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Abstract

We introduce a new stylized fact: the hump-shaped behavior of slopes and coefficients of

determination as a function of the aggregation horizon when running (forward/backward) pre-

dictive regressions of future excess market returns onto past economic uncertainty (as proxied by

market variance, consumption variance, or economic policy uncertainty). To justify this finding

formally, we propose a novel modeling framework in which predictability is specified as a prop-

erty of low-frequency components of both excess market returns and economic uncertainty. We

dub this property scale-specific predictability. We show that classical predictive systems imply

restricted forms of scale-specific predictability. We conclude that for certain predictors, like eco-

nomic uncertainty, the restrictions imposed by classical predictive systems may be excessively

strong.
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1 Introduction

The introduction to the 2013 Nobel for Economic Sciences states: “There is no way to predict

whether the price of stocks and bonds will go up or down over the next few days or weeks. But it is

quite possible to foresee the broad course of the prices of these assets over longer time periods, such

as the next three to five years...”

Hard-to-detect predictability over short horizons is generally viewed as the result of a low signal-

to-noise problem. The magnitude of shocks to returns swamps predictable variation in expected

stock returns. The aggregation of stock returns over longer horizons, however, operates as a signal

extraction process uncovering predictability.

Existing work has highlighted the empirical usefulness of aggregating both the regressand (excess

market returns) and the regressor (the market return predictor). Specifically, Bandi and Perron

(2008) have suggested running adapted (to time t information) regressions of forward aggregated

returns (i.e., long-run future returns) on backward aggregated predictors (long-run past market

variance, in their case), rather than on raw predictors, as common in the literature. The use of

forward/backward aggregation was shown to lead to a strengthening of variance-induced predictabil-

ity over the long-run, the 10-year horizon being the longest prediction horizon considered in that

paper.1

We make three contributions. First, we show that the relation between future excess market

returns and past uncertainty, as proxied by market variance (Bandi and Perron, 2008), consumption

variance (Tamoni, 2011) and economic policy uncertainty (EPU, henceforth; see Baker, Bloom and

Davis, 2016), is hump-shaped. The forward/backward regressions are conducted in this paper over

horizons of aggregation reaching 20 years, thereby doubling the 10-year horizon spanned in the

existing work. The peak of predictability is around 16 years. Estimated slopes and R2s feature

increasing (resp. decreasing) dynamics before (resp. after) the 16-year mark. Around 16 years, the

reported R2s may reach a value of about 55%.

1The long-run predictability of past variance has been reported to be robust to the use of alternative variance
notions (Tamoni, 2011, uses consumption variance) and the dynamics of the variance process (Sizova, 2013, assumes
long memory in variance). Among other stylized facts regarding stock returns, such predictability has also been
justified in the context of an asset pricing model with loss aversion (see Bonomo, Garcia, Meddahi, and Tedongap,
2015).
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Second, we show that a traditional predictive system in which excess market returns are predicted

by a persistent uncertainty process would find it hard to replicate the structure and magnitude of

the reported hump-shaped behavior upon two-way aggregation. Theory and simulations lead to this

conclusion. If a traditional predictive system is an unlikely data generating process for the reported

result, what would a more likely data generating process look like?

In its third contribution, the paper uses a data generating process in which returns and un-

certainty are interpreted as linear aggregates of components operating over different frequencies.

Predictability is not modeled directly on the raw series. Rather, it is modeled as a property of

individual return and uncertainty components. We dub this property scale-specific predictabil-

ity. Theoretically, we show that should components with cycles of suitable lengths be linked by

a predictability relation, then two-way (forward/backward) aggregation would yield hump-shaped

patterns in estimated slopes and R2s. Empirically, after filtering excess returns and uncertainty

components, we find predictability between components with cycles between 8 and 16 years. In

agreement with theory, this type of scale-specific predictability should yield, upon two-way aggre-

gation, a hump-shaped pattern with a peak at 16 years. This outcome is, as discussed above,

consistent with data.

We show that the notion of scale-specific predictability is general in the sense that it would also

apply to classical predictive systems. However, in the case of classical predictive systems, scale-

specific predictability would be tightly parametrized across scales. Our proposed approach can,

therefore, be viewed as freeing up the nature of predictability across scales and, as a result, for the

raw series.

We conclude with an asset pricing model with Epstein-Zin recursive preferences which begins

with component-wise structures for consumption growth, dividend growth and their conditional

variance process. Consistent with our empirical findings, the model yields scale-specific risk-return

trade-offs, i.e., linear dependencies between future values of specific components of the (excess)

market return process and past values of the same components of the variance process, as a feature

of its equilibrium. While the model provides an economic channel which justifies our empirical

results regarding the existence of scale-wise dependencies between returns and variances, we view
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the paper’s contribution as being methodological and, as such, broadly applicable to predictors

other than variance. In our final remarks in Section 9, we comment further on this issue.

The evaluation of low-frequency contributions to economic and financial time series has a long

history, one which we cannot attempt to review here. Barring fundamental methodological and

conceptual differences having to do with our assumed data generating process, the approach adopted

in this paper shares features with successful existing approaches.

Beveridge and Nelson (1981) popularized time series decompositions into stochastic trends and

transitory components. We too operate with component-wise decompositions in which the com-

ponents (more than two, in our framework) feature different levels of (calendar-time) persistence.

Comin and Gertler (2006) argue that the common practice, in business-cycle research, of including

longer than 8-year oscillations into the trend (see e.g., Baxter and King, 1999) may be associ-

ated with significant loss of information. Comin and Gertler (2006) decompose a series into a

“high-frequency” component with cycles between 2 and 32 quarters and a “medium-frequency”

component with cycles between 32 and 200 quarters. As emphasized, we focus on a number of

components larger than two, thereby capturing cycles of different length (8 years being the upper

bound of one of these cycles). News arrivals at various frequencies also characterize the multifractal

regime switching approach of Calvet and Fisher (2001, 2007). As we will show below, modeling

(through Wold representations, c.f. Section 3) and identification (through multiresolution filters, c.f.

Section 5) are conducted differently in the present paper. As in Hansen and Scheinkman (2009),

we employ operators to extract low-frequency information (c.f. Section 5). In our case, it is the

low-frequency information embedded in the components. Finally, we show that essential scale-wise

information in the extracted components can be summarized by a finite number of non-overlapping,

“fundamental” points, the result of an econometric process called “decimation”(c.f., again, Section

5). These points can be viewed as being akin to “the small number of data averages” used by Müller

and Watson (2008) to identify low-frequency information in the raw data. In our framework, these

“fundamental” points are scale-specific and their locations correspond to the support of uncorre-

lated innovations over a specific scale. As such, they are particularly useful to formalize our notion

of frequency-specific, or scale-specific, predictability, as shown in Section 6 and in Section 7.
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Scale-wise specifications have proven successful in consumption models to explain the market

risk premium (Ortu, Tamoni and Tebaldi, 2013, and Tamoni, 2011) and define granular notions of

systematic risk through scale-wise betas (Bandi and Tamoni, 2016). This paper formalizes the role

of scale-wise specifications in the context of a new methodological approach to predictability.

The work on stock return predictability is broad. The literature documents return forecastability

induced by financial ratios, see e.g. Campbell and Shiller (1988), Lamont (1998), Kelly and Pruitt

(2013), interest rate variables, see e.g. Fama and Schwert (1977), Fama and French (1989) and

macroeconomic variables, see e.g. Lettau and Ludvigson (2001), Menzly et al. (2004), Nelson (1976)

and Campbell and Vuolteenaho (2004). The notion of return predictability has led to controversy

(e.g., Welch and Goyal, 2008, for a critique, and Cochrane, 2008, for a well-known defense).

We contribute to this extensive literature by emphasizing that traditional predictive systems

may be viewed as restricted versions of the data generating process we propose. We free up implicit

(given standard approaches) links across frequencies and provide a parsimonious framework to

capture predictive relations at different frequencies.

Before continuing, we emphasize that the paper has an Online Supplement containing extensive

simulations, supporting proofs for the pricing model, and additional results. In what follows, when

we refer to the simulations, it should always be understood that they can be found in the Supplement.

Should other results (mentioned in the main text) also be in the Supplement, we will explicitly state

it.

2 Low-frequency humps

The empirical analysis in this paper is based on yearly data from 1930 to 2014. Appendix B describes

the data and the construction of the variables.

We begin by running forward/backward regressions of long-run future excess market returns on

long-run past market variance:

rt+1,t+h = αh + βhvt−h+1,t + ut+1,t+h, (1)
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Figure 1: R2 values obtained by regressing forward-aggregated excess market returns on backward
aggregated market variance (blue line, with square), consumption variance (red line, with circles),
and (squared) economic policy uncertainty (black line, with diamonds) for different levels of aggre-
gation (on the horizontal axis).

where rt+1,t+h and vt−h+1,t are non-overlapping sums of logarithmic excess market returns and

return variances over an horizon of length h years.

Empirical results are displayed in Table 1-Panel A1 (horizons 1 to 10 years) and Table 1-Panel

A2 (horizons 11 to 20 years). Panel A1 and A2 report estimated regression coefficients, adjusted

R2 statistics (in square brackets) and heteroskedasticity and autocorrelation-consistent t-statistics

for the hypothesis that the regression coefficients are zero (in parentheses). The table also reports,

in curly brackets, the rescaled t-statistics recommended by Valkanov (2003).2

[Insert Table 1 about here]

In Table 1-Panel A1, we report horizons of aggregations up to 10 years: future excess market

returns are correlated with past market variance. Dependence increases with the horizon, and is

strong in the long run, with R2 values between 8 and 10 years ranging between 14.7% and 36.1%.

In Table 1-Panel A2 we extend the two-way regressions to horizons between 11 years and 20

years. The R2 values reach their peak (around 55%) at 16 years. The structure of the R2s, before and

after, is roughly tent-shaped (c.f., Fig. 1). Using Valkanov’s rescaled t-statistics as a metric, past

2Valkanov’s methods have become standard tools in the predictability literature. We use them here to evaluate
robustness. We recall, however, that they are justifiable under a classical data generating process (as in Eqs. (2) and
(3)), regressors near unity, and aggregation of the regressand, of the regressor, or both.

6



market variance is a powerful predictor of future excess returns (leading to statistically significant

slope estimates at the 2.5% level) for horizons ranging between 11 and 16 years.3

Replacing market variance with consumption variance and EPU does not modify the previous

results in any meaningful way (see Table 2 and 3). We will therefore not comment on these measures

separately.

[Insert Table 2 and 3 about here]

We argue that classical predictive systems would find it hard to replicate the observed hump-

shaped behavior. This is easy to see in theory. A traditional predictive system (on demeaned

variables) would write:

rt+1 = βvt + ut+1, (2)

vt+1 = ρvt + εt+1, (3)

where ut+1 and εt+1 are possibly cross-correlated, white noise shocks and 0 < ρ < 1.

When aggregating rt+1 forward and vt backward over an horizon h, the theoretical slope of the

regression on forward/backward aggregates becomes βρh, but βρh → 0 as h → ∞.4 Similarly, the

R2 should go to zero with the horizon of aggregation. Fig. 1 shows, instead, that the R2 increases

steeply to about 55% before decreasing equally sharply.5

Leaving theoretical considerations aside, in the simulations we conduct an experiment similar in

3By generating stochastic trends, forward/backward aggregation could lead to spurious (in the sense of Granger
and Newbold, 1974, and Phillips, 1986) predictability. If the reported predictability were induced mechanically by
aggregation, however, contemporaneous (i.e., forward/forward) aggregation should also lead to patterns that are
similar to those found with forward/backward aggregation. In all cases above, one could show that this is not the
case. The corresponding tables are not reported for conciseness but can be provided by the authors upon request.
Simulations confirm the statement. In addition, spurious behavior would prevent a tent-shape pattern from arising
in the slopes, t-statistics and R2s from predictive regressions on the aggregated series because it would likely lead to
upward trending behavior in them. We will later show that tent-shaped patterns are, instead, a natural by-product
of an alternative data generating process.

4The reported “slope” should be intended as the resulting slope from direct forward/backward iterations of the
model. In light of the dependence between the regression residuals obtained by iteration and the backward-aggregated
regressors, this slope does not coincide with the one associated with the true conditional mean of forward-aggregated
regressands onto backward-aggregated regressors. Such slope, for a large aggregation horizon h, would be approxi-
mately β

1+ρ
1
h

. Hence, it would also vanish as h→∞. We thank Nour Meddahi for discussions about this point.
5As shown by Sizova (2013), a “large” ρ, captured by long memory in her framework, would help over horizons over

which the statistics are reported as being monotonically increasing (1 to about 16 years). A long-memory variance
process would, however, find it difficult to capture the hump-shaped dynamics illustrated above and further discussed
below.
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spirit to that in Boudoukh et al. (2008) and show that classical predictive systems are, in any finite

sample, unlikely to generate the tent-shaped dynamics detected in the data. Given carefully-chosen

parameter values for Eq. (2) and Eq. (3), the experiment finds that the percentage of simulated

paths delivering both hump-shaped R2 values and hump-shaped slope values, as well as R2s in excess

of 50%, is about 1.15.

In the next section, we express excess market returns and economic uncertainty as linear combi-

nations of J > 1 uncorrelated, mean-zero components r(j) and v(j) with 1 ≤ j ≤ J . Each component

will be shown to operate over a specific scale or frequency. We will discuss how a predictive system

analogous to Eq. (2) and Eq. (3), but applied to specific component(s) (i.e., a scale-specific predic-

tive system as in Eq. (12) and Eq. 13 of Section 4), may yield the reported hump-shaped pattern(s)

upon two-way aggregation of the raw series. Proposition I in Section 6 will then link scale-specific

predictability to two-way aggregation.

We will view scale-wise predictability as a “spectral” feature of the series. Predictability upon

two-way aggregation will, instead, be interpreted as a way to translate scale-specific predictability

into return predictability for the long haul, with all of its applied implications, including long-run

asset allocation.

3 Scale-specific components

In the following subsection we summarize the basic steps to separate a covariance-stationary process

into orthogonal, scale-specific components. A formalization of this decomposition based on Hilbert

space theory is given in Ortu et al. (2017) (OSTT henceforth). Importantly, since the procedure is

applicable to any process for which a classical Wold representation applies, it can be regarded as

general.

3.1 A scale-wise representation of a covariance-stationary scalar process

Let x = {xt}t∈Z be a covariance-stationary scalar process defined onto the space L2(Ω,F ,P). For

simplicity, but without loss of generality, assume the process has a zero mean.6

6Adding the mean would, of course, simply add a constant to its Wold representation.
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The Wold representation of x states that there exists a unit variance white noise process ε =

{εt}t∈Z such that, for any t in Z,

xt =

+∞∑
k=0

αkεt−k, (4)

where the equality is in the L2-norm and {αk}k∈N0
is a square-summable sequence of real coefficients

with αk = E(xtεt−k).

Let us now introduce scales and define the innovation process at scale j with j ∈ N. If j = 1, the

innovation process at scale 1, denoted by ε(1) =
{
ε
(1)
t

}
t∈Z

, is defined as the process whose terms

are

ε
(1)
t =

εt − εt−1√
2

.

We observe that ε
(1)
t has a zero mean and its variance is equal to 1 for all t. More generally, we

define the innovation process at scale j as the process ε(j) =
{
ε
(j)
t

}
t∈Z

with

ε
(j)
t =

1√
2j

2j−1−1∑
i=0

εt−i −
2j−1−1∑
i=0

εt−2j−1−i

 . (5)

The structure of the shocks ε(j) is that of a Discrete Haar Transform (DHT). Once a scale level

j is set, one may consider the sub-series of ε(j) defined on the support S
(j)
t = {t − k2j : k ∈ Z}.

The process ε(j) is a moving average of order 2j − 1 with respect to the Wold innovations of x. In

calendar time, there is correlation between the variables ε
(j)

t−k2j and ε
(j)

τ−k2j with |t − τ | ≤ 2j − 1.

Nonetheless, each sub-series
{
ε
(j)

t−k2j

}
k∈Z

is a unit variance white noise process on the support S
(j)
t .

Technically, we are decomposing the space Ht(ε) of infinite moving averages whose underlying

white noise process is ε, i.e.,

Ht(ε) =

{
+∞∑
k=0

akεt−k :
+∞∑
k=0

a2k < +∞

}
,
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into orthogonal subspaces7

W(j)
t =

{
+∞∑
k=0

b
(j)
k ε

(j)

t−k2j ∈ Ht(ε) : b
(j)
k ∈ R

}
,

with j = 1, ...,+∞.

We now turn to the Wold coefficients at scale j. The process x is contained in Ht(ε). Therefore,

the decomposition of the space Ht(ε) induces the following representation of x:

xt =

+∞∑
j=1

x
(j)
t , (6)

where each x
(j)
t is the projection of xt on the subspace W(j)

t , with j ∈ N, and the equality is, again,

in the L2-norm. By construction, for a fixed t, the components x
(j)
t are orthogonal to each other.

Since each x
(j)
t belongs to W(j)

t , we have that

x
(j)
t =

+∞∑
k=0

ψ
(j)
k ε

(j)

t−k2j

for some square-summable sequence of real coefficients
{
ψ
(j)
k

}
k∈N0

.

Each coefficient ψ
(j)
k is obtained by projecting x on the linear subspace generated by the (scale-

specific) innovation ε
(j)

t−k2j :

ψ
(j)
k = E

[
xtε

(j)

t−k2j

]
. (7)

Substituting the expression of x
(j)
t into Eq. (6), we arrive at the extended Wold representation of

xt, that is8

xt =

+∞∑
j=1

+∞∑
k=0

ψ
(j)
k ε

(j)

t−k2j . (8)

Eq. (8) is a (type of) Wold representation describing any weakly-stationary time series of interest

as a linear combination of shocks classified on the basis of their arrival time as well as their scale.

It is now interesting to discuss the connection between the coefficients ψ
(j)
k of the extended Wold

7The orthogonal decomposition into subspaces is provided in Theorem 1 of OSTT (2017).
8See Theorem 2 in OSTT (2017).
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representation and the coefficients αk of the classical Wold representation. Exploiting Eq. (7) after

expressing ε
(j)
t as a finite linear combination of variables εt as in Eq. (5) and using Eq. (4), we

obtain

ψ
(j)
k =

1√
2j

2j−1−1∑
i=0

αk2j+i −
2j−1−1∑
i=0

αk2j+2j−1+i

 . (9)

Just like the shocks ε(j)s are Discrete Haar Transforms (DHTs) of the high-frequency shocks in

the classical Wold (see Eq. (5)), the coefficients ψ(j)s are DHTs of the coefficients in the classical

Wold. Since the Wold coefficients αk are unique, it follows that the coefficients ψ
(j)
k are unique, and

time-invariant, functions of the coefficients αh given the Haar structure.

3.2 The multivariate case

Consider the mean-zero, covariance stationary, bi-variate process X =
{

(yt, xt)
′}
t∈Z . Its Wold

representation is, again,

Xt =

yt
xt

 =
+∞∑
k=0

αkεt−k,

where ε =
{

(ut, et)
′}
t∈Z is a bi-variate vector of possibly cross-correlated white noise shocks and

the Wold coefficients αk are, for all k ∈ N0, 2× 2 matrices.

By analogy with the scalar case, we can now write

yt
xt

 =

+∞∑
j=1

+∞∑
k=0

Ψ
(j)
k ε

(j)

t−k2j . (10)

For any j ∈ N, the 2× 2 matrices Ψ
(j)
k are unique Haar transforms of the original Wold coefficients:

Ψ
(j)
k =

1√
2j

2j−1−1∑
i=0

αk2j+i −
2j−1−1∑
i=0

αk2j+2j−1+i

 .

Similarly,

ε
(j)
t =

1√
2j

2j−1−1∑
i=0

εt−i −
2j−1−1∑
i=0

εt−2j−1−i

 . (11)
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We emphasize that the components of the extended Wold in Eq. (10) are uncorrelated. As an

example, take the first and the second scale and notice that the corresponding shocks are defined

as follows:

ε
(1)
t =

ut−ut−1√
2

et−et−1√
2

 , ε
(1)
t−2 =

ut−2−ut−3√
2

et−2−et−3√
2

 , ε
(1)
t−4 =

ut−4−ut−5√
2

et−4−et−5√
2

 , ...

and

ε
(2)
t =

 (ut+ut−1)−(ut−2+ut−3)√
4

(et+et−1)−(et−2+et−3)√
4

 , ε
(2)
t−4 =

 (ut−4+ut−5)−(ut−6+ut−7)√
4

(et−4+et−5)−(et−6+et−7)√
4

 , ...

It is immediate to verify that the first and the second components are orthogonal at all leads and

lags on the supports S
(1)
t and S

(2)
t defined in Subsection 3.1. Formally, for generic components j

and l, we have

E
[
g
(j)

t−m2j
g
(l)

t−n2l
′]

= 0 ∀j 6= l, ∀m,n ∈ N0, ∀t ∈ Z,

where g(j) =

{(
y
(j)
t , x

(j)
t

)′}
t∈Z

.9

We now turn to the focus of our analysis, i.e., scale-specific predictability.

4 Scale-specific predictive systems

Consider a regressand y and a predictor x. Assume y and x are covariance-stationary and, therefore,

admit an extended Wold representation, see Eq. (10). Assume, also, that for some scale 1 ≤ j∗ ≤ J ,

the components of the processes y and x (written in scale-specific times) are such that

y
(j∗)

k2j∗+2j∗
= βj∗x

(j∗)

k2j∗
+ u

(j∗)

k2j∗+2j∗
(12)

x
(j∗)

k2j∗+2j∗
= ρj∗x

(j∗)

k2j∗
+ ε

(j∗)

k2j∗+2j∗
, (13)

where ε
(j∗)

k2j∗+2j∗
is a white noise process in scale time with a zero mean and a variance σ2

εj∗
and

u
(j∗)

k2j∗+2j∗
is a white noise (again, in scale time) forecast error with a zero mean and a variance σ2

uj∗
.

9The orthogonality between components is also a property of the multivariate Wold representation, see Cerreia-
Vioglio et al. (2017) and Theorem 3 in OSTT (2017).
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The shocks u
(j∗)

k2j∗+2j∗
and ε

(j∗)

k2j∗+2j∗
are possibly cross-correlated. Assume all other components

{y(j)
k2j+2j

, x
(j)

k2j+2j
} with j 6= j∗ are mean-zero, finite variance, white noise processes, uncorrelated

with each other.10

Eqs. (12)-(13) define a predictive system on individual layers of the
{

(yt, xt)
′}
t∈Z process to be

contrasted with the traditional system written on the raw series directly.

There is an understanding in the predictability literature that slow-moving predictors should

drive slow-moving conditional means. This relation is, however, hidden by short-term noise. The

noise leads to the appearance of low predictability in the short-run, large long-run predictability be-

ing the outcome of noise reduction through return aggregation. There is also an understanding that

predictors may be imperfect (Pastor and Stambaugh, 2009). In the context of a different conceptual

framework, Eqs. (12) and (13) account for both effects: the link between slow-moving components

(for a large j) and, by being defined on components rather than on noisier (i.e., “imperfect”) raw

series, the “imperfection” of predictors (and regressands).

4.1 Classical predictive systems and scale-specific predictability

Can a typical predictive system yield scale-specific predictability? The answer is positive. However,

classical predictive systems impose tight restrictions on the nature of predictability across scales.

To see this, consider a vector autoregressive process of order 1 (VAR(1)) for the bi-variate process

(yt, xt)
′, i.e., yt

xt

 = A

yt−1
xt−1

+

ut
et

 .

As in Subsection 3.2, the vector (ut, εt)
′ = εt is a vector of possibly cross-correlated white noise

shocks. The standard Wold representation yields

yt
xt

 = I2︸︷︷︸
α0

ut
εt

+ A︸︷︷︸
α1

ut−1
εt−1

+ A2︸︷︷︸
α2

ut−2
εt−2

+ . . .

10Needless to say, we are not excluding the possibility of multiple scale-wise predictive systems at different frequen-
cies. Our emphasis on a single frequency is simply meant to illustrate the potential of a simple scale-specific predictive
structure for yielding patterns found in the data.
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with I2 defining the 2 × 2 identity matrix. Hence, in terms of the notation in Subsection 3.2, we

have αk = Ak.

We can now obtain the same extended Wold representation as in Eq. (10) with the following

coefficients Ψ
(j)
k :

Ψ
(1)
0 =

I2 −A√
2

Ψ
(1)
1 =

A2 −A3

√
2

=
I2 −A√

2
A2,

...

Ψ
(1)
k =

A2k −A2k+1

√
2

=
I2 −A√

2
A2k,

for j = 1. Similarly, for a generic j = 1, 2, . . ., and for k = 0:

Ψ
(j)
0 =

1 +A+ . . .+A2(j−1)−1︸ ︷︷ ︸
2(j−1) terms

−

A2(j−1)
+ . . .+A2j−1︸ ︷︷ ︸

2(j−1) terms


√

2j

=

(
I2 −A2(j−1)

)
(I2 −A)−1 −

(
I2 −A2(j−1)

)
(I2 −A)−1A2(j−1)

√
2j

=

(
I2 −A2(j−1)

)2
(I2 −A)−1

√
2j

.

For j = 1, 2, . . ., and for k > 0:

Ψ
(j)
k =

1 +A+ . . .+A2(j−1)−1︸ ︷︷ ︸
2(j−1) terms

−

A2(j−1)
+ . . .+A2j−1︸ ︷︷ ︸

2(j−1) terms


√

2j
×Ak2j

=

(
I2 −A2(j−1)

)2
(I2 −A)−1

√
2j

×Ak2j .
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Let us now be explicit about the components. Since Ψ
(j)
k = Ψ

(j)
0 ×Ak2

j
, we obtain

(
y
(j)
t , x

(j)
t

)′
=

+∞∑
k=0

Ψ
(j)
k ε

(j)

t−k2j = ε̂
(j)
t +A2j ε̂

(j)

t−2j +A2×2j ε̂
(j)

t−2×2j + ...,

where ε̂(j) = Ψ
(j)
0 ε

(j). Hence, as expected, the structure of the Ψ
(j)
k coefficients is that of a VAR(1)

defined on the support S
(j)
t = {t− k2j : k ∈ Z}. However, this implies

y(j)t
x
(j)
t

 = A2j

y(j)t−2j
x
(j)

t−2j

+ ε̂
(j)
t ,

which is, in our jargon, a scale-wise predictive system.

The above derivations lead to two observations. First, we can rewrite the VAR(1) as an infinite

sum of VAR(1)s with time steps 2j and autoregressive matrix given by A2j . We are, of course,

interested in the case

A =

0 β

0 ρ

 ,

which yields

A2j =

0 β × ρ2j−1

0 ρ2
j

 .

Thus, a classical predictive system implies a tightly parametrized form of scale-specific predictability.

For each scale j, the predictive slope should be β×ρ2j−1. Our approach frees up this restriction and,

therefore, allows for rich dependence structures in the raw series without dispensing with parsimony.

Second, the standard predictive system only allows for scale-specific predictability between iden-

tical scales of the regressand and the regressor, cross-predictability (between two generic scales, say

j and l) being excluded. Just like in the standard predictive system, even in our unrestricted frame-

work lack of cross-predictability is not an assumption. As discussed in Subsection 3.2, it readily

rests on the Haar structure of the scale-specific shocks.
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5 Filtering the scale-specific components

Because the components x
(j)
t are needed to validate scale-specific predictability in the data (c.f.

Section 7), their extraction - the topic of this section - is empirically important.

Let, again, {xt−i}i∈Z be the time series of interest. Consider the case J = 1. We have

xt =
xt − xt−1

2︸ ︷︷ ︸
x̂
(1)
t

+

[
xt + xt−1

2

]
︸ ︷︷ ︸

π
(1)
t

,

which effectively amounts to breaking the series down into a “transitory” component x̂
(1)
t and a

“persistent” component π
(1)
t . Set, now, J = 2. We obtain

xt =
xt − xt−1

2︸ ︷︷ ︸
x̂
(1)
t

+

[
xt + xt−1 − xt−2 − xt−3

4

]
︸ ︷︷ ︸

x̂
(2)
t

+

[
xt + xt−1 + xt−2 + xt−3

4

]
︸ ︷︷ ︸

π
(2)
t

,

which further separates the “persistent” component π
(1)
t into another “transitory” component x̂

(2)
t

and an another “persistent” component π
(2)
t .

The procedure can, of course, be iterated yielding a general expression for the generic component

x̂
(j)
t , i.e.,

x̂
(j)
t =

∑2(j−1)−1
i=0 xt−i

2(j−1)
−
∑2j−1

i=0 xt−i
2j

= π
(j−1)
t − π(j)t ,

where the element π
(j)
t satisfies the recursion

π
(j)
t =

π
(j−1)
t + π

(j−1)
t−2j−1

2
,

with π
(0)
t ≡ xt.

In essence, for every t, {xt−i}i∈Z can be written as a collection of components x̂
(j)
t with different

calendar-time persistence along with a low-frequency trend π
(J)
t . Equivalently, it can be written as
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a telescopic sum

xt =
J∑
j=1

{
π
(j−1)
t − π(j)t

}
︸ ︷︷ ︸

x̂
(j)
t

+ π
(J)
t = π

(0)
t , (14)

in which the filtered components are naturally viewed as changes in information between scale 2j−1

and scale 2j . The scales are dyadic11 and, therefore, enlarge with j. The higher j, the lower the

frequency. In particular, the innovations x̂
(j)
t = π

(j−1)
t −π(j)t become smoother, and more persistent

in calendar time, as j increases. Eq. (14) is the filtered analogue of Eq. (6).

One may also write a convenient representation of the filter using a suitable projection operator.

To illustrate how the operator works, set J = 2. In this case,

π
(2)
t =

xt + xt−1 + xt−2 + xt−3
4

. (15)

and

x̂
(2)
t =

π
(1)
t − π

(1)
t−1

2
=

1

2

(
xt + xt−1

2
− xt−2 + xt−3

2

)

x̂
(1)
t =

π
(0)
t − π

(0)
t−1

2
=

(
xt − xt−1

2

)

x̂
(1)
t−2 =

π
(0)
t−2 − π

(0)
t−3

2
=

(
xt−2 − xt−3

2

)
.

(16)

Stacking now Eq. (15) on top of Eq. (16), we obtain:



π
(2)
t

x̂
(2)
t

x̂
(1)
t

x̂
(1)
t−2


=



1
4

1
4

1
4

1
4

1
4

1
4 −1

4 −1
4

1
2 −1

2 0 0

0 0 1
2 −1

2





xt

xt−1

xt−2

xt−3


. (17)

Denoting by T (2) the (4× 4) matrix in Eq. (17), we notice that T (2) is orthogonal, that is Λ(2) ≡

T (2)
(
T (2)

)>
is diagonal. Moreover, the diagonal elements of Λ(2) are non-vanishing so that

(
T (2)

)−1
=(

T (2)
)> (

Λ(2)
)−1

is well-defined. Importantly, the matrix T (2) permits to construct the filtered com-

ponents by virtue of a simple matrix multiplication.

11The term “dyadic” refers to the fact that the horizon of the scales, i.e. (2j−1, 2j), increases like powers of 2.
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Similarly, by matrix inversion, one could reconstruct the original process given the filtered

components. This is, again, easy to see:



xt

xt−1

xt−2

xt−3


=
(
T (2)

)−1


π
(2)
t

x̂
(2)
t

x̂
(1)
t

x̂
(1)
t−2


. (18)

For an extension of this procedure to any J ≥ 2 and a recursive algorithm for the construction of

the operator matrix T (J), associated to an arbitrary level of persistence J , we refer the reader to

Mallat (1989). The matrix T (J) will be referred to in what follows as the Haar transform (or the

Haar matrix).12

As in Beveridge and Nelson (1981), who initiated the filtering of a time series into a stochastic

trend and a transitory component, we can view the adopted filter as a nonparametric method

to separate the time series into components (more than two, in our case) with different levels of

(calendar-time) persistence operating at different frequencies. In our framework, the components’

shocks are functions of both time and scale.

5.1 Decimation

Decimation is the process of defining non-redundant information, as contained in a suitable number

of non-overlapping “typical” points, in the observed components. Equivalently, it is the process of

sampling in scale time, the type of sampling used in Section 6 and in Section 7 below.

For clarity, let us now return to the case J = 2, as above, with the understanding that identical

considerations apply more generally. Define the vector

Xt = [xt, xt−1, xt−2, xt−3]
ᵀ .

By letting time t vary in the set
{
t = k22 with k ∈ Z

}
one can now define (from T (2)Xt) the dec-

12For any dilation index j, one can also view the components x̂
(j)
t as projections of the original series xt onto the

space spanned by a system of Haar basis with translation parameter k ∈ Z (see Mallat, 1989, and Dijkerman and
Mazumdar, 1994).
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imated counterparts of the calendar-time components, namely
{
x̂
(j)
t , t = k2j with k ∈ Z

}
for j =

1, 2 and
{
π
(2)
t , t = k22 with k ∈ Z

}
.

The decimated points have a similar intuition as the “the small number of data averages”

advocated by Müller and Watson (2008) to identify low-frequency information in the raw data.

In our framework, however, these points are scale-specific and useful to formalize our notion of

frequency-specific predictability. Implicitly, they were used to define scale-wise predictive systems

in Eq. (12) and in Eq. (13).

In multiresolution analysis13 the Haar matrix is routinely used to filter
{
x
(j)

t−k2j

}
j=1,..,J, k∈Z

from

{xt−n}n∈Z. While we also filter the components using the Haar matrix, one methodological novelty

of this work is to also operate in the opposite direction, i.e., to propose a data generating process

which specifies the law of motion of the components
{
x
(j)

t−k2j

}
j=1,..,J, k∈Z

(see Eqs. (12)-(13)) and,

only then, obtains each observation xt as a linear combination of the components themselves (see Eq.

(18)). This is, for instance, how we generate observations from a data generating process allowing

for scale-specific predictability in the simulations.

Before turning to an empirical evaluations of Eqs. (12)-(13), we discuss the implications of

scale-wise predictability for two-way aggregation.

6 The mapping between two-way aggregation and scale-wise pre-

dictive systems

We showed in Section 2 that forward-backward regressions uncover a strong risk-return trade-off

beyond business cycle frequencies. The logic for aggregating both the regressand and the regressor

resides in the intuition according to which equilibrium implications of economic models may hold

for specific, highly persistent components of the variables {y, x} while being hidden by short-term

noise. Aggregation provides a natural way to extract these components, filter out the noise, and

generate a cleaner signal. Using the assumed data generating process, we now formalize this logic.

13See, e.g., Mallat (1989). For applications to economic and financial time series, we refer to the comprehensive
treatments in Ramsey (1999), Percival and Walden (2000), Gençay et al. (2001), and Crowley (2007).
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Proposition I. Assume that, for some j = j∗ , we have

y
(j∗)

k2j∗+2j∗
= βj∗x

(j∗)

k2j∗
,

x
(j∗)

k2j∗+2j∗
= ρj∗x

(j∗)

k2j∗
+ ε

(j)

k2j∗+2j∗
,

whereas
{
y
(j)

k2j
, x

(j)

k2j

}
= 0 for j 6= j∗. We map scale-time (or decimated) observations into calendar-

time observations by using the inverse Haar transform. Then, the forward-backward regressions

yt+1,t+h = βhxt−h+1,t + εt+1,t+h

reach the maximum R2 of 1 over the horizon h = 2j
∗

and, at that horizon, βh = βj∗ .

Proof. See Appendix A.

For simplicity, in Proposition I we dispense with the forecasting shocks ut. Predictability applies

to a specific j∗ component. All other components are set equal to zero.

Proposition I shows that predictability on the components implies predictability upon suitable

aggregation of both the regressand and the regressor. More explicitly, economic relations which

apply to specific, low-frequency components will be revealed by two-way averaging. Adding short-

term or long-term shocks in the form of uncorrelated components
{
y
(j)

k2j
, x

(j)

k2j

}
, for j < j∗ or for

j > j∗, or forecast errors different from zero, would solely lead to a blurring of the resulting

relation upon two-way aggregation. We add uncorrelated components
{
y
(j)

k2j
, x

(j)

k2j

}
for j 6= j∗ in the

simulations.

The proposition also makes explicit the fact that the optimal level of (forward/backward) aggre-

gation should coincide with the horizon over which (frequency-specific) predictability applies. More

specifically, under the above assumptions, if predictability applies to a specific detail with fluctua-

tions between 2j
∗−1 and 2j

∗
periods, an R2 of 1 would be achieved for a level of (forward/backward)

aggregation corresponding to 2j
∗

periods. Before and after, the R2s should display a tent-like

behavior.

Next, we broaden the scope of classical predictability relations in the literature. We turn to

regressions on the extracted components and illustrate the consistency of their findings with those

20



obtained, in Section 2, from two-way aggregation. This consistency, which is an implication of

Proposition I, is further confirmed by simulation.

7 Predictability on the components

We focus on the component-wise relation between equity returns and market variance (Table 1).

The case of consumption variance and EPU is completely analogous (Table 2 and 3) and, as earlier,

we will not comment on it independently.

The filtered components are shown in Figs. 2 and 3. For an explicit interpretation of the j-th

scale in terms of yearly time spans, we refer to Table 4.

[Insert Table 4 about here]
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Scale j=1, [1, 2) years
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1940 1950 1960 1970 1980 1990 2000 2010

-0.4
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0.4

0.6
Scale j=2, [2, 4) years

Years

1940 1950 1960 1970 1980 1990 2000 2010
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-0.2
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Scale j=3, [4, 8) years
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1940 1950 1960 1970 1980 1990 2000 2010
-0.4

-0.2

0
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0.4
Scale j=4, [8, 16) years

Figure 2: Decomposition into components for market returns: the calendar-time observations are
solid blue lines, the scale-time or “decimated” observations are red diamonds.

Table 5 presents pair-wise correlations between individual components, for both series. Virtually

all correlations are small and statistically insignificant. This evidence is suggestive of the fact that

21



Years

1940 1950 1960 1970 1980 1990 2000 2010

-0.05
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Scale j=1, [1, 2) years
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1940 1950 1960 1970 1980 1990 2000 2010

-0.05

0

0.05
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Scale j=2, [2, 4) years

Years

1940 1950 1960 1970 1980 1990 2000 2010

-0.05

0

0.05
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Scale j=3, [4, 8) years

Years
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-0.05

0

0.05

0.1
Scale j=4, [8, 16) years

Figure 3: Decomposition into components for market realized variance: the calendar-time observa-
tions are solid blue lines, the scale-time or “decimated” observations are red diamonds.

our proposed Haar-based filtering procedure described in Section 5 is effective in extracting the

orthogonal Wold components.14

[Insert Table 5 about here]

We run scale-wise predictive regressions as in Eqs. (12)-(13). The results are reported in Table

1-Panel B.15 The strongest predictability is for j = 4, which corresponds to economic fluctuations

between 8 and 16 years. For j = 4, the R2 of the scale-wise predictive regression is a considerable

58.2%.

Consistent with Proposition I, the R2 values upon two-way aggregation reach their peak (around

14The pair-wise correlations are obtained by using overlapping, calendar-time, or redundant data on the components
rather than the non-overlapping, scale-time or decimated counterparts described in Subsection 5.1. This is, of course,
due to the need of having the same number of observations for each scale. There could also be leakage between
adjacent time scales. It is possible to reduce the impact of leakage by replacing the Haar filter with alternative filters
with superior robustness properties (the Daubechies filter is one example). The investigation of which filter is the most
suitable for the purpose of studying predictability on the scales is beyond the scopes of the present paper. As pointed
out earlier, also, the use of the Haar filter is particularly helpful to relate scale-wise predictability to aggregation, a
core aspect of our treatment, and yield components with cycles whose length is easily interpretable.

15Given a scale j, we work with an effective sample size of
[
T/2j

]
observations, where [.] denotes the smallest integer

near T/2j . In this empirical analysis, we consider a sample spanning the period 1930 to 2014 and J = 4.
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55%) between 14 and 16 years (2j = 16 years). Remarkably, the structure of the R2s, before and

after, is roughly tent-shaped (see Fig. 1).

The study of low frequency relations is made difficult by the limited availability of observations

over certain, long horizons. We do not believe that this difficulty detracts from the importance

of inference at low frequency, provided such inference is conducted carefully. Importantly for the

purposes of this paper, however, here we do not solely focus on low-frequency dynamics. A crucial

implication of our conceptual framework is, in fact, the existence of a tent-shaped behavior in

R2 values as a by-product of scale-wise predictability. Tent-shaped behavior, an implication of

Proposition I, requires the dynamics at all frequencies to cooperate effectively, i.e., even at those

high frequencies for which data availability would not be put forward as a statistical concern. In sum,

we are not just drawing conclusions from frequencies associated with high statistical uncertainty,

we are relying on all frequencies.

Standard economic theory views the presence of a market risk-return trade-off as compensation

for variance risk. Given this logic, for past variance to affect future expected returns, higher past

variance should predict higher future variance. Importantly, this is not the case when simply

aggregating the raw data over the long run.16

However, at the scale over which we report predictability (i.e., the 8 to 16 year scale), we find

a positive dependence between past values of the variance component and future values of the

same component. In other words, consistent with an autoregressive (of order 1) specification of

the components, the j = 4 variance component has a positive autocorrelation with uncorrelated

residuals. The R2 of the scale-wise autoregression on market variance is a rather substantial 43.28%

with a positive slope of 0.12. As explained earlier, it is unsurprising to find a low scale-wise (for

j = 4) autocorrelation. While the autocorrelation value appears small, we recall that it is a measure

of correlation on the dilated time of a scale designed to capture economic fluctuations with 8-to-16

year cycles. As shown in the Online Supplement (see Section “Fitting an AR(1) process to the

regressor”), the corresponding autocorrelation in calendar-time would naturally be higher.

Interestingly, the documented low dependence between past and future uncertainty dynamics

at frequencies over which predictability applies differentiates our inferential problem from classical

16The corresponding results are available upon request.

23



assessments of predictability. High first-order autocorrelation of the predictor, in particular, has

been put forward as a leading cause of inaccurate inference in predictability (e.g., Stambaugh (1999),

Valkanov (2003), Lewellen (2004), Campbell and Yogo (2006), and Boudoukh et al. (2008)). In our

framework, however, the autocorrelation ρj∗ is scale-specific. At the low frequencies over which we

identify scale-wise forecastability, ρj∗ is estimated to be small.

In essence, we show that, at scale j = 4, a very slow-moving component of the uncertainty

process predicts itself as well as the corresponding component in future excess market returns. Said

differently, higher past values of the uncertainty component appear to predict higher future values

of the same uncertainty component and, consequently, higher future values of the corresponding

component in excess market returns, as required by conventional logic behind compensations for

uncertainty (i.e., variance) risk. While this logic applies to a specific level of resolution in our

framework, it translates - upon forward/backward aggregation - into predictability for long-run

returns as shown formally in Proposition I and in the data. Extensive simulations from a data

generating process allowing for scale-wise predictability provide further support.

8 Scale-wise risk-return trade-offs in equilibrium

The structure of the model follows the long-run risk model of Bansal and Yaron (2004) duly modified

to account for heterogeneity in persistence as in Ortu et al. (2013). We introduce component-wise

representations for both consumption growth and dividend growth. However, we shut down long-

run risk and set the expectation of both growth rates equal to zero. As in Bollerslev, Tauchen,

and Zhou (2009), who also make this assumption in their model specification, this is solely done to

simplify matters and focus on the substantive core of our analysis, namely the role of scales and

their equilibrium implications.

We begin with component-wise decompositions for log consumption growth, gt, and log dividend

growth, gdt, taking the form:

gt =

J∑
j=1

g
(j)
t , gdt =

J∑
j=1

gd
(j)
t .
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We assume that each component of the consumption growth process, g
(j)
t , and of the dividend

growth process, gd
(j)
t , is driven by its own scale-specific stochastic variance, σ

(j)2
t , i.e.,

g
(j)

t+2j
= σ

(j)
t e

(j)

g,t+2j
, where e

(j)

g,t+2j
∼ N (0, 1) (19)

gd
(j)

t+2j
= ϕ

(j)
d σ

(j)
t e

(j)

gd,t+2j
, where e

(j)

gd,t+2j
∼ N (0, 1) (20)

with the shocks e
(j)

g,t+2j
and e

(j′)

gd,t+2j′
being correlated for j = j′ (with scale-specific correlation

denoted by ρ
(j)
dg ) and uncorrelated otherwise.17 For parsimony, as in Bansal and Yaron (2004),

the variance of consumption growth and the variance of dividend growth are driven by a common

time-varying component (the terms ϕ
(j)
d are, therefore, just scaling factors).

To complete the dynamics of the model, we assume that each of the stochastic variance compo-

nents
{
σ
(j)2
t

}J
j=1

follows an autoregressive process, i.e.,

σ
(j)2

t+2j
= ρjσ

(j)2
t + ε

(j)

t+2j
, with ε

(j)

t+2j
∼ N

(
0, σ(j)2

)
. (21)

We operate in a pure exchange economy with a representative agent endowed with Epstein-Zin

recursive preferences. The representative agent’s Euler equation is well known:

Et
[
emt+1+rit+1

]
= 1, (22)

where mt+1 is the log stochastic discount factor given by

mt+1 = θ log β − θ

ψ
gt+1 + (θ − 1)rat+1 , (23)

rat+1 is the (log) return on an asset yielding a dividend equal to aggregate consumption and rit+1

is the (log) return on any asset i. The parameter β denotes the discount factor. The preference

17If, as in Section 3, we were to assume that the scale-j shocks are DHTs of white noise shocks, then e
(j)
g,t and e

(j)
g,s

would be uncorrelated for all t and s so that |t− s| > 2j − 1. The same would, of course, apply to e
(j)
gd,t and e

(j)
gd,s. In

addition, assuming that the scale-j shocks are DHTs of white noise shocks implies that the components of the variance
of consumption growth coincide with the variances of the components of the consumption growth process (see the
Online Supplement for a proof). Since we use the former (i.e., the components of the variance of the consumption
growth process) in Section 7 and we directly model the latter (i.e., the variances of the components of the consumption
growth process) in this section, this equivalence is interesting.
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parameter ψ measures the intertemporal elasticity of substitution (IES), γ measures risk aversion

and θ = (1− γ) / (1− 1/ψ).

We now discuss the market risk premium.18 Recall, first, that the standard Campbell and Shiller

(1988) log-linear approximation gives:

ra,t+1 = κ0 + κ1z
a
t+1 − zat + gt+1, (24)

rm,t+1 = κ0,m + κ1,mz
m
t+1 − zmt + gdt+1,

where zat , zmt , denote the log price-consumption ratio and the log price-dividend ratio, respectively.

Because of our decompositions of consumption growth and dividend growth into components

with different levels of persistence, representing by z
(j)
a,t , z

(j)
m,t the components with persistence j of

the (log) price-consumption ratio and the (log) price-dividend ratio, respectively, it is natural to

conjecture that there exists a component-by-component linear relation between the financial ratios

and the state variables σ
(j)2
t , i.e.,

z
(j)
a,t = A0,j +Ajσ

(j)2
t , (25)

z
(j)
m,t = Am0,j +Amj σ

(j)2
t .

As long as Aj and Amj are not zero, these relations tell us that the variation in the valuation ratios

can be attributed to fluctuations in economic uncertainty.

The values of A0,j , Aj , A
m
0,j , A

m
j in terms of the parameters of the model are obtained from the

Euler condition in Eq. (22) after expressing the log stochastic discount factors and the returns in

terms of the factors {σ(j)2t }Jj=1 and the innovations {e(j)
g,t+2j

}Jj=1 and {ε(j)
t+2j
}Jj=1. One can, in fact,

show that, plugging these expressions into the Euler equation and using the method of undetermined

coefficients, one obtains a set of equations for the coefficients A0,j , Aj , A
m
0,j , A

m
j whose solutions are

18Derivations and technical details are contained in the Online Supplement.
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given by the following vectors of sensitivities:

A = 0.5

(
θ − θ

ψ

)2
θ

1 (IJ − κ1M)−1 ,

Am =

(
Hm

2
− .5(1− γ)

(
1

ψ
− γ
)
,

)
(IJ − κ1,mM)−1 ,

whereM ≡ −diag (ρ1, . . . , ρJ), λg ≡
(
θ
ψ − θ + 1

)
, λε ≡ κ1 (1− θ)A, Hm ≡

[
λ2g + ϕ

(1)2
d , ..., λ2g + ϕ

(J)2
d

]
and A, Am denote the row vectors with entries, A1, . . . , AJ , Am1 , . . . , A

m
J , respectively.

Two features of this model specification are noteworthy. First, if the IES and risk aversion

are larger than 1, then θ is negative, and a volatility increase lowers the price-consumption ratio.

Similarly, an increase in economic uncertainty will make consumption more volatile, thereby lowering

asset valuations and increasing the risk premia on all assets. This highlights that a IES larger than

1 is critical for capturing the negative correlation between the price-dividend ratio and consumption

variance. Second, an increase in the persistence of the variance shocks, namely M , magnifies their

effects on valuation ratios, as changes in economic uncertainty are perceived as being long lasting.

Now, we can show that the innovation in the returns’ component at level of persistence j are

given by:

r
(j)

a,t+2j
− Et[r

(j)

a,t+2j
] = σ

(j)
t e

(j)

g,t+2j
+ κ1Ajε

(j)

t+2j
,

r
(j)

m,t+2j
− Et[r

(j)

m,t+2j
] = ϕ

(j)
d σ

(j)
t e

(j)

d,t+2j
+ κ1,mA

m
j ε

(j)

t+2j
.

Similarly, the innovations in the stochastic discount factor’s components are given by:

m
(j)

t+2j
− Et[m

(j)

t+2j
] = −λgσ(j)t e

(j)

g,t+2j
− λ(j)ε ε

(j)

t+2j
. (26)

Given scale-wise risk premia equal to Et[r
(j)

m,t+2j
− r(j)

f,t+2j
] + 0.5σ2

r
(j)

m,t+2j

= −Covt(m
(j)

t+2j
, r

(j)

i,t+2j
),

this leads to:

Et[r
(j)

m,t+2j
− rj

f,t+2j
] + 0.5σ2

r
(j)

m,t+2(j)

= λgϕ
(j)
d σ

(j)2
t ρ

(j)
dg + κ1,m[λεQ]jA

m
j , (27)
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where

εᵀt+1 ≡ [ε
(1)
t+1, . . . , ε

(J)
t+1], Q ≡ Et

[
εt+1ε

ᵀ
t+1

]
.

Eq. (27) represents a risk-return trade-off on the generic scale j obtained as the result of a simple

equilibrium argument based on a classical change of measure (in Eq. (23)) and scale-wise decompo-

sitions for consumption growth and dividend growth. Section 2 and Section 7 provided empirical

content to it.

9 Conclusions and further discussion

Economic relations may apply to individual low-frequency components of the series of interest and

be hidden by transient effects at high frequencies. To capture this idea parsimoniously, this paper

models stock market returns and their predictors (economic uncertainty, in our case) as aggregates

of uncorrelated components operating over different frequencies and introduces a notion of scale-

specific predictability, i.e., predictability on the components.

We conclude with two observations. First, the use of variance as a predictor of asset returns is

appealing in our framework because the corresponding backward-aggregated measure does not lose

its economic interpretation. Backward-aggregated variance has, in fact, a natural interpretation

in terms of long-run past variance. Having made this point, all alternative predictors, like the

dividend-yield and other financial ratios, may also be employed. While their long-run past averages

are not as easily interpretable, the role played by aggregation in the extraction of low-frequency

information contained in the components and its translation into long-run properties of the data, as

laid out in Proposition I, apply generally. To the extent that market return data and the dividend-

yield - for instance - contain relevant information about long-run cash-flow and discount rate risks,

regressions on their components and on properly-aggregated data appear very well-suited to uncover

this information.

Some have argued that the dividend yield may be nonstationary (e.g., Cai and Wang, 2014,
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and the references therein).19 Our decompositions apply to all processes for which a classical

Wold representation apply and, therefore, to all covariance-stationary process. Thus, even though

extreme forms of persistence can be accommodated, unit root type behavior would fall outside of

our framework. However, given a Beveridge-Nelson decomposition of the dividend yield (dp) into a

transitory (covariance-stationary) component and a stochastic trend, i.e.,

dpt = xdp,t + ψ(1)
∞∑
k=0

εt−k,

the extended Wold representation will still be valid for the transitory component xdp,t. In particular,

when interpreting the stochastic trend (ψ(1)
∑∞

k=0 εt−k) as one of the components of the raw series

dp, scale-wise predictability may apply to it as well as to individual components of the transitory

component xdp,t. We leave this issue for future work.

Second, we have shown that a classical predictive system is not incompatible with scale-specific

predictability. On the contrary, it imposes predictability at all scales with tight parametrizations on

the predictive slopes. Our data generating process, instead, frees up predictability at different scales

and reconstructs the original series from unrestricted, yet parsimonious, scale-wise relations. An

interesting question to ask is, then: what would be the implied nature of predictability on the raw

series? Our conjecture is that one could obtain interesting predictive relations which go well beyond

the typical autoregressive structure of order 1 of classical predictive systems and give an important

role to long lags, something that appears to be a recurrent theme in recent macro-finance work

(see, e.g., Fuster et al., 2010). A formalization of predictability on the raw series given scale-specific

predictability represents the next step in this agenda.

19Nonstationarity in the dividend yield would induce nonstationarity in returns upon predictability and, therefore,
raise economic issues. This said, well-accepted tests would generally fail to reject nonstationarity.
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Annual calendar time

Time-scale Frequency resolution

j = 1 1− 2 years
j = 2 2− 4 years
j = 3 4− 8 years
j = 4 8− 16 years

π
(4)
t > 16 years

Table 4: Interpretation of the time-scale (or persistence level) j in terms of time spans in the case
of annual time series. Each scale corresponds to a frequency interval, or conversely an interval of
periods, and thus each scale is associated with a range of time horizons.

Panel A: Panel B:
Market excess returns Consumption risk

Scales j = 1 2 3 4 1 2 3 4
1 -0.03 -0.04 0.09 0.33 0.17 -0.09

(0.09) (0.07) (0.05) (0.18) (0.10) (0.09)
2 -0.13 0.15 -0.09 -0.12

(0.09) (0.10) (0.26) (0.15)
3 0.14 -0.06

(0.13) (0.13)

Panel C: Panel D:
Market risk Economic policy uncertainty

Scales j = 1 2 3 4 1 2 3 4
1 0.27 -0.13 0.00 0.08 0.09 0.06

(0.12) (0.09) (0.06) (0.09) (0.11) (0.05)
2 -0.03 -0.00 0.22 0.09

(0.15) (0.09) (0.09) (0.08)
3 0.33 0.32

(0.12) (0.15)

Table 5: Pairwise correlations. We report the pair-wise correlations between the individual
components of excess market returns (Panel A), consumption variance (Panel B), market variance
(Panel C), and (squared) economic policy uncertainty (Panel D). The pair-wise correlations are
obtained by using redundant data on the components rather than the decimated counterparts.

Standard errors for the correlation between x
(j)
t and x

(j′)
t , j 6= j′, are Newey-West with 2max(j,j

′)

lags.
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Appendix

A Proof of Proposition I

We begin with some matrix manipulations. Consider the following component dynamics for j = j∗, where
j∗ ∈ {1, . . . , J}:

y
(j)
t+2j = βjx

(j)
t (A.1)

x
(j)
t+2j = ρjx

(j)
t + σjεt+2j (A.2)

For j = 1, . . . , J , with j 6= j∗, we have

y
(j)
t = 0, (A.3)

x
(j)
t = 0. (A.4)

Assume that T = 16, j∗ = 2, and J = 3. Arrange the components of x as follows:

π
(3)
8 π

(3)
16

x
(3)
8 x

(3)
16

x
(2)
8 x

(2)
16

x
(2)
4 x

(2)
12

x
(1)
8 x

(1)
16

x
(1)
6 x

(1)
14

x
(1)
4 x

(1)
12

x
(1)
2 x

(1)
10


(A.5)

and, analogously, for the components of y. To reconstruct the time series xt, we run through each column
of the matrix in Eq. (A.5) and, for each column, we perform the following operation:

X
(3)
8 =



x8
x7
x6
x5
x4
x3
x2
x1


=
(
T (3)

)−1



π
(3)
8

x
(3)
8

x
(2)
8

x
(2)
4

x
(1)
8

x
(1)
6

x
(1)
4

x
(1)
2


(A.6)

and

X
(3)
16 =



x16
x15
x14
x13
x12
x11
x10
x9


=
(
T (3)

)−1



π
(3)
16

x
(3)
16

x
(2)
16

x
(2)
12

x
(1)
16

x
(1)
14

x
(1)
12

x
(1)
10


. (A.7)
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We do the same for the components of yt. The matrix
(
T (3)

)−1
takes the following form:

(
T (3)

)−1
=



1√
8

1√
8

1
2 0 1√

2
0 0 0

1√
8

1√
8

1
2 0 − 1√

2
0 0 0

1√
8

1√
8
− 1

2 0 0 1√
2

0 0
1√
8

1√
8
− 1

2 0 0 − 1√
2

0 0
1√
8
− 1√

8
0 1

2 0 0 1√
2

0
1√
8
− 1√

8
0 1

2 0 0 − 1√
2

0
1√
8
− 1√

8
0 − 1

2 0 0 0 1√
2

1√
8
− 1√

8
0 − 1

2 0 0 0 − 1√
2


. (A.8)

Using the dynamics of the state in Eq. (A.2), together with Eqs. (A.6) and (A.7), we obtain

X
(3)
16 =



x16 = x
(2)
16 /2

x15 = x
(2)
16 /2

x14 = −x(2)16 /2

x13 = −x(2)16 /2

x12 = x
(2)
12 /2

x11 = x
(2)
12 /2

x10 = −x(2)12 /2

x9 = −x(2)12 /2


and X

(3)
8 =



x8 = x
(2)
8 /2

x7 = x
(2)
8 /2

x6 = −x(2)8 /2

x5 = −x(2)8 /2

x4 = x
(2)
4 /2

x3 = x
(2)
4 /2

x2 = −x(2)4 /2

x1 = −x(2)4 /2


. (A.9)

We now turn to forward/backward aggregation. Let us construct the temporally-aggregated series

yt+1,t+h =

h∑
i=1

yt+i

and run the forward/backward regression

yt+1,t+h = β̃xt−h+1,t + εt+1,t+h,

where xt+1,t+h is defined like yt+1,t+h. For h = 4, and using Eqs. (A.1) and (A.3) together with Eq. (A.9),
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we have

y13,16 = 0 x13,16 = 0

y12,15 = (−y(2)16 + y
(2)
12 )/2 = β

(
−x(2)12 + x

(2)
8

)
/2 x12,15 = (−x(2)16 + x

(2)
12 )/2

y11,14 = −y(2)16 + y
(2)
12 = β

(
−x(2)12 + x

(2)
8

)
x11,14 = −x(2)16 + x

(2)
12

y10,13 = (−y(2)16 + y
(2)
12 )/2 = β

(
−x(2)12 + x

(2)
8

)
/2 x10,13 = (−x(2)16 + x

(2)
12 )/2

y9,12 = 0 x9,12 = 0

y8,11 = (−y(2)12 + y
(2)
8 )/2 = β

(
−x(2)8 + x

(2)
4

)
/2 x8,11 = (−x(2)12 + x

(2)
8 )/2

y7,10 = −y(2)12 + y
(2)
8 = β

(
−x(2)8 + x

(2)
4

)
x7,10 = −x(2)12 + x

(2)
8

y6,9 = (−y(2)12 + y
(2)
8 )/2 = β

(
−x(2)8 + x

(2)
4

)
/2 x6,9 = (−x(2)12 + x

(2)
8 )/2

y5,8 = 0 x5,8 = 0

y4,7 = (−y(2)8 + y
(2)
4 )/2 = β

(
−x(2)4 + x

(2)
0

)
/2 x4,7 = (−x(2)8 + x

(2)
4 )/2

y3,6 = −y(2)8 + y
(2)
4 = β

(
−x(2)4 + x

(2)
0

)
x3,6 = −x(2)8 + x

(2)
4

y2,5 = (−y(2)8 + y
(2)
4 )/2 = β

(
−x(2)4 + x

(2)
0

)
/2 x2,5 = (−x(2)8 + x

(2)
4 )/2

y1,4 = 0 x1,4 = 0.

Thus, regressing yt+1,t+4 on xt−3,t yields β̃ = β with R2 = 100%. Hence, when scale-wise predictability
applies to a scale operating between 2j

∗−1 and 2j
∗
, maximum predictability upon two-way aggregation arises

over an horizon h = 2j
∗
. In our case, j∗ = 2 and h = 4. Consider, for example, an alternative aggregation

level: h = 2. We have

y15,16 = y
(2)
16 = βx

(2)
12 x15,16 = x

(2)
16

y14,15 = 0 x14,15 = 0

y13,14 = −y(2)16 = −βx(2)12 x13,14 = −x(2)16

y12,13 = (−y(2)16 + y
(2)
12 )/2 = β(−x(2)12 + x

(2)
8 )/2 x12,13 = (−x(2)16 + x

(2)
12 )/2

y11,12 = y
(2)
12 = βx

(2)
8 x11,12 = x

(2)
12

y10,11 = 0 x10,11 = 0

y9,10 = −y(2)12 = −βx(2)8 x9,10 = −x(2)12

y8,9 = (−y(2)12 + y
(2)
8 )/2 = β(−x(2)8 + x

(2)
4 )/2 x8,9 = (−x(2)12 + x

(2)
8 )/2

y7,8 = y
(2)
8 = βx

(2)
4 x7,8 = x

(2)
8

y6,7 = 0 x6,7 = 0

y5,6 = −y(2)8 = −βx(2)4 x5,6 = −x(2)8

y4,5 = (−y(2)8 + y
(2)
4 )/2 = β(−x(2)4 + x

(2)
0 )/2 x4,5 = (−x(2)8 + x

(2)
4 )/2

y3,4 = y
(2)
4 = βx

(2)
0 x3,4 = x

(2)
4

y2,3 = 0 x2,3 = 0

y1,2 = −y(2)4 = −βx(2)0 x1,2 = −x(2)4 ,
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where we use the implied dynamics for x, see equations (A.9), and the equivalent ones for y together with
(A.1) and (A.2). The regression of yt+1,t+2 on xt−1,t yields (based on a fundamental block of four elements):

β̃ =
Cov(y15,16, x13,14) + Cov(y13,14, x11,12)

V ar (x10,11) + V ar (x11,12) + V ar (x12,13) + V ar (x13,14)

=
−βV ar

(
x
(2)
12

)
ρ− βV ar

(
x
(2)
12

)
V ar

(
x
(2)
12

)
+ V ar

(
x
(2)
16

2

)
+ V ar

(
x
(2)
12

2

)
−

Cov
(
x
(2)
16 ,x

(2)
12

)
2 + V ar

(
x
(2)
16

)
= −2β

(1 + ρj)

5− ρj

and, hence, an inconsistent slope estimate. This estimate could have a changed sign (with respect to β) and
be drastically attenuated. In fact, β̃ = 0 if ρj = −1 and β̃ = −β if ρj = 1.

B Data

The empirical analysis in Sections 2, is conducted using annual data on consumption and stock returns from
1930 to 2014. We take the view that this sample is the most representative of the overall high/medium/low-
frequency variation in asset prices and macroeconomic data.

Aggregate consumption is from the Bureau of Economic Analysis, series 7.1, and is defined as consumer
expenditures on non-durables and services. Our measure of consumption volatility is based on modeling
consumption growth as following an AR(1) with an error variance evolving as an heterogeneous ARCH model
(see Muller et al. (1997)). The HARCH dynamics accommodates numerous heterogeneous information arrival
processes, see, e.g., Andersen and Bollerslev (1997). Similar results are obtained by modeling consumption
growth as following an AR(1)-GARCH(1,1), as in Bansal et al. (2005).

We use the NYSE/Amex value-weighted index with dividends as our market proxy, Rt+1. Return data
on the value-weighted market index are obtained from the Chicago Center for Research in Security Prices
(CRSP). The annual return series is constructed from monthly data under the assumption of reinvestment
at a zero-rate. The nominal short-term rate (Rf,t+1) is the yield on the 1-year Treasury bill.

The h-horizon continuously-compounded excess market return is calculated as rt+1,t+h = ret+1+. . .+ret+h,
where ret+j = ln(Rt+j) − ln(Rf,t+j) is the 1-year excess logarithmic market return between dates t + j − 1
and t+ j, Rt+j is the simple gross market return, and Rf,t+j is the gross risk-free rate.

The market’s realized variance between the end of period t and the end of period t + n, a measure of
integrated volatility, is obtained by computing

v2t,t+n =

tD∑
d=t1

r2d,

where [t1, tD] denotes the sample of available daily returns between the end of period t and the end of period
t+ n, and rd is the market’s logarithmic return on day d.

The measure of economic policy uncertainty (EPU) is based on Baker et al. (2016).
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