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On the Biological Foundation of Risk Preferences∗

Roberto Robatto†and Balázs Szentes‡

October 9, 2017

Abstract

This paper considers a continuous-time biological model in which the growth rate of a

population is determined by the risk attitude of its individuals. We consider choices over

lotteries which determine the number of offspring and involve both idiosyncratic and aggregate

risks. We distinguish between two types of aggregate risk: environmental variations and

natural disasters. Environmental variations influence the death and birth rates, while natural

disasters result in instantaneous drops in population size.

Our main result is a utility representation of the evolutionary optimal behavior. The utility

is additively separable in the two types of aggregate risk. The term involving environmental

variations is a von Neumann-Morgenstern utility which induces the same attitude towards

both idiosyncratic and aggregate risk. The term involving disasters cannot be interpreted as

an expected utility maximization and induces less tolerance towards aggregate risk.

JEL classification: D81, D91

Keywords: Risk preferences; Evolution; Expected Utility

1 Introduction

Most models in economics take preferences as given and derive the choices induced by those pref-

erences. This paper does just the opposite. We entertain the hypothesis that choice behaviours

are genetically determined and shaped by natural selection. The underlying individual preferences

are then merely the representations of those evolutionary optimal choice behaviours. We work

from the basic premise that, in the long-run context of evolution, only the fastest-growing genes

survive. As this paper focuses on risk preferences, we consider choices over lotteries that affect the

reproductive value of individuals. Our main result is a utility representation of the optimal choice

behaviour.

∗We have benefited from discussions with Jeff Ely, Phil Reny, Arthur Robson and Larry Samuelson. Financial

support from the ERC is gratefully acknowledged.
†Department of Finance, University of Wisconsin-Madison, Madison, WI, USA. E-mail: robatto@wisc.edu.
‡Department of Economics, London School of Economics, London, UK. E-mail: b.szentes@lse.ac.uk. Corre-

sponding author.
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The cornerstone of our analysis is a characterization of the long run dynamics of a population

that inhabits a risky environment. Two types of aggregate risk are present, which we refer to

as environmental variations and natural disasters. Environmental variations influence the birth

and death rates of individuals, determining the rate of increase of the population size. Meanwhile,

natural disasters cause discrete drops in population size, affecting the level as opposed to the slope.

The reproductive fitness of an individual is also subject to idiosyncratic risk; that is, conditional

on an environmental variation or a natural disaster, the birth rate and the survival probability are

still random variables. Our main result consists of the characterization of the asymptotic growth

rate as a function of the ergodic distributions of the various types of risk. This function can then be

interpreted as the utility representation of the evolutionary optimal choice behaviour over lotteries

in an environment where the risk is determined by individuals’ choices.

In order to better explain our contribution and to contrast our results with those in existence, we

first describe Robson’s (1996a) seminal paper on the evolution of risk preferences. Time is discrete

and individuals live for one period. The number of offspring an individual has is determined by

the realization of a lottery. A lottery, L, is described by a triple,
(
Ω, G, {F (·|ω)}ω∈Ω

)
, where Ω

denotes the set of possible states of the world, G is the ergodic distribution on Ω, and F (·|ω) is

the distribution on the number of offspring if the state of the world is ω. Conditional on ω, the

realization of F (·|ω) is independent across individuals, so this element represents the idiosyncratic

component of the risk. The distribution G represents the aggregate risk, since ω determines the

distribution of reproductive values in the population. Robson (1996a) shows that the asymptotic

growth rate of the population is

u (L) =

∫
log

(∫
ηdF (η|ω)

)
dG (ω) . (1)

Since the gene inducing the choice of the lottery L grows at rate u (L) in the long run, Robson

(1996a) interprets u as the utility representation of the evolutionary optimal behaviour. The main

implication of (1) is that the evolved attitude towards risk depends strongly on whether the risk

is idiosyncratic or aggregate. In fact, individuals will be relatively less tolerant of aggregate risk,

compared to idiosyncratic risk.

In contrast to Robson (1996a), we consider a continuous time model, which allows us to distin-

guish between two types of aggregate risk: environmental variations and natural disasters. Recall

that environmental shocks determine the rate of increase of the population size, while natural dis-

asters cause instantaneous changes in the level. In discrete time, any aggregate shock necessarily

results in a discrete change in the population size. It then becomes natural to ask whether the

results obtained by Robson (1996a) apply only to natural disasters, or to aggregate risk in general.

Our answer is that his results do not hold for environmental variations: the evolutionary optimal

behaviour induces the same attitude towards both idiosyncratic risk and aggregate risk due to

environmental variations.

In order to state our representation theorem, let us describe our setup in detail. Time is
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continuous, and population dynamics are determined by a lottery L = (Ω, G, λ, Fn (·|ω) , Fe (·|ω)).
The set Ω denotes the set of states of the world and G is the ergodic distribution on Ω. The

function λ : Ω → R is the arrival rate of a disaster. The c.d.f. Fn (·|ω) denotes the distribution of

the survival probability at the moment a natural disaster occurs. Fe (·|ω) denotes the distribution

of the net birth rate (birth rate minus death rate) of an individual conditional on ω. Our main

result is that the asymptotic growth rate, U (L), is

U (L) =

∫ ∫
εdFe (ε|ω) dG (ω) +

∫
λ (ω) log

(∫
ηdFn (η|ω)

)
dG (ω) . (2)

The two additive terms in the utility representation (2) have very different economic inter-

pretations. The first term, which is associated with environmental variations, is a standard von

Neumann-Morgenstern representation with Bernoulli utility as the identity function. This implies

that the choice induced by U depends only on the expected value of the net birth rate; it doesn’t

matter whether the source of the risk is aggregate or idiosyncratic. The second term, which is as-

sociated with natural disasters, is analogous to (1) of Robson (1996a). Indeed, if λ (ω) ≡ 1, which

corresponds to the frequency of discrete changes in Robson (1996a), the two expressions coincide.

Let us again point out that this term is not a von Neumann-Morgenstern representation of risk

attitude. Interestingly, this term is formally identical to a smooth ambiguity-averse preference

representation where the ambiguity is determined by G and the ambiguity aversion is determined

by the logarithm function.1

We think that the discrete-time model of Robson (1996a) is useful to describe not only natural

disasters but also environments in which risk cannot naturally be characterized in terms of birth

and death rates, even in the absence of disasters. This may be exemplified by plant and animal

species that reproduce periodically at particular times of the year. Consider an annual plant which

reproduces only once in its lifetime and whose life cycle lasts one year. Although the plant might be

exposed to various risks each day, this risk can intuitively be summarized using annual quantities,

such as the probability that a seed survives until the reproductive season and the number of new

seeds produced by the plant. As such, reproduction can be characterized in terms of factors rather

than rates. The model of Robson (1996a) can be viewed as a description of the risk faced by such

a plant in the case in which the plant always survives until the reproductive season and produces

η seeds. Indeed, the appearance of the logarithmic function in the optimal choice criterion was

first noticed in the context of annual organisms; see for example Cohen (1966). However, human

reproduction occurs throughout the year rather than being confined to distinct breeding seasons.2

Approximating human population dynamics by a discrete-time model requires us to group together

all risks affecting the population in a given time period and to characterize reproductive values in

terms of factors. Our continuous-time model allows us to describe risks in greater detail and to

1For an axiomatic characterization of smooth ambiguity averse preferences, see Klibanoff et al. (2005).
2Of course, risks faced by humans may be seasonal and this can be incorporated into the stochastic evolution of

the states in our continuous model.
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express reproductive values in terms of birth and death rates. In the absence of natural disasters,

this leads to an expected-utility representation (see the first term in (2)), in contrast to Robson’s

non-expected utility representation in (1). We interpret our representation theorem as providing

at least a partial evolutionary justification for von Neumann-Morgenstern preferences.

Numerous papers use evolution to explain preferences. The first is probably Becker (1976),

who adopts an evolutionary argument to explain altruism. Overviews of the theories on biological

foundations of economic behaviour can be found in Robson (2001 and 2002).

Robson (1996b) and Dekel and Scotchmer (1999) analyse optimal risk-taking strategic biological

models, that is, an individual’s reproductive value is determined by not only her lottery but also

by the lotteries of others. Our model does not involves strategic interactions; individuals only solve

decision problems. Indeed, it is not clear to us how one might identify preferences and strategic

components from equilibrium behaviour.

The differences between the effects of idiosyncratic and aggregate risks on preferences are also

emphasized by Robson and Samuelson (2009) in the context of time preferences. The authors

consider an age-structured biological model and show that, if the effects of aggregate shocks on an

individual’s survival probability do not depend on the age of the individual, then aggregate risk

slows down population growth. In Section A of our Online Appendix, we extend our results to an

age-structured population. Among other things, we show that, if the effects of aggregate shocks on

death rates are age-independent, the population growth is fully determined by the expected death

rates, and there is no distinction between the aggregate and idiosyncratic components.

2 Model

Time is continuous and is indexed by t ∈ R+. At each moment, a continuum of individuals make

up the population. The population dynamics are governed by the lottery

L =
(
Ω, G, {λ (ω)}ω∈Ω , {Fe (·|ω)}ω∈Ω , {Fn (·|ω)}ω∈Ω

)
. (3)

Ω ⊂ R is the set of possible states of the world. Let ωt denote the state of the world at time t. The

dynamic process {ωt}t∈R
is a Markov process with unique ergodic distribution G.3 We assume

that ωt is almost surely continuous in t almost everywhere.

Environmental variations.— The net birth rate of an individual at time t is εt = bt − δt, where

bt denotes her birth rate and δt denotes her death rate. The variable εt ∈ R is distributed according

to the conditional c.d.f. Fe (εt|ωt) and it is measurable in t almost surely. We allow the net birth

3In particular, whenever
∫
A 1dG (ω) > 0 then for each ω′ ∈ Ω, conditional on ω0 = ω′ :

∫
I (ωt ∈ A) dt = +∞,

almost surely. That is, conditional on any initial condition, the process spends an infinite amount of time in every

positive G-measure set with probability one (see e.g. Glynn (1994) and Duffie and Glynn (2004)).
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rate of an individual, εt, to change over time even if ωt stays constant. We assume that E (ε|ω)
is a bounded function of ω, and Fe (ε|ω) is uniformly continuous in ω. The realizations of ε′ts are

assumed to be independent across individuals conditional on ωt. We assume that the Law of Large

Numbers holds, and hence, at time t the population grows at rate

r (ωt) ≡
∫

εdFe (ε|ωt) . (4)

Natural disasters.— Natural disasters hit the population stochastically according to a non-

homogenous Poisson process. The arrival rate of the process at time t is λ (ωt) ∈ [0,∞), where

λ : Ω → R+ is a bounded, measurable function in L1 (Ω, G). If a natural disaster occurs at time

t, an individual survives with probability ηt ∈ [0, 1]4, and Fn (·|ωt) denotes the distribution of ηt

conditional on ωt. We assume that Fn (η|ω) is uniformly continuous in ω. We also assume that

E (η|ω) is uniformly bounded away from zero; that is, the population never goes extinct. Again, the

realization of ηt is independent across individuals conditional on ωt. This assumption essentially

implies that the survival probability ηt is re-drawn at each moment a natural disaster occurs, and

hence, the distribution of ηt is indeed independent of the previous history of disasters. We appeal

to the Law of Large Numbers once more and assume that the fraction of the population that

survives a natural disaster is

j (ωt) ≡
∫

ηdFn (η|ωt) . (5)

We further assume that, for each individual, εt and ηt are independent at each time t conditional

on ωt.

3 Results

In this section we analyze the speed of population growth. Let yt denote the size of the population

at time t and let y0 be normalized to one. If there is a natural disaster at time t, yt denotes the size

of the surviving population. The basic difficulty is that, due to aggregate shocks, the population

does not grow at a steady state rate. Nevertheless, it is possible to characterize a growth rate, g,

such that if t is large enough, the size of the population is approximately the same as if it were

growing at a constant rate g, that is,

yt ≈ egt. (6)

Such a growth rate g is called the continuously compounded growth rate of the population and is

formally defined in Section 3.2.

Next, we derive an expression for the law of motion of the population along a realized path of

the random variables. In Section 3.2, we use this expression to prove our main result, which is a

characterization of the continuously compounded growth rate in terms of the lottery (3).

4For our mathematical results to hold, we do not need ηt to be weakly less than one. We only make this

assumption for the sake of interpretation.
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3.1 Law of motion of the population

Let N (t) denote the number of natural disasters which occurred between time zero and time t. In

addition, let τ i ∈ [0, t], i ∈ {1, ..., N (t)} , denote the arrival time of the ith natural disaster.

Proposition 1 The size of the population at time t is given by:

yt = exp

[∫ t

0

r (ωs) ds

]N(t)∏
i=1

j (ωτ i) , (7)

where
∏N(t)

i=1 j (ωτ i
) is defined to be one if N (t) = 0.

A notable property of the expression on the right-hand side of (7) is that it is multiplicatively

separable in natural disasters and environmental variations. To illustrate this observation, let us

consider a population that grows at a constant rate for a unit amount of time. Suppose that this

population is hit by a disaster and half of the population dies. Then, irrespective of the exact time

of the disaster, the population at the end of the time period will be half as large as it would have

been if the disaster had not occurred. Of course, this argument presumes that the disaster leaves

the net birth rate of the surviving population unaffected. In our model, this assumption is satisfied

because εt and ηt are independent conditional on ωt.

Proof. We prove the proposition by induction with respect to the number of natural disasters,

N (t). Suppose first that N (t) = 0. Then, by (4), the law of motion of the population is described

by the following differential equation between time zero and time t:

.
yτ = yτr (ωτ ) . (8)

The solution of this differential equation is5

yt = exp

(∫ t

0

r (ωs) ds

)
,

which is just the statement of the proposition for N (t) = 0.

Suppose that the statement of the proposition is true for all t whenever N (t) ≤ k and let us

assume that N (t) = k + 1. By the inductive hypothesis,

lim
τ→τN(t)

τ<τN(t)

yτ = exp

{∫ τNt

0

r (ωs) ds

}N(t)−1∏
i=1

j (ωτ i) .

At time τN(t) there is a natural disaster and, by (5), only a fraction j
(
ωτN(t)

)
of the population

survives. Hence,

yτN(t)
= exp

{∫ τNt

0

r (ωs) ds

}N(t)∏
i=1

j (ωτ i
) . (9)

5The solution exists because r is continuous and bounded, see Coddington and Levinson (1955), Chapter 2.
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The law of motion of the population for τ ∈ [τN(t), t] is again described by the differential equation

(8) and initial condition (9). The solution is

yt = yτN(t)
exp

(∫ t

τN(t)

r (ωs) ds

)
= exp

{∫ t

0

r (ωs) ds

}N(t)∏
i=1

j (ωτ i) ,

where the second equality follows from (9).

3.2 Continuously compounded growth rate

Motivated by (6), we first provide a formal definition for the continuously compounded growth

rate.

Definition 1 We call the number g ∈ R the continuously compounded growth rate of the population

if

lim
t→∞

log yt
t

= g

almost surely.

In order to see that the continuously compounded growth rate is indeed a useful object in

the evolutionary context, consider two populations, y1t and y2t , with corresponding compounded

growth rates g1 and g2. We show that if g1 > g2 then, asymptotically and with probability one,

y1t is going to be infinitely large relative to y2t . To see this, note that, by Definition 1,

lim
t→∞

log
y1
t

y2
t

t
= lim

t→∞
log y1t

t
− lim

t→∞
log y2t

t
= g1 − g2 > 0

almost surely. But this can only be the case if y1t /y
2
t converges to infinity as t goes to infinity with

probability one.

Next, we show that the continuously compounded growth rate exists, and characterize it in

terms of the lottery, L. This is our main result.

Theorem 1 For almost all ({ωt} , {N (t)})t∈R
,

lim
t→∞

(
log yt
t

)
=

∫ ∫
εdFe (ε|ω) dG (ω) +

∫
λ (ω) log

(∫
ηdFn (η|ω)

)
dG (ω) . (10)

Let us explain the basic idea of the proof. By Proposition 1,

lim
t→∞

log yt
t

= lim
t→∞

∫ t

0
r (ωs) ds

t
+ lim

t→∞

∑N(t)
i=1 log j (ωτ i)

t
, (11)

where the second term in the right-hand side is defined to be zero if N (t) = 0. Since ωt is an

ergodic process, both r (ω) and log j (ω) are also ergodic. As a consequence, the right-hand side of

(10) is the sum of the time averages of two ergodic variables. Birkhoff’s Ergodic Theorem states

that, under certain conditions, the time average of the realization of an ergodic variable converges
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to the expected value of the variable with probability one, where the expectations are formed

according to the ergodic distribution. In the proof, we argue that Birkhoff’s Ergodic Theorem is

applicable, and show that the time average of r (ω) and log j (ω) converge to the first and second

terms in the right-hand side of (10), respectively.

Proof. First, consider the time average of r (ωt). Since the state of the world has an ergodic

distribution and r is continuous, Birkhoff’s Ergodic Theorem implies that

lim
t→∞

∫ t

0
r (ωs) ds

t
=

∫
r (ω) dG (ω)

almost surely6. Substituting the definition of the function r in (4), we obtain

lim
t→∞

∫ t

0
r (ωs) ds

t
=

∫ ∫
εdFe (ε|ω) dG (ω) . (12)

We now turn to the second expression on the right-hand side of (11) and rewrite it as

N (t)

t

∑N(t)
i=1 log j (ωτ i)

N (t)
.

If
∫
λ (ω) dG (ω) = 0 then λ = N (t) = 0 almost surely, so (12) implies (10). In what follows we

restrict our attention to the case in which
∫
λ (ω) dG (ω) > 0. We first show that

lim
t→∞

N (t)

t
=

∫
λ (ω) dG (ω) (13)

almost surely. To this end, assume that t ∈ N for simplicity and define Xi = N (i)−N (i− 1) for

all i ∈ N. Since N (t) is a non-homogenous Poisson process, the random variables X1, X2, ... are

independent conditional on the realization of {ωt}t∈R+
, and EXi = V ar (Xi) =

∫ i

i−1
λ (ωτ ) dτ . By

Kolmogorov’s Strong Law of Large Numbers7

lim
t→∞

N (t)− ∫ t

0
λ (ωτ ) dτ

t
= lim

t→∞

∑t
i=1

[
Xi −

∫ i

i−1
λ (ωτ ) dτ

]
t

= 0 (14)

almost surely conditional on {ωt}t∈R+
. Finally, notice that Birkhoff’s Ergodic Theorem implies

that

lim
t→∞

1

t

∫ t

0

λ (ωs) ds =

∫
λ (ω) dG (ω) (15)

almost surely. From (14) and (15), the equation in (13) follows.

Next, we show that

lim
t→∞

∑N(t)
i=1 log j (ωτ i)

N (t)
=

∫
log j (ω)

λ (ω)∫
λ (ω′) dG (ω′)

dG (ω) (16)

6See, for instance, Doob (1953), Chapter XI, for a version of Birkhoff’s Ergodic Theorem for continuous-time

processes.
7This theorem is indeed applicable since (See e.g. Feller (1968), Chapter X.7):

∞∑
i=1

V ar [N (si)−N (si−1)]

i2
= lim

i→∞
1

i2

∫ i

0
λ (ωτ ) dτ = lim

i→∞
1

i

∫
λ (ω) dG (ω) = 0 < ∞.
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almost surely. Recall that τ i denotes the time of the ith natural disaster. For all i ∈ N, define

Zi = log j (ωτ i
). By (13) and

∫
λ (ω) dG (ω) > 0 it follows that there are infinitely many disasters

with probability one, so these variables are well defined. The discrete time process {Zi}i∈N
is also

an ergodic Markov process, and its ergodic distribution, Ĝ, is given by8

∫
{ω:log j(ω)∈B}

dĜ (ω) =

∫
{ω:log j(ω)∈B} λ (ω) dG (ω)∫

λ (ω′) dG (ω′)

for all Borel subset B of (−∞, 0]. Therefore, Birkhoff’s Ergodic Theorem implies that9

lim
n→∞

∑n
i=1 Zi

n
=

∫
log j (ω) dĜ (ω)

with probability one. Substituting the definitions of Zi and Ĝ into the previous equation yields

(16). Finally, notice that, from (13) and (16), it follows that

lim
t→∞

∑N(t)
i=1 log j (ωτ i

)

t
=

∫
λ (ω) log j (ω) dG (ω) =

∫
λ (ω) log

∫
ηdFn (η|ωt) dG (ω) (17)

almost surely, where the second equality is just (5).

From equations (12) and (17), the statement of the theorem follows.

As previously discussed, if the population corresponding to a particular gene has a higher

continuously compounded growth rate than that of another population, it will eventually grow

to be infinitely larger than that other population. Therefore, if the level of environmental risk is

determined by choices made by individuals and that choice behaviour is genetic, the continuously

compounded growth rate is the evolutionary optimal decision criterion. That is, only those genes

which generate the largest continuously compounded growth rate survive in the long run. This

leads us to interpret

U (L) =

∫ ∫
εdFe (ε|ω) dG (ω) +

∫
log

∫
ηdFn (η|ω)λ (ω) dG (ω) (18)

as the utility representation of the evolutionary optimal choice behaviour. One concern which

might arise with respect to our analysis thus far pertains to our implicit assumption that the

choice of a lottery is made once and for all and determines the growth rate of the gene forever.

We have not yet demonstrated that the same utility criterion is used to solve individual choice

problems if the overall risk is determined by a combination of various decisions. In Section B of our

Online Appendix, we take our analysis one step further and formalize the claim that the function

U can indeed be interpreted as a utility function of the evolutionary optimal choice behaviour in

this context.

Interpretation.— The two terms on the right-hand side of (18) have very different behavioural

implications. Observe that the lottery L can be viewed as the combination of two compound

8See Proposition 2 in Duffie and Glynn (2004).
9See Corollary 1 of Proposition 2 of Duffie and Glynn (2004).
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lotteries: ({Fe (·|ω)}ω , G) and ({Fn (·|ω)}ω , G), which are associated with environmental variations

and natural disasters, respectively. Equation (18) implies that a decision maker who maximizes U

reduces the compound lottery ({Fe (·|ω)}ω , G) to a simple one. That is, conditional on the risk

associated with natural disasters, choices will be based only on the expected rate of reproduction.

It is irrelevant whether environmental variations are aggregate or idiosyncratic. Therefore, the first

term is simply a standard von Neumann-Morgenstern representation.

In sharp contrast, the second term does not correspond to expected utility maximization. In

particular, the compound lottery ({Fn (·|ω)}ω , G) is not reduced to a simple one in the utility

function U . This term is formally identical to the representation of smooth ambiguity-averse

preferences. In the context of ambiguity (Ω, G) corresponds to the subjective state space and

beliefs, Fn (·|ω) describes uncertainty, and ambiguity aversion is determined by the logarithmic

function. Since the logarithmic function is concave, this representation implies that the decision

maker with utility function U is less tolerant towards aggregate risk than towards idiosyncratic

risk.

One notable feature of the function U is its additive separability in the risks due to environmen-

tal variations and natural disasters. This arises from the fact that yt is multiplicatively separable

in these two types of aggregate risk. As previously mentioned, this separability is due to our

assumption that, for each individual, εt and ηt are independent conditional on ωt. We could relax

this independence assumption and still obtain an additive representation similar to (18). However,

the c.d.f. Fe would be replaced by an ergodic distribution of the birth rates which would depend

on, among other objects, Fn and λ. So, while the utility representation would still be additive, the

term corresponding to environmental variations would depend on the risks faced due to disasters.

4 On the limit of the model of Robson (1996a)

Theorem 1 implies that environmental variations and natural disasters affect growth in very dif-

ferent ways. We should perhaps shed some additional light on this observation, and we shall make

it the objective of this section. To this end, we revisit Robson’s (1996a) discrete-time model and

investigate the limit of a discrete-time model as the length of the time intervals shrinks to zero.

Indeed, it seems quite reasonable to suspect that environmental variations might be approximated

arbitrarily well with a sequence of small natural disasters. In the context of a binary example, we

show that, in the limit, the growth rate induced by a lottery does not depend on the decomposition

of the risk. In this sense, there is no conflict between our results related to continuous-time models

and the limiting behaviour of discrete-time models.10

10In Section C of our Online Appendix, we also consider the reverse of this exercise. That is, we establish a

mapping from our continuous-time models with only environmental variations to Robson’s (1996a) discrete-time

models. We make use of this mapping to provide a clear explanation for the divergence between the continuous

and discrete models with respect to different types of risk: in the continuous model, individuals make no distinction

between aggregate and idiosyncratic risks, while in the corresponding discrete model they do.
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Let us consider discrete populations facing two different lotteries; one of which is purely id-

iosyncratic and the other purely aggregate. Robson (1996a) shows that the population facing the

idiosyncratic lottery grows faster. In what follows, we show that as the length of a time interval

approaches zero, the growth rates of the two populations converge.11

Suppose that time is discrete and indexed by t ∈ N. Assume that Ω =
{
ωH , ωL

}
and the

ergodic distribution of ω is given by Pr
(
ωH

)
= Pr

(
ωL

)
= 1/2. Each individual lives for one

period, and her number of offspring is the realization of a lottery. In each period t, the realization

of the lottery is independent across individuals conditional on ωt. We consider the following two

lotteries

LA =

{
H if ω = ωH ,

L if ω = ωL
and LI =

{
H with probability 1/2,

L with probability 1/2,

where 1 < L < H. Note that the lottery LA involves only aggregate risk and the lottery LI

involves only idiosyncratic risk. Also note that the risks induced by these two lotteries are the

same from the viewpoint of a single individual; with probability one-half she produces H offspring,

and with probability one-half she produces L. Let g (L) denote the compounded growth factor of

the population corresponding to the lottery L (∈ {LA, LI}). The main result from Robson (1996a)

implies

log g (LA) =
logH + logL

2
< log

(
H + L

2

)
= log g (LI) , (19)

and hence, the population choosing LI grows faster than the other.

In what follows, we shrink the length of the time intervals from one to Δ, and examine the

consequences on the speed of population growth as Δ approaches zero. If the time intervals are

downscaled, and in each period individuals reproduce according to the lotteries LA and LI , the

populations grow faster, and they explode as Δ goes to zero. Therefore, in order to compare

growth rates across different Δ’s, the lotteries governing population dynamics must be redefined.

We shrink the intensity of the shocks specified by the lotteries as Δ goes to zero. The idea of taking

the limit this way is to spread the effect of the original lottery over many smaller time periods. We

show that the per-unit-period growth rates of the populations corresponding the idiosyncratic and

aggregate lotteries converge to the same value as Δ goes to zero. In other words, the distinction

between idiosyncratic and aggregate risk disappears.

The intuition behind these observations can be explained as follows. If Δ is small, the change

in the size of the population is also small within a Δ-long period. This means that the logarithmic

function in Robson’s (1996a) utility function, (1), can be approximated by a linear function arbi-

trarily well as Δ goes to zero. Therefore, the logarithmic function can be replaced by the linear

one in the limit.

11We are able to prove the same result in the general model of Robson (1996a), but we believe that the binary

example is sufficient to illustrate our point.
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For each Δ, we define the following two lotteries:

LΔ
A =

{
HΔ if ω = ωH ,

LΔ if ω = ωL
and LΔ

I =

{
HΔ with probability 1/2,

LΔ with probability 1/2.

Observe that if the realization of the lottery is constant within a unit of time, the induced growth

factor does not depend on Δ. To see why, note that if an individual produces HΔ offspring in each

Δ-long period, she will have
(
HΔ

)1/Δ
= H genetic copies after one unit of time. We maintain the

assumption that the ergodic distribution of ω is given by Pr
(
ωH

)
= Pr

(
ωL

)
= 1/2.12 Let gΔ

(
LΔ

)
denote the compounded growth factor of the population corresponding to LΔ

(∈ {
LΔ
A , L

Δ
I

})
per

Δ-long time period. Again, from Robson (1996a), it follows that

log gΔ
(
LΔ
A

)
=

logHΔ + logLΔ

2
< log

(
HΔ + LΔ

2

)
= log gΔ

(
LΔ
I

)
. (20)

Next, we take Δ to zero and compare the growth factors per unit interval of the populations

corresponding to LΔ
A and LΔ

I . Note that if the growth factor per Δ-long period is gΔ then the

growth factor per unit interval is (gΔ)
1/Δ

. Consider first the population governed by the aggregate

lottery LΔ
A . By (20),

lim
Δ→0

log g
1/Δ
Δ

(
LΔ
A

)
= lim

Δ→0

logHΔ + logLΔ

2Δ
=

logH + logL

2
. (21)

Comparing this expression with the left-hand side of (19), we conclude that the population facing

the aggregate lottery is unaffected by the time scaling. Consider now the population governed by

the idiosyncratic lottery. Again by (20),

lim
Δ→0

log g
1/Δ
Δ

(
LΔ
I

)
= lim

Δ→0

log
(

HΔ+LΔ

2

)
Δ

.

On the right-hand side, both the numerator and the denominator converge to zero. We apply

L’Hopital’s rule to obtain

lim
Δ→0

log g
1/Δ
Δ

(
LΔ
I

)
= lim

Δ→∞
1(

HΔ+LΔ

2

) (
HΔ logH + LΔ logL

2

)
=

1

2
(logH + logL) , (22)

where the second equality follows from the observation that both HΔ and LΔ converge to one as

Δ goes to zero. From (21) and (22), we conclude that, as Δ goes to zero, the population facing

aggregate risk grows just as fast as the population facing only idiosyncratic risk.

In the limit, do these discrete models become continuous-time models with only environmental

variations? Define h and l such that H = eh and L = el and note that h and l are the rates

corresponding to the factors H and L, respectively. The continuously compounded growth rates

12We emphasize that this does not mean that the state of the world switches more and more frequently as Δ goes

to zero. One can assume, for example, that ω switches with only probability Δ in each Δ-long time period. Then

the state of the world switches once per unit-period in expectation irrespective of Δ.
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in (21) and (22) can then be written as (h+ l) /2. In other words, the limits of LΔ
A and LΔ

I

are lotteries involving only environmental variations according to which the net birth rate of an

individual is h or l with equal probability. The limit of LΔ
A induces only aggregate risk and the limit

of LΔ
I generates only idiosyncratic risk. By Theorem 1, this distiction, however, has no impact on

the growth rate.

5 Conclusion

We believe endogenizing preferences to be an important research agenda, and that adopting the

biological approach, as we have done, might prove to be a fruitful enterprise. It seems reasonable to

hypothesize that evolution did not influence only physical traits but also shaped choice behaviours.

An advantage of this approach is that it has strong predictions about the relationship between

fertility and choices which, in principle, can be tested empirically. We do recognize that many

choice problems faced by individuals in modern times were unlikely to be faced in evolutionary

times. Yet, we hypothesize that preferences, at least in part, are hardwired and that many choices

made today reflect the evolutionary optimal behaviour.
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