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Abstract

Graphical models have attracted increasing attention in recent years, especially in

settings involving high dimensional data. In particular Gaussian graphical models are

used to model the conditional dependence structure among multiple Gaussian random

variables. As a result of its computational efficiency the graphical lasso (glasso) has

become one of the most popular approaches for fitting high dimensional graphical mod-

els. In this article we extend the graphical models concept to model the conditional

dependence structure among p random functions. In this setting, not only is p large,

but each function is itself a high dimensional object, posing an additional level of sta-

tistical and computational complexity. We develop an extension of the glasso criterion

(fglasso), which estimates the functional graphical model by imposing a block sparsity

constraint on the precision matrix, via a group lasso penalty. The fglasso criterion can

be optimized using an efficient block coordinate descent algorithm. We establish the

concentration inequalities of the estimates, which guarantee the desirable graph sup-

port recovery property, i.e. with probability tending to one, the fglasso will correctly

identify the true conditional dependence structure. Finally we show that the fglasso
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significantly outperforms possible competing methods through both simulations and an

analysis of a real world EEG data set comparing alcoholic and non-alcoholic patients.

Some key words: Functional data; Graphical models; Functional principal component analysis;

Block sparse precision matrix, Block coordinate descent algorithm.

1 Introduction

The graphical model is used to depict the conditional dependence structure among p random

variables, X = (X1, . . . , Xp)
T . Such a network consists of p nodes, one for each variable, and

a number of edges connecting a subset of the nodes. The edges describe the conditional

dependence structure of the p variables, i.e. nodes j and l are connected by an edge if and

only if Xj and Xl are correlated, conditional on the other p − 2 variables. Recently there

has been a lot of interest in fitting high dimensional graphical models, where p is very large.

For Gaussian data, where X follows a multivariate Gaussian distribution, one can show

that estimating the edge set is equivalent to identifying the locations of the non-zero elements

in the precision matrix, i.e. the inverse covariance matrix of X. Hence, the literature

has mainly focused on two approaches for estimating high dimensional Gaussian graphical

models. One type of method, proposed by Meinshausen and Buhlmann (2006), considers

neighbourhood selection. It adopts a lasso (Tibshirani, 1996) or Dantzig selector (Candes

and Tao, 2007) type of penalized regression approach whereby each variable is regressed on

the other variables, thus identifying the locations of non-zero entries in the precision matrix

column by column, see also Peng et al. (2009); Cai et al. (2011); Sun and Zhang (2013).

Another method, proposed by Yuan and Lin (2007), optimizes the graphical lasso (glasso)

criterion, essentially a Gaussian log likelihood with the addition of a lasso type penalty on

the entries of the precision matrix. The glasso has arguably proved the most popular of

these two methods, in part because a number of efficient algorithms have been developed to

minimize the convex glasso criterion (Friedman et al., 2007; Boyd et al., 2010; Witten et al.,
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2011; Mazumder and Hastie, 2012a,b). Its theoretical properties have also been well studied

(Lam and Fan, 2009; Ravikumar et al., 2011), and several variants and extensions of the

glasso have been proposed, see Zhou et al. (2010); Kolar and Xing (2011); Danaher et al.

(2014); Zhu et al. (2014) and the references therein.

In this paper we are interested in estimating a graphical network in a somewhat more

complicated setting. Let g1(t), . . . , gp(t) jointly follow from a p-dimensional multivariate

Gaussian process (MGP) where t ∈ T and T is a closed subset of the real line1. Our goal is to

construct a functional graphical model (FGM) depicting the conditional dependence structure

among these p random functions. The left panel of Figure 1 provides an illustrative example

with p = 9 functions, or nodes. We have 100 observations of each function, corresponding to

100 individuals. In other words our data consists of functions, gij(t) where i = 1, . . . , 100 and

j = 1, . . . , 9. The right panel of Figure 1 illustrates the conditional dependence structure

of these functions i.e. the FGM. For example, we observe that the last 3 functions are

disconnected from, and hence conditionally independent of, the first 6 functions. We wish

to take the observed functions in the left panel and estimate the FGM in the right panel.

Our motivating example is an electroencephalography (EEG) data set taken from an

alcoholism study (Zhang et al., 1995; Ingber, 1997). The study consists of n = 122 subjects

split between an alcoholic group and a control group. Each subject was exposed to either a

single stimulus or two stimuli. The resulting EEG activity was recorded at 256 time points

over a one second interval using electrodes placed at 64 standard locations on the subject’s

scalp. Hence, each observation, or subject, involves p = 64 different functions observed at

256 time points. It is of scientific interest to identify differences in brain EEG activity filtered

at α frequency bands (Hayden et al., 2006) between the two groups, so we construct FGM’s

for each group and explore the differences. Functional data of this sort can arise in a number

1Here we assume the same time domain, T , for all random functions to simplify the notation, but

our methodological and theoretical results extend naturally to the more general case where each function

corresponds to a different time domain.

3



Node 1
g 1

,1
(t)

Node 2

g 1
,2
(t)

● ● ●

Node 3−7 Node 8

g 1
,8
(t)

Node 9

g 1
,9
(t)

g 2
,1
(t)

g 2
,2
(t)

● ● ●

g 2
,8
(t)

g 2
,9
(t)

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

g 9
9,

1(t
)

g 9
9,

2(t
)

● ● ●

g 9
9,

8(t
)

g 9
9,

9(t
)

g 1
00

,1
(t)

g 1
00

,2
(t)

● ● ●

g 1
00

,8
(t)

g 1
00

,9
(t)

1

2
3

4

5

6

7

8
9

Figure 1: The illustrative example. Left: The data, n = 100 observations of gij(t) for j = 1, . . . , 9

nodes. Right: the true underlying network structure.

of other contexts. For example, rather than recording only a static set of p gene expression

levels at a single point in time, it is now becoming common to observe multiple expression

levels over time (Storey et al., 2005), so gij(t) would represent the expression level of gene

j for subject i at time t. Alternatively, in a marketing context it is now possible to observe

online purchase patterns among a basket of p different products for each of n individual

customers over a period of time, so gij(t) might represent the cumulative purchase history

of product j by customer i at time t.

One possible approach to handle this sort of functional data would be to sample the

functions over a grid of time points, t1, . . . , tT , estimate T separate networks, and then

either report all T networks or construct a single graphical model by somehow merging the

T networks. However, while conceptually simple, this strategy has several drawbacks. First,

the approach is only possible if g1(t), . . . , gp(t) are observed over a common domain t ∈ T ,

but in many instances the domains of gj(t) and gl(t) will differ. Second, functions are often
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observed over a relatively sparse set of time points which makes it impossible to create a single

set of grid points, t1, . . . , tT , at which the functions can be sampled. Third, one of the main

advantages of a graphical network is its ability to provide a relatively simple representation

of the conditional dependence structure. However, simultaneously interpreting T different

networks would significantly increase the complexity of the dependence structure. Finally,

each of the T networks would only correspond to dependencies among the functions at

a common time point. However, it seems likely that some dependencies may only exist at

different time points i.e. it may be the case that gj(t) and gl(t) are conditionally uncorrelated

for every individual value of t but gj(s) and gl(t) are correlated for some s 6= t. A simple

example that illustrates this issue is provided in Appendix A.1. In such a scenario each of

the T networks would fail to identify the correlation structure.

In this paper, we propose a FGM which is able to estimate a single network and overcome

these disadvantages. The functional network still contains p nodes, one for each function,

but in order to construct the edges we extend the conditional covariance definition to the

functional domain, and then use this extended covariance definition to estimate the edge

set, E. There exist several challenges involved in estimating the FGM. Since each func-

tion is an infinite dimensional object, we need to adopt a dimension reduction approach,

e.g. functional principal component analysis (FPCA), to approximate each function by a

finite representation, which results in estimating a block precision matrix. Standard glasso

algorithms for scalar data involve estimating the non-zero elements in the precision matrix.

By comparison we have developed an efficient algorithm to estimate the non-zero blocks

of a higher dimensional precision matrix. In our theoretical results we develop the entry-

wise concentration inequalities for the sample covariance matrix of the estimated principal

component scores. To the best of our knowledge, this is the first result on concentration in-

equalities for modelling high dimensional functional data under a FPCA framework, which

provides a powerful tool to derive the non-asymptotic upper bounds. This result expands

the theoretical analysis of graph selection consistency from the standard setting to the more
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complicated functional domain.

Some recent research in graphical models for time-dependent data considered estimating

a time varying graphical model through a nonparametric approach which constructs graphs

that are similar across adjacent time points (Zhou et al., 2010; Kolar and Xing, 2011; Qiu

et al., 2016). This approach has similarities to the grid approach discussed previously in that

it estimates a separate graph at each time point. However, in addition, it also assumes corre-

lation across time in the graph structures. By contrast our FGM estimates a single graph by

considering the global correlation structures among the functions over all time points. Both

approaches are useful but aim to answer different questions. One other relevant work of Zhu

et al. (2016) proposed decomposable graphical models for multivariate functional data from a

Bayesian perspective without investigating the graph selection consistency. Their framework

is based on extending Markov distributions and hyper Markov laws from Gaussian random

variables to Gaussian random functions, which significantly differs from our approach.

The paper is set out as follows. In Section 2 we propose a convex penalized criterion

which has connections to both the graphical lasso (Yuan and Lin, 2007) and the group lasso

(Yuan and Lin, 2006). Minimizing our functional graphical lasso (fglasso) criterion provides

an estimate, Ê, for the edge set, E. We also propose a joint fglasso approach for the case of

estimating multiple graphs simultaneously. An efficient block coordinate descent algorithm

for minimizing the fglasso criterion is presented in Section 3. In addition, we demonstrate

a method to extend the fglasso algorithm to handle even larger values of p by applying

the partition approach of Witten et al. (2011). Section 4 provides our theoretical results.

Specifically, we show that the estimated edge set Ê is the same as the true edge set E with

probability converging to one. The finite sample performance of the fglasso is examined in

Section 5 through a series of simulation studies. Section 5 also provides a demonstration

of the fglasso on the EEG data set. Further discussion of our approach, as well as some

extensions and limitations, are presented in Section 6. We relegate all the technical proofs

to the Supplementary Material.

6



2 Methodology

2.1 Gaussian Graphical Models

As discussed in the previous section, the edges in a graphical model depict the conditional

dependence structure of the p variables. Specifically, let

cjl = Cov(Xj, Xl|Xk, k 6= j, l) (1)

represent the covariance of Xj and Xl conditional on the remaining variables. Then nodes j

and l are connected by an edge if and only if cjl 6= 0.

Under the assumption that X = (X1, . . . , Xp)
T is multivariate Gaussian with covariance

matrix Σ∗, one can show that cjl = 0 if and only if Θ∗jl = 0, where Θ∗jl is the (j, l)-th

component of the precision matrix, Θ∗ = Σ∗−1. Let G = (V,E) denote an undirected graph

with vertex set V = {1, . . . , p} and edge set E = {(j, l) : cjl 6= 0, (j, l) ∈ V 2, j 6= l} = {(j, l) :

Θ∗jl 6= 0, (j, l) ∈ V 2, j 6= l}. In practice Θ∗jl, and hence the network structure, must be

estimated based on a set of n observed p-dimensional realizations, x1, . . . ,xn, of the random

vector X. Hence, much of the research in this area involves various approaches for estimating

E, which for Gaussian data is equivalent to identifying the locations of the non-zero elements

in the precision matrix.

The graphical lasso (Yuan and Lin, 2007) considers a regularized estimator for Θ∗ by

adding an `1 penalty on the off-diagonal entries of the precision matrix to the Gaussian

log-likelihood (up to constants):

Θ̂ = argmax
Θ

{
log det Θ− trace(SΘ)− γn

∑
j 6=l

|Θjl|

}
, (2)

where Θ ∈ Rp×p is symmetric positive definite, S is the sample covariance matrix of x1, ...,xn

and γn is a non-negative tuning parameter. In a similar fashion to the standard lasso, the

`1 penalty in (2) both regularizes the estimate and ensures that Θ̂ is sparse i.e. has many

zero elements.
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2.2 Functional Graphical Models

The functional setting considered in this paper is more complicated than that for the standard

graphical model. Suppose the functional variables, g1(t), . . . , gp(t), jointly following from a p-

dimensional MGP, belong to an undirected graph G = (V,E) with vertex set V = {1, . . . , p}

and edge set E. Then we must first provide a definition for the conditional covariance

between two functions. For each pair (j, l) ∈ V 2, j 6= l and any (s, t) ∈ T 2, we define the

conditional cross covariance function by

Cjl(s, t) = Cov
{
gj(s), gl(t)

∣∣gk(u), k 6= j, l, ∀u ∈ T
}
, (3)

which represents the covariance between gj(s) and gl(t) conditional on the remaining p− 2

functions.2 Note that gj and gl are conditionally independent if and only if Cjl(s, t) = 0 for

all (s, t) ∈ T 2. Hence our ultimate goal is to recover the edge set

E =
{

(j, l) : Cjl(s, t) 6= 0 for some s and t, (j, l) ∈ V 2, j 6= l
}
. (4)

Suppose we observe gi = (gi1, . . . , gip)
T , i = 1, . . . , n, and for each i, gij(t) t ∈ T is a

realization from a mean zero Gaussian process3. The Karhunen-Loève expansion (Theorem

1.5 in Bosq (2000)) allows us to represent each function in the form

gij(t) =
∞∑
k=1

aijkφjk(t),

where aijk =
∫
T gij(t)φjk(t)dt ∼ N(0, λjk), aijk is independent from ai′jk′ for i 6= i′ or k 6= k′,

and λj1 ≥ λj2 ≥ · · · ≥ 0 for j = 1, . . . , p. In this formulation {φjk(t)}∞k=1 represent principal

component functions and form an infinite dimensional basis representation for gij(t).

2Here we can use the projection theorem for Hilbert spaces [Chapter 2.5 in Hsing and Eubank (2015)] to

rigorously define the relevant conditional expectation terms, e.g. E {gj(s)|gk(u), k 6= j, l, ∀u ∈ T } . See also

the definition of the conditional joint probability measure within Hilbert spaces in Zhu et al. (2016).
3Our methodological and theoretical results can be extended to the case of Gaussian processes with

non-zero means but for clarity of the exposition, we do not investigate that case here.
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Since each functional object is either infinite or high dimensional, some form of dimension

reduction is needed. Let

gMij (t) =
M∑
k=1

aijkφjk(t) (5)

represent the M -truncated version of gij(t). Then gMij (t) provides the best M -dimensional ap-

proximation to gij(t) in terms of integrated mean squared error. Let aMi =
(
(aMi1 )T , . . . , (aMip )T

)T ∈
RMp represent the first M principal component scores for the ith set of functions for i =

1, . . . , n, where aMij = (aij1, . . . , aijM)T . Then, provided gij(t) is a realization from a Gaus-

sian process, aMi will have a multivariate Gaussian distribution with covariance matrix

Σ∗M =
(
Θ∗M

)−1
. Analogously to (3), we can define the M -truncated conditional cross

covariance function by

CM
jl (s, t) = Cov

(
gMj (s), gMl (t)|gMk (u), k 6= j, l, ∀u ∈ T

)
. (6)

Our goal is to recover the edge set E based on {CM
jl (s, t), (j, l) ∈ V 2}. Since the principal

component scores, aMi , and hence Θ∗M , share the same information as {gMij (t), j = 1, . . . , p},

one might expect to see a connection between E and Θ∗M .

To gain some intuition, we first consider the special case where gij(t) is exactly M -

dimensional i.e. gij(t) = gMij (t). In this simplified setting the following lemma provides a

precise statement of the connection between E and Θ∗M .

Lemma 1 For (j, l) ∈ V 2, let Θ∗Mjl be the M × M matrix corresponding to the (j, l)-th

submatrix of Θ∗M . Then

E =
{

(j, l) : ‖Θ∗Mjl ‖F 6= 0, (j, l) ∈ V 2, j 6= l
}
, (7)

where || · ||F denotes the Frobenius norm.

Lemma 1 suggests that the problem of recovering E can be reduced to one of accurately

estimating the block sparsity structure in Θ∗M . Although Lemma 1 is not directly applicable

when M =∞ and it only applies to the setting where gij(t) is exactly M -dimensional, even
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in the more general setting where the dimension of gij(t) approaches infinity, our theoretical

results in Section 4 can still formalize this connection. In the following section we develop

an approach to estimate the block sparsity structure in Θ∗M which, for a large enough M ,

provides an accurate estimate for E.

2.3 Functional Graphical Lasso

In this section, we first introduce the estimation procedure for the relevant terms in Sec-

tion 2.2 and then propose our approach to estimate the true edge set, E.

If we denote the covariance function by Kjj(s, t) = Cov(gj(s), gj(t)), then the correspond-

ing eigen-pairs satisfy ∫
T
Kjj(s, t)φjk(t)dt = λjkφjk(s), (8)

where
∫
T φjk(t)

2dt = 1 and
∫
T φjk(t)φjm(t)dt = 0 for m < k. An empirical estimator for

Kjj(s, t) is given by

K̂jj(s, t) =
1

n

n∑
i=1

(gij(s)− ḡj(s)) (gij(t)− ḡj(t))

where ḡj = n−1
∑

i gij. Performing the eigen-decomposition on K̂jj(s, t) , we obtain the

estimators (λ̂jk, φ̂jk) for (λjk, φjk) as defined in (8) and the estimated principal component

scores âijk =
∫
T gij(t)φ̂jk(t)dt.

Let âMi =
(
(âMi1 )T , . . . , (âMip )T

)T ∈ RMp, where âMij = (âij1, . . . , âijM)T and SM be the

sample covariance matrix of âMi . Motivated by Lemma 1, we propose the functional graphical

lasso (fglasso) to estimate the network structure. The fglasso modifies the graphical lasso

by incorporating a group lasso penalty (Yuan and Lin, 2006) to produce a block sparsity

structure. Specifically, the fglasso is defined as the solution to

Θ̂
M

= argmax
ΘM

{
log det ΘM − trace(SMΘM)− γn

∑
j 6=l

‖ΘM
jl ‖F

}
, (9)

where ΘM ∈ RMp×Mp is symmetric positive definite and γn is a non-negative tuning param-

eter. The group lasso penalty in (9) forces the elements of ΘM
jl to either all be zero (a sparse
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solution) or all non-zero (a connected edge between gj and gl). Hence, as γn increases Θ̂
M

grows sparser in a blockwise fashion. Our final estimated edge set is then defined as

ÊM =
{

(j, l) : ‖Θ̂
M

jl ‖F 6= 0, (j, l) ∈ V 2, j 6= l
}
. (10)

Note Θ, Θ̂, S, Ê, aj, âj and φj, j = 1 · · · , p, all depend on M , but for simplicity of notation

we will omit the corresponding superscripts where the context is clear.

2.4 Joint Functional Graphical Lasso

For scalar data, Danaher et al. (2014) proposed a joint graphical lasso to jointly estimate

separate graphical models for each of Q different groups in situations where the groups can

be assumed to share similar network structures. The joint graphical lasso attempts to borrow

strength across the groups to estimate connections that are common to all Q networks while

still allowing for differences among the groups. In the functional domain, given Q data sets,

one would observe a(q) ∈ RMp, q = 1, . . . , Q, with each a(q) following a multivariate Gaussian

distribution with covariance matrix, Σ∗(q) = (Θ∗(q))−1. Then the joint functional graphical

lasso would correspond to finding {Θ̂} = Θ̂
(1)
, . . . , Θ̂

(Q)
to maximize

Q∑
q=1

nq

{
log det Θ(q) − trace(S(q)Θ(q))

}
− P1({Θ})− P2({Θ}), (11)

where nq is the number of observations, and S(q) is the sample covariance matrix of â(q), for

the qth class.

The first penalty term in (11), i.e P1({Θ}) = γ1n

∑
q

∑
j 6=l ‖Θ

(q)
jl ‖F , γ1n ≥ 0, produces a

block sparsity structure for each Θ(q), while P2 encourages a common structure among the

Θ(q)’s. When P2({Θ}) = 0, (11) reduces to performing Q uncoupled fglasso problems (9).

Here we consider using a group lasso penalty for P2, i.e.

P2({Θ}) = γ2n

∑
j 6=l

(∑
q

||Θ(q)
jl ||

2
F

)1/2

, (12)

11



where γ2n is a non-negative tuning parameter and (12) encourages a similar pattern of zero

blocks across all the precision matrices. In particular as γ2n grows larger, then the structure

of the Q networks will become more similar. In the scalar data setting Danaher et al. (2014)

also considered the fused lasso (Tibshirani et al., 2005) as a candidate penalty for P2, which

encourages a stronger form of similarity across the Θ(q)’s by allowing not only similar network

structure but also similar edge values. This idea can be naturally extended to our functional

setting, but we do not explore that here due to space considerations.

3 Computation

3.1 Fglasso Algorithm

A number of efficient algorithms (Friedman et al., 2007; Boyd et al., 2010) have been de-

veloped to solve the glasso problem, but to date none of these approaches have considered

the functional domain. Here we propose an algorithm which mirrors recent techniques for

optimizing the glasso crierion (Zhu et al., 2014).

Let Θ−j,Σ−j and S−j respectively be M(p− 1)×M(p− 1) sub matrices excluding the

jth row and column block of Θ,Σ and S, and let wj,σj and sj be M(p− 1)×M matrices

representing the jth column block after excluding the jth row block. Finally, let Θjj,Σjj

and Sjj be the (j, j)th M ×M blocks in Θ,Σ and S respectively. So, for instance for j = 1,

Θ =

Θ11 wT
1

w1 Θ−1

 . Then, for a fixed value of Θ−j, standard calculations show that (9) is

solved by setting

Θ̂jj = S−1
jj + ŵT

j Θ−1
−jŵj, (13)

where

ŵj = arg min
wj

{
trace(Sjjw

T
j Θ−1

−jwj) + 2trace(sTj wj) + 2γn

p−1∑
l=1

‖wjl‖F

}
, (14)
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and wjl represents the lth M ×M block of wj. Computing (14) can be achieved using some

matrix calculus with details provided in Section B.1 of the Supplementary Material.

This suggests a block coordinate descent algorithm where one iterates through j repeat-

edly computing (14) until convergence. In fact by checking the conditions of Theorem 4.1 in

Tseng (2001) it is easy to verify that iteratively minimizing (14) over wj and updating Θjj

by (13) for j = 1, . . . , p provides a convergent solution for globally maximizing the fglasso

criterion. The main potential difficulty with this approach is that Θ−1
−j must be updated at

each step which would be computationally expensive if we performed the matrix inversion

directly. However, Algorithm 1 demonstrates that the calculation can be performed effi-

ciently. Steps 2(a) and 2(c) are derived using standard matrix results, the details of which

are provided in Section B.2 of the Supplementary Material. We also develop in Section B.3

an analogous algorithm for solving (11) when jointly estimating multiple networks.

Algorithm 1 Functional Graphical Lasso Algorithm

1. Initialize Θ̂ = IMp and Σ̂ = IMp.

2. Repeat until convergence for j = 1, . . . , p.

(a) Compute Θ̂
−1

−j ← Σ̂−j − σ̂jΣ̂
−1

jj σ̂
T
j .

(b) Solve for ŵj in (14) using Algorithm 3 in the Supplementary Material.

(c) Reconstruct Σ̂ using Σ̂jj = Sjj, σ̂j = −UjSjj and Σ̂−j = Θ̂
−1

−j +UjSjjU
T
j , where

Uj = Θ̂
−1

−jŵj.

3. Set Ê =
{

(j, l) : ‖Θ̂jl‖F 6= 0, (j, l) ∈ V 2, j 6= l
}
.

3.2 Block Partitioning to Accelerate the Algorithm

A common approach to significantly speed up the glasso algorithm involves first performing

a screening step on the sample covariance matrix to partition the nodes into K distinct sets
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and then solving K separate glasso problems (Witten et al., 2011; Mazumder and Hastie,

2012b; Danaher et al., 2014; Zhu et al., 2014). Since each resulting network involves many

fewer nodes the glasso problem can be computed at a much lower computational cost.

Here we show that a similar approach can be used to significantly accelerate our proposed

fglasso algorithm.

Proposition 1 If the solution to (9) takes a block diagonal form, i.e. Θ = diag (Θ1, . . . ,ΘK),

then (9) can be computed by separately solving K smaller fglasso problems

Θ̂k = arg max
Θk

{
log det Θk − trace(SkΘk)− γn

∑
j 6=l

‖Θk,jl‖F

}
, (15)

for k = 1, . . . , K, where Sk is the submatrix of S corresponding to Θk and Θk,jl is the (j, l)-th

submatrix of Θk.

Proposition 2 Without loss of generality, let G1, . . . , GK be a partition of p ordered fea-

tures, hence if i ∈ Gk, i′ ∈ Gk′, k < k′, then i < i′. Then a necessary and sufficient condition

for the solution to the fglasso problem to be block diagonal with blocks indexed by G1, . . . , GK

is that ‖Sii′‖F ≤ γn for all i ∈ Gk, i′ ∈ Gk′, k 6= k′.

Propositions 1 and 2 suggest first performing a screening procedure on S to identify K

distinct graphs and then solving the resulting K fglasso problems. These steps are summa-

rized in Algorithm 2.

For a fixed M , implementing Algorithm 1 requires O(p3) operations. Steps 1 and 2 in

Algorithm 2 need O(p2) operations and the kth fglasso problem requires O(|Gk|3) operations

for k = 1, . . . , K, hence the total computational cost for Algorithm 2 is O
(
p2 +

∑K
k=1 |Gk|3

)
.

Algorithm 2 significantly reduces the computational cost, if |G1|, . . . , |GK | are much smaller

than p, which is the situation when the tuning parameter, γn, is large. This is the case we

are generally interested in for real data problems since, for the sake of network interpretation

and visualization, most practical applications estimate sparse networks.
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Algorithm 2 Fglasso Algorithm with Partitioning Rule

1. Let A be a p by p adjacency matrix, whose diagonal elements are one and off-diagonal

elements take the form Aii′ = 1‖Sii′‖F>γn .

2. Identify K connected components of the graph based on the adjacency matrix A. Let

Gk be the index set of the features in the kth connected component, k = 1, . . . , K.

3. For k = 1, . . . , K, solve Θ̂k via Algorithm 1 using the nodes in Gk. The final solution

to the fglasso problem Θ̂ is obtained by rearranging the rows/columns of the permuted

version, diag
(
Θ̂1, . . . , Θ̂K

)
.

3.3 Selection of Tuning Parameters

Estimating the FGM requires choosing M (number of selected principal components) and γn

(regularization parameter to tune the block sparsity level of Θ). First, to select M , one can

either adopt leave-one-curve-out cross validation (Rice and Silverman, 1991) or an AIC-type

criteria (Yao et al., 2005) . To reach a compromise, we develop a J-fold cross-validated (CV)

approach. Specifically, let hijk represent a noisy observation of gij(tk). We randomly divide

the set of observed time points into J equal-size folds. We then treat one group for each gij(t)

as a validation data set, apply FPCA on the remaining J − 1 groups, where each function

is approximated by a L-dimensional B-spline basis [Chapter 8 of Ramsay and Silverman

(2005)], calculate the squared error between hijk and the fitted values ĝij(tk) (via (5)) on

the validation set, and repeat this procedure J-times to compute the CV squared error. We

calculate the CV errors over a grid of M ≤ L values and choose the pair with the lowest

error. In general, we can select a different number of principal components for each random

function that results in estimating matrices with non-square blocks. However, to simplify the

computation in Algorithm 1, we use an identical number across j ∈ V under the assumption

that the corresponding covariance operators, Kjj(s, t)’s, share similar complexity structure.

Second, to choose the tuning parameter γn, there exist a number of possible approaches.
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Approaches such as AIC/BIC, cross-validation and stability selection (Meinshausen and

Buhlmann, 2010) are popular and have been well studied in the graphical model literature.

However, given the complicated functional structure of FGM, it is unclear how to compute

the effective degrees of freedom for AIC/BIC. Alternatively, with some prior information

about the targeted network density, one can select the value of γn that results in the network

with a desired sparsity level. In our simulations, we fit our approach over a sequence of γn

values, and generate corresponding ROC curves to explore the graph selection consistency.

4 Theoretical Properties

We now investigate the theoretical properties of the fglasso proposed in Section 2.3. The

model selection consistency of the fglasso, i.e. the exact functional graph recovery with

overwhelming probability, are established under some regularity conditions.

We begin by introducing Condition 1 as a basic assumption in our functional setting.

Condition 1 (i) The truncated dimension of the functional data, M , satisfies M � nα with

some constant α ≥ 0; (ii) The eigenvalues satisfy λj1 > λj2 > · · · > λjM > λj(M+1) ≥

· · · with max
j∈V

∑∞
k=1 λjk < ∞ and there exists some constant β > 1 with αβ ≤ 1/4 such

that for each k = 1, . . . ,M, λjk � k−β and djkλjk = O(k) uniformly in j ∈ V , where

djk = 2
√

2 max{(λj(k−1)− λjk)−1, (λjk − λj(k+1))
−1}; (iii) The principal component functions

φjk(s)’s are continuous on the compact set U and satisfy max
j∈V

sup
s∈T

sup
k≥1
|φjk(s)| = O(1).

Here an � bn denotes B ≤ infn |an/bn| ≤ supn |an/bn| ≤ A for some positive constants

A and B. The parameter β determines the decay rate of any decreasing sequence λj1 >

λj2 > · · · > λjM for j ∈ V and djkλjk = O(k) restricts the decay rate of eigen-gaps,

d−1
jk ≥ d0k

−(β+1) with some positive constant d0 for j ∈ V , see also Bosq (2000) for more

details. The parameter α controls the number of selected principal components that provide

a reasonable approximation to the infinite-dimensional process. It is easy to see that larger

values of β yield a faster decay rate, while increasing α results in a value for larger M .
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To show the model selection consistency of the fglasso, we first need to establish concen-

tration bounds for all entries of S−Σ∗. Denote the (j, l)-th M ×M submatrix of S by Sjl

and the (k,m)-th entry of Sjl by σ̂jlkm for j, l = 1, . . . , p and k,m = 1, . . . ,M . Similarly, let

Σ∗ = (Σ∗jl)1≤j,l≤p, where Σ∗jl = (σ∗jlkm)1≤k,m≤M .

Theorem 1 Suppose that Condition 1 holds. Then there exist two positive constants C1 and

C2 such that

(i) for 0 < δ ≤ C1 and each j = 1, . . . , p and k = 1, . . . ,M ,

P
(∣∣σ̂jjkk − σ∗jjkk∣∣ ≥ δ

)
≤ C2

{
exp

(
− C1nk

−2δ2
)

+ exp
(
− C1nk

−(2+2β)δ
)}

; (16)

(ii) for 0 < δ ≤ C1 and each (j, l) ∈ V 2, j 6= l and k,m = 1, . . . ,M ,

P
(∣∣σ̂jlkm − σ∗jlkm∣∣ ≥ δ

)
≤ C2 exp

{
− C1n

(
k +m

)−(2+2β)
δ2
}
. (17)

In particular, there exist two positive constants C1 and C2 such that for any δ with 0 < δ ≤ C1

and for all j, l = 1, . . . , p and k,m = 1, . . . ,M,

P
(∣∣σ̂jlkm − σ∗jlkm∣∣ ≥ δ

)
≤ C2 exp

{
− C1n

1−2α(1+β)δ2
}
. (18)

Theorem 1 provides a general result for the tail probability of σ̂jlkm−σ∗jlkm and indicates

that the magnitudes of the λjk’s play an important role in their tail behavior. In particular,

if each component in the MGP {gij, j = 1, . . . , p} is a fixed dimensional object (α = 0), then

σ̂jlkm − σ∗jlkm behaves in a sub-Guassian fashion i.e.

P
(∣∣σ̂jlkm − σ∗jlkm∣∣ ≥ δ

)
≤ C2 exp

(
− C1nδ

2
)
,

for 0 < δ ≤ C1, where C1 and C2 are two positive constants.

To state our main result in Theorem 2, we present several regularity conditions.

Condition 2 (i) The truncated dimension of the functional data, M , satisfies M � nα with

some constant α ≥ 0; (ii) There exists some integer Mn ≥M and constant β > 1 with αβ ≤
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1/4 such that λj1 > λj2 > · · · > λjM > λj(M+1) ≥ · · ·λjMn > 0 and λjk = 0 if k ≥ Mn + 1,

where for each k = 1, . . . ,M, λjk � k−β, djkλjk = O(k), and
∑Mn

k=M+1 λjk ≤ O
(
nα(1−β)

)
uniformly in j ∈ V ; (iii) The principal component functions φjk(s)’s are continuous on the

compact set U and satisfy sup
s∈T

max
1≤k≤Mn

|φjk(s)| = O(1) uniformly in j ∈ V.

Condition 2 is nearly the same as Condition 1 except for the incorporation of the intrinsic

dimension of the functional data, Mn. Our assumption that Mn is finite simplifies the

statement of Conditions 3–4 below. However, it should be noted that Mn can be made

arbitrarily large relative to n, e.g. Mn = 1000 and n = 200. Hence, this assumption does

not place a practical constraint on our method.

Denote ã1j = (a1j1, . . . , a1jMn)T for j = 1, . . . , p. Let Σ be the population covariance

matrix of (ãT11, . . . , ã
T
1p)

T , and Ω = Σ−1 = (Ωjl)1≤j,l≤p, where Ωjl is the (j, l)-th Mn ×Mn

submatrix. Let Ωjl =

 Ω
(k)
jl,1 Ω

(k)
jl,2

Ω
(k)
jl,3 Ω

(k)
jl,4

 for (j, l) ∈ V 2, where Ω
(k)
jl,1 is a k× k submatrix and

Ω
(k)
jl,4 is a (Mn − k)× (Mn − k) submatrix.

Condition 3 There exists some positive constant ν > 0 such that

max
(j,l)∈E

∥∥∥Ω(M)
jl,2

∥∥∥
F
≤ O(n−αν). (19)

Condition 4 With α, β and ν defined in Conditions 2 and 3, Ω
(M)
jl,1 satisfies

min
(j,l)∈E

∥∥∥Ω(M)
jl,1

∥∥∥
F
� |E|2nα(1−2ν−β). (20)

If we let Cjl = Cov(ã1j, ã1l|ã1k, k 6= j, l), then
∫
T

∫
T {Cjl(s, t)}

2dsdt = ‖Cjl‖2
F and Ωjl =

−C−1
jj CjlC

−1
ll for each (j, l) ∈ V 2 with j 6= l. In this sense, Condition 3 controls the effect of

biases between the truncated and true processes and Condition 4 requires the minimum signal

strength for successful graph recovery to be much larger than |E|2nα(1−2ν−β). Conditions 3

and 4 are crucial for obtaining the rate of convergence of ||Θ∗jl||F for (j, l) ∈ V 2 and the

equivalence between the truncated and true edge sets, respectively. See Lemmas 2 and 3 in
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the Supplementary Material for details. In particular, when E � pd, we need ν to be large

enough so as to satisfy Condition 4. In this case, max(j,l)∈E

∥∥∥Ω(k)
jl,2

∥∥∥
F

in Condition 3 needs

to be small. We provide an example satisfying Conditions 3 and 4 in Appendix A.2.

We next introduce an irrepresentable-type condition for deriving the exact functional

graph recovery with overwhelming probability. Before stating the condition, we begin with

some notation. Denote by Γ∗ = Θ∗−1⊗Θ∗−1 ∈ R(Mp)2×(Mp)2 with ⊗ the Kronecker product,

and Γ∗JJ ′ the M2|J |×M2|J ′| submatrix of Γ∗ with row and column blocks in J and J ′, respec-

tively, for any subsets J , J ′ of V 2. For any block matrix A = (Aij) with Aij ∈ RM×M , 1 ≤

i ≤ p, 1 ≤ j ≤ q, define ||A||(M)
∞ = max

1≤i≤p

∑q
j=1 ||Aij||F , ||A||(M)

max = max
1≤i≤p

max
1≤j≤q

||Aij||F as the

M -block versions of the matrix `∞-norm and elementwise `∞ norm, respectively.

Condition 5 There exists some constant η ∈ (0, 1] such that

||Γ∗ScS(Γ∗SS)−1||(M2)
∞ ≤ 1− η. (21)

Our remark on Condition 5 is provided in Appendix A.2. We are now ready to present the

main theorem on the model selection consistency of the fglasso for estimating FGM. Denote

by κΓ∗ = ||(Γ∗SS)−1||(M
2)

∞ , κΣ∗ = ||Σ∗||(M)
∞ , κB∗ = ||Θ∗−1B∗||(M)

∞ κ−1
Σ∗ , where B∗ = (B∗jl) with

B∗jl = Θ∗jl for (j, l) ∈ Sc, and B∗jl = 0 for (j, l) ∈ S. Here B∗ represents the bias matrix

caused by the truncated approximation using (5). Let d = max
j∈V
|{l ∈ V : (j, l) ∈ E}| , the

maximum degree of the graph in the underlying FGM.

Theorem 2 Suppose that Conditions 2–5 hold, there exists some positive constant c1 such

that M = c1n
α and the bias term satisfies ||B∗||(M)

max ≤ γnηκ
−2
Σ∗/16. Let Θ̂ be the unique solu-

tion to the fglasso problem (9) with γn = 16η−1
(
c1C

−1/2
1 n2α(2+β)−1(τ log c1n

αp+ logC2)1/2
)
.

for some τ > 2. Suppose the sample size n satisfies the lower bound

n1−2α(2+β) > max{C3d
2, C4Θ∗−2

min}[τα log n+ τ log p+ log(C2c
τ
1)], (22)

with cη = 2+16η−1, Θ∗min = min
(j,l)∈E

||Θ∗jl||F , C3 =
{

6c1cηC
−1/2
1 max

{
κΣ∗κΓ∗

1−3κB∗κΣ∗
,

κ3
Σ∗κ

2
Γ∗cη

1−3κB∗κ
3
Σ∗κΓ∗cη

}}2
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and C4 = {2c1cηC
−1/2
1 κΓ∗}2, then with probability at least 1− (c1n

αp)2−τ , the estimated edge

set Ê is the same as the true edge set E.

Let us further assume that κΣ∗ , κΓ∗ , κB∗ , η remain constant with respect to n, p, d. Let

& denote the asymptotic lower bound. Then a sample size

n &
[
(d2 + Θ∗−2

min )τ logp
] 1

1−2α(2+β) (23)

guarantees the model selection consistency of the fglasso with probability at least 1 −

(c1n
αp)2−τ . Note that a larger value of parameter τ enables a higher functional graph recov-

ery probability, at the expense of a larger sample size. In particular, for the case where M is

bounded (α = 0), the sample size condition (23) reduces to n & (d2 + Θ∗−2
min )τ log p, which is

consistent with the results for scalar data in Ravikumar et al. (2011). It is easy to see that a

sample size n & (d2τ log p)
1/(1−2α(2+β))

is sufficient for ensuring model selection consistency

as long as the minimum Frobenius norm within the true edge set Θmin &
√

log p
n1−2α(2+β) . When

the maximum node degree d = o

(√
p1−2α(2+β)

log p

)
, model selection consistency can hold even

in the p� n regime.

5 Empirical Analysis

5.1 Simulations

We performed a number of simulation studies to compare the fglasso to potential competing

methods. In each setting we generated n× p functional variables via gij(t) = s(t)Tδij, where

s(t) was a 5-dimensional Fourier basis function, and δij ∈ R5 was a mean zero Gaussian

random vector. Hence, δi = (δTi1, . . . , δ
T
ip)

T ∈ R5p followed from a multivariate Gaussian

distribution with covariance Σ = Θ−1. Different block sparsity patterns in the precision

matrix, Θ, correspond to different conditional dependence structures. We considered three

general structures.
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• Model 1: We generate a block banded matrix Θ with Θjj = I5, Θj,j−1 = Θj−1,j = 0.4I5,

Θj,j−2 = Θj−2,j = 0.2I5 for j = 1, . . . , p, and 0 at all other locations. Hence, only the

adjacent two nodes are connected.

• Model 2: For j = 1, . . . , 10, 21, . . . , 30, . . . , the corresponding submatrices in Θ came

from Model 1 with p = 10, indicating every alternating block of 10 nodes are connected

by Model 1. For j = 11, . . . , 20, 31, . . . , 40, . . . , we set Θjj = I5, so the remaining nodes

were fully isolated.

• Model 3: We generate block sparse matrices without any special patterns. Specifically,

we let each off-block-diagonal component in Θ be generated independently and equals

0.5I5 with probability 0.1 or 0 with probability 0.9. We also set each block-diagonal

element to be δ′I5, where δ′ is chosen to guarantee the positive definiteness of Θ.

In all settings, we generated n = 100 observations of δi from the associated multivariate

Gaussian distribution, and the observed values, hijk, were sampled using

hijk = gij(tk) + eijk, eijk ∼ N(0, 0.52),

where each function was observed at T = 100 equally spaced time points, 0 = t1, . . . , t100 = 1.

To implement the fglasso we must compute aij, the first M functional principal com-

ponent scores of gij. As mentioned previously, this is a standard problem and there are a

number of possible approaches one could use for the calculation. In order to mimic a real

data setting we chose to fit each function using a L-dimensional B-spline basis (rather than

using the Fourier basis which was used to generate the data) and then compute aij from the

basis coefficients. We used 5-fold cross-validation to choose both L and M , the details of

which are discussed in Section 3.3. Typically, L = 5 to 10 basis functions and M = 4, 5 or 6

principal components were selected in our simulations.

We compared fglasso to four competing methods. In the first three methods we fit the

standard glasso T times, once on each time point, producing T different network structures.
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We then used one of three possible rules to combine the T networks into a single FGM;

ALL involved identifying an edge if it was selected in all T networks, NEVER identified an

edge unless it appeared in none of the T networks, and HALF identifying an edge if it was

selected in more than half of the T networks. The final approach, PCA, transformed the

functional data into a standard format by computing the first principal component score on

each gij(t) and then running the standard glasso on this data. The dimension of the B-spline

basis function, L, was still selected by 5-fold cross validation after setting M = 1. We also

implemented the competing approaches using CLIME (Cai et al., 2011), rather than glasso.

This gave only a very slight improvement over glasso, so we do not report the results here.

For each method and tuning parameter, γ, we calculated the true positive rate (TPRγ)

and false positive rate (FPRγ), in terms of network edges correctly identified. These quan-

tities are defined by TPRγ = TPγ/(TPγ + FNγ) and FPRγ = FPγ/(FPγ + TNγ), where

TPγ and TNγ respectively stand for true positives/negatives, and respectively FPγ and FNγ

represent false positives/negatives. Plotting TPRγ versus FPRγ over a fine grid of values of

γ produces a ROC curve, with curves close to the top left corner indicating a method that

is performing well.

We considered different settings with p = 50, 100, 150, and ran each simulation 100 times.

Figure 2 plots the median best ROC curves for each of the five comparison methods, respec-

tively for Models 1–3. The fglasso (black curve) clearly had the best overall performance

in recovering support of the functional network. Table 1 provides the area under the ROC

curves (average over the 100 simulation runs) along with standard errors. Larger numbers

indicate superior estimates of the true network structure. Again we see that the fglasso

provided highly significant improvements in accuracy for graph recovery over the competing

methods in all the settings we considered. Among the four competing approaches, HALF

performed the best for Models 1 and 2, and PCA slightly outperformed others for Model 3.
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Figure 2: Model 1 (top row), Model 2 (middle row) and Model 3 (bottom row) for p = 50, 100

and 150: Comparison of median estimated ROC curves over 100 simulation runs for fglasso

(black solid), ALL (red dashed), NEVER (green dotted), HALF (blue dash dotted), and PCA

(cyan long dashed).

5.2 EEG Data

We test the performance of the fglasso on the EEG data set from the alcoholism study

discussed in Section 1. The study consists of 122 subjects, 77 in the alcoholic group and
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Table 1: The mean area under the ROC curves. Standard errors are shown in parentheses.

fglasso ALL NEVER HALF PCA

p Model 1

50 0.82(0.02) 0.53(0.02) 0.66(0.02) 0.73(0.03) 0.66(0.03)

100 0.82(0.02) 0.52(0.02) 0.66(0.02) 0.73(0.03) 0.64(0.03)

150 0.83(0.02) 0.52(0.02) 0.65(0.02) 0.73(0.03) 0.64(0.03)

p Model 2

50 0.90(0.02) 0.54(0.02) 0.75(0.03) 0.82(0.03) 0.71(0.04)

100 0.90(0.02) 0.53(0.02) 0.75(0.03) 0.82(0.03) 0.72(0.04)

150 0.89(0.02) 0.53(0.03) 0.76(0.02) 0.81(0.03) 0.70(0.04)

p Model 3

50 0.85(0.02) 0.51(0.02) 0.56(0.03) 0.58(0.03) 0.63(0.04)

100 0.76(0.02) 0.51(0.02) 0.56(0.03) 0.55(0.03) 0.60(0.04)

150 0.71(0.03) 0.51(0.02) 0.54(0.03) 0.53(0.03) 0.57(0.04)

45 in the control group. For each subject, voltage values were measured from 64 electrodes

placed on the scalp which were sampled at 256 Hz (3.9-ms epoch) for one second. Each

subject completed 120 trials under either a single stimulus or two stimuli. The electrodes

were located at standard positions (Standard Electrode Position Nomenclature, American

Electroencephalographic Association (1990)). Zhang et al. (1995) discuss the data collection

process in detail. Li et al. (2010); Zhou and Li (2014) analyze the data treating each covariate

as a 256 × 64 matrix. We focus on the EEG signals filtered at α frequency bands between

8 and 12.5Hz, the case considered in Knyazev (2007), Hayden et al. (2006) and Zhu et al.

(2016). Using 4 representative electrodes from the frontal and parietal region of the scalp

Hayden et al. (2006) found evidence of regional asymmetric patterns between the two groups.

Zhu et al. (2016) discussed connectivity and asymmetry of electrodes selected from 5 different
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regions. Many authors used multiple samples per subject in order to obtain a sufficiently

large sample, violating the independence assumption inherent in most methods. Following

the analysis in Li et al. (2010) we only consider the average of all trials for each subject

under the single stimulus condition. Thus we have at most n = 77 observations and aim to

estimate a network involving p = 64 nodes/electrodes.

We first performed a preprocessing step using the eegfilt function (part of the eeglab

toolbox) to perform α band filtering on the signals. The fglasso was then fitted to the filtered

data. The dimension of the B-spline basis function, L, was selected using the same cross-

validation approach as for the simulation study. We set M = 6 for this data since 6 principal

components already explained more than 90% of the variation in the signal trajectories. Note

that since our goal was to provide interpretable visualizations and investigate differences in

brain connectivity between the alcoholic and control groups we computed sparse networks

with approximately 5% connected edges. To assess the variability in the fglasso fit we

performed a bootstrap procedure by randomly selecting n observations with replacement

from the functional data, finding a tuning parameter γn to yield 5% sparsity level, applying

the fglasso approach to the bootstrapped data, and repeating the above process 50 times.

The “bootstrapped fglasso” was then constructed from the edges that occurred in at least

50% of the bootstrap replications.

Figure 3 plots the estimated network using the fglasso and the bootstrapped fglasso for

both the alcoholic and the control groups. The bootstrapped fglasso estimated a sparser

network with sparsity level 4.1% for the alcoholic group and 2.5% for the control group.

We observe a few apparent patterns. First, electrodes from the frontal region are densely

connected in both groups but the control group has increased connectivity relative to the

alcoholic group. Second, the left central and parietal regions of the alcoholic group includes

more connected edges. Third, electrodes from other regions of the scalp tend to be only

sparsely connected. Finally, the fraction of black to red and blue edges provides a proxy for

the level of confidence in any given estimated network. For the alcoholic group this is fairly
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Figure 3: Left graph plots the estimated network for the alcoholic group and right graph plots the

estimated network for the control group. Black lines denote edges identified by both fglasso and

bootstrapped fglasso, blue lines denote edges identified by fglasso but not selected by the bootstrapped

fglasso and red lines denote edges identified by the bootstrapped fglasso but missed by the fglasso.

high, suggesting an accurately estimated network. However, the ratio is somewhat lower

for the control group, suggesting a less accurate estimate. This is not surprising given the

challenging data set with p = 64 nodes, corresponding to estimating graphs for 64× 6 = 384

variables based on only 45 observations.

To identify edges that were clearly different between the two groups we selected edges

that occurred at least 50% more often in the bootstrap replications for one group relative

to the other group. Figure 4 plots the edges only identified by either the alcoholic group

or the control group. We observe that some edges in the left central and parietal regions

were identified by the alcoholic group but missed by the control group, while one edge in the

frontal region was identified by the control group but missed by the alcoholic group. Both

findings provide confirmation for our informal observations from Figure 3.
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Figure 4: Black lines denote edges identified only by the alcoholic group and red lines denote edges

identified only by the control group.

6 Discussion

We conclude the paper by discussing three extensions. Here we have assumed that the tra-

jectories of the functional variables are fully observed, although our results could be extended

to the setting of densely observed curves under extra regularity and smoothness conditions.

Hence, the first possible extension involves constructing a graphical model for sparse, irreg-

ular and noisy functional data, a common situation in functional data analysis (FDA). This

extension could be achieved by performing FPCA on sparsely sampled functional data using

either a mixed effects model (James et al., 2000) or a local smoother method (Yao et al.,

2005), and then implementing the fglasso on the conditional expectations of the principal

component scores.

Second, one referee was concerned that, since the inverse of the covariance operator

of (g1, . . . , gp) is unbounded (Bosq, 2000), then the minimum eigenvalue of the covariance

matrix Σ∗M goes to zero as M → ∞. He/she suggested that the true edge set E could

instead be recovered based on the bounded inverse correlation operator, i.e. using the block

sparsity pattern in Q∗M , the inverse correlation matrix of aMi . This could be implemented

27



using an alternative criterion by replacing the sample covariance matrix, SM , in (9) with the

sample correlation matrix, RM . Specifically, we propose to solve the following optimization

problem

Q̂M = argmax
QM

{
log det(QM)− trace(RMQM)− γn

∑
j 6=l

‖QM
jl ‖F

}
, (24)

where the optimization is restricted to be over symmetric positive definite matrices in

RMp×Mp such that the diagonal elements of (QM)−1 are one and γn is a non-negative tuning

parameter. We could then use the identified block sparsity structure in Q̂M to estimate

E. We discuss the connection between our fglasso approach and (24) in Section D.2 of the

Supplementary Material and develop an algorithm to solve (24) in Section D.3. Theoreti-

cally, however, derivations on the entrywise concentration inequalities for RM are needed,

posing additional challenges. It is worth noting that in FDA one usually selects only the first

few principal components, so this issue does not pose any practical concern for the fglasso

approach.

Third, the main theoretical limitation in this paper is to treat the dimension of the

functional variables as approaching infinity rather than truly infinite dimensional functional

objects (Mn → ∞ rather than Mn = ∞). It is challenging, under the current framework,

to relax the assumption Mn < ∞ to the fully functional situation with Mn = ∞, since we

would need to write Conditions 3-4 and the relevant proofs in terms of abstract functional

analysis language in Hilbert space rather than the current compact matrix forms. We next

present another way to understand the conditional dependence structure when Mn < ∞.

From Peng et al. (2009), aijk can be expressed as

aijk =

p∑
l 6=j

Mn∑
m=1

βjlkmailm + εijk, i = 1, . . . , j ∈ V, k = 1, . . . ,Mn, (25)

such that {εijk, k = 1, . . . ,Mn} is uncorrelated with {ailm, l ∈ V, l 6= j,m = 1, . . . ,Mn} if

and only if

βjl = −(Θ∗Mn
jj )−1Θ∗Mn

jl , (j, l) ∈ V 2, l 6= j, (26)

28



with its (k,m)-th entry given by βjlkm. In other words, both {βjl, (j, l) ∈ V 2, j 6= l} and

{Θ∗Mn
jl , (j, l) ∈ V 2, j 6= l} can be used to identify the true edge set. When Mn = ∞,

although (26) cannot be written in the compact matrix form, the analogy to (25) still holds

and {βjlkm, k,m = 1, . . . ,∞} reflects the network structure between nodes j and l. The

expression (25) with Mn =∞ provides an alternative approach for estimating the FGM, but

would require new algorithms and theoretical guarantees.

Another potential approach to tackle the finite dimensional limitation is to find a large

enough value of M ′
n <∞ such that

max
(j,l)∈V 2,j 6=l

‖CM ′n
jl (s, t)− Cjl(s, t)‖∗ ≤ O(n−ω), (27)

where ‖ · ‖∗ denotes some functional norm and ω is some positive value. Intuitively, if

max(j,l)∈V 2,j 6=l ‖CM ′n
jl (s, t) − Cjl(s, t)‖∗ is small enough, C

M ′n
jl (s, t) provides a good approxi-

mation to Cjl(s, t), hence C
M ′n
jl (s, t) can still be used to identify the graph structure. This

formulation then reduces to the model considered in our paper, which assumes large but

finite dimensional functional data and our theoretical results become applicable in the more

general setting. However, it appears challenging to prove (27) with suitable choices of M ′
n

and ω.

These are all fruitful topics for future research but are beyond the scope of this paper.
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A Appendix

Appendix A.1 contains a counterexample where the grid method described in Section 1 fails.

Further remarks on some regularity conditions are provided in Appendix A.2.

29



A.1 Counterexample

We create a counterexample, in which the grid method is not able to identify the true

conditional dependence structure while our approach can. Take M = 1, p = 3, T = [0, 1]

and let gj(t) = ajφj(t), j = 1, 2, 3, where the aj’s are standard normal, a1, a2 are correlated

conditional on a3, φ1(t) = f1(t)I{0≤t≤1/2} and φ2(t) = f2(t)I{1/2<t≤1} with
∫ 1/2

0
f1(t)2dt =∫ 1

1/2
f2(t)2dt = 1. Then Cov

(
g1(s), g2(t)|g3(u), u ∈ T

)
= Cov(a1, a2|g3(u), u ∈ T )φ1(s)φ2(t),

which equals zero for all s = t, (s, t) ∈ T 2, but is nonzero for some s 6= t.

A.2 Further Remarks on Some Regualrity Conditions

Remark on Conditions 3–4. We provide an example satisfying Conditions 3 and 4. For

convenience, denote aij = (xTij,y
T
ij)

T , i = 1, . . . , n, j = 1, . . . , p, where xij = (aij1, . . . , aijM)T

and yij = (aij(M+1), . . . , aijMn)T . Define Σ̃ ∈ RpMn×pMn to be the covariance matrix of

(xT11, . . . ,x
T
1p,y

T
11, . . . ,y

T
1p)

T . Then we can find a permutation matrix Pπ satisfying P−1
π = PT

π

such that PπΣPT
π = Σ̃ and Ω̃ = PπΩPT

π , which indicates that Ω̃ is a permutation of Ω. Let

Σ̃ =

 Σ̃11 Σ̃12

Σ̃21 Σ̃22

 and Ω̃ =

 Ω̃11 Ω̃12

Ω̃21 Ω̃22

 , where Σ̃11, Ω̃11 are pM × pM submatrices

and Σ̃22, Ω̃22 are p(Mn −M) × p(Mn −M) submatrices. If we consider (xT11, . . . ,x
T
1p)

T to

be independent of (yT11, . . . ,y
T
1p)

T , then Ω̃
(k)

12 = 0 for M ≤ k < Mn, i.e. Ω
(k)
jl,2 = 0, for M ≤

k < Mn, which satisfies Condition 3. On the other hand, min(j,l)∈E ‖Ωjl‖F corresponds to

the minimal signal strength. In our example, ‖Ωjl‖2
F = ‖Ω(M)

jl,1 ‖2
F + ‖Ω(M)

jl,4 ‖2
F , so Condition 4

presents a sufficient condition of minimal signal strength.

Remark on Condition 5. It is worth noting that Γ∗ is the Hessian of − log det(Θ)

evaluated at Θ = Θ∗. Hence the entry Γ
∗(k,k′)(m,m′)
(j,j′)(l,l′) equals ∂(− log det(Θ))

∂Θjj′kk′∂Θll′mm′
evaluated at

Θ = Θ∗, where Θjj′kk′ is the (k, k′)th entry of the M ×M submatrix Θjj′ , 1 ≤ j, j′, l, l′ ≤ p,

1 ≤ k, k′,m,m′ ≤ M. Since a is multivariate Gaussian, some standard calculations show

that Γ
∗(k,k′)(m,m′)
(j,j′)(l,l′) = Cov (ajkaj′k′ , almal′m′) . The Hessian of the negative log-determinant for
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the scalar data was studied in Ravikumar et al. (2011). We extend their work by viewing Γ∗,

the Fisher information of the model, as an edge-based M2-block covariance matrix instead of

the node-based covariance matrix Σ∗. For each (j, j′) ∈ V 2, denote by bjj′ = aj⊗aj′ ∈ RM2

the edge-based vector, where aj, aj′ are the node-based vectors. Then we have Γ∗(j,j′)(l,l′) =

E(bjj′b
T
ll′), which indicates that Condition 5 is the population version of the irrepresentable-

type condition. Define the edge-based vector within S by bS = {bjj′ , (j, j′) ∈ S}. Then (21)

is equivalent to ||E(bScb
T
S )E(bSbTS )−1||(M

2)
∞ ≤ 1−η, which bounds the effects of non-edges in

Sc on the edges in S, and restricts bjj′ ’s outside the true edge set S to be weakly correlated

with those within S.
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Supplementary Material to “Functional Graphical Models”

Xinghao Qiao, Shaojun Guo, and Gareth M. James

This supplementary material contains the details of the algorithms with derivations in Ap-

pendix B, technical proofs of Propositions 1–2, Theorems 1–4, Lemmas 1-15 in Appendix C,

and further discussion in Appendix D.

B Derivations for the Fglasso Algorithm

In Appendix B, we provide some further details about the fglasso algorithm and the joint

fglasso algorithm.

B.1 Step 2(b) of Algorithm 1

Note (14) is equivalent to finding wj1, · · · ,wj(p−1) to minimize

trace

(
p−1∑
l=1

p−1∑
k=1

Sjjw
T
jl(Θ

−1
−j)lkwjk + 2

p−1∑
k=1

sTjkwjk

)
+ 2γn

p−1∑
k=1

‖wjk‖F . (B.1)

Setting the derivative of (B.1) with respect to wjk to be zero and applying Lemma 4 yields

∂(B.1)

∂wjk

= (Θ−1
−j)kkwjkSjj + (Θ−1

−j)
T
kkwjkS

T
jj

+
∑
l 6=k

(
(Θ−1
−j)

T
lkwjlS

T
jj + (Θ−1

−j)klwjlSjj
)

+ 2sjk + 2γnνjk

= 2

(
(Θ−1
−j)kkwjkSjj +

∑
l 6=k

(Θ−1
−j)

T
lkwjlSjj + sjk + γnνjk

)
= 0,

where νjk =
wjk

‖wjk‖F
if wjk 6= 0, and νjk ∈ RM×M with ‖νjk‖F ≤ 1 otherwise, k = 1, . . . , p−1.

We define the block “residual” by

rjk =
∑
l 6=k

(Θ−1
−j)

T
lkwjlSjj + sjk. (B.2)

1



If wjk = 0, then ‖rjk‖F = γn‖νjk‖F ≤ γn. Otherwise we need to solve for wjk in the

following equation

(Θ−1
−j)kkwjkSjj + rjk + γn

wjk

‖wjk‖F
= 0. (B.3)

We replace (B.3) by (B.4), and standard packages in R/MatLab can be used to solve the

following M2 by M2 nonlinear equation

((Θ−1
−j)kk ⊗ Sjj)vec(wjk) + vec(rjk) + γn

vec(wjk)

‖wjk‖F
= 0. (B.4)

Hence, the block coordinate descent algorithm for solving wj in (14) is summarized in Al-

gorithm 3.

Algorithm 3 Block Coordinate Descent Algorithm for Solving wj

1. Initialize ŵj.

2. Repeat until convergence for k = 1, . . . , p− 1.

(a) Compute r̂jk via (B.2).

(b) Set ŵjk = 0 if ‖rjk‖F ≤ γn; otherwise solve for ŵjk via (B.4).

B.2 Steps 2(a) and 2(c) of Algorithm 1

At the jth step, we need to compute Θ−1
−j in (14) given current Σ = Θ−1. Then step 2(a)

follows by the blockwise inversion formula. Next we solve for wj via Algorithm 3, and then

update Θ−1 given current wj, Θjj, and Θ−1
−j , by applying the blockwise inversion formula

again. Rearranging the row and column blocks such that the (j, j)-th block is the last one, we

obtain the permuted version of Θ−1 by

 Θ−1
−j + UjVjU

T
j −UjVj

−VjU
T
j Vj

 , where Uj = Θ−1
−jwj

and Vj = (Θjj −wT
j Uj)

−1 = Sjj. Step 2(c) follows as a consequence.

B.3 Joint Fglasso Algorithm

We put superscript (q) on the terms used in Section 3.1 to denote the corresponding ones

for the q-th class, 1 ≤ q ≤ Q. Then, for a fixed value of Θ
(q)
−j , some calculations show that

2



(11) with the addition of the penalty (12) is minimized by setting

Θ̂
(q)

jj = (S
(q)
jj )−1 + (ŵ

(q)
j )T (Θ

(q)
−j)
−1ŵ

(q)
j , (B.5)

where ŵ
(1)
j , . . . , ŵ

(Q)
j are obtained by minimizing

Q∑
q=1

trace
(
S

(q)
jj (w

(q)
j )T (Θ

(q)
−j)
−1w

(q)
j + 2(s

(q)
j )Tw

(q)
j

)
(B.6)

+2γ1n

p−1∑
l=1

Q∑
q=1

‖w(q)
jl ‖F + 2γ2n

p−1∑
l=1

√√√√ Q∑
q=1

||w(q)
jl ||2F ,

and w
(q)
jl represents the lth M ×M block of w

(q)
j . Analogously to the fglasso algorithm, we

summarize the joint fglasso algorithm, which is developed to solve the optimization problem

(11) in Algorithm 4.

Algorithm 4 Joint Functional Graphical Lasso Algorithm

1. Initialize Θ̂
(q)

= I and Σ̂
(q)

= I, q = 1, . . . , Q.

2. Repeat until convergence for j = 1, . . . , p, q = 1, . . . , Q.

(a) Compute (Θ̂
(q)

−j)
−1 ← Σ̂

(q)

−j − σ̂
(q)
j (Σ̂

(q)

jj )−1(σ̂
(q)
j )T .

(b) Solve for ŵ
(q)
j in (B.6) using Algorithm 5.

(c) Reconstruct Σ̂
(q)

using Σ̂
(q)

jj = S
(q)
jj , σ̂

(q)
j = −U

(q)
j S

(q)
jj and Σ̂

(q)

−j = (Θ̂
(q)

−j)
−1 +

U
(q)
j S

(q)
jj (U

(q)
j )T , where U

(q)
j = (Θ̂

(q)

−j)
−1ŵ

(q)
j .

3. Set Ê(q) =
{

(j, l) : ‖Θ̂
(q)

jl ‖F 6= 0, (j, l) ∈ V 2, j 6= l
}

, q = 1, . . . , Q.
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Setting the derivative of (B.6) with respect to w
(q)
jk to be zero and applying Lemma 4 yield

∂(B.6)

∂w
(q)
jk

= ((Θ
(q)
−j)
−1)kkw

(q)
jk S

(q)
jj + ((Θ−1

−j)
(q))Tkkw

(q)
jk (S

(q)
jj )T

+
∑
l 6=k

(
((Θ

(q)
−j)
−1)Tlkw

(q)
jl (S

(q)
jj )T + ((Θ

(q)
−j)
−1)klw

(q)
jl S

(q)
jj

)
+2s

(q)
jk + 2λν

(q)
jk

= 2
(

((Θ
(q)
−j)
−1)kkw

(q)
jk S

(q)
jj

+
∑
l 6=k

((Θ
(q)
−j)
−1)Tlkw

(q)
jl S

(q)
jj + s

(q)
jk + γ1nν

(q)
jk + γ2nµ

(q)
jk

)
= 0,

where 

||ν(q)
jk ||F ≤ 1,

∑Q
q=1 ||µ

(q)
jk ||2F ≤ 1, if

∑Q
q=1 ||w

(q)
jk ||2F = 0.

||ν(q)
jk ||F ≤ 1,µ

(q)
jk =

w
(q)
jk√∑Q

q=1 ‖w
(q)
jk ‖

2
F

, if
∑Q

q=1 ||w
(q)
jk ||2F 6= 0 and w

(q)
jk = 0.

ν
(q)
jk =

w
(q)
jk

‖w(q)
jk ‖F

,µ
(q)
jk =

w
(q)
jk√∑Q

q=1 ‖w
(q)
jk ‖

2
F

, if
∑Q

q=1 ||w
(q)
jk ||2F 6= 0 and w

(q)
jk 6= 0.

We define the qth block “residual” by

r
(q)
jk =

∑
l 6=k

((Θ
(q)
−j)
−1)Tlkw

(q)
jl S

(q)
jj + s

(q)
jk . (B.7)

If w
(q)
jk = 0 for all Q classes, then

∑Q
q=1 ‖r

(q)
jk ‖F ≤

∑Q
q=1(γ1n||ν(q)

jk ‖F + γ2n‖µ(q)
jk ‖F ) ≤ γ1nQ+

γ2n. Otherwise if w
(q)
jk = 0, then ||r(q)

jk ||F ≤ γ1n; if w
(q)
jk 6= 0 we need to solve for w

(q)
jk in the

following equation

((Θ
(q)
−j)
−1)kkw

(q)
jk S

(q)
jj + r

(q)
jk + γ1n

w
(q)
jk

‖w(q)
jk ‖F

+ γ2n

w
(q)
jk√∑Q

q=1 ‖w
(q)
jk ‖2

F

= 0. (B.8)

Hence, the block coordinate descent algorithm for solving w
(q)
j in (B.6) is summarized in

Algorithm 5.
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Algorithm 5 Block Coordinate Descent Algorithm for Solving w
(q)
j

1. Initialize ŵ
(1)
j , . . . , ŵ

(Q)
j .

2. Repeat until convergence for k = 1, . . . , p− 1, q = 1, . . . , Q.

(a) Compute r̂
(q)
jk via (B.7).

(b) Set ŵ
(q)
jk = 0 for all Q classes if

∑Q
q=1 ‖r

(q)
jk ‖F ≤ γ1nQ+ γ2n; otherwise go to (c)

(c) For q = 1, . . . , Q, set ŵ
(q)
jk = 0 if ‖r(q)

jk ‖F ≤ γ1n; otherwise solve for ŵ
(q)
jk via (B.8).

C Proofs of Technical Details

C.1 Proof of Proposition 1

Substituting Θ = diag(Θ1, . . . ,ΘK) into (9) yields

max
Θ1,··· ,ΘK

{
K∑
k=1

log det Θk −
K∑
k=1

trace(SkΘk)− γn
∑
j 6=l

K∑
k=1

‖Θk,jl‖F

}
, (C.1)

which is equivalent to K separate fglasso problems in (15).

C.2 Proof of Proposition 2

If Θ is block diagonal, and i and i′ belong to separate index sets Gk and Gk′ , then Θii′ = 0

and hence (Θ−1)ii′ = 0. By (C.12), we have ‖Sii′‖F ≤ γn‖Zii′‖F ≤ γn. This completes the

proof for the sufficient condition.

Next we prove the condition is necessary. We construct Θk by solving the fglasso problem

(9) applied to the symmetric submatrix of S given by index set Gk for k = 1, . . . , K, and let

Θ̄ = diag (Θ1, . . . ,ΘK) . Since ‖Sii′‖F ≤ γn for all i ∈ Gk, i
′ ∈ Gk′ , k 6= k′, and Θ̄ii′ = 0

by construction, we have (Θ̄
−1

)ii′ = 0 and hence the (i, i′)-th equation of (C.12) is satisfied.

Moreover, the (k, k)-th equation of (C.12) is satisfied by construction. Therefore, Θ̄ satisfies

the KKT condition (C.12) and is the solution to the fglasso problem (9).
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C.3 Proof of Theorem 1

We begin with some notation. For any H(s, t), (s, t) ∈ T 2 with the corresponding Karhunen-

Loève decomposition H(s, t) =
∑∞

j=1 λjφj(s)φj(t), define

‖H‖S =
(∑
j≥1

λ2
j

)1/2
.

For two square-integrable functions f(t), g(t), define 〈f, g〉 =
∫
t∈T f(t)g(t)dt and ‖f‖2 =

〈f, f〉. Denote also aijk = λ
1/2
jk ξijk, where ξijk ∼ N(0, 1) and λ0 = supj≤p

∑∞
k=1 λjk.

We now prove Theorem 1. We first consider σ̂jjkk for j = 1, . . . , p and k = 1, . . . ,M .

Note that nσ̂jjkk =
∑n

i=1 â
2
ijk − nā2

jk and σ∗jjkk = Ea2
1jk with ājk = n−1

∑n
i=1 âijk, and, for

each (i, j, k), âijk = 〈gij, φ̂jk〉 = aijk + 〈gij, φ̂jk − φjk〉. Then n(σ̂jjkk − σjjkk) is rewritten as

n(σ̂jjkk − σ∗jjkk) = λjk

n∑
i=1

(
ξ2
ijk − 1

)
+ 2λ

1/2
jk

n∑
i=1

ξijk〈gij, φ̂jk − φjk〉

+
n∑
i=1

〈gij, φ̂jk − φjk〉2 − nā2
jk = I1 + I2 + I3 + I4.

Note that for δ > 0, P
(∣∣σ̂jjkk − σ∗jjkk

∣∣ ≥ 4δ
)
≤
∑4

m=1 P
(∣∣Im∣∣ ≥ nδ

)
. To derive the

concentration inequality of n(σ̂jjkk − σ∗jjkk), it suffices to derive the tail behaviors of all Im’s

(m = 1, . . . , 4).

(a) Since ξijk’s are independent N(0, 1), we have that all 0 < δ ≤ 1,

P
{∣∣∣ n∑

i=1

(
ξ2
ijk − 1

) ∣∣∣ ≥ nδ
}
≤ 2 exp

(
− nδ2

32 + 4δ

)
≤ 2 exp

(
− nδ2

36

)
.

Hence, it follows that there exists a constants C1 such that for 0 < δ ≤ C1,

P
(
|I1| ≥ nδ

)
= P

(∣∣∣ n∑
i=1

(
ξ2
ijk − 1

)∣∣∣ ≥ nδ

λ0

)
≤ 2 exp

(
− C1nδ

2
)
.

(b) First, the term I2 can be bounded by |I2| ≤ 2λ
1/2
jk

∥∥∥∑n
i=1 ξijkgij

∥∥∥‖φ̃jk − φjk‖. Let

Yn1 =
{

(
(∑n

i=1 ξ
2
ijk

)2}1/2
, Yn2 =

{∑
m 6=k

λjm
(∑n

i=1 ξijkξijm
)2
}1/2

. Then,

∥∥∥ n∑
i=1

ξijkgij

∥∥∥2

= λjk

( n∑
i=1

ξ2
ijk

)2

+
∞∑
m6=k

λjm

( n∑
i=1

ξijkξijm

)2

= λjkY
2
n1 + Y 2

n2,
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which implies that ‖
∑n

i=1 ξijkgij‖ ≤ λ
1/2
jk Yn1 +Yn2. By the condition λjk � k−β and djkλjk =

O(k), we have that djkλjk ≤ d0k and djk ≤ d0k
1+β for some positive constant d0. By

Lemma 8, ‖φ̂jk − φjk‖ ≤ djk‖K̂jj − Kjj‖S , where, w.l.o.s., φ̂jk can be chosen to satisfy

sgn〈φ̂jk, φjk〉 = 1. As a result, |I2| can be further bounded by

|I2| ≤ 2d0kYn1‖K̂jj −Kjj‖S + 2d0λ
−1/2
jk kYn2‖K̂jj −Kjj‖S . (C.2)

We first bound Yn1 and Yn2. On one hand,

P
(
Yn1 ≥ 2n

)
= P

{ n∑
i=1

(ξ2
ijk − 1) ≥ n

}
≤ exp

(
− n

36

)
. (C.3)

On the other hand, since ξij1, ξij2 ∼ N(0, 1) for each j, k,
∑n

i=1E|ξij1ξij2|k ≤ nEξ2k
1j1 ≤ k!n2k.

As a result, it follows that for all δ > 0

P
(∣∣∣ n∑

i=1

ξij1ξij2

∣∣∣ ≥ δ
)
≤ 2 exp

(
− δ2

16n+ 4δ

)
≤ 2 exp

(
− δ2

32n

)
+ 2 exp

(
− δ

8

)
.

Consequently, using integration by parts, there exist two positive constants L1 and L2 not

depending on n such that

E
∣∣∣ n∑
i=1

ξij1ξij2

∣∣∣2k ≤ k!(nL1)k + (2k)!L2k
2 , k = 1, 2, 3, . . . .

This further implies E
(
Yn2 − EYn2

)2k ≤ k!(2λ0L1n)k + (2k)!(2λ
1/2
0 L2)2k, k ≥ 1. Hence we

obtain from Theorem 2.3 of Boucheron et al. (2014) that for all δ > 0 and n ≥ 2L2
2L
−1
1 ,

P
(
Yn2 − EYn2 ≥ δ

)
≤ exp

(
− δ2

32λ0L1n+ 8λ
1/2
0 L2δ

)
.

Note that EYn2 ≤ λ0n
1/2. Hence, for δ ≥ 2λ0n

1/2 and n ≥ 2L2
2L
−1
1 ,

P
(
Yn2 ≥ δ

)
≤ P

(
Yn2 − EYn2 ≥ δ/2

)
≤ exp

{
− δ2

16(8λ0L1n+ λ
1/2
0 L2δ)

}
(C.4)

Now consider P
(∣∣I2

∣∣ ≥ nδ
)

. By (C.2), we can bound this term by

2P
(
‖K̂jj −Kjj‖S ≥

δ

8kd0

)
+ P

(
Yn1 ≥ 2n

)
+ P

(
Yn2 ≥ 2nλ

1/2
jk

)
.
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Together with (C.3), (C.4) and Lemma 6, it follows that there exist two positive constants

Ck (k = 2, 3) free of n and p such that for 0 < δk−1 ≤ C2,

P
(∣∣I2

∣∣ ≥ nδ
)
≤ C3 exp

(
− C2nk

−2δ2
)

+ exp
(
− C2nk

−β
)
.

(c) In a similar way to I2, we can show that there exist three positive constants Ck

(k = 4, 5, 6) not depending on n and p such that for 0 < δ ≤ C5,

P
(∣∣I3

∣∣ ≥ nδ
)
≤ 2 exp(−C4n) + C6 exp

(
− C5nk

−(2+2β)δ
)
.

(d) Consider the last term I4. First, we have

|ājk| ≤ λ
1/2
jk |ξ̄jk|+ ‖ḡj‖‖φ̂jk − φjk‖ ≤ λ

1/2
jk |ξ̄jk|+ d0k‖ḡj‖‖K̂jj −Kjj‖S ,

where ‖ḡj‖2 =
∑∞

m=1 λjmξ̄
2
jk. Note that the following inequalities hold for all δ > 0:

P
(
|ξ̄jk| ≥ δ

)
≤ 2 exp

(
− C7nδ

2
)

and P
(
‖ḡj‖ ≥ δ

)
≤ 2 exp

(
− C7nδ

2
)
.

for some positive constant C7. Hence, together with Lemma 6, we obtain that P (|ājk|2 ≥ δ)

can be bounded by

P
(
|ξ̄jk| ≥ δ1/2λ

−1/2
jk /2

)
+ P

(
‖ḡj‖‖K̂jj −Kjj‖S ≥ d−1

jk δ
1/2/2

)
≤ P

(
|ξ̄jk| ≥ δ1/2λ

−1/2
jk /2

)
+ P

{
‖ḡj‖ ≥ (d2

jkδ)
1/4/2

}
+P

{
‖K̂jj −Kjj‖S ≥ (λ2

jkδ)
1/4/2

}
≤ 2 exp

(
−C7nk

β/2δ
)

+ C9 exp
(
− C8nk

βδ1/2
)

for all 0 < δ ≤ C8 with some positive constants C8 and C9.

Combining (a), (b), (c) and (d) and choosing suitable constants, the inequality (16)

follows consequently.

For general cases of (j, l, k,m) with j 6= l or m 6= k, σ̂jlkm = 1
n

∑n
i=1 âijkâilm− ājkālm and

σ∗jlkm = E(aijkailm). Hence n
(
σ̂jlkm − σ∗jlkm

)
can be expressed as the sum of the following

five terms:
n∑
i=1

(
aijkailm − σ∗jklm

)
+ λ

1/2
jk

n∑
i=1

ξijk〈gil, φ̂lm − φlm〉

+λ
1/2
lm

n∑
i=1

ξilm〈gij, φ̂jk − φjk〉+
n∑
i=1

〈gij, φ̂jk − φjk〉〈gil, φ̂lm − φlm〉 − nājkālm

= I1 + I2 + . . .+ I5.
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Observe that |I2| ≤ O(1) · k−β/2m1+β
∥∥∥∑n

i=1 ξijkgil

∥∥∥∥∥∥K̂ll −Kll

∥∥∥
S
,

|I3| ≤ O(1) ·m−β/2k1+β
∥∥∥∑n

i=1 ξilmgij

∥∥∥∥∥∥K̂jj −Kjj

∥∥∥
S
, and

|I4| ≤ O(1) · (km)1+β
∑n

i=1 ‖gij‖‖gil‖
∥∥∥K̂ll −Kll

∥∥∥
S

∥∥∥K̂jj −Kjj

∥∥∥
S
. Hence the proof techniques

for n(σ̂jjkk−σ∗jjkk) can be applied here and as a result, (17) follows. The proof is completed.

C.4 Proof of Theorem 2

First we obtain the general error bound for Θ̂ in Section C.4.1. Second in Section C.4.2 we

present the general model selection consistency of fglasso in Theorem 4. Finally in Section

C.4.3 we prove Theorem 2 based on the results of Lemma 3 and Theorem 4.

For convenient presentation, we adopt the definition of tail condition for the random

variable given in Ravikumar et al. (2011).

Definition 1 (Tail condition) The random vector a ∈ RMp satisfies the tail condition if

there exists a constant v∗ ∈ (0,∞] and a function f : N × (0,∞) → (0,∞), such that for

any (i, j) ∈ {1, . . . ,Mp}2, let Sij, Σ∗ij be the (i, j)-th entry of S,Σ∗ respectively, then

P
(
|Sij − Σ∗ij| ≥ δ

)
≤ 1/f(n, δ) for all δ ∈ (0, 1/v∗]. (C.5)

The tail function f is required to be monotonically increasing in δ and n. The inverse

functions of n and δ are respectively defined as

δ̄f (w;n) = argmax {δ|f(n, δ) ≤ w} and n̄f (δ;w) = argmax {n|f(n, δ) ≤ w} ,

where w ∈ [1,∞). Then we assume that the Hessian of the negative log determinant satisfies

the following general irrepresentable-type assumption.

Condition 6 There exists some constant η ∈ (0, 1] such that

||Γ∗ScεSε(Γ
∗
SεSε)

−1||(M2)
∞ ≤ 1− η. (C.6)
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C.4.1 General Error Bound

In this section, we present Theorem 3 on the general error bound. We first begin with some

notation. Denote by κΓ∗ε = ||(Γ∗SεSε)
−1||(M

2)
∞ ,κB∗ε = ||Θ∗−1B∗ε||

(M)
∞ κ−1

Σ∗ , where B∗ε,jl = Θ∗jl for

(j, l) ∈ Scε and B∗ε,jl = 0 for (j, l) ∈ Sε, and dε = max
j∈V

∣∣l ∈ V : ||Θ∗jl||F > ε
∣∣ .

Theorem 3 Let Θ̂ be the unique solution to the fglasso problem (9) with regularization

parameter γn = 16η−1Mδ̄f (n, (Mp)τ ). Suppose that Conditions 2-4 and 6 hold, the bias term

satisfies ||B∗ε||
(M)
max ≤ γnηκ

−2
Σ∗/16 and the sample size n satisfies the lower bound

n > n̄f

(
1/max

{
v∗, 6cηMdε max

{
κΣ∗κΓ∗ε

1− 3κB∗εκΣ∗
,

κ3
Σ∗κ

2
Γ∗ε
cη

1− 3κB∗εκ
3
Σ∗κΓ∗εcη

}}
, (Mp)τ

)
(C.7)

with cη = 2 + 16η−1, then with probability at least 1− (Mp)2−τ , we have

(i) The estimate Θ̂ satisfies the error bound

||Θ̂−Θ∗||(M)
max ≤ 2cηκΓ∗εMδ̄f (n, (Mp)τ ); (C.8)

(ii) The estimated edge set Ê is a subset of Eε.

C.4.2 General Model Selection Consistency

Theorem 4 Let Θ∗min = min
(j,l)∈Eε

||Θjl||F . Under the same conditions as in Theorem 3, if the

sample size n satisfies the lower bound

n > n̄f

(
1/max

{
2κΓ∗εcηΘ

∗−1
minM, v∗, 6cηMdε max

{
κΣ∗κΓ∗ε

1− 3κB∗εκΣ∗
,

κ3
Σ∗κ

2
Γ∗ε
cη

1− 3κB∗εκ
3
Σ∗κΓ∗εcη

}}
, (Mp)τ

)
,

then {Ê = Eε} holds with probability at least 1− (Mp)2−τ .

C.4.3 Proof of Theorem 2

By (18) in Theorem 1, the sample covariance matrix satisfies the tail condition (C.5) with

some constants v∗ = C−1
1 and f(n, δ) = C−1

2 exp{C1n
1−2α(1+β)δ2}. Therefore, the correspond-

ing inverse functions take the following forms

δ̄f (n, (Mp)τ ) =

√
log{C2(Mp)τ}
C1n1−2α(1+β)

=

√
τ logMp+ logC2

C1n1−2α(1+β)
, (C.9)

10



n̄f (δ, (Mp)τ ) =

{
τ log(Mp) + logC2

C1δ2

}{1−2α(1+β)}−1

. (C.10)

It follows from Lemma 3 with ε = C|E|2nα(1−2ν−β) that E = Eε. Thus we have S = Sε,

d = dε, B∗ = B∗ε, κΓ∗ = κΓ∗ε and κB∗ = κB∗ε . By substituting these terms into Theorem

4, some calculations using (C.9) and (C.10) lead to the lower bound for the sample size,

i.e. n > C3M
2d2(τ log(Mp) + logC2)/c2

1 and n > C4M
2Θ−2

min(τ log(Mp) + τ logC2)/c2
1 and the

desired regularization parameter γn.

Under Conditions 2–4, it follows from Lemma 3 that E = Eε. By satisfying Condition 6

and the lower bound condition, Theorem 4 indicates that {Eε = Ê} holds with probability

at least 1− 1/(c1n
αp)τ−2. Combining these two results completes the proof.

C.5 Proof of Theorem 3

We let the sub-differential of
∑

j 6=l ‖(·)jl‖F evaluated at some Θ involves all symmetric

matrices Z ∈ RMp×Mp with M by M blocks defined by

Zjl =


0 if j = l

Θjl

||Θjl||F
if j 6= l and Θjl 6= 0{

Zjl ∈ RM×M : ||Zjl||F ≤ 1
}

if j 6= l and Θjl = 0.

(C.11)

By the Karush-Kuhn-Tucker (KKT) condition, a necessary and sufficient condition for Θ̂ to

maximize (9) is

Θ̂
−1
− S− γnẐ = 0, (C.12)

where Ẑ belongs to the family of sub-differential of
∑

j 6=l ‖Θ̂jl‖F defined in (C.11).

The main idea of the proof is based on constructing the primal-dual witness solution Θ̃

and Z̃ in the following four steps.

First, Θ̃ is obtained by the following restricted fglasso problem

min
ΘScε

=0

{
trace(SΘ)− log detΘ + γn

∑
j 6=l

||Θjl||F

}
, (C.13)
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where Θ ∈ RMp×Mp is symmetric positive definite. Second, for each (j, l) ∈ Sε, we choose

Z̃jl from the family of sub-differential of
∑

j 6=l ||Θjl||F evaluated at Θ̃jl defined in (C.11).

Third, for each (j, l) ∈ Scε, where ||Θ∗jl||F ≤ ε, Z̃jl is replaced by

1

γn

{
−Sjl +

(
Θ̃
−1
)
jl

}
, (C.14)

which satisfies the KKT condition (C.12). Finally, we need to verify strict dual feasibility

condition, that is, ||Z̃jl||F < 1 uniformly in (j, l) ∈ Scε.

The following terms are needed in the proof of Theorem 3. Let W be the noise matrix,

and ∆ the difference between the primal witness matrix Θ̃ and the truth Θ∗,

W = S−Θ∗−1 , ∆ = Θ̃−Θ∗ = (Θ̃−Θ∗ε) + (Θ∗ε −Θ∗) = ∆ε + B∗ε, (C.15)

where Θ∗ε,jl = 0 for (j, l) ∈ Scε and Θ∗ε,jl = Θ∗jl for (j, l) ∈ Sε. Hence for each (j, l) ∈

Scε, ||∆jl||F ≤ ε. Note B∗ε corresponds to the bias matrix caused by M -dimensional approxi-

mation in (5) to a larger dimensional function.

The second order remainder for Θ̃
−1

near Θ∗ is given by

R(∆) = Θ̃
−1
−Θ∗−1 + Θ∗−1∆Θ∗−1. (C.16)

To prove Theorem 3, we need use Lemmas 9-15 as stated in Supplementary Material.

We organize our proof in the following six steps.

Step 1. It follows from the tail condition (C.5) and Lemma 14 that with probabil-

ity at least 1 − (Mp)2−τ the event
{
||W||(M)

max ≤Mδ̄f (n, (Mp)τ )
}

holds . We need to ver-

ify that the conditions in Lemma 10 hold. Choosing the regularization parameter γn =

16η−1Mδ̄f (n, (Mp)τ ) and applying the inequalities in Lemma 15 together with the bound

condition for the bias term, we have ||Wε||(M)
max ≤ ||W||(M)

max +||Θ∗−1B∗εΘ
∗−1||(M)

max ≤ ||W||(M)
max +

κ2
Σ∗||B∗ε||

(M)
max ≤ ηγn/16 + ηγn/16 = ηγn/8. It remains to prove ||R(∆)||(M)

max is also bounded

by ηγn/8 = 2Mδ̄f (n, (Mp)τ ).

Step 2. Let r = 2κΓ∗ε(||Wε||(M)
max + γn) ≤ 2κΓ∗εcηMδ̄f (n, (Mp)τ ). By δ̄f (n, (Mp)τ ) ≤ 1/v∗

and monotonicity of the inverse tail function, for any n satisfying the lower bound condition,

12



we have

2κΓ∗εcηMδ̄f (n, (Mp)τ ) ≤ min

{
1− 3κB∗εκΣ∗

3κΣ∗dε
,
1− 3κB∗εκ

3
Σ∗κΓ∗εcη

3κ3
Σ∗κΓ∗εdεcη

}
≤ min

{
1

3κΣ∗dε
,

1

3κ3
Σ∗κΓ∗εdε

}
−
κB∗ε

dε
.

Then the conditions in Lemma 12 are satisfied, and hence the error bound satisfies ||∆||(M)
max =

||Θ̃−Θ∗||(M)
max ≤ r.

Step 3. The condition ||∆ε||(M)
max ≤ 1

3κΣ∗dε
− κB∗ε

dε
is satisfied by step 2. Thus by Lemma

11 and results in step 2, we have

||R(∆)||(M)
max ≤

3

2
κ3

Σ∗||∆||(M)
max

(
dε||∆||(M)

max + κB∗ε

)
≤

{
3κ3

Σ∗κΓ∗εcη
(
dε2κΓ∗εcηMδ̄f (n, (Mp)τ ) + κB∗ε

)} ηγn
8
≤ ηγn

8
,

where the last inequality comes from the monotonicity of the tail function, the bound con-

dition for the sample size n, and the fact that

2dεκΓ∗εcηMδ̄f (n, (Mp)τ ) ≤
1− 3κB∗εκ

3
Σ∗κΓ∗εcη

3κ3
Σ∗κΓ∗εcη

=
1

3κ3
Σ∗κΓ∗εcη

− κB∗ε .

Step 4. Steps 1 and 3 imply the strict dual feasibility in Lemma 10, and hence Θ̃ = Θ̂

by Lemma 9.

Step 5. It follows from the results in steps 2 and 4 that the error bound (C.8) holds

with probability at least 1− (Mp)2−τ .

Step 6. For (j, l) ∈ Scε, ||Θ∗jl||F ≤ ε. Step 4 implies Θ̃Scε = Θ̂Scε . In the restricted fglasso

problem (C.13), we have Θ̃Scε = Θ̂Scε = 0. Therefore, (Eε)
c ⊂ (Ê)c and part (ii) follows by

taking the complement.

C.6 Proof of Theorem 4

It follows from the proof and results of Theorem 3(i) that ||Θ̃−Θ∗||(M)
max ≤ r ≤ 2cηκΓ∗εMδ̄f (n, (Mp)τ )

and Θ̂ = Θ̃ hold with probability at least 1− (Mp)2−τ . The lower bound for the sample size

n in (C.9) implies Θ∗min > 2cηκΓ∗εMδ̄f (n, (Mp)τ ) ≥ r. By Lemma 13 we have Θ̂jl 6= 0 for

all (j, l) ∈ Sε, which entails that Eε ⊂ Ê. Combining this result with Theorem 3(ii) yields

Eε = Ê.
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C.7 Proof of Lemma 1

Since both a = (aT1 , . . . , a
T
p )T and φ = (φT

1 , . . . ,φ
T
p )T depend on M , we omit the correspond-

ing superscripts to simplify the notation for readability.

Let U = V \{j, l} and aU , φU denote (p − 2)M -dimensional vectors excluding the jth

and lth subvectors from a and φ, respectively. By definition (6), we have that, for any pair

(j, l) ∈ V 2, j 6= l,

CM
jl (s, t) = Cov

(
aTj φj(s), a

T
l φl(t)|aTkφk(u), k 6= j, l, ∀u ∈ T

)
= Cov

(
aTj φj(s), a

T
l φl(t)|ak, k 6= j, l

)
= φj(s)

TCov(aj, al|aU)φl(t). (C.17)

The second equality comes from the following argument. For any k ∈ U and u ∈ T ,

gMk (u) =
∑M

m=1 akmφkm(u) = aTkφk(u). By the orthogonality of φkm, it follows that there

exists a one to one correspondence between {ak} and {gMk (u),∀u ∈ T }, which holds uniformly

in k.

Since (C.17) holds for all (s, t) ∈ T 2, we have that, for fixed pair (j, l) ∈ V 2, j 6= l,

CM
jl (s, t) = 0 for all (s, t) ∈ T 2 if and only if Cov(aj, al|aU) = 0. Let Cjl = Cov(aj, al|aU)

for each pair (j, l). Then it follows from multivariate normal theory that, for each (j, l) ∈

V 2, j 6= l, Cjl = −Θ−1
jj ΘjlΘ

−1
ll . Since both Θjj and Θll are positive definite, we have Cjl = 0

if and only if Θjl = 0 for each pair (j, l) ∈ V 2, j 6= l. This completes the proof.

C.8 Lemma 2 and its Proof

Lemma 2 Suppose that Conditions 2–3 hold. Then, for each (j, l) ∈ V 2,∥∥∥Θ∗jl −Ω
(M)
jl,1

∥∥∥
F
≤ O

{
|E|2nα(1−2ν−β)

}
, (C.18)

where Ω
(M)
jl,1 is the upper left M ×M submatrix of Ωjl.

Proof. First we give some notations. For any p × p matrix A = (Aij)1≤i,j≤p, let tr(A) =∑
iAii and ‖A‖F =

{
tr(ATA)

}1/2
. For any (M1p) × (M2p) block matrix A = (Aij)

with Aij ∈ RM1×M2 , 1 ≤ i, j ≤ p, we define ‖A‖(M1,M2)
max = max

1≤i,j≤p
‖Aij‖F , and ‖A‖(M1,M2)

∞ =

14



max
1≤i≤p

∑p
j=1 ‖Aij‖F . In a special case when M1 = M2 = M , denote ‖A‖(M1,M1)

max and ‖A‖(M1,M1)
∞

by ‖A‖(M)
max and ‖A‖(M)

∞ , respectively. For any block matrix A = (Aij) with Aij ∈ RM×M ,

1 ≤ i, j ≤ p, we define ‖A‖(M)
tr = max1≤i,j≤p

{
tr(Aii)tr(Ajj)

}1/2
.

We now prove Lemma 2. For convenience, for j = 1, . . . , p, denote aij = (bTij, c
T
ij)

T where

bij = (aij1, . . . , aijM)T and cij = (aij(M+1), . . . , aijMn)T . Define Σ̃ to be the covariance matrix

of (bT11, . . . ,b
T
1p, c

T
11, . . . , c

T
1p)

T . Then we can find that there exists a permutation matrix Pπ

such that PπΣPT
π = Σ̃. Since P−1

π = PT
π , Ω̃ = PπΩ

−1PT
π , which means that Ω̃ is only a

permutation of Θ. Let Σ̃ =

 Σ̃11 Σ̃12

Σ̃21 Σ̃22

and Ω̃ =

 Ω̃11 Ω̃12

Ω̃21 Ω̃22

, where Ω̃11 and Ω̃11

are pM × pM matrices and Ω̃11 and Ω̃22 are pM2 × pM2 matrices with M2 = Mn −M .

Now we apply Lemma 5 to prove this lemma. By Condition 3, we see that ‖Ω̃12‖(M1,M2)
∞ ≤

O
(
|E|n−αν

)
. Furthermore, since the diagonal entries of Σ̃22 are eigenvalues λjk’s, we have

‖Σ̃22‖(M2)
tr ≤ O

{
nα(1−β)

}
. Hence, it follows from Lemma 5 that

‖Ω̃11 −Θ∗‖(M)
max ≤ O

{
|E|2nα(1−2ν−β)

}
.

As a result, for each pair (j, l) ∈ V 2,
∥∥Θ∗jl −Ω

(M)
jl,1

∥∥
F
≤ O

{
|E|2nα(1−2ν−β)

}
. This completes

the proof for Lemma 2.

C.9 Lemma 3 and its Proof

In general, for any ε ≥ 0, we define the corresponding truncated edge set Eε = {(j, l) ∈ V 2 :

j 6= l, ||Θ∗jl||F > ε}. Let Sε = Eε ∪ {(1, 1), · · · , (p, p)}. Denote Scε to be the complement of

Sε in V 2 with ||Θ∗jl||F ≤ ε for (j, l) ∈ Scε. Lemma 3 below ensures the equivalence between

the true and truncated edge sets.

Lemma 3 Under Conditions 2–4, let ε = C|E|2nα(1−2ν−β) for some large constant C > 0,

we have E = Eε.

Proof. First, Lemma 2 implies that for each (j, l) ∈ V 2,
∥∥Θ∗jl−Ω

(M)
jl,1

∥∥
F
≤ O(|E|2nα(1−2ν−β)).

Hence, for each pair (j, l) ∈ E,
∥∥Θ∗jl∥∥F ≥ ∥∥Ω(M)

jl,1

∥∥
F
−
∥∥Θ∗jl −Ω

(M)
jl,1

∥∥
F
� |E|2nα(1−2ν−β), and

for (j, l) ∈ Sc,
∥∥Θ∗jl∥∥F =

∥∥Θ∗jl − Ω
(M)
jl,1

∥∥
F
≤ O

(
|E|2nα(1−2ν−β)

)
, since min

(j,l)∈E

∥∥Ω(M)
jl,1

∥∥
F
�
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|E|2nα(1−2ν−β) by Condition 4 and
∥∥∥Ω(M)

jl,1

∥∥∥
F

= 0 if (j, l) ∈ Sc. This means that for ε =

C|E|2nα(1−2ν−β) with a large constant C, we obtain ‖Θ∗jl‖F � ε if (j, l) ∈ E but ‖Θ∗jl‖F ≤ ε

if (j, l) ∈ Sc. Therefore, E = Eε as claimed.

C.10 Lemma 4 and its Proof

Lemma 4 For any A ∈ Rp×q, B ∈ Rr×r, and X ∈ Rq×r, we have

∂trace(AXTBX)

∂X
= BXA + BTXAT . (C.19)

Proof. Since d(trace(AXTBX)) = trace(d(AXT )BX) + trace(AXTd(BX)), we have

d(trace(AXTBX)) = trace((dX)TBXA) + trace(AXTBdX)

= trace(ATXTBT + AXTB)dX.

Hence ∂trace(AXTBX)
∂X

= (ATXTBT + AXTB)T , which completes the proof.

C.11 Lemma 5 and its Proof

Lemma 5 Suppose that for a positive definite matrix H =

 H11 H12

H21 H22

 , its inverse H−1

is

 H11 H12

H21 H22

 , where H11 and H11 are pM1 × pM1 matrices and H22 and H22 are

pM2 × pM2 matrices. If ‖H22‖(M2)
tr ≤ λ and ‖H12‖(M1,M2)

∞ ≤ δ, then

‖H11 −H−1
11 ‖(M1)

max ≤ δ2λ. (C.20)

Proof. For a positive definite matrix H =

 H11 H12

HT
12 H22

 , its inverse H−1 is expressed as

 H11 H12

H21 H22

 =

 H−1
11 + H−1

11 H12D
−1HT

12H
−1
11 −H−1

11 H12D
−1

−D−1HT
12H

−1
11 D−1


with D = H22−HT

12H
−1
11 H12. Since D is positive definite, ‖D‖(M2)

max ≤ ‖D‖(M2)
tr ≤ ‖H22‖(M2)

tr ≤

λ. Since H12 = −H−1
11 H12D

−1, we have

‖H−1
11 H12‖(M1,M2)

max = ‖H12D‖(M1,M2)
max ≤ ‖H12‖(M1,M2)

∞ ‖D‖(M2)
max ≤ δλ.

16



Hence,

‖H11 −H−1
11 ‖(M1)

max ≤ ‖H12‖(M1,M2)
∞ ‖H−1

11 H12‖(M1,M2)
max ≤ δ2λ.

The lemma is proved.

C.12 Lemma 6 and its Proof

Lemma 6 Suppose that Condition 1 holds. Then there exist two positive constants Ck(k =

1, 2) not depending on n and p such that, for 0 < δ ≤ C1 and each j = 1, . . . , p,

P
(∥∥∥K̂jj −Kjj

∥∥∥
S
≥ δ
)
≤ C2 exp

(
−C1nδ

2
)
,

where K̂jj and Kjj are defined in Section 2.3.

Proof. Without ambiguity, we drop the index j in the following. For a function K(s, t),

define a functional `K(φ)(t) =
∫ 1

0
K(s, t)φ(s)ds and its norm ‖`K‖S = (

∑
k≥1 ‖`K(φk)‖2)1/2.

Then

‖K̂ −K‖S = ‖`K̂ − `K‖S .

For j = 1, . . . , p, letXij(s, t) = gij(s)gij(t) andDj(s, t) = ḡj(s)ḡj(t) with ḡj(t) = n−1
∑n

i=1 gij(t).

We know that n(`K̂ − `K) =
∑n

i=1 (`Xi − `K) + n`D and hence

n‖K̃ −K‖S ≤

∥∥∥∥∥
n∑
i=1

(`Xi − `K)

∥∥∥∥∥
S

+ n‖`D‖S .

To prove this lemma, we are going to derive the following tail inequalities:

(a) There exist two constants L1 and L2 such that for any δ > 0,

P
{∥∥∥ n∑

i=1

(`Xi − `K)
∥∥∥
S
≥ nδ

}
≤ 2 exp

(
− nδ2

2L1 + 2L2δ

)
; (C.21)

(b) There exist two positive constants L3 and L4 such that for δ > 2λ0n
−1,

P
(
‖`D‖S ≥ δ

)
≤ exp

(
− n2δ2

8L3 + 8L4nδ

)
. (C.22)
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After getting the above two inequalities (C.21) and (C.22), we have that for all δ > λ0/(2n),

P
(
n‖K̂ −K‖S ≥ nδ

)
can be bounded by

P

{∥∥∥∥∥
n∑
i=1

(`Xi − `K)

∥∥∥∥∥
S

≥ nδ

2

}
+ P

(
n‖`D‖S ≥

nδ

2

)
≤ 2 exp

(
− nδ2

8L1 + 8L2δ

)
+ exp

(
− n2δ2

32L3 + 32L4nδ

)
.

Take C1 = min{1, L1L
−1
2 , (16L1)−1, (64L4)−1} and C2 = 3 exp(C2

3) with C3 = max{2λ0, L3L
−1
4 }.

As a result, we obtain for any δ with 0 < δ ≤ C1,

P
{
‖K̂ −K‖S ≥ δ

}
≤ C2 exp

(
− C1nδ

2
)
.

This lemma follows.

Now we turn to prove (C.21). Note that E (`Xi − `K) = 0 for each i. By Lemma 7, it

suffices to show that there exist two positive constants L1 and L2 such that

n∑
i=1

E ‖`Xi − `K‖
k
S ≤

1

2
k!nL1L

k−2
2 , k = 2, . . . . (C.23)

Note that ‖`Xi − `K‖
2
S =

∑∞
m,m′=1

(
aimaim′ − λmm′

)2

where λmm′ = λmδmm′ and δmm′ =

I(m = m′). By Jensen’s inequality,

E ‖`Xi − `K‖
k
S = E

{
∞∑

m,m′=1

λmλm′
(
ξimξim′ − δmm′

)2
}k/2

≤

(
∞∑

m,m′=1

λmλm′

)k/2−1 ∞∑
m,m′=1

λmλm′E
(
ξimξim′ − δmm′

)k
≤

(
2
∞∑
m=1

λm

)k (
Eξ2k

i1 + 1
)
,

where the inequality E(ξ2
i1 − 1)k ≤ 2k−1(1 + Eξ2k

i1 )(k ≥ 2) is used. Since ξi1 ∼ N(0, 1),

E|ξi1|2k = π−1/22kΓ

(
2k + 1

2

)
≤ 2kk!.

Let L2 = 4
∑∞

m=1 λm = 4λ0 <∞ and L1 = 4L2
2. Then, for k = 2, 3, . . . ,

n∑
i=1

E ‖`Xi − `K‖
k
S ≤ (L2/2)k · 2 · 2kk! ≤ 1

2
k!nL1L

k−2
2 .
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Next we consider to prove the inequality (C.22). Suppose that we have shown

E‖`D‖kS ≤
1

2
n−kk!L3L

k−2
4 , k = 2, 3, . . . . (C.24)

Then, the following inequality follows from Lemma 7:

P
(
‖`D‖S − E‖`D‖S ≥ δ

)
≤ exp

(
− n2δ2

2L3 + 2L4nδ

)
for all δ > 0. Note that ‖`D‖2

S = n−2
∑∞

m,m′=1 λmλm′(ξ̄mξ̄m′)
2, where ξ̄m = n−1/2

∑n
i=1 ξim.

Hence E‖`D‖S ≤ n−1λ0. As a result, for δ > 2n−1λ0, we have that

P
(
‖`D‖S ≥ δ

)
≤ P

(
‖`D‖S − E‖`D‖S ≥ δ/2

)
≤ exp

(
− n2δ2

8L3 + 8L4nδ

)
.

Hence, (C.22) follows.

Now we derive the upper bound of E‖`D‖kS for k ≥ 2 as in (C.24). By Jensen’s inequality,

E‖`D‖kS ≤
1

nk
E

{
∞∑

m,m′=1

λmλm′(ξimξim′)
2

}k/2

≤ 1

nk

(
∞∑

m,m′=1

λmλm′

)k/2−1 ∞∑
m,m′=1

λmλm′E|ξimξim′|k

≤ 1

nk

(
∞∑
m=1

λm

)k

Eξ2k
i1 ≤

(
2

n

∞∑
m=1

λm

)k

k!.

Let L4 = 2
∑∞

m=1 λm and L3 = 2L2
4. Then E‖`D‖kS ≤ 2−1n−kk!L3L

k−2
4 . Lemma 6 is proved.

C.13 Lemma 7 and its Proof

Lemma 7 Let {X1, . . . , Xn} be independent random variables in a separable Hilbert space

with norm ‖ · ‖. If EXi = 0 (i = 1, . . . , n) and

n∑
i=1

E‖Xi‖k ≤
k!

2
nL1L

k−2
2 , k = 2, 3, . . . ,

for two positive constants L1 and L2, then for all δ > 0,

P

(∥∥∥ n∑
i=1

Xi

∥∥∥ ≥ nδ

)
≤ 2 exp

(
− nδ2

2L1 + 2L2δ

)
.

Proof. This lemma can be derived directly from Theorem 2.5 (2) of Bosq (2000) and hence

its proof is omitted.
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C.14 Lemma 8 and its Proof

Lemma 8 Suppose that Condition 1 holds. Denote φ̃jk = sgn〈φ̂jk, φjk〉φjk. Then

∥∥φ̂jk − φ̃jk∥∥ ≤ djk
∥∥K̂jj −Kjj

∥∥
S ,

where djk = 2
√

2 max{(λj(k−1) − λjk)
−1, (λjk − λj(k+1))

−1} if k ≥ 2, and dj1 = 2
√

2(λj1 −

λj2)−1.

Proof. This lemma can be found in Lemma 4.3 of Bosq (2000) and hence the proof is

omitted.

C.15 Lemma 9 and its Proof

Lemma 9 For any γn ≥ 0, the fglasso problem (9) has a unique solution that satisfies the

optimal condition (C.12) with Ẑ defined in (C.11).

Proof. The fglasso problem can be written in the constrained form

min∑
j 6=l ||Θjl||F≤C(γn)

{trace(SΘ)− log detΘ} , (C.25)

where Θ ∈ RMp×Mp is symmetric positive definite. The objective function is strictly convex

in view of its Hessian and the constraint on the parameter space, if the minimum is attained

then the solution is uniquely determined. We need to show that the minimum is achieved.

Note the off block diagonal elements are bounded by satisfying
∑

j 6=l ||Θjl||F ≤ C(λ) < ∞.

By the fact that max
i,j

Aij ≤ max
i
Aii for a positive definite matrix A, we only need to consider

the possibly unbounded diagonal elements. By Hadamard’s inequality for positive definite

matrices, we have

trace(SΘ)− log detΘ ≥
Mp∑
i=1

(SiiΘii − log detΘii) .

The diagonal elements of S are positive. The objective function goes to infinity as any

sequence (Θ
(k)
11 , . . . ,Θ

(k)
Mp,Mp), k ≥ 1, goes to infinity. Thus the minimum is uniquely achieved.

20



C.16 Lemma 10 and its Proof

Lemma 10 Suppose that max
{
||Wε||(M)

max, ||R(∆)||(M)
max

}
≤ ηγn

8
, where Wε = W+Θ∗−1B∗εΘ

∗−1.

Then Z̃Scε constructed in (C.14) satisfies ||Z̃Scε ||
(M)
max < 1.

Proof. The optimal condition (C.12) can be replaced by

Θ∗−1∆Θ∗−1 + W −R(∆) + γnZ̃ = 0,

and can be rewritten as

Θ∗−1∆εΘ
∗−1 + Wε −R(∆) + γnZ̃ = 0. (C.26)

Note vec(Θ∗−1∆εΘ
∗−1) = (Θ∗−1⊗Θ∗−1)vec(∆ε). Taking vectorization for (C.26), we have Γ∗SεSε Γ∗SεScε

Γ∗ScεSε Γ∗ScεScε

 vec(∆ε,Sε)

vec(∆ε,Scε)

+

 vec(Wε,Sε)

vec(Wε,Scε)


−

 vec(RSε)

vec(RScε)

+ γn

 vec(Z̃Sε)

vec(Z̃Scε)

 = 0. (C.27)

We solve for vec(∆ε,Sε) from the first line and substitute it into the second line. Then

vec(Z̃Scε) can be represented as

vec(Z̃Scε) =
1

γn
Γ∗ScεSε(Γ

∗
SεSε)

−1 (vec(Wε,Sε)− vec(RSε))

+Γ∗ScεSε(Γ
∗
SεSε)

−1vec(Z̃Sε)

− 1

γn

(
vec(Wε,Scε)− vec(RScε)

)
.

For any vector v = (vj) with vj ∈ RM2
, 1 ≤ j ≤ p, define ||v||(M

2)
max = max

j
||vj||2 as the

M2-group version of l∞ norm. Taking the M2-group l∞ norm on both sides, it follows from

(C.33) and (C.34) in Lemma 15 that

||vec(Z̃Scε)||
(M2)
max ≤ 1

γn
||Γ∗ScεSε(Γ

∗
SεSε)

−1||(M2)
∞

(
||vec(Wε,Sε)||(M

2)
max + ||vec(RSε)||(M

2)
max

)
+||Γ∗ScεSε(Γ

∗
SεSε)

−1||(M2)
∞ ||vec(Z̃Sε)||(M

2)
max

+
1

γn

(
||vec(Wε,Scε)||

(M2)
max + ||vec(RScε)||

(M2)
max

)
.
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Note that ||vec(Z̃Sε)||
(M2)
max ≤ 1 by construction. Applying (C.30) in Lemma 15, the bound

condition for ||Wε||(M)
max, ||R||(M)

max and Condition 6 yield

||Z̃Scε ||
(M)
max ≤

2− η
γn

(
||Wε||(M)

max + ||R||(M)
max

)
+ (1− η)

≤ 2− η
γn

(ηγn
4

)
+ (1− η) ≤ η

2
+ 1− η < 1.

C.17 Lemma 11 and its Proof

Lemma 11 Suppose that ||∆ε||(M)
max ≤ 1

3κΣ∗dε
− κB∗ε

dε
, then ||JT ||∞ ≤ 3

2
and

||R(∆)||(M)
max ≤

3

2
κ3

Σ∗||∆||(M)
max

(
dε||∆ε||(M)

max + κB∗ε

)
,

where J =
∑∞

k=0(−1)k(Θ∗−1∆)k and R(∆) = Θ∗−1∆Θ∗−1∆JΘ∗−1.

Proof. By the fact that ∆ε has at most dε M × M blocks whose Frobenius norm is at

least ε for each column block, then ||∆ε||(M)
∞ ≤ dε||∆ε||(M)

max. It follows from (C.31), (C.32) in

Lemma 15 and the bound condition for ||∆ε||(M)
max that

||Θ∗−1∆||(M)
∞ ≤ ||Θ∗−1||(M)

∞ ||∆ε||(M)
∞ + ||Θ∗−1B∗ε||(M)

∞

≤ κΣ∗
(
dε||∆ε||(M)

max + κB∗ε

)
≤ 1/3.

Hence it follows from we have the convergent matrix expansion via Neumann series

(Θ∗ + ∆)−1 = Θ∗−1 −Θ∗−1∆Θ∗−1 + Θ∗−1∆Θ∗−1∆JΘ∗−1.

By the definitions of R(∆) and ∆, we obtain R(∆) = Θ∗−1∆Θ∗−1∆JΘ∗−1. Let ej ∈

RMp×M with identity matrix in the jth block and zero matrix elsewhere, and x ∈ RMp×M

with jth block xj ∈ RM×M . Define ||x||(M)
max = max

j
||xj||F and ||x||(M)

1 =
∑p

j=1 ||xj||F . Recall

that given an M -block matrix A, we have defined M -block version of matrix ∞-norm as

||A||(M)
∞ = max

i

∑p
j=1 ||Aij||F . Define the corresponding M -block version of matrix 1-norm
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by ||A||(M)
1 = max

j

∑p
i=1 ||Aij||F . It follows from the inequalities in Lemma 15 that

||R(∆)||(M)
max = max

i,j
||eTi Θ∗−1∆Θ∗−1∆JΘ∗−1ej||F

≤ max
i
||eTi Θ∗−1∆||(M)

maxmax
j
||Θ∗−1∆JΘ∗−1ej||(M)

1

≤ max
i
||eTi Θ∗−1||(M)

1 ||∆||(M)
maxmax

j
||Θ∗−1∆JΘ∗−1ej||(M)

1

= ||Θ∗−1||(M)
∞ ||∆||(M)

max||Θ∗
−1∆JΘ∗−1ej||(M)

1

≤ κΣ∗||∆||(M)
max||Θ∗

−1JT∆Θ∗−1||(M)
∞

≤ κ2
Σ∗||∆||(M)

max||JT ||(M)
∞ ||Θ∗

−1∆||(M)
∞

Note that J =
∑∞

k=0(−1)k(Θ∗−1∆)k. It follows from (C.32) in Lemma 15 that

||JT ||(M)
∞ ≤

∞∑
k=0

(
||Θ∗−1∆||(M)

∞
)k

=
1

1− ||Θ∗−1∆||(M)
∞
≤ 3

2
.

Hence it follows from (C.28) that we can bound the second order remainder R(∆) by

||R(∆)||(M)
max ≤

3

2
κ3

Σ∗||∆||(M)
max

(
dε||∆ε||(M)

max + κB∗ε

)
.

C.18 Lemma 12 and its Proof

Lemma 12 Suppose that r = 2κΓ∗ε(||Wε||(M)
max + γn) ≤ min

{
1

3κΣ∗dε
, 1

3κ3
Σ∗κΓ∗ε dε

}
− κB∗ε

dε
. then

||∆||(M)
max = ||Θ̃−Θ∗||(M)

max ≤ r.

Proof. Let G(ΘSε) = −(Θ−1)Sε + SSε + γnZ̃Sε . We define a continuous map F :

RM2|Sε| → RM2|Sε| by

F (vec(∆Sε)) = −(Γ∗SεSε)
−1vec(G(Θ∗Sε + ∆Sε)) + vec(∆Sε). (C.28)

Note that F (vec(∆Sε)) = vec(∆Sε) holds if and only if G(Θ∗Sε + ∆Sε) = G(Θ̃Sε) = 0 by

construction. We need to show that the function F maps the following ball B(r) onto itself

B(r) = {ΘSε : ||ΘSε||(M)
max ≤ r}, (C.29)

where r = 2κΓ∗ε(||Wε||(M)
max +γn). Note F is continuous and B(r) is convex and compact, then

by Brouwer’s fixed point theorem, there exists some fixed point ∆Sε ∈ B(r), which implies
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that ||Θ̃Sε −Θ∗Sε||
(M)
max ≤ r. It remains to prove the claim F (B(r)) ⊆ B(r). Note that

G(Θ∗Sε + ∆Sε) = −[(Θ∗ + ∆)−1]Sε + SSε + γnZ̃Sε

= −[(Θ∗ + ∆)−1 −Θ∗−1]Sε + [S−Θ∗−1]Sε + γnZ̃Sε

= −[R(∆)−Θ∗−1∆εΘ
∗−1]Sε + Wε,Sε + γnZ̃Sε .

Then (C.28) can be substituted by

F (vec(∆Sε)) = (Γ∗SεSε)
−1vec(RSε)︸ ︷︷ ︸
T1

− (Γ∗SεSε)
−1
(

vec(Wε,Sε) + γnvec(Z̃Sε)
)

︸ ︷︷ ︸
T2

.

By the definition of κΓ∗ε and (C.33) in Lemma 15, T2 can be bounded by

||T2||(M
2)

max ≤ κΓ∗ε

(
||Wε,Sε||(M)

max + γn
)

= r/2.

With the assumed bound for r, we have ||∆ε||(M)
max ≤ r ≤ 1

3κΣ∗dε
− κB∗ε

dε
. Then an application

of the bound for R(∆) in Lemma 11 yields

||T1||(M
2)

max ≤
3

2
κΓ∗εκ

3
Σ∗||∆||(M)

max

(
dε||∆ε||(M)

max + κB∗ε

)
≤ ||∆||

(M)
max

2
≤ r

2
,

where we have used the assumption ||∆ε||(M)
max ≤ r ≤ 1

3κ3
Σ∗κΓ∗ε dε

− κB∗ε
dε

. Therefore, we obtain

||F (vec(∆Sε))||(M
2)

max ≤ ||T1||(M
2)

max + ||T2||(M
2)

max ≤ r,

which proves the claim.

C.19 Lemma 13 and its Proof

Lemma 13 Suppose that all conditions in Lemma 12 hold and Θmin = min
(j,l)∈Eε

||Θ∗jl||F satisfies

Θ∗min > 2κΓ∗ε(||Wε||(M)
max + γn), then Θ̃jl 6= 0 for all (j, l) ∈ Sε.

Proof. From Lemma 12, we have ||Θ̃jl −Θ∗jl||F ≤ r for any (j, l) ∈ Sε. Thus Θ̃jl 6= 0

for all (j, l) ∈ Sε follows immediately from the lower bound condition on Θ∗min.
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C.20 Lemma 14 and its Proof

Lemma 14 For any τ > 2 and sample size n such that δ̄f (n, (Mp)τ ) ≤ 1/v∗, we have

P
(
||W||(M)

max ≥Mδ̄f (n, (Mp)τ )
)
≤ (Mp)2−τ .

Proof. By the definition of the tail function in (C.5), we have P (Wkl > δ) ≤ 1
f(n,δ)

, where

W ∈ RMp×Mp and (k, l) ∈ {1, . . . ,Mp}2. It then follows from union bound of probability

and δ = δ̄f (n, (Mp)τ ) that

P
(
||W||(M)

max ≥Mδ̄f (n, (Mp)τ )
)

= P (max
i,j
||Wij||F > Mδ) ≤ M2p2

f(n, δ)
= (Mp)2−τ .

C.21 Lemma 15 and its proof

Lemma 15 Let A = (Aij),B = (Bij) with Aij,Bij ∈ RM×M , 1 ≤ i, j ≤ p, u = (uj),v =

(vj) with uj,vj ∈ RM , 1 ≤ j ≤ p, and x,y ∈ RMp×M with jth block xj,yj ∈ RM×M ,

respectively. Then the following norm properties hold:

||A||(M)
max = ||vec(A)||(M2)

max , (C.30)

||A + B||(M)
∞ ≤ ||A||(M)

∞ + ||B||(M)
∞ , (C.31)

||AB||(M)
∞ ≤ ||A||(M)

∞ ||B||(M)
∞ , (C.32)

||Au||(M)
max ≤ ||A||(M)

∞ ||u||(M)
max, (C.33)

||u + v||(M)
max ≤ ||u||(M)

max + ||v||(M)
max, (C.34)

||xTy||(M)
F ≤ ||x||(M)

max||y||
(M)
1 , (C.35)

||Ax||(M)
max ≤ ||A||(M)

max||x||
(M)
1 , (C.36)

||A||(M)
∞ = ||AT ||(M)

1 . (C.37)

Proof. Here we will only prove one inequality (C.32). Other properties can be proved
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using similar techniques, so we skip the details. From definition, we write

||AB||(M)
∞ = max

i

p∑
j=1

||
p∑

k=1

AikBkj||F

≤ max
i

p∑
j=1

p∑
k=1

||Aik||F ||Bkj||F

= max
i

p∑
k=1

‖|Aik||F |
p∑
j=1

|Bkj||F

≤ max
i

p∑
k=1

‖|Aik||Fmax
k

p∑
j=1

||Bkj||F

= ||A||(M)
∞ ||B||(M)

∞ ,

which completes the proof.

D Further Discussion

D.1 Approximation for Multivaraite Functional Data

One referee was concerned that, for multivariate functional data, the truncation approach

through performing FPCA separately for each individual curve does not provide the best M -

dimensional approximation. We refer to Chiou et al. (2014) and Happ and Greven (2017) for

some recent developments on the Karhunen-Loeve expansion for multivariate functional data

with fixed p. However, this multivariate FPCA approach cannot handle high dimensional

functional data when p is very large, posing additional challenges to derive the relevant

concentration bounds. In contrast, our approach is easy to implement and we are able to

derive the relevant concentration bounds.

Under certain regularity conditions, we can prove that our truncation approach indeed

can control the bias which approaches zero as M →∞. Roughly speaking, suppose that for

each j = 1, . . . , p, gj(t) = gMj (t) + ξj(t), t ∈ T , with ‖ξj‖ → 0 as M → ∞ and E
(
gMj (t)

)
=

E
(
ξj(t)

)
= 0. It follows from the expansion, where Cov

(
gj(s), gk(t)

)
−Cov

(
gMj (s), gMk (t)

)
=

Cov
(
gMj (s), ξj(t)

)
+ Cov

(
ξj(s), g

M
k (t)

)
+ Cov

(
ξj(s), ξk(t)

)
, and Cauchy-Schwarz inequality

that
∫

(s,t)∈T 2 E
{

Cov
(
gj(s), gk(t)

)
− Cov

(
gMj (s), gMk (t)

)}2
dsdt ≤ 9 supj ‖gj‖2 supj ‖ξj‖2. In
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other words, if supj ‖gj‖2 ≤ C with some positive constant C, the truncated bias can be

controlled at the same order as supj ‖ξj‖2.

D.2 Connection between the Fglasso Approach and (24)

We discuss the connection between our proposed fglasso approach and the alternative method

using the inverse correlation matrix discussed in Section 6. Let SM = DMRMDM , where

DM is the diagonal matrix of SM with its j-th block given by DM
j ∈ RM×M , j = 1, . . . , p.

We modify the penalty term in (9) and consider maximizing

log det(ΘM)− trace(DMRMDMΘM)− γn
∑
j 6=l

‖DM
j ΘM

jl D
M
l ‖F , (C.38)

over symmetric positive definite matrices ΘM ∈ RpM×pM . Let QM = DMΘMDM , it is clear

that the solution to the optimization problem (C.38) is equivalent to (24) in Section 6.

D.3 The Algorithm to Solve (24)

Since the fglasso criterion in (9) and (24) discussed in Section 6 take a similar form, we de-

velop Algorithm 6 to solve the optimization problem in (24) following an analogous procedure

described in Section 3.1.

Let Q−j,P−j and R−j respectively be M(p− 1)×M(p− 1) sub matrices excluding the

jth row and column block of Q,P = Q−1 and R, and let qj,pj and rj be M(p − 1) ×M

matrices representing the jth column block after excluding the jth row block. Finally, let

Qjj,Pjj and Rjj be the (j, j)th M ×M blocks in Q,P and R respectively. Then, for a fixed

value of Q−j, (24) can be solved by setting

Q̂jj = R−1
jj + q̂Tj Q−1

−j q̂j, (C.39)

where

q̂j = arg min
qj

{
trace(Rjjq

T
j Q−1
−jqj) + 2trace(rTj qj) + 2γn

p−1∑
l=1

‖qjl‖F

}
, (C.40)

where qjl represents the lth M ×M block of qj. The algorithm to solve (24) is summarized

in Algorithm 6 below.
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Algorithm 6 The Algorithm to Solve (24)

1. Initialize Q̂ = IMp and P̂ = IMp.

2. Repeat until convergence for j = 1, . . . , p.

(a) Compute Q̂−1
−j ← P̂−j − p̂jP̂

−1
jj p̂Tj .

(b) Solve for q̂j in (C.40) using Algorithm 3 in Section B.1.

(c) Reconstruct P̂ using P̂jj = Rjj, p̂j = −VjRjj and P̂−j = Q̂−1
−j+VjRjjV

T
j , where

Vj = Q̂−1
−j q̂j.

3. Set Ê =
{

(j, l) : ‖Q̂jl‖F 6= 0, (j, l) ∈ V 2, j 6= l
}
.
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