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Index Models for Sparsely Sampled Functional Data

Peter Radchenko, Xinghao Qiao, and Gareth M. James ∗

Abstract

The regression problem involving functional predictors has many important appli-

cations and a number of functional regression methods have been developed. However,

a common complication in functional data analysis is one of sparsely observed curves,

that is predictors that are observed, with error, on a small subset of the possible time

points. Such sparsely observed data induces an errors-in-variables model, where one

must account for measurement error in the functional predictors. Faced with sparsely

observed data, most current functional regression methods simply estimate the un-

observed predictors and treat them as fully observed; thus failing to account for the

extra uncertainty from the measurement error. We propose a new functional errors-in-

variables approach, Sparse Index Model Functional Estimation (SIMFE), which uses a

functional index model formulation to deal with sparsely observed predictors. SIMFE

has several advantages over more traditional methods. First, the index model imple-

ments a non-linear regression and uses an accurate supervised method to estimate the

lower dimensional space into which the predictors should be projected. Second, SIMFE

can be applied to both scalar and functional responses and multiple predictors. Fi-

nally, SIMFE uses a mixed effects model to effectively deal with very sparsely observed

functional predictors and to correctly model the measurement error.

Some key words: Index Model; Functional Regression; Non-linear Regression; Sparsely Sampled

Functional Data; Error-In-Variables

1 Introduction

In a Functional Data Analysis (FDA) setting the regression problem involving one or more

functional predictors, X1(t), . . . , Xp(t), and either a functional or scalar response, has re-
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cently received a great deal of attention. A few examples include Hastie and Mallows (1993);

Hall et al. (2000); Alter et al. (2000); Hall et al. (2001); James (2002); Cardot et al. (2003);

Ferraty and Vieu (2003); James and Silverman (2005); Muller and Stadtmuller (2005); Chen

et al. (2011), and Jiang and Wang (2011). See Chapter 15 of Ramsay and Silverman (2005)

for a thorough discussion of the issues involved with fitting such data. For examples of recent

research on multivariate functional data see Hall et al. (2006), Li and Hsing (2010), Li and

Chiou (2011), Chiou and Muller (2014) and the references therein.

Given a scalar response Yi and a functional predictor Xi(t), the standard classical func-

tional regression model is of the form

Yi = β0 +

∫
β(t)Xi(t)dt+ εi, (1)

which implies a scalar response, a single densely observed functional predictor and a linear

relationship. Since functional predictors are infinite dimensional, fitting (1) also requires

some form of dimension reduction. Most approaches use an unsupervised method, such as

functional principal components analysis, to represent the predictors and then regress Y

against the lower dimensional representation of X(t).

More recently there has been some work on extending (1) using supervised dimension

reduction methods to represent the predictors and non-linear models for the response surface.

One of the most natural ways to approach this problem is to use an index model:

Yi = m

(∫
β(t)Xi(t)dt

)
+ εi, (2)

where the index function, β(t), projects the predictor into a lower dimensional space and

m(·) is a low dimensional non-linear function. James and Silverman (2005) proposed a

functional index model similar to (2), and Chen et al. (2011) extended this work to a fully

non-parametric setting and provided further theoretical motivation.

In this article we consider the common situation where one only observes a noisy version

of Xi(t) over a handful of time points. In this setting, computing the integral in (2), and

hence fitting the index model, becomes considerably more complicated. We propose a new

errors-in-variables approach (Carroll et al., 2006), named Sparse Index Model Functional

Estimation (SIMFE), which also implements an index model, but offers advantages over the

previously discussed approaches. In particular SIMFE uses a mixed effects model to utilize

information from all the predictors, and hence provide an accurate reconstruction of Xi(t).

Further, we prove that the SIMFE estimate, β̂(t), still has good convergence properties,
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even for sparsely observed predictors. Finally, SIMFE can be applied to data with multiple

functional predictors and either scalar or functional responses.

The remainder of this article is structured as follows. In Section 2 we present the SIMFE

model and develop fitting procedures for both scalar and functional responses. We also

present an extension of SIMFE which adjusts for possible bias in the estimate for the non-

linear functionm(·) in situations where the predictors are observed at different time points for

each individual. Theoretical results are presented in Section 3, which demonstrate that even

for sparsely observed predictors SIMFE will be consistent in estimating the space spanned

by the set of index functions and has a faster rate of convergence than other potential

approaches. Section 4 illustrates the performance of SIMFE on an extensive set of simulations

covering both scalar and functional responses. Section 5 applies SIMFE to an online auction

data set containing sparsely observed predictors.

2 SIMFE

In Section 2.1 we present the SIMFE model for scalar responses and develop a fitting proce-

dure in Section 2.2. SIMFE is extended to functional responses in Section 2.3. Section 2.4

presents a bias corrected version of SIMFE for situations where predictors are observed at

differing sets of time points. Finally, we discuss selection of tuning parameters in Section 2.5.

2.1 Scalar Response

In the scalar response setting we observe p functional predictors, Xi1(t), . . . , Xip(t), and a

scalar response, Yi, where i = 1, . . . , n. For concreteness, we will assume that the domain for

each predictor is [0, 1], however, all of the presented methods and conclusions are still valid

in the situation where the predictors have different domains. Without loss of generality we

can model

Yi = m0(Xi) + εi (3)

where Xi = (Xi1, . . . , Xip) and E(εi|Xi) = 0. However, (3) is too general to fit in practice

because m0 is a function of p infinite dimensional objects. A particularly natural approach

to deal with the infinite dimension of the predictors involves restricting m0 to be a function

of linear projections of Xi:

m0(Xi) = m(Pi), (4)
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where m(Pi) ≡ m(Pi1, . . . ,Pip),

Pij =

(∫
βj1(t)Xij(t)dt, . . . ,

∫
βjdj(t)Xij(t)dt

)
(5)

and dj represents the dimension of the space into which Xij(t) is projected. Hence, Pij is the

dj-dimensional linear projection of Xij(t) formed from the index functions, βj1(t), . . . , βjdj(t).

We can now rewrite equation (3) as follows:

Yi = m(Pi) + εi. (6)

Equation (6) is a functional version of a multi-index model, which has been considered

previously in James and Silverman (2005) and Chen et al. (2011). However, these previous

methods mainly dealt with the situation involving a single densely sampled predictor. In this

paper we consider the common situation involving multiple very sparsely observed predictors.

To deal with the sparsely observed predictors we build strength across all observations

by modeling Xi(t) as coming from a multivariate Gaussian process with mean µ(t) and

covariance Γ(t, u):

Xi ∼ G(µ,Γ). (7)

Further, we assume that Xij(t) is observed, with measurement error, at Tij time points,

tij = (tij1, . . . , tijTij). In particular, let Wijk represent the observed value of Xijk = Xij(tijk).

Then,

Wijk = Xijk + eijk, (8)

where i = 1, . . . , n, j = 1, . . . , p, k = 1, . . . , Tij and the eijk’s are modeled as iid N(0, σ2).

We will see shortly that (7) and (8) allow us to fit a mixed effects model to infer the entire

predictor trajectory based on only a small number of observations. The SIMFE model is

specified by equations (6), (7) and (8).

2.2 The SIMFE Fitting Method

For scalar responses the SIMFE model states that Yi = m(Pi) + εi, where E(εi|Xi) = 0.

Hence, the fitting methods of James and Silverman (2005) or Chen et al. (2011) could

be used to implement SIMFE, provided that the predictors were fully observed. Unfor-

tunately, for sparse functional predictors, rather than observing Xi(t) we observe only

Wi = (Wi1, . . . ,Wip) where Wij = (Wij1, . . . ,WijTij).
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However, Theorem 1 shows that by replacing Xij(t) with its conditional expectation, the

response can still be represented using an index model with exactly the same index as if

Xij(t) has been fully observed.

Theorem 1 Let X̃ij(t) = E {Xij(t)|Wi} and

P̃ij =

(∫
βj1(t)X̃ij(t)dt, . . . ,

∫
βjdj(t)X̃ij(t)dt

)
. (9)

Then, under the SIMFE model,

Yi = m̃ti(P̃i) + ε∗i , (10)

where ti = (ti1, . . . , tip) and E(ε∗i |Wi) = 0.

The proof of Theorem 1 is provided in the appendix. Notice that the definitions of Pij and

P̃ij are identical except that Xij(t) in (5) is replaced by X̃ij(t) in (9). In particular, the same

index functions, βjk(t), are used in both definitions, thus fitting an index model using X̃ij(t)

will produce estimates for the same index functions as one would obtain when using the

original Xij(t) predictors. Theorem 1 is an important result because it suggests a two step

approach for fitting SIMFE; first estimate X̃ij(t) and second fit the resulting multi-index

model given by (10).

Theorem 1 does imply one significant difficulty in fitting (10); the function m̃ is related

to both P̃i and the time points ti. If the time points are common for all individuals, i.e.

ti = t for all i, then (10) reduces to

Yi = m̃(P̃i) + ε∗i , (11)

and fitting m̃(·) is feasible. However, if the time points differ among individuals, then we

are potentially faced with the highly challenging problem of estimating n separate m̃ti(·)
functions from only n observations.

In the following two sections we first develop an approach for estimating X̃ij(t) and then

propose a method for fitting (10) in the easier setting where (11) holds. Then in Section 2.4

we consider the more challenging setting where ti differ across individuals.

2.2.1 Estimating X̃ij(t)

In order to fit the SIMFE model some form of smoothness constraint is required for Xij(t)

and βjk(t). We take the standard approach of modeling these functions using qj-dimensional
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orthogonal basis functions, sj(t), such that
∫
sj(t)sj(t)

Tdt = I. Hence,

Xij(t) = sj(t)
Tδij and βjk(t) = sj(t)

Tηjk, (12)

where δij and ηjk are respectively the basis coefficients for the predictors and index functions.

Using (12) the projection, Pij, becomes

Pij = (ηTj1δij, . . . ,η
T
jdj

δij),

and the Gaussian process model for Xi(t) implies that

δi = (δTi1, . . . , δ
T
ip)

T ∼ N(µδ,∆), (13)

Let s(·) be a matrix valued function, such that for each t matrix s(t) is block diagonal,

with the j-th block given by the column vector sj(t). Then, E(Xi(t)) = µ(t) = µT
δ s(t) and

cov(Xi(t),Xi(u)) = Γ(t, u) = s(t)T∆s(u). Let Sj be the Tj by qj-dimensional basis matrix

with kth row sj(tjk), and S be the block diagonal matrix with jth block Sj. Standard

calculations show that (8), (12) and (13) imply

Xi(t)|Wi ∼ N
(
µ̃T
i s(t), s(t)

T ∆̃s(t)
)
,

where

µ̃i = (µ̃T
i1, ..., µ̃

T
ip)

T = ∆̃

(
∆−1µδ +

1

σ2
STWT

i

)
(14)

and

∆̃ =

(
∆−1 +

1

σ2
STS

)−1
. (15)

Hence,

X̃ij(t) = E(Xij(t)|Wi) = sj(t)
T µ̃ij. (16)

In practice ∆,µδ and σ2 are unknown, so we need to estimate X̃ij(t) using

X̂ij(t) = sj(t)
T µ̂ij,

where µ̂i = (µ̂T
i1, ..., µ̂

T
ip)

T is computed by inserting appropriate parameter estimates into (14).

We can estimate ∆, µδ and σ2 using an EM algorithm, the details of which are provided in

Appendix A.

Note that formulas (14) and (15) can be significantly simplified under the assumption

that the predictors are independent. In our experience this simplified version of SIMFE

often performs competitively relative to the more general version, even in the settings with

correlated predictors.

6



2.2.2 Fitting the Multi-Index Model

To fit the multi-index model a natural population criterion to minimize is

EY,X

(
Y − m̃(P̃)

)2
= EX

[
EY

(
[Y − m̃(P̃)]2

∣∣X)] ,
which can be approximated for a finite sample by

EX

[
EY

(
[Y − m̃(P̃)]2

∣∣X)] ≈ 1

n

n∑
i=1

EY

[(
Y − m̃(P̃)

)2
|X = Xi

]
. (17)

We approximate EY

[(
Y − m̃(P̃)

)2
|X = Xi

]
using local linear regression,

n∑
l=1

(
Yl − ai −

p∑
j=1

P̂ljcij

)2

Kil, (18)

where

Kil = Kh(P̂l − P̂i) (19)

is an appropriate kernel function with bandwidth h and P̂k = (P̂k1, . . . , P̂kp). Note that P̂kj

is identical to P̃kj, except that X̃ij(t) is replaced by X̂ij(t). We use a Gaussian kernel with

the optimal bandwidth

hopt = (4/(d+ 2))1/(d+4) n−1/(d+4), (20)

where d =
∑p

j=1 dj is the dimension of the kernel (Silverman, 1999).

Combining (17) and (18) gives the finite sample criterion that SIMFE minimizes:

1

n

n∑
i=1

n∑
l=1

(
Yl − ai −

p∑
j=1

P̂ljcij

)2

Kil. (21)

Note that the resulting estimator does not change if we replace P̂lj with P̂lj−P̂ij in the above

display, as is often done in the literature. To minimize (21) we use a two step iteration, where

we first estimate m̃(·), and second compute the βjk(t) functions given m̃(·). We describe these

two steps below.

Step One

Let γi =
(
ai, c

T
i1, . . . , c

T
ip

)T
and Rl = (1, P̂l1, . . . , P̂lp)

T then (21) can be written as

1

n

n∑
i=1

n∑
l=1

Kil

(
Yl −RT

l γi
)2
,
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whose minimum is obtained by setting

γ̂i =

(
n∑
l=1

KilRlR
T
l

)−1 n∑
l=1

KilYlRl, i = 1, . . . n. (22)

Step Two

Next, we estimate βjk(t) for j = 1, . . . , p and k = 1, . . . , dj, given the current estimate for

m̃(·). Let

Qil =


ci1 ⊗

∫
X̂l1(t)s1(t)dt

...

cip ⊗
∫
X̂lp(t)sp(t)dt

 =


ci1 ⊗ µ̂l1

...

cip ⊗ µ̂lp


and η = (ηT11, . . . ,η

T
1d1
, . . . ,ηTp1, . . . ,η

T
pdp

)T , where ⊗ is the Kronecker product. It is not hard

to show that the estimate for η that minimizes (21) is given by

η̂ =

(
n∑
i=1

n∑
l=1

KilQilQ
T
il

)−1 n∑
i=1

n∑
l=1

KilQil(Yl − ai). (23)

Hence,

β̂jk(t) = sj(t)
T η̂jk, j = 1, . . . , p, k = 1, . . . , dj, (24)

where η̂jk represent the corresponding elements of η̂.

2.2.3 Scalar Response SIMFE Algorithm

Our theoretical results in Section 3 show that initially fitting SIMFE using a bandwith larger

than hopt (20) and then iteratively reducing h provides a good rate of convergence. Hence,

the scalar response version of the SIMFE algorithm is summarized in Algorithm 1 (next

page).

We initialize β̂jk(t) in Step 2 by fitting the groupwise Outer Product of Gradients (gOPG)

estimator (Li et al., 2010) to the µ̂ij’s from Step 1, using a bandwidth of h ∝ n−1/(p̃+4).

Empirically, we have found that the SIMFE algorithm is stable and typically converges fast.

2.2.4 Predicting the Response

Given a new observation W∗ we will often wish to form a prediction for the corresponding

response Y ∗. Once SIMFE has been fitted, we can compute X̂∗(t), and hence the P̂∗ corre-

sponding to the new observation. Because m̃(·) is computed using a linear approximation,
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Algorithm 1 Scalar Response SIMFE Algorithm

1. Compute the X̂ij(t)’s by plugging the parameter estimates from the EM algorithm into

(16).

2. Initialize β̂jk(t) and h ∝ n−1/(p̃+4) where p̃ =
∑p

j=1 qj.

3. (a) Estimate m̃(P̂) using the linear approximation given by (22).

(b) Compute the β̂jk(t)’s via (23) and (24).

(c) Repeat Steps (a) and (b) until convergence.

4. Set h← ch for some c < 1.

5. Iterate Steps 3. and 4. until h ≤ hopt.

we have n different predictions for Ŷ ∗, i.e. m̃i(P̂
∗) = ai +

∑
j P̂
∗
jcij. An obvious approach

to produce a single Ŷ is to weight the individual predictions according to the difference

between Pi and P∗. Hence, we use the following weighted average:

Ŷ ∗ = m̃(P̂∗) =
n∑
i=1

m̃i(P̂
∗)w∗i =

n∑
i=1

(ai +
∑
j

P̂∗jcij)w∗i, (25)

where w∗i = K∗i/
∑

lK∗l and K∗i is computed using (19).

2.3 Functional Response

In the functional response setting we observe p functional predictors, Xi1(t), . . . , Xip(t), and

a functional response, Yi(s), where i = 1, . . . , n and Yi is observed at points si1, . . . , sini
.

Let Yik = Yi(sik). A natural approach to extend (6) to functional responses is to model

E(Y (s)|X) = µY (s) as a function of both P1, . . . ,Pp and s:

µY (s) = m(s,P).

To fit the multi-index model we aim to minimize the population criterion∫
EY,X

{(
Y (s)−m(s,P)

)2}
ds =

∫
EX

{
EY

(
[Y (s)−m(s,P)]2

∣∣X)} ds,
which can be approximated for a finite sample by

1∑n
i=1 ni

∑
i,k

EY

[(
Y (s)−m(s,P)

)2|X = Xi, s = sik

]
. (26)
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Again we approximate EY

[(
Y (s)−m(s,P)

)2|X = Xi, s = sik

]
using a local linear regres-

sion: ∑
l,k′

(
Ylk′ − aik − csikslk′ −

p∑
j=1

P̂ljcikj

)2

Kiklk′ , (27)

where Kiklk′ = Kh(slk′ − sik, P̂l − P̂i) is an appropriate kernel function with bandwidth h.

Note that the d in (20) is replaced by 1 +
∑p

j=1 dj, because the kernel is a function of one

additional parameter, s.

Combining (26) and (27) gives the functional response finite sample criterion that SIMFE

minimizes:

1∑n
i=1 ni

∑
i,k

∑
l,k′

(
Ylk′ − aik − csikslk′ −

p∑
j=1

P̂ljcikj

)2

Kiklk′ . (28)

As in the scalar response setting, we can minimize (28) using a two step iteration; first

estimate m(s, P̂), and second compute the βjk(t) functions given m. Each step, and the final

algorithm, are similar to that for the scalar response SIMFE. The details are provided in

Appendix B.

2.4 Bias Corrected SIMFE

We now return to the situation where ti may differ among individuals. There is in principle

nothing preventing us from still fitting the previously described approach. The only change

that is required is to replace matrix Sj, introduced in Section 2.2.1 with a Tij by qj matrix,

Sij, whose kth row is given by sj(tijk). The corresponding block-diagonal matrix S is then

replaced in formulas (14), (15) and (41) by Si, which is constructed using matrices Sij.

Indeed, we successfully implement this version of SIMFE in Sections 4 and 5. We refer to

this implementation of our method as Base SIMFE for the remainder of the paper. However,

in the setting with differing time points this version of SIMFE suffers from a potential biased

estimation problem.

To better understand the difficulty with differing time points, consider the expected

value of the response, Yi, conditional on our noisy observation of the predictors, Wi. If the
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predictors are observed at the set of time points ti, then we have:

E(Yi|Wi) = EX (EY (Yi|Xi,Wi)|Wi)

= EX (m (Pi) |Wi)

= EU

(
m
(
P̃i + Ui

)
|Wi

)
= EU

(
m
(
P̃i + Ui

))
= m̃ti

(
P̃i

)
, (29)

where Ui = Pi − P̃i and m̃ti(·) = EU (m (·+ Ui)). Equation (29) follows because Ui is

statistically independent of Wi; a fact which we demonstrate in the proof of Theorem 1.

However, while Ui is statistically independent of Wi, the distribution of Ui is a function of

the time points over which Wi is observed. If Wi is observed at the same set of points for

all i then the distribution of Ui is the same for all i, hence m̃ti(·) = m̃(·). In other words,

we only need estimate a single link function.

Unfortunately, when the time points differ among observations, function m̃ti(·) depends

on the locations of the points. Hence, Base SIMFE, which estimates a single m̃(·), essentially

takes a weighted average of all the functions m̃ti(·), which has the potential to produce biased

parameter estimates. In this section we explore the bias corrected SIMFE, simply referred

to as SIMFE from here on, which estimates m̃ti(·) separately for each observation.

Recall from (18) that Base SIMFE approximates

EY

[(
Y − m̃(P̃)

)2
|X = Xi

]
(30)

using a weighted sum of squared errors between Yl and m̃(P̂l), where the weight is a decreas-

ing function of the distance between P̂i and P̂l. This weighting scheme makes sense if m̃(·) is

the same for all observations but may be inappropriate if Xi(t) and Xl(t) are measured over

a very different set of time points, because in that case m̃ti(·) 6= m̃tl(·). The bias corrected

implementation of SIMFE overcomes this deficiency by observing that, for a smooth m(·), if

the distributions of Ui and Ul are similar then m̃ti(·) ≈ m̃tl(·). Hence, a more appropriate

approximation to (30) is given by

n∑
l=1

(
Yl − ai −

p∑
j=1

P̂ljcij

)2

K̃il, (31)

where K̃il is a decreasing function of both the distance between P̂i and P̂l and the difference

in the distributions between Ui and Ul. This is achieved by setting

K̃il = K
(1)
il ×K

(2)
il , (32)
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with K
(1)
il = Kh1(P̂i − P̂l) and K

(2)
il = Kh2(D̂il), where D̂il is an estimate of DKL(Ui,Ul),

the Kullback-Leibler divergence between the probability distributions of Ui and Ul.

Let ηj be a qj by dj matrix, whose k-th column is ηjk, and define [η] as a block diagonal

matrix, with the j-th block given by ηj. One can show that Ui = (Ui1, · · · ,Uip) ∼ N (0,Σi)

where

Σi = [η]T (I − ΩiSi)∆(I − ΩiSi)
T [η] + σ2[η]TΩiΩ

T
i [η], (33)

and Ωi = (∆−1 + 1
σ2S

T
i Si)

−1STi /σ
2. Let d =

∑p
j=1 dj. The Kullback-Leibler divergence

between the multivariate normal distributions of Ui and Ul is given by

DKL(Ui,Ul) =
1

2

(
tr(Σ−1l Σi)− log

(
det Σi

det Σl

)
− d
)
,

and D̂il is obtained by replacing the parameters ∆ and σ2 and [η] in the above formula with

their estimates. Thus, given a set of time points, one can estimate the Kullback-Leibler

divergence between Ui and Ul for any i and l, and hence obtain K
(2)
il and K̃il.

The new implementation of SIMFE still uses the same algorithm to minimize (21) in the

scalar response setting, or to minimize (28) for functional responses, with the only change

being that the kernel function K is replaced by the kernel K̃, defined in (32). Notice that if

all predictors are observed at the same set of time points, then Si = Sl for all i and l. In this

case D̂il = 0, so that K̃il ∝ Kh1(P̂i−P̂l) and the new implementation reduces to that of Base

SIMFE. Alternatively, in situations where time points differ among observations, the new

approach will place most weight on observations where i and l are similar both in terms of

P̂i versus P̂l and in terms of the distributions of Ui and Ul. The functional response version

of SIMFE can be extended to implement the bias corrected approach using an analogous

expansion of the kernel.

While the two SIMFE approaches are similar, there is a major distinction between the

methods in terms of their estimates for m̃(·). Consider for example an extreme situation

where the predictors are all observed over one of two possible time point configurations, t1

and t2. Then Base SIMFE would ignore the difference in the time points and produce a single

estimate for m̃(·). However, the new implementation of SIMFE would essentially take the

observations from one configuration to estimate m̃t1(·) and use the remaining observations

to estimate m̃t2(·). If the two m̃(·) functions were sufficiently different from each other, we

would expect the new SIMFE estimate to be superior to that of the Base SIMFE.

We will predict a response Y ∗ based on a new observation W∗ using the same approach
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as the Base SIMFE (25). The only difference is that the weight w∗i is computed using K̃

rather than K.

2.5 Selection of tuning parameters

Implementing SIMFE requires selecting qj (the dimension of the basis function sj(t)) and

dj (the dimension into which Xij(t) will be projected). We use K-fold cross-validation to

obtain qj. In particular, for a given candidate value of qj we remove 1/Kth of the observed

time points for each Xij(t) as a validation set, fit a random effects model to the remaining

observations, calculate the squared error between Wij and X̂ij(t) on the validation set, and

repeat the procedure K times until each time point has been held out once. This procedure

is repeated over a grid of qj values, and the dimension corresponding to the lowest cross-

validated squared error is selected. We repeat this approach for each of the p predictors.

In the implementation of the Base SIMFE approach the final bandwidth, hopt, is set

proportional to n−1/(d+4), where d is the total reduced dimension for the predictors. In the

bias corrected implementation the reduced dimension d is increased to account for the fact

that the link m̃ in equation (29) is a function not only of the projection P̃i, but also of the

matrix Σi. Thus, the new reduced dimension, d̃, is set equal to the sum of d and the number

of unique nonzero elements in Σi, i.e. d̃ = d + d(d + 1)/2. The final bandwidth is then set

proportional to n−1/(d̃+4). Because we use the Kullback-Leibler divergence in the definition of

the kernel, the choice of the proportionality constant in equation (20) is no longer justified.

For the empirical work in this paper, we set this constant to 2, which gave good results in

all the settings we considered.

Cross-validation could also be used to select dj, but this approach suffers from a heavy

computational burden. Instead, we extend the criterion that Li et al. (2010) developed for

g-MAVE. Let L(dc1, . . . , dcp) be the minimum value of the SIMFE criterion function for a

candidate set of dimensions {dc1, . . . , dcp}. Define dc = dc1+· · ·+dcp, set d̃c = dc+dc(dc+1)/2,

and let hn = hn(d̃c) be the bandwidth chosen as described in the paragraph above. We

estimate dimensions d1, . . . , dp as d̂1, . . . , d̂p, which are selected to minimize the following

finite sample criterion:

log (L(dc1, . . . , dcp)) + (dc log n)/(nhn
d̃c). (34)

The next result, which is proved in the Supplementary Material, demonstrates that this
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criterion leads to consistent estimation of the dimensions dj.

Theorem 2 Under assumptions A1, A2, C3-C5, given in the Appendix,

P{(d̂1, . . . , d̂p) = (d1, . . . , dp)} → 1 as n→∞.

3 Theoretical Results

In the standard non-functional setting there exist index model fitting methods for which one

can prove a fast rate of convergence to the true subspace as n → ∞ and h → 0. However,

these results are not appropriate for our situation, because they assume a standard fully

observed non-functional predictor and a scalar response. The SIMFE setting is considerably

more complicated, because it involves functional data which, for sparsely sampled predictors,

are observed subject to measurement error. In addition, the response may also be functional.

Our main theoretical contribution is to establish that despite these added complications

SIMFE still attains a fast convergence rate. In Theorem 3 we consider scalar responses and

then, in Theorem 4, extend the result to functional responses.

As with existing results in the non-functional setting (Xia, 2008; Li et al., 2010), through-

out this section we assume that the true values of the reduced dimensions are known for

each predictor. Our first result corresponds to the estimator obtained by the scalar response

SIMFE algorithm. Note that in the standard non-functional setting the rate of convergence

for the gOPG estimator, which we use to initialize SIMFE, is n−2/(p̃+4) (Li et al., 2010).

Theorem 3 below shows that the rate for the SIMFE estimator is significantly better.

In order to state our results we need to define a distance measure between a true index

function, βj(t) = (βj1(t), . . . , βjdj(t))
T , and the corresponding SIMFE estimate, β̂j(t) =

(β̂j1(t), . . . , β̂jdj(t))
T . Since β̂j(t) defines a linear projection of the predictor, Xij(t), it is

non-unique up to a linear transformation. In other words, β̂j(t) and β̃j(t) = Ajβ̂j(t) both

project Xij(t) into the same lower dimensional space for any invertible dj by dj matrix, Aj.

Hence, we define the distance between β̂j(t) and βj(t) as

r
(
β̂j(t),βj(t)

)
= min

Aj∈Rdj×Rdj

‖Ajβ̂j(t)− βj(t)‖,

where ‖β̃j(t) − βj(t)‖2 =
∑dj

k=1

∫ (
β̃jk(t)− βjk(t)

)2
dt. Theorem 3 establishes the rate at

which r
(
β̂j(t),βj(t)

)
converges to zero as n tends to infinity.
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To prove Theorem 3 we impose smoothness and regularity conditions A1-A5, listed in

the Appendix. We also suppose that we are given a finite, but possibly large, collection

of potential time points, T = {T1, ..., TL}. We assume that time points tij1, ..., tijTij are

randomly generated from the set T , where the number of time points, Tij, is also randomly

generated.

Theorem 3 Suppose that assumptions A1-A5, stated in the Appendix, are satisfied. Then,

the SIMFE estimator satisfies

r
(
β̂j(t),βj(t)

)
= Op

(
h4opt +

log n

nhdopt
+ n−1/2

)
= Op

(
n−

4
d+4 log n+ n−1/2

)
,

for j = 1, . . . , p.

To understand the resulting rate of convergence, let us consider some special cases. For d ≤ 3

the SIMFE estimator achieves the parametric rate of convergence, n−1/2, while for d = 4

the parametric rate is attained up to a log n factor. For d ≥ 5 the rate of convergence

is n−4/(d+4) log n.

The following result provides the rate of convergence in the functional response case.

We assume that the time points at which the response is observed are generated from a

continuous distribution; the details are given in the Appendix.

Theorem 4 Suppose that assumptions A1-A3, B4 and B5, stated in the Appendix, are sat-

isfied. Then, the estimator obtained from the functional response SIMFE algorithm satisfies

r
(
β̂j(t),βj(t)

)
= Op

(
n−

4
d+5 log n+ n−1/2

)
,

for j = 1, . . . , p.

Note that for d ≤ 2 the functional SIMFE estimator achieves the parametric rate of conver-

gence, n−1/2. For d = 3 the rate of convergence is n−1/2 log n, and for d ≥ 4 it is n−4/(d+5) log n.

The rate of convergence in the functional response setting is generally slower than that in

the scalar response case because the dependence of the link function on the time parameter

needs to be estimated.

Theorems 3 and 4 assume that the time points are generated from a finite collection.

The next result corresponds to the case where time point locations come from a continuous

distribution. Let Σ̂i be the estimate of Σi in (33) and define ξ̂i as a vectorized version of the

unique elements of Σ̂i, i.e. those on and above the diagonal. Let ξi be the corresponding
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vectorized form of Σi. Note that because ξi uniquely defines the distribution of Ui, the link

m(·) is a function of both Pi and ξi, i.e. m(Pi, ξi). Hence, in order to achieve a faster

rate of convergence we slightly modify approximation (31) by including an additional term

corresponding to ξ̂i:
n∑
l=1

(
Yl − ai −

p∑
j=1

P̂ljcij − ξ̂ic̃i

)2

K̃il. (35)

This approach uses local linear smoothing not only with respect to P̂i, but also with respect

to ξ̂i. We also replace hopt with h̃opt = n−1/(d̃+4), where d̃ = d + d(d + 1)/2, as the final

bandwidth.

Theorem 5 Suppose that the number of time points and their locations are randomly gen-

erated for each observation. Under assumptions A1, A2, C3-C5, given in the Appendix, the

SIMFE estimator satisfies

r
(
β̂j(t),βj(t)

)
= Op

(
n−4/(d̃+4) log n+ n−1/2

)
,

for j = 1, . . . , p.

In the setting of Theorem 5, the SIMFE estimator generally converges at a slower rate than

the one in Theorem 3, where the time points are generated from a finite collection. This

is due to the increased dimensionality of the problem. However, note that when d = 1 the

estimator still achieves the parametric rate of convergence, n−1/2. When the dimension d

is large, the convergence can be slow. This is the case when, for example, the number of

available predictor functions is large. In this situation, a more reasonable approach would be

to add a group penalty on the estimated index coefficients to the SIMFE estimation criterion,

which would force some of the predictors to be excluded from the estimated model.

However, we believe that in a number of settings it would be appropriate to assume the

time points are sampled from a finite set of possibilities, in which case the faster rate of

convergence in Theorem 3 would apply. For example in an experimental design setting, one

may sample patients at a finite (and common) set of time points. Our results suggest that

SIMFE would perform better in this setting relative to generating the time points from a

continuous distribution.

The proofs of all the results in this section are provided in the Supplementary Material.
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4 Simulation Analysis

To evaluate the finite sample performance of our methods we test SIMFE out over two

general scenarios; scalar responses and functional responses. In each setting we perform 100

simulation runs and compare the two versions of SIMFE with three competing methods:

groupwise Outer Product of Gradients (gOPG) (Li et al., 2010), groupwise Sliced Inverse

Regression (gSIR) (Li, 2009) and groupwise Principal Components Analysis (gPCA). The

three competing approaches are implemented as follows. We start by computing X̂ij(t), as

described in Step 1 of both the scalar and functional response SIMFE algorithms. This step

is exactly the same for all the methods, including SIMFE. We then use the estimated basis

coefficients, µ̂ij, to produce estimates for the index functions. All the methods proceed as

they would in the non-functional setting by treating µ̂ij as the observed predictors. For all

methods we use local linear smoothing to estimate the link function, which we use to calculate

the prediction error. Note that the gOPG implementation is equivalent to applying the first

step of SIMFE without iterating. As a consequence, the SIMFE results provide a measure

of the relative improvement from applying our iterative fitting procedure.

We use the cross-validation approach described in Section 2.5 to select the basis dimen-

sion qj for all the methods. We also use the criterion given by (34) to select d1, . . . , dp

for gOPG and gSIR. However, we found that gPCA performed poorly using (34). Hence,

we generated a separate validation data set for each simulation run and selected the num-

ber of principal components that provides the best fit to the predictors on the validation

data. While this provided a slight advantage for gPCA relative to the other methods, the

performance of gPCA improved significantly.

4.1 Scalar Gaussian Responses

In the first scenario we generate scalar Gaussian responses from a model involving three

predictors, X1(t), X2(t), X3(t). The observed values of the predictors, Wij, are generated

using equation (8) with σj = 0.1 for j = 1, 2, 3 and

Xij(t) = aij0 +
2∑

k=1

bijk sin(kπt) +
2∑

k=1

cijk cos(kπt). (36)
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The corresponding index functions are similarly generated by

βj(t) = ãj0 +
2∑

k=1

b̃jk sin(kπt) +
2∑

k=1

c̃jk cos(kπt),

where a, b, c, ã, b̃ and c̃ are sampled from a standard normal. Finally, the responses come

from the non-linear model

Yi = mi + εi = Pi1 + exp(0.8Pi2) + sin(0.5πPi3) + εi, (37)

where εi ∼ N(0, σ2
y), Pij =

∫
Xij(t)βj(t)dt and σy = 0.1. This model corresponds to project-

ing each predictor down into a one-dimensional space i.e. d1 = d2 = d3 = 1. To simulate a

real world setting where the functional form of the βjk(t)’s would be unknown, we fit SIMFE

using a spline basis rather than the true Fourier basis from which the data was generated.

Seven separate simulation settings are considered. In the first five a, b and c are generated

independently in (36) so the predictors are uncorrelated. These settings correspond to two

different sample sizes (n = 100 and n = 200) and three different levels of sparsity for sampled

predictors (Tij = 5, Tij = 8 and Tij randomly sampled from the set {5, 6, 7, 8}). Different time

points are randomly selected for each observation from a very dense grid of points. Thus, for

example, the observed points for i = 1 differ from those for i = 2. In the last two simulation

settings we take n = 100 and Tij = 5. However, we generate correlated functional predictors

by sampling the coefficients in (36) from a zero mean multivariate normal distribution with

the diagonal elements of the covariance matrix set to one and off-diagonal elements all equal

to either ρ = 0.25 or ρ = 0.5.

Figure 1 provides a graphical illustration of the results for the n = 200 and Tij = 8

simulation setting. The black solid lines correspond to the three true βj(t)’s from which the

data were generated. The median most accurate estimate, over the 100 simulation runs, is

also plotted for each of the five competing methods. Both SIMFE (blue) and Base SIMFE

(red) provide the highest levels of accuracy.

Table 1 compares SIMFE with gOPG, gSIR and gPCA over all seven simulations with

mean prediction errors computed on a separate test set of size n = 500. We also provide the

mean correlations between the estimated and true βj(t) curves, with numbers close to one

demonstrating a good estimate. The correlations are calculated from the vector correlation

(Hotelling, 1936) between discretized versions of the true and estimated curves. In this

calculation, the curves are evaluated on the same dense grid that is used to generate the
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Setting Method MSPE β1(t) β2(t) β3(t)

SIMFE 0.388 (0.010) 0.818(0.025) 0.776(0.030) 0.812(0.024)

Tij = 5 Base SIMFE 0.429(0.011) 0.794(0.027) 0.754(0.031) 0.769(0.027)

n = 100 gOPG 1.914(0.099) 0.446(0.036) 0.498(0.033) 0.408(0.029)

ρ = 0 gSIR 0.786(0.024) 0.719(0.029) 0.664(0.033) 0.603(0.028)

gPCA 0.908(0.019) 0.480(0.028) 0.575(0.027) 0.396(0.024)

SIMFE 0.284(0.010) 0.721(0.032) 0.757(0.034) 0.762(0.029)

Tij = 5 Base SIMFE 0.314(0.011) 0.702(0.031) 0.727(0.033) 0.732(0.030)

n = 200 gOPG 1.745(0.100) 0.325(0.039) 0.522(0.038) 0.323(0.030)

ρ = 0 gSIR 0.461(0.014) 0.598(0.037) 0.656(0.038) 0.594(0.032)

gPCA 0.712(0.015) 0.455(0.030) 0.623(0.026) 0.329(0.020)

SIMFE 0.174(0.006) 0.729(0.023) 0.694(0.024) 0.728(0.023)

Tij = 8 Base SIMFE 0.174(0.006) 0.711(0.025) 0.695(0.025) 0.697(0.025)

n = 100 gOPG 1.873(0.085) 0.059(0.006) 0.062(0.007) 0.056(0.005)

ρ = 0 gSIR 0.654(0.025) 0.366(0.027) 0.265(0.024) 0.246(0.025)

gPCA 0.493(0.011) 0.508(0.030) 0.639(0.025) 0.320(0.019)

SIMFE 0.124(0.006) 0.896(0.015) 0.883(0.016) 0.864(0.016)

Tij = 8 Base SIMFE 0.121(0.006) 0.856(0.018) 0.862(0.017) 0.844(0.017)

n = 200 gOPG 2.017(0.077) 0.046(0.003) 0.048(0.003) 0.040(0.003)

ρ = 0 gSIR 0.304(0.011) 0.443(0.026) 0.444(0.028) 0.370(0.027)

gPCA 0.384(0.009) 0.468(0.029) 0.653(0.025) 0.283(0.018)

SIMFE 0.280(0.010) 0.759(0.028) 0.775(0.029) 0.772(0.026)

Tij = 5, 6, 7, 8 Base SIMFE 0.298(0.010) 0.708(0.031) 0.742(0.031) 0.745(0.028)

n = 100 gOPG 1.701(0.108) 0.364(0.041) 0.447(0.042) 0.388(0.038)

ρ = 0 gSIR 0.721(0.028) 0.536(0.033) 0.531(0.036) 0.460(0.032)

gPCA 0.673(0.016) 0.483(0.030) 0.598(0.027) 0.357(0.021)

SIMFE 0.662(0.024) 0.787(0.026) 0.787(0.027) 0.766(0.027)

Tij = 5 Base SIMFE 0.701(0.026) 0.763(0.027) 0.783(0.026) 0.756(0.028)

n = 100 gOPG 4.059(0.286) 0.234(0.025) 0.479(0.029) 0.232(0.020)

ρ = 0.25 gSIR 1.368(0.055) 0.689(0.030) 0.610(0.029) 0.607(0.029)

gPCA 1.459(0.034) 0.205(0.018) 0.873(0.009) 0.148(0.011)

SIMFE 0.742(0.038) 0.773(0.027) 0.761(0.029) 0.756(0.026)

Tij = 5 Base SIMFE 0.780(0.036) 0.736(0.029) 0.752(0.029) 0.725(0.027)

n = 100 gOPG 4.336(0.493) 0.287(0.025) 0.504(0.027) 0.260(0.023)

ρ = 0.50 gSIR 1.689(0.048) 0.783(0.023) 0.614(0.023) 0.706(0.024)

gPCA 1.419(0.037) 0.192(0.016) 0.862(0.008) 0.145(0.012)

Table 1: Scalar Gaussian Response for d1 = d2 = d3 = 1: The mean squared prediction

error, and correlation coefficients. Standard errors are shown in parentheses.

19



0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

t

β 1
(t)

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
2

−
1

0
1

2

t

β 2
(t)

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3

t

β 3
(t)

Figure 1: Scalar Gaussian simulation with Tij = 8 and n = 200: Comparison of true β(t)

functions (black solid) with median estimates over 100 simulation runs; SIMFE (blue solid),

Base SIMFE (red solid), gOPG (green dotted), gSIR (cyan dashed) and gPCA (grey dash

dotted).

time points. All results are averaged over 100 simulation runs. As one would expect, the

best results are obtained for the more densely sampled case, with larger sample size. In

all seven simulations, the SIMFE approaches outperform the competing methods. In most

cases the difference is large, and generally statistically significant. The SIMFE methods

perform particularly well in terms of prediction error. As we would expect, SIMFE generally

outperforms Base SIMFE in the sparsest settings, but the two methods give similar results in

the denser scenario. It is also worth noting that gOPG, which is used as the initialization for

SIMFE, provides significantly worse results, highlighting the improvement that is possible

from the iterative SIMFE algorithm. The correct reduced dimensions are selected in all of

the simulation runs using criterion (34).

In the next simulation, we consider an example with two predictors, where the responses

come from a model with the following nonlinear function:

mi =
Pi11

0.5 + (1.5 + Pi12)2
+ Pi21, (38)

where Pijk =
∫
Xij(t)βjk(t)dt. This model projects the two predictors, respectively, into a
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Setting Method MSPE β1(t) β2(t)

SIMFE 0.280(0.009) 0.840(0.016) 0.832(0.027)

Tij = 5, n = 100 Base SIMFE 0.520(0.020) 0.858(0.016) 0.809(0.028)

ρ = 0 gOPG 1.548(0.073) 0.647(0.021) 0.417(0.030)

gSIR 0.736(0.027) 0.773(0.015) 0.771(0.026)

gPCA 0.684(0.016) 0.868(0.007) 0.410(0.024)

SIMFE 0.197(0.005) 0.853(0.014) 0.783(0.030)

Tij = 5, n = 200 Base SIMFE 0.367(0.010) 0.867(0.013) 0.745(0.033)

ρ = 0 gOPG 1.414(0.062) 0.631(0.019) 0.349(0.032)

gSIR 0.464(0.011) 0.789(0.016) 0.711(0.034)

gPCA 0.559(0.011) 0.885(0.005) 0.323(0.020)

SIMFE 0.137(0.005) 0.757(0.008) 0.716(0.025)

Tij = 8, n = 100 Base SIMFE 0.253(0.009) 0.772(0.009) 0.654(0.026)

ρ = 0 gOPG 1.907(0.116) 0.567(0.014) 0.054(0.012)

gSIR 0.646(0.035) 0.580(0.013) 0.372(0.025)

gPCA 0.395(0.009) 0.915(0.003) 0.329(0.020)

SIMFE 0.107(0.003) 0.787(0.012) 0.874(0.014)

Tij = 8, n = 200 Base SIMFE 0.203(0.012) 0.811(0.012) 0.822(0.018)

ρ = 0 gOPG 1.611(0.035) 0.599(0.018) 0.045(0.010)

gSIR 0.358(0.012) 0.629(0.012) 0.572(0.026)

gPCA 0.306(0.006) 0.916(0.002) 0.275(0.018)

Table 2: Scalar Gaussian Response for d1 = 2, d2 = 1: The mean squared prediction error,

and correlation coefficients. Standard errors are shown in parentheses.

two-dimensional and a one-dimensional space, i.e. d1 = 2 and d2 = 1. In all other respects

the simulation setup is identical to our first simulation.

Table 2 reports numerical summaries for all four simulations. SIMFE does better than

both gOPG and gSIR in estimating β1(t) = (β11(t), β12(t)). gPCA gives a slightly better

estimate for β1(t), but SIMFE is substantially superior to all three competing methods in

estimating β2(t). Moreover, SIMFE significantly outperforms all of the competitors, includ-

ing Base SIMFE, in terms of the prediction error. SIMFE choose the correct dimension,

d = (2, 1)T , on more than 90% of simulations, and selected d = (1, 1)T in the remainder.
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Figure 2: Functional Gaussian Response for Tij = ni = 5, n = 100: Comparison of true

βj(t) functions (black solid) with SIMFE (blue solid), Base SIMFE (red solid), gOPG(green

dotted), gSIR(cyan dashed) and gPCA estimates(grey dash dotted).

4.2 Functional Gaussian Responses

In our third scenario the responses are generated as functions rather than scalars. In partic-

ular, each response function is randomly sampled at ni = 5 or ni = 8 different time points,

s1, . . . , sni
, with

Yi(sik) = m(sik,Pi) + εik, εik ∼ N(0, σ2
y),

where m(sik,Pi) = sikmi and mi is equal to the response function from (37) with p = 3

predictors. We only consider the n = 100 setting. The predictors and index functions are

generated in the same fashion as for the scalar response simulations. To implement gOPG

we again initialize βj(t) by applying gOPG to the estimated basis coefficients, µ̂ij, of the

predictor functions and then use (42) to estimate m̃(·), i.e. a single iteration of the functional

response version of SIMFE. gSIR and gPCA are computed in an analogous fashion.

Figure 2 illustrates the graphical results for the more sparsely sampled ni = Tij = 5 case,

while Table 3 gives numerical summaries for both sparsity levels. The results in Figure 2 and

Table 3 are generally consistent with those in the scalar case. In every simulation setting

SIMFE provides improved estimates of the index functions, and lower prediction errors,
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Setting Method MSPE β1(t) β2(t) β3(t)

SIMFE 0.137 (0.007) 0.843(0.023) 0.793(0.030) 0.735(0.026)

Base SIMFE 0.148(0.008) 0.838(0.025) 0.781(0.031) 0.726(0.033)

Tij = 5, n = 100 gOPG 0.907(0.042) 0.409(0.031) 0.429(0.037) 0.285(0.028)

gSIR 0.435(0.012) 0.737(0.032) 0.643(0.034) 0.545(0.031)

gPCA 0.414(0.014) 0.483(0.031) 0.593(0.028) 0.384(0.027)

SIMFE 0.073(0.006) 0.793(0.027) 0.754(0.024) 0.763(0.026)

Base SIMFE 0.074(0.006) 0.786(0.028) 0.744(0.024) 0.752(0.026)

Tij = 8, n = 100 gOPG 0.797(0.039) 0.180(0.016) 0.079(0.015) 0.123(0.020)

gSIR 0.277(0.010) 0.681(0.031) 0.521(0.028) 0.248(0.025)

gPCA 0.197(0.009) 0.346(0.028) 0.589(0.027) 0.401(0.022)

Table 3: Functional Gaussian Response: The mean squared prediction error, and correlation

coefficients. Standard errors are shown in parentheses.

relative to gOPG, gSIR and gPCA. In most cases the differences are highly statistically

significant. The correct reduced dimensions are selected in all of the simulation runs using

criterion (34). When compared to its Base version across all the simulation settings, SIMFE

performs better with respect to the prediction error. The advantage of SIMFE is especially

prominent in the sparsest simulation scenarios, corresponding to Tij = 5.

5 Auction Data

Online auctions have attracted considerable attention in recent years. EBay, the world’s

largest consumer-to-consumer electronic commerce company, provides a convenient auction

site for global sellers and buyers to trade with each other through the internet. The majority

of eBay’s revenue is generated through fees for listing and selling auctions. EBay makes the

historical auction data for millions of different types of products publicly accessible. Here

we consider the most common single-item online auctions, where bidders place their orders

during a fixed auction duration. Those who submit the highest bid before the closing time

win the auction but only need to pay the second highest bid. eBay does not display the

highest bid, but rather the second highest bid (plus a small bid increment). This is called

the live bid. The price histories of these live bids from auctions of similar products can be

viewed as i.i.d realizations of bid trajectories. Functional data analysis (FDA) provides a

powerful tool to deal with such online auction data, see Jank and Shmueli (2005); Shmueli
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and Jank (2005); Reddy and Dass (2006); Reithinger et al. (2008); Wang et al. (2008) and

Liu and Muller (2008). The sequence of observed bids differs from the values of the smooth

underlying bid trajectory. These differences can be viewed as random aberrations of bids,

but we will treat them as “measurement error”.

Here we examine 156 eBay online 7-day second price auctions of Palm M515 Personal

Digital Assistants (PDA) that took place between March and May, 2003 (Liu and Muller,

2008). Our interest is in predicting Y = “closing price” based on observing the auction

trajectory, X(t), up to time 0 ≤ t ≤ T . Traditional functional data analysis methods require

regular and dense data, but auction data are generally sparsely and irregularly observed with

measurement errors. Examination of the PDA data confirms the presence of “bid sniping”

i.e. where bids are very sparse in the middle of the auction, a little denser in the beginning

and much denser at the end of the auction. Each auction contains 9 to 52 sparse and irregular

observations of live bids. We converted the bid time to hours, t ∈ [0, 168), and applied a log

transformation to the bid values.

Figure 3 plots the estimated time varying β1(t)’s using SIMFE, Base SIMFE, gOPG,

gSIR and gPCA. Each plot represents a different subset of the data for T = 138, 144, . . . , 168.

For example, the top left figure corresponds to T = 138 where we only considered auction

trajectories up to t ≤ 138 i.e. 30 hours prior to the end of the auction. A few trends

are apparent. First, SIMFE (red dashed) and Base SIMFE (black solid) give very similar

estimates and both methods place most of the weight on the bid trajectories after t = 100

hours. These results are consist across different values of T and seem reasonable given that

the most recent bids contain the most information about the final auction price. Second, for

the larger values of T , gPCA (cyan long dash) places roughly equal weight on all sections

of the bid trajectory, while gOPG (green dotted) and gSIR (blue dash-dot) produce wildly

varying results that are hard to justify based on the context of the problem.

To judge which projection produced superior predictions, we computed the 5-fold cross-

validated prediction errors for SIMFE and Base SIMFE. We also implement a hybrid ap-

proach, gSIMFE, which uses SIMFE to compute Pi, but then predicts the response by

applying generalized additive models (GAM) with Pi as the predictor. We compared the

three SIMFE methods to similar implementations of gOPG, gSIR and gPCA, where each

method was used to estimate Pi, and then GAM was fitted to give a predicted response.

Note that for gPCA we fitted GAM to the first 3 principal components, which explained

more than 95% of the variation in the bid trajectory. The resulting cross-validated errors, for
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Figure 3: Estimated βjk(t) curves for eBay online Auction Data. The red dashed,

black solid, green dotted, blue dash-dot and cyan long dashed lines correspond to SIMFE,

Base SIMFE, gOPG, gSIR and gPCA, respectively, up to different current times, T =

138, 144, 150, 156, 162 and 168 hours.

various values of T , are provided in Table 4. We have also included the error rates from the

null model, using the mean of the training response to predict the test response. gSIMFE

gave the best results, though SIMFE and Base SIMFE were only slightly inferior. For larger

values of T all three SIMFE methods outperformed the competitors.
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Method t ≤ 138 t ≤ 144 t ≤ 150 t ≤ 156 t ≤ 162 t < 168

SIMFE 6.502 6.536 6.452 6.281 6.202 4.435

Base SIMFE 6.481 6.533 6.471 6.286 6.194 4.552

gSIMFE 6.390 6.381 6.263 6.146 6.191 4.283

gOPG 7.139 6.601 7.056 6.926 6.444 5.541

gSIR 6.413 6.543 6.380 6.387 6.253 5.023

gPCA 6.996 6.486 6.721 6.584 6.240 6.109

Mean 7.211 7.211 7.211 7.211 7.211 7.211

Table 4: Cross-validated mean squared prediction errors (×10−3) for the three versions of

SIMFE and four competing methods. The lowest MSPE for each value of T is bolded.

A EM Algorithm for Estimating X̃ij(t)

Standard calculations show that the expected value of the joint likelihood for X and W is

maximized by setting

µ̂δ =
1

n

n∑
i=1

E [δi|Wi, µ̂i] =
1

n

n∑
i=1

µ̂i, (39)

∆̂ =
1

n

n∑
i=1

E
[
(δi − µδ)(δi − µδ)

T |Wi, µ̂i, ∆̃, µ̂δ

]
=

1

n

n∑
i=1

(
(µ̂i − µ̂δ)(µ̂i − µ̂δ)

T + ∆̃
)

(40)

and

σ̂2 =
1∑n

i=1

∑p
j=1 Tij

n∑
i=1

E
[
(WT

i − Sδi)T (WT
i − Sδi)|Wi, µ̂i, ∆̃

]
=

1∑n
i=1

∑p
j=1 Tij

n∑
i=1

(
(WT

i − Sµ̂i)
T (WT

i − Sµ̂i) + trace
(
S∆̃ST

))
. (41)

Hence, the following EM algorithm can be applied to efficiently estimate the required

parameters. Note that when ti differ among individuals, we replace matrix S in the formulas

above with Si.

B Fitting Functional Response SIMFE

We use a similar two step iteration for the functional response version of SIMFE. The steps

are summarized in Algorithm 3.
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Algorithm 2 EM Algorithm

1. Compute µ̂δ, ∆̂ and σ̂2 via Equations (39), (40) and (41).

2. Use the current parameter estimates to update µ̂i and ∆̃ via Equations (14) and (15).

3. Repeat Steps 1. and 2. until convergence.

Step One

Let γik =
(
aik, c

s
ik, c

T
ik1, . . . , c

T
ikp

)T
and Rlk′ = (1, slk′ , P̂l1, . . . , P̂lp)

T then (28) can be written

as,
1∑n
i=1 ni

∑
i,k

∑
l,k′

Kiklk′
(
Ylk′ −RT

lk′γik
)2
,

whose minimum is obtained by setting,

γ̂ik =

(∑
l,k′

Kiklk′Rlk′R
T
lk′

)−1∑
l,k′

Kiklk′Ylk′Rlk′ , (42)

for i = 1, . . . , n and k = 1, . . . , ni.

Step Two

Next, we estimate βjk(t) for j = 1, . . . , p and k = 1, . . . , dj, given the current estimate for

m(s, P̂1, . . . , P̂p). Let

Qikl =


cik1 ⊗

∫
X̂l1(t)sj(t)dt

...

cikp ⊗
∫
X̂lp(t)sj(t)dt

 =


cik1 ⊗ µ̂l1

...

cikp ⊗ µ̂lp


and η = (η11, . . . ,η1d1 , . . . ,ηp1, . . . ,ηpdp)T , where ⊗ is the Kronecker product. It is not hard

to show that the estimate for η that minimizes (28) is given by,

η̂ =

(∑
i,k

∑
l,k′

Kiklk′QiklQ
T
ikl

)−1∑
i,k

∑
l,k′

Kiklk′Qikl(Ylk′ − aik − csikslk′). (43)

Hence,

β̂jk(t) = sj(t)
T η̂jk, j = 1, . . . , p, k = 1, . . . , dj, (44)

where η̂jk represent the corresponding elements of η̂.
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Algorithm 3 Functional Response SIMFE Algorithm

1. Compute X̂ij(t)’s by plugging parameter estimates from the EM algorithm into (16).

2. Initialize β̂jk(t) and h ∝ n−1/(p̃+4) where p̃ = 1 +
∑p

j=1 qj.

3. (a) Estimate m(s, P̂) using the linear approximation given by (42).

(b) Compute the β̂jk(t)’s via (43) and (44).

(c) Repeat Steps (a) and (b) until convergence.

4. Set h← ch for some c < 1.

5. Iterate Steps 3 and 4 until h ≤ hopt, which is defined using d+ 1 instead of d.

C Proof of Theorem 1

As a consequence of the SIMFE model, we have the following simple fact,

E(εi|Wi) = E(E(εi|Xi,Wi)|Wi) = 0.

We also have,

E(Yi|Wi) = E (m (Pi1, . . . ,Pip) |Wi) + E (εi|Wi)

= E
(
m(P̃i1 + Ui1, . . . , P̃ip + Uip)|Wi

)
,

where Uij = Pij − P̃ij. Under some mild integrability assumptions, Uij are mean zero

Gaussian random vectors, and P̃ij = E(Pij|Wi). Note that

E(WijkUilm) = E(E(WijkUilm|Wi)) = E(WijkE(Pilm − P̃ilm|Wi)) = 0,

for all i, j, k, l and m. Consequently, vectors Wi and (Ui1, . . . ,Uip) are independent.

Let fUi
(u) be the density of the second vector. Note that, according to the derivations

in Section 2.4, the dependence of fUi
on the index i is completely determined by ti, the

time point configuration for the i-th observation. Write row vector u as (u1, ..., up), where

uj ∈ Rdj , and define m̃ti(s1, ..., sp), with sj ∈ Rdj , as
∫
m (s1 + u1, . . . , sp + up) fUi

(u)du.

Then,

E
(
m(P̃i1 + Ui1, . . . , P̃ip + Uip)|Wi

)
= m̃ti(P̃i1, . . . , P̃ip).

Hence,

Yi = E(Yi|Wi) + ε∗i = m̃ti

(
P̃i1, . . . , P̃ip

)
+ ε∗i ,
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where, by construction, E(ε∗i |Wi) = 0.

D Theoretical Assumptions for the Results in Section 3

Recall that η consists of components ηjk, which are the vectors of basis coefficients for

the true projection functions in the SIMFE model. We will use η ∗ µ̃i to denote the vec-

tor (ηT11µ̃i1, . . . ,η
T
1d1

µ̃i1, . . . ,η
T
p1µ̃ip, . . . ,η

T
pdp

µ̃ip)
T and define η̂ ∗ µ̃i and η̃ ∗ µ̃i analogously.

For technical reasons we will introduce trimming functions into the SIMFE optimization

problem (21). This is a standard technical device, which serves the purpose of handling

the notorious boundary points. Write µ̃i for (µ̃T
i1, ..., µ̃

T
ip)

T and define Ini = 1{||µ̃i|| ≤ n}.
Let ρ be some bounded function with a bounded second derivative, such that ρ(v) > 0 if

v > w0 and ρ(v) = 0 if v ≤ w0, for some small positive w0. Define ρη̂i = ρ(f̂η̂(µ̃i))/f̂η̂(µ̃i),

with f̂η̂(µ̃i) = n−1
∑n

k=1Kh(η̂ ∗ (µ̃k − µ̃i)). The only difference between the new objective

function,

1

n

n∑
i=1

n∑
l=1

Iniρη̂i

(
Yl − ai −

p∑
j=1

cTijP̂lj

)2

Kil, (45)

and the one given by display (21) is the presence of the trimming term Iniρη̂i. The correspond-

ing change in the SIMFE algorithm is that the trimming term also appears in formula (23).

The following assumptions are used in the proof of Theorem 3.

A1. The response has a finite fifth absolute moment, E|Y |5 <∞.

A2. Kernel function K̃ is a multivariate density function with bounded second-order deriva-

tives and a compact support.

A3. For each k, i and j, time point Tk has a positive probability of being included in the

time point configuration generated for the predictor curve Xij(t). For each j, the L by

qj dimensional basis matrix with k-th row sj(Tk) has rank qj.

A4. For each i, function E(Yi|η̃∗µ̃i = u) has bounded fourth-order derivatives with respect

to u and η̃, for η̃ in a small neighborhood of η.

A5. For each i, matrix E[ρ(fi(µ̃i)){∇m̃i(η ∗ µ̃i) − ∇̄}{∇m̃i(η ∗ µ̃i) − ∇̄}T ] has full rank,

where ∇̄ = E[ρ(fi(µ̃i)){∇m̃i(η ∗ µ̃i)]/Eρ(fi(µ̃i)), and fi is the density of µ̃i.

For the case of functional response, considered in Theorem 4, we need to modify the last

two assumptions.
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B4. Time points at which the response is observed, sik, are independent realizations of

a random variable S, and sequence {ni} is bounded. For each i, function E(Yi|S =

s, η̃ ∗ µ̃i = u) has bounded fourth-order derivatives with respect to s, u and η̃, for η̃

in a small neighborhood of η.

B5. For each i, matrix E[ρ(f(S, µ̃i)){∇m̃(S,η ∗ µ̃i) − ∇̄}{∇m̃(S,η ∗ µ̃i) − ∇̄}T ] has full

rank, where ∇̄ = E[ρ(f(S, µ̃i)){∇m̃(S,η ∗ µ̃i)]/Eρ(f(S, µ̃i)), and f is the density

of (S, µ̃i).

Now consider the setting of Theorem 5. In the Supplementary Material we show that

the response satisfies the following model,

Yi = m̌ (η ∗ µ̃i,γ ∗ vi) + ε∗i ,

for some function m̌ and vector γ∗, where vectors vi consist of elements of the matrix

(I−ΩiSi)∆(I−ΩiSi)
T +σ2ΩiΩ

T
i . We will need the following assumptions on the components

of this model.

C3. For each j, time points tijk are generated from the same continuous distribution with

a density that is bounded away from zero on the domain of the j-th predictor.

C4. For each i, function E(Yi|η̃ ∗ µ̃i = u, γ̃ ∗ vi = w) has bounded fourth-order derivatives

with respect to u, w, η̃ and γ̃, for (η̃, γ̃) in a small neighborhood of (η,γ).

C5. For each i, matrix E[ρ(f(µ̃i,vi)){∇m̌(η ∗ µ̃i,γ ∗ vi)− ∇̄}{∇m̌(η ∗ µ̃i,γ ∗ vi)− ∇̄}T ]

has full rank, where ∇̄ = E[ρ(f(µ̃i,vi)){∇m̌(η ∗ µ̃i,γ ∗ vi)]/Eρ(f(µ̃i,vi)), and f is

the density of (µ̃i,vi).
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