satisfying Jn → ∞ and Jn =

(cb logn)1/σ for some cb ∈ (0, 1/4d1) achieves the convergence rate in (17). Also, for s =∞, any

choice of Jn satisfying Jn → ∞ and Jn = (cb logn)1/(σ∧γ) for some cb ∈ (0, 1/(2d1 + 2(c ∧ d1))

achieves the convergence rate in (18).

Compared to the results in Section 3.2, we note that Theorem 3 imposes more restrictions

on the values Jn can take to achieve the same rate of convergence. For example, for the case of

s < ∞, we require Jn = (cb lnn)1/σ with cb < 1/(4d1) for blind deconvolution whereas we only

need cb < 1/(2d1) if fε were known. This distinction is of course not relevant if we are only
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interested in the rate of convergence, though it might matter in practical applications. Delaigle,

Hall and Meister (2008) also impose the same restrictions on the values that cb can take in

order to arrive at the similar conclusion that blind deconvolution does not affect the rate of

convergence if the error distribution is supersmooth.

5. Conclusion

In this article we have proposed a nonparametric estimation method that simultaneously deals

with endogeneity and classical measurement error. Employing the wavelet approach enables us

to use a single smoothing parameter, which is convenient for empirical applications. We have

also characterized how the presence of measurement error and/or endogeneity slows down the

convergence rate of the estimator. In some cases, measurement error can drastically reduce the

rate of convergence from a polynomial to a log rate. For example, this can happen when the

measurement errors are normally distributed. Consequently, neglecting the measurement error

may lead to biased estimates and an overly optimistic belief about the uncertainty in the model.

Indeed the slow rates of convergence speak to the real difficulty of nonparametric estimation in

this context unless one is comfortable with imposing additional assumptions.
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Appendix A. Mathematical Appendix

Hereafter, “w.p.a.1” means “with probability approaching one”. Also let ‖f‖p = (
∫
|f(x)|pdx)1/p

denote the Lp-norm of a function f : Rd → C.

A.1. Proof of Lemma 2. The proof is a generalization of Pensky and Vidakovic (1999, The-

orem 3). Denote k = (k1, . . . , kd)′, x = (x1, . . . , xd)′, and φ(d)(x) =
∏d
h=1 φ(xh). Without

loss of generality we may assume η ≤ d. Since we assume that φ is a father wavelet of order

q ≥ (1 + η)/2, it follows supx∈Rd{|x|(1+η)/2|φ(d)(x)|} <∞. Thus we obtain

|k|(1+η)/2|cjn;k| ≤ 2jnd/2
∫
|(2jnx− k)− 2jnx|(1+η)/2|φ(d)(2jnx− k)||f(x)|dx

≤ Cη2jnd/2 sup
x∈Rd
{|x|(1+η)/2|φ(d)(x)|}

∫
|f(x)|dx

+Cη2jn(1+η−d)/2 sup
x∈Rd
{|x|(1+η)/2|f(x)|} ‖φ‖d1

≤ C2jnd/2,

where the second inequality follows from |(2mx − k) − 2mx|(1+η)/2 ≤ Cη{|2mx − k|(1+η)/2 +

|2mx|(1+η)/2} for some constant Cη > 0 that depends only on η. Therefore, it holds

d∑
h=1

∑
|kh|≥Ln

|cjn;k|2 ≤ C22jnd
d∑

h=1

∑
|kh|≥Ln

|k|−(1+η) = O(2jnd/Lηn),

where the equality follows from |k|−1 ≤ d−1/2∏d
i=1 |ki|−1/d.

A.2. Proof of Theorem 1. Since the proof is similar, we only show the statement for the

mildly ill-posed case (i.e., s ∈ [2,∞) and ρn = O(Jsn)). In this case, we show ‖m̂−m‖2 =

Op
(
J−s1
n + ζnJ

s
n(Jn/n)1/2

)
.

Define mn =
∑
|k|≤Ln 〈m,φjn;k〉φjn;k and rn =

∑
|l|≤Ln 〈r, φjn;l〉φjn;l. At the end of this proof

we shall show that

sup
ν∈L(n)

φ
:‖ν‖2=1

∥∥∥(Â−An)ν
∥∥∥

2
= Op

(
ζn(Jn/n)1/2

)
. (20)

Assumption 2 (ii) implies inf
ν∈L(n)

φ
:‖ν‖2=1 ‖Aν‖2 ≥ ρ−1

n for all n large enough. Assumption 2

(iii) implies sup
ν∈L(n)

φ
:‖ν‖2=1 ‖(A−An)ν‖2 = Op(J−(s+s1)

n ). Thus, the condition ρn = O(Jsn)

guarantees

inf
ν∈L(n)

φ
:‖ν‖2=1

‖Anν‖2 ≥ ρ
−1
n /2, (21)

for all n large enough. Combining this with (20) and ρnζn(Jn/n)1/2 → 0, we have

inf
ν∈L(n)

φ
:‖ν‖2=1

∥∥∥Âν∥∥∥
2
≥ ρ−1

n /4, w.p.a.1. (22)
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Thus, the inverse operators Â−1 and A−1
n of Â and An exist w.p.a.1 over the space L(n)

φ , and

this allows us to write m̂ = Â−1r̂ w.p.a.1.

By the triangle inequality,

‖m̂−mn‖2 ≤
∥∥∥A−1

n rn −mn

∥∥∥
2

+
∥∥∥Â−1r̂ −A−1

n rn
∥∥∥

2
= ‖T1‖2 + ‖T2‖2 .

First, consider the term T1. Note that

‖T1‖2 ≤ 2ρn ‖rn −Anmn‖2

≤ 2ρn {‖rn − r‖2 + ‖A(m−mn)‖2 + ‖(A−An)mn‖2} ,

where the first inequality follows from (21) and the second inequality follows from the triangle

inequality. Lemmas 1 and 2 with r ∈ S(R, s + s1) (Assumption 1 (i)), and the condition

J
2(s+s1)+1
n /Lηn → 0 imply

‖r − rn‖2 ≤
∥∥∥r − P̄jnr∥∥∥2

+
∥∥∥P̄jnr − rn∥∥∥2

= O(J−(s+s1)
n ).

Similarly, we have ‖m−mn‖2 = O(J−s1
n ) and by the Cauchy-Schwarz inequality,

sup
‖ν‖2=1

‖(A−An)ν‖2 ≤
∥∥∥fX∗,W − f (n)

X∗,W

∥∥∥
2

= O(J−sn ).

Thus, we have

‖A(m−mn)‖2 = ‖(A−An)(m−mn)‖2

≤ sup
‖ν‖2=1

‖(A−An)ν‖2 ‖m−mn‖2 = O(J−(s+s1)
n ),

where the first equality follows from An(m−mn) = 0 (because m−mn belongs to the orthogonal

space of L(n)
φ ). Also, Assumptions 2 (ii) and (iii) guarantee ‖(A−An)mn‖2 = O(J−(s+s1)

n ).

Combining these results, we obtain ‖T1‖2 = O(J−s1
n ).

Next, consider the term T2. By the triangle inequality and (22),

‖T2‖2 ≤
∥∥∥Â−1(r̂ − rn)

∥∥∥
2

+
∥∥∥Â−1(An − Â)A−1

n rn
∥∥∥

2

≤ 4ρn
{
‖r̂ − rn‖2 +

∥∥∥(An − Â)(A−1
n rn)

∥∥∥
2

}
,

w.p.a.1. By analogous arguments as in the proof of Meister (2009, Proposition 2.4) along with

Assumption 1(ii), it follows ‖r̂ − rn‖2 = Op((Jn/n)1/2). Also, by earlier arguments,
∥∥A−1

n rn
∥∥

2 ≤

‖mn‖2 +‖T1‖2 = Op(1). Combining this with (20) and ρn = O(Jsn) (Assumption 2 (ii)), we have

‖T2‖2 = Op
(
ζnJn(Jn/n)1/2

)
. Therefore, the conclusion follows.
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It remains to show (20). Pick any ν ∈ L(n)
φ satisfying ‖ν‖2 = 1. Note that ν ∈ L(n)

φ is

expanded as ν =
∑
|k|≤Ln νkφjn;k with νk = 〈ν, φjn;k〉 and we can write

∥∥∥(Â−An)ν
∥∥∥2

2
=

∑
|l|≤Ln

∣∣∣∣∣∣
∑
|k|≤Ln

(ĉk,l − ck,l)νk

∣∣∣∣∣∣
2

.

Define f̂ ft
XW (t1, t2) = 1

n

∑n
i=1 e

i(t1Xi+t2Wi). Then by the definition of ĉk,l,

∑
|k|≤Ln

(ĉk,l − ck,l)νk =
∑
|k|≤Ln

1
(2π)2

∫ ∫
f̂ ft
XW (t1, t2)− f ft

XW (t1, t2)
f ft
ε (t1) φft

jn;k(t1)φft
jn;l(t2)νkdt1dt2

= 1
(2π)2

〈∫
f̂ ft
XW (t1, ·)− f ft

XW (t1, ·)
f ft
ε (t1) ν̃ft(t1)dt1, φft

jn;l(·)
〉
,

where ν̃ =
∑
|k|≤Ln νkφjn;k. Using the facts φft

jn;l is compactly supported on Cn ≡ [−Jn, Jn] for

all l ∈ Z, and the orthogonality of the wavelet series, it follows∑
l∈Z

〈
h, φft

jn;l

〉2
=
∑
l∈Z

〈
hI{· ∈ Cn}, φft

jn;l

〉2
≤ (2π) ‖hI{· ∈ Cn}‖22, where the inequality follows

from the fact that we left out the nonlinear part {ϕj′;k}j′≥j,k∈Z of the wavelet basis. Thus, we

have

∑
|l|≤Ln

∣∣∣∣∣∣
∑
|k|≤Ln

(ĉk,l − ck,l)νk

∣∣∣∣∣∣
2

≤ 1
(2π)3

∫
t2∈Cn

∣∣∣∣∣
∫
f̂ ft
XW (t1, t2)− f ft

XW (t1, t2)
f ft
ε (t1) ν̃ft(t1)dt1

∣∣∣∣∣
2

dt2.

By taking expectation,

E
∥∥∥(Â−An)ν

∥∥∥2

2
≤ E

 2
(2π)3n

∫
t2∈Cn

∣∣∣∣∣
∫
ei(t1X+t2W ) ν̃

ft(t1)
f ft
ε (t1)dt1

∣∣∣∣∣
2

dt2

 = O(ζ2
nJn/n),

where the equality follows from ‖ν̃‖2 = ‖ν‖2 = 1, and the fact that ν̃ft is compactly supported

on Cn since ν̃ ∈ L(n)
φ . This proves (20).

A.3. Proof of Theorem 2. For simplicity we restrict attention to the case Ni = 2. For the

more general situation where Ni is arbitrary but bounded above by C, the proof follows by

similar arguments after accounting for the dependence structure in f̂ ft
ε (t). As before, we prove

the case of s ∈ [2,∞). The proof for the case of s = ∞ follows along similar lines but is

more straightforward. Recall the notation from the proof of Theorem 1. In addition, define

ξ(t) = (f ft
ε (t))2 and ξ̂(t) = (f̂ ft

ε (t))2. The claim follows from the proof of Theorem 1 if we show

that for all ν ∈ L(n)
φ satisfying ‖ν‖2 = 1,

∑
|l|≤Ln

∣∣∣∣∣∣
∑
|k|≤Ln

(c̃k,l − ĉk,l)νk

∣∣∣∣∣∣
2

= op(J1+2α
n /n).
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Now by similar arguments as in the proof of Theorem 1, it follows

∑
|l|≤Ln

∣∣∣∣∣∣
∑
|k|≤Ln

(c̃k,l − ĉk,l)νk

∣∣∣∣∣∣
2

≤ (2π)−3
∫
t2∈Cn

∣∣∣∣∫ hn(t1,t2)ν̃ft(t1)dt1
∣∣∣∣2 dt2,

where

hn(t1, t2) = f̂ ft
XW (t1, t2){ξ̂−1/2(t1)− ξ−1/2(t1)}I{t1, t2 ∈ Cn}.

Now, denoting In =
∫
t2∈Cn

∣∣∣∫ hn(t1,t2)ν̃ft(t1)dt1
∣∣∣2 dt2, the claim follows if we show that In =

op(J1+2α
n /n).

Notation: For the remainder of the proof we shall the drop the functional arguments t1, t2.

These are to be inferred from the definition of the function and the context.

We now prove the following equalities which are used later in the proof:∫
Cn

∣∣∣(ξ̂1/2 − ξ1/2)ν̃ft
∣∣∣2 = Op(J2α

n /n) (23)

sup
|t|≤Jn

∣∣∣∣∣ξ(t)ξ̂(t)

∣∣∣∣∣ ≤ 1 + op(1) (24)

First, we show (23). Expanding the expectations yields that E
[∫
Cn

∣∣∣(ξ̂ − ξ)ν̃ft
∣∣∣2] = O(n−1).

Thus, the elementary algebraic inequality |ξ̂1/2 − ξ1/2| ≤ ξ−1/2|ξ̂ − ξ| and Assumption 4 imply

E

[∫
Cn

∣∣∣(ξ̂1/2 − ξ1/2)ν̃ft
∣∣∣2] ≤ (min

t∈Cn
|f ft
ε (t)|

)−2
E

[∫
Cn

∣∣∣(ξ̂ − ξ)ν̃ft
∣∣∣2] = O(J2α

n /n), (25)

and the claim in (23) follows. Next, to show equation (24), we use Theorem 6.3 of Yukich

(1987) which assures that for Jn = O(nc) for some c > 0 and under Assumption 3 (ii),

sup|t|≤Jn
∣∣∣ξ̂(t)− ξ(t)∣∣∣ = Op(

√
logn/n). Combined with the rate condition J4α

n logn/n → 0,

this ensures
(
min|t|≤Jn

∣∣∣ξ̂(t)∣∣∣)−1
= Op(J2α

n ). Hence we obtain

sup
|t|≤Jn

∣∣∣∣∣ξ(t)ξ̂(t)

∣∣∣∣∣ ≤ 1 + sup
|t|≤Jn

∣∣∣∣∣ ξ̂(t)− ξ(t)ξ̂(t)

∣∣∣∣∣ = 1 +Op

(J4α
n logn
n

)1/2
 = 1 + op(1).

This proves the claim in (24).

We now show In = op(J1+2α
n /n). Recalling f ft

XW = f ft
X∗W f

ft
ε , we may write

In ≤ 2
∫
Cn

∣∣∣∣∫
Cn

(f̂ ft
XW − f ft

XW )(ξ̂−1/2 − ξ−1/2)ν̃ft
∣∣∣∣2 + 2

∫
Cn

∣∣∣∣∣
∫
Cn

f ft
X∗W

ξ̂1/2
(ξ̂1/2 − ξ1/2)ν̃ft

∣∣∣∣∣
2

,

= I1n + I2n.

First consider the term I2n, which can be expanded using Cauchy-Schwarz inequality within the

inner integral as
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I2n ≤ 2

∫
Cn×Cn

∣∣∣∣∣f ft
X∗W

ξ1/2

∣∣∣∣∣
2
(∫

Cn

∣∣∣(ξ̂1/2 − ξ1/2)ν̃ft
∣∣∣2 ξ
ξ̂

)
.

By (23) and (24) we have that∫
Cn

∣∣∣(ξ̂1/2 − ξ1/2)ν̃ft
∣∣∣2 ξ
ξ̂

= Op(J2α
n /n).

Denote |t| =
(
t21 + t22

)1/2 and choose some δ such that 0 < 2δ < s − α + 1/2 . Indeed this is

possible under Assumption 4. Additionally let Ωn = {(t1, t2) : t1, t2 ∈ [−Jn,−1] ∪ [1, Jn]}. Now

∫
Cn×Cn

∣∣∣∣∣f ft
X∗W (t1, t2)
ξ1/2(t1)

∣∣∣∣∣
2

dt1dt2 =
∫ 1

−1

∫ 1

−1

∣∣∣∣∣f ft
X∗W (t1, t2)
ξ1/2(t1)

∣∣∣∣∣
2

dt1dt2 +
∫

Ωn

∣∣∣∣∣f ft
X∗W (t1, t2)
ξ1/2(t1)

∣∣∣∣∣
2

dt1dt2

≡ I21n + I22n.

Clearly I21n = O(1) by the facts
∥∥∥f ft
X∗W

∥∥∥
∞
< 1 and ξ1/2 > 0 by Assumption 1 (iii). Next observe

that

I22n =
∫

Ωn

∣∣∣∣∣∣∣
{

1 + |t|2
}s/2

f ft
X∗W (t1, t2)

{
1 + |t|2

}−s/2
|t1|α

|t1|α ψft(t1)

∣∣∣∣∣∣∣
2

dt1dt2

≤
∫

Ωn

∣∣∣∣∣{1 + |t|2
}s/2

f ft
X∗W (t1, t2) |t2|

−δ |t1|α+δ−s

|t1|α ψft(t1)

∣∣∣∣∣
2

dt1dt2

≤ CJ2{α+δ−s}∧0
n

∫
Ωn

{
1 + |t|2

}s ∣∣∣f ft
X∗W (t1, t2)

∣∣∣2 dt1dt2 = O(J2{α+δ−s}∧0
n ).

The first inequality follows from Young’s inequality which assures for any t ∈ R2 ,{
1 + |t|2

}−s/2
≤
(
1 ∧ |t2|δ

)−1 (
1 ∧ |t1|s−δ

)−1
.

The second inequality uses the fact |t1|α ψft(t1) ≥ c > 0 for all |t1| ≥ 1 by the assumption of

ordinary-smooth error density. Finally the equality follows from Assumption 1(i). Combining

the above we have thus shown

I2n = Op

(
J

2α+(2{α+δ−s}∧0)
n

n

)
= op

(
J2α+1
n

n

)

where the second equality follows since 2(α+ δ − s)− 1 < 0 under the given conditions on δ.
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Next consider the term I1n which can be expanded as

I1n = 2
∫
Cn

∣∣∣∣∣∣
∫
Cn

(f̂ ft
XW − f ft

XW )
ξ

(ξ1/2 − ξ̂1/2)
(
ξ

ξ̂

)1/2

ν̃ft

∣∣∣∣∣∣
2

≤ 2
(∫
Cn×Cn

∣∣∣ξ−1(f̂ ft
XW − f ft

XW )
∣∣∣2)(∫

Cn

∣∣∣(ξ̂1/2 − ξ1/2)ν̃ft
∣∣∣2 ξ
ξ̂

)

≤ Op

(
J2α
n

n

)
·
∫
Cn×Cn

∣∣∣∣∣
(
f̂ ft
XW − f ft

XW

ξ

)∣∣∣∣∣
2

,

where the first inequality follows from an application of the Cauchy-Schwarz inequality over

the inner integral, and the second inequality follows from (23) and (24). Now it follows after

expanding the expectations that

E

[∫
Cn×Cn

|f̂ ft
XW − f ft

XW |2
]

= O(J2
n/n).

Consequently we obtain

∫
Cn×Cn

∣∣∣∣∣
(
f̂ ft
XW − f ft

XW

ξ

)∣∣∣∣∣
2

= Op

(
J4α+2
n

n

)
.

Substituting the above in the expression for I1n, we obtain I1n = op(J1+2α
n /n) under the rate

condition J4α+1
n /n→ 0. Therefore, the conclusion follows.

A.4. Proof of Theorem 3. The proof is similar to that of Theorem 2 with a few changes.

Instead of the bound in (23), we use the following

∫
Cn

∣∣∣∣∣ ξ̂1/2 − ξ1/2

ξ1/2

∣∣∣∣∣
4

= Op

(
Jn exp{4d1J

σ
n}

n

)
. (26)

The result (26) follows by a similar argument for (23) after applying the elementary inequality

|ξ̂1/2− ξ1/2|2 ≤ 2|ξ̂− ξ|. Next we note that the result in (24) is also applicable here by a similar

reasoning under the rate condition Jn = O(logn). Furthermore, by expanding the expectation

we obtain

E

∫
Cn×Cn

∣∣∣∣∣ f̂ ft
XW − f ft

XW

ξ1/2

∣∣∣∣∣
4
 =

(
min
t∈Cn
|f ft
ε (t)|

)−4
E

[∫
Cn×Cn

∣∣∣f̂ ft
XW − f ft

XW

∣∣∣4]

= O

(
J2
n exp{4d1J

σ
n}

n2

)
. (27)

So by Cauchy-Schwarz inequality and the fact ‖ν̃‖2 = 1, the term In may be expanded as

In ≤ 2
∫
Cn×Cn

∣∣∣∣∣ f̂ ft
XW − f ft

XW

ξ1/2

∣∣∣∣∣
2 ∣∣∣∣∣ ξ̂1/2 − ξ1/2

ξ1/2

∣∣∣∣∣
2
ξ

ξ̂
+ 2

∫
Cn×Cn

|f ft
X∗W |2

∣∣∣∣∣ ξ̂1/2 − ξ1/2

ξ1/2

∣∣∣∣∣
2
ξ

ξ̂
.
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From (26), (24) and (27), straightforward algebra enables us to show In = Op(n−ε) for some

ε > 0. However, this term is clearly dominated by the bias term of order J−s1
n . Therefore, the

conclusion follows.
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Appendix B. Vector case

In the main text, we concentrate on the case where both X and W are scalar for simplicity.

However, it is possible to extend our estimation approach to the case where X andW are vector

valued. For example, if X and W are bivariate, we need to prepare an orthonormal basis for

L2(R2). Take some j0 ∈ N. Using the basis {φj0;k, ϕj′;k}j′≥j0,k∈Z defined in the last subsection,

a multi-resolution formula for L2(R2) is given by (indeed we employed such an expansion in (4)

for fX∗W )

f(x1, x2) =
∑
k,l∈Z

cj0;k,lφj0;k,l(x1, x2) +
3∑
d=1

∑
j′≥j0

∑
k,l∈Z

d
(d)
j′;k,lϕ

(d)
j′;k,l(x1, x2),

where

φj;k,l(x1, x2) = φj;k(x1)φj;l(x2), ϕ
(1)
j;k,l(x1, x2) = φj;k(x1)ψj;l(x2),

ϕ
(2)
j;k,l(x1, x2) = ϕj;k(x1)φj;l(x2), ϕ

(3)
j;k,l(x1, x2) = ϕj;k(x1)ψj;l(x2).

By using the linear wavelet space spanned by {φjn;k,l}|k|,|l|≤Ln , we can also construct the series

estimator of m in the bivariate case. An extension to the case of d-dimensional X andW follows

in the same manner.

It is also possible to extend our estimation approach to the case where the model contains

some additional exogenous explanatory variables Z, i.e.,

Y = m(X∗, Z) + U, E[U |W,Z] = 0.

In this case, similar to Horowitz (2011), we can modify the estimator m̂ in (8) by introducing

kernel weights. In particular, to estimate m(·, z) at a given z, we replace âk in (5) and ĉk,l in

(7) with

âk(z) = 1
n

n∑
i=1

K

(
Zi − z
hn

)
Yiψk(Wi), ĉk,l(z) = 1

n

n∑
i=1

K

(
Zi − z
hn

)
ξk(Xi)ψl(Wi),

respectively, where K is a kernel function and hn is a bandwidth. Then the estimator m̂(·, z) is

given by the same formula as in (8) for each z.
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