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Relevance via Decomposition: A Project, Some Results, An
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David Makinson
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david.makinson@gmail.com

Abstract

We report on progress and an unsolved problem in our attempt to obtain a clear
rationale for relevance logic via semantic decomposition trees. Suitable decomposition
rules, constrained by a natural parity condition, generate a set of directly acceptable
formulae that contains all axioms of the well-known system R, is closed under substi-
tution and conjunction, satisfies the letter-sharing condition, but is not closed under
detachment. To extend it, a natural recursion is built into the procedure for construct-
ing decomposition trees. The resulting set of acceptable formulae has many attractive
features, but it remains an open question whether it continues to satisfy the crucial
letter-sharing condition.

1 Introduction

In its standard Hilbertian axiomatization, the well-known relevance logic R has many
axiom schemes and two derivation rules. The derivation rules are straightforward: con-
junction (aka adjunction) ϕ,ψ / ϕ ∧ ψ and detachment ϕ,ϕ → ψ / ψ, where → is the
non-classical propositional connective intended to represent ‘relevant implication’. But
the axiom schemes form a rather motley and untidy crew of about a dozen – the exact
number depending on how we count, for example, the two forms of ∧-elimination and ∨-
introduction. R has also been characterized, along with several of its neighbours, by a
Routley-Meyer possible-worlds semantics with three-place relations satisfying various con-
straints. However, notwithstanding its versatility and technical usefulness, the semantics
can hardly be said to provide a satisfying rationale. Some appreciation of three-place rela-
tions may be obtained by thinking of them as indexed families of two-place relations; but
there is still no intuitive rationale for the complex constraints, other than as the products
of reverse engineering to ensure the validity of favoured formulae.

A more convincing perspective is provided by natural deduction which, for relevance
logics, is centred on an appealing restriction of the rule of arrow introduction. However,
the standard systems are still not entirely transparent, notably in their need for a ‘same
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suppositions’ proviso on the rules of conjunction introduction and disjunction elimination.
It seems rather inelegant to ensure that one connective, arrow, is well-behaved by restricting
what one may do with other connectives. More significantly, the ‘same suppositions’ proviso
leads to overkill: it has the effect of blocking derivation of the generally accepted classical
principle of distribution of conjunction over disjunction, forcing its ad hoc addition as a
separate inference rule.

It is thus natural to seek a clearer picture from a different direction, by refining the clas-
sical procedure of semantic decomposition trees. We begin the project by defining directly
acceptable decomposition trees. The set of formulae validated by such trees, likewise called
directly acceptable, turns out to be closed under substitution and conjunction and con-
tains all the standard axioms of R together with certain other attractive formulae. It also
satisfies the well-known letter-sharing condition, and successfully excludes other formulae
which, whilst satisfying the letter-sharing condition, are notoriously repugnant for relevan-
tists, such as ‘connectivity’ (p→ q)∨ (q → p) and its special case (p→ ¬p)∨ (¬p→ p), as
well as p→ (q → p) and its instance ‘mingle’ p→ (p→ p).

However, the set of directly acceptable formulae is not closed under detachment, and
inspection of various examples points to a real need to ensure the closure. We do so by
introducing a natural recursion into the construction of decomposition trees themselves.
The resulting set of acceptable formulae has many attractive features; but it is still an
open question whether it satisfies the letter-sharing condition, usually regarded as a sine
qua non for any relevance logic worthy of the name.

It may be helpful to disclose the general methodology behind our investigation. The
most common approaches to relevance logic work with Hilbertian axiom systems, Gentzen-
style sequent systems, possible-worlds semantics, or natural deduction. Ours differs from
all of these, although it takes some of its inspiration from natural deduction. Humberstone
2011 (page 189) articulated a widespread unease with semantic decomposition trees when
he remarked that they “are not conducive to a clear-headed separation of proof-theoretic
from semantic considerations”. We beg to differ: one may impose syntactic constraints
(in this instance, the ‘crashing with parity’ requirement, defined in section 4 below) on
an essentially semantic procedure (decomposition trees for classical logic) and be none the
less clear-headed about it. Indeed, we tend to agree with Tennant 1979 that relevance is
not itself a semantic notion and there is no philosophical need to give its logic a semantics
beyond that which is already provided by classical two-valued logic. Our guiding heuristic
is that the logic lies in the classical semantics, while relevance is manifested in syntactic
controls.

2 Recalling Classical Decomposition Trees

We recall briefly the use of semantic decomposition trees, also known as semantic tableaux,
in classical propositional logic with formulae in the connectives ∧,∨,¬ Given a formula ϕ
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one can test whether it is a tautology by building a tree whose root-node r is labelled by
¬ϕ and whose construction is continued by means of the following decomposition rules.

Table 1: Classical Decomposition Rules

Given a node m on a branch, labelled by

ϕ ∧ ψ ¬(ϕ ∧ ψ) ϕ ∨ ψ ¬(ϕ ∨ ψ) ¬¬ϕ
we can add to that branch

two two two two one
further nodes n1, n2 with the branch node n

not forking forking forking not forking

where n1, n2 are labelled respectively by the formulae labelled by

ϕ,ψ ¬ϕ,¬ψ ϕ,ψ ¬ϕ,¬ψ ϕ

All these decomposition rules act on a single input. The number of formulae in the output
may be one (rule for negation) or two (all the others) and, in in the latter case, with or with-
out forking, according to the rule under consideration. Decomposition always terminates,
on the understanding that no step is repeated on any given branch.

A completed tree is said to be acceptable iff every branch contains a crash-pair, i.e. a
pair of nodes c1 : γ, c2 : ¬γ for some formula γ. Acceptability is independent of the order
in which decomposition is carried out (although that can influence the shape and size of
the tree). It is known that the classical tautologies are just those formulae that have an
acceptable decomposition tree, i.e. such that there is an acceptable decomposition tree
with root labelled by ¬ϕ.

3 Decomposing Arrows

We add decomposition rules for the implication connective in both plain and negated
occurrences.

Table 2: Decomposition Rules for Arrow

modus ponens counter-case

Given nodes m,m′ on a branch labelled by Given node m on a branch labelled by

ϕ,ϕ→ ψ ¬(ϕ→ ψ)

we can add to that branch without forking

a further node n, labelled by two nodes n1, n2, labelled by

ψ ϕ, ¬ψ

The rule for decomposing unnegated arrows, modus ponens, differs from that used in
previous decomposition/tableau systems for relevance logic. In all those of which the
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present author is aware (see appendix 3), a rule of ‘implicative forking’ is used, the branch
forking with the negation of the antecedent on one arm and the consequent on the other,
echoing what is done in classical logic for material implication when it is taken as primitive.
The reason for this change will be explained shortly, in section 4.

No constraints are placed on our two rules at their points of application; but a global
constraint concerning counter-case will feature in the definition of a directly acceptable
decomposition tree. Before giving that definition, we make some general remarks on the
use of reductio ad absurdum in the context of relevance logic, and the rationale behind our
rule of counter-case.

Evidently, any construction carried out in terms of semantic decomposition trees, where
we label the root with the negation of the target formula and work towards explicit contra-
dictions in every branch, makes use of a form of reductio ad absurdum. It may be imagined
from the rejection of the classical principle of ‘explosion’ (p ∧ ¬p)→ q and the role of the
four-valued de Morgan algebra in some semantic constructions for relevance logics, that
their spirit is intrinsically hostile to reductio. But this is not the case. Indeed, in the stan-
dard natural deduction presentation of the relevance logic R, if we can relevantly derive
each of γ,¬γ from ¬θ, using that formula and it alone as assumption in both derivations,
then we may relevantly derive γ ∧ ¬γ from ¬θ and thus derive ¬θ → (γ ∧ ¬γ) from the
empty premise set. Contraposing and de Morganizing gives us (γ∨¬γ)→ θ from the empty
set, so detaching using the provable formula γ ∨ ¬γ produces θ. Thus, there is nothing
incoherent about the idea of allowing reductio a central role in an account of relevance
logic.

The counter-case rule differs conceptually from modus ponens, as also from the de-
composition rules for the truth-functional connectives in Table 1. For them, the input
relevantly implies each element of the output (or, for the forking rules, their disjunction).
The same would hold of counter-case under a reading of → as material implication. But
when→ is read as relevant implication then, intuitively, ¬(ϕ→ ψ) does not imply either of
the output elements ϕ,¬ψ, less so both. The rationale for the counter-case rule is indirect:
the formulae ϕ,¬ψ may be thought of as wlog (without loss of generality) assumptions.
The situation is reminiscent of that which arises when we decompose an existential quan-
tification in a tree for classical first-order logic, passing from ∃x(ϕ) to ϕx:=a where a is
a ‘fresh’ constant, that is, one that does not occur anywhere in the branch up to that
point. Clearly, the conclusion of that decomposition is not in general a consequence of its
premise (although they are friendly in the sense defined in Makinson 2007). But whilst
∃x(ϕ) 6|= ϕx:=a we do have that A,∃x(ϕ) |= γ ∧¬γ whenever A,ϕx:=a |= γ ∧¬γ and a does
not occur in any formula in A ∪ {ϕ}, so that the decomposition procedure is sound.
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4 Directly Acceptable Decomposition Trees and Formulae

In this section, we define directly acceptability for trees and formulae; in section 8 we will
extend it recursively to a notion of acceptability tout court. For present purposes, we need
the notions of a crash-pair, trace and critical node, leading to the central parity constraint.

Crash-pairs are defined as in the classical context: they are pairs of nodes c1 : γ,
c2 : ¬γ for some formula γ. The notion of trace is also a natural extension of its classical
counterpart. Conceptually, the trace of a node n in a decomposition tree is the set of all
nodes in the tree that are used in getting to it. Technically, it is the least set of nodes
of the tree that contains n, and is such that whenever it contains a non-root node then
it also contains the node (both nodes, for modus ponens) from which it was obtained by
application of a decomposition rule. The trace of a set of nodes is understood to be the
union of their separate traces.

The notions of critical pair and the parity constraint are specific to the relevantist
context. A critical pair is a pair {n1 : ϕ, n2 : ¬ψ} of nodes that are introduced by an
application of the counter-case rule to a node m : ¬(ϕ → ψ); the individual nodes n1, n2
are called critical nodes and are partners of each other.

A crash-pair C = {c1 : γ, c2 : ¬γ} is said to satisfy the parity constraint iff for every
critical node n, if n is in the trace of C then so too is its partner. In other words, such
that for every critical pair of nodes in the tree, either both of them are in the trace of C,
or neither of them are. A branch B of a decomposition tree is said to crash with parity iff
it contains some crash-pair CB = {c1 : γ, c2 : ¬γ} that satisfies the parity constraint.

Finally, a directly acceptable decomposition tree is one such that every branch B crashes
with parity. A formula is called directly acceptable iff it has some directly acceptable tree,
i.e. such that there is an acceptable decomposition tree with root labelled by ¬ϕ.

The following remarks may help appreciate the finer contours of these definitions.

(1) The requirement of crashing with parity is reminiscent of the proviso, in natural deduc-
tion systems for relevance logic, that suppositions should be used in derivations. This is
not surprising, since the intuitive rationale for the decomposition rule for negated arrows,
described above, treats the critical nodes as suppositions of a reductio ad absurdum. The
effect of the constraint can be illustrated by disjunctive syllogism ((p∨ q)∧¬p)→ q, which
is relevantistically objectionable because it so easily yields ‘right explosion’ (p∧¬p)→ q. If
we construct a decomposition tree for disjunctive syllogism we naturally get the following.
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• r : ¬[((p ∨ q) ∧ ¬p)→ q]
c© n1 : (p ∨ q) ∧ ¬p
c© n2 : ¬q
• n3 : p ∨ q
• n4 : ¬p

• n5 : p • n6 : q

Here and throughout the paper non-critical nodes are diagrammed by • and critical ones
by c©. Both branches of the tree crash, but the left branch does not do so with parity,
since the critical node n1 is in the trace of the unique crash-pair {n4, n5} on that branch
but its partner n2 is not.

(2) It is the parity requirement that leads us to decompose unnegated arrows by modus
ponens rather than by implicative forking as in classical logic. This is illustrated in Ap-
pendix 1 when decomposing axiom schemes for R, with details spelled out in the simplest
instance, the scheme of assertion.

(3) The quantificational structure of the definition of direct acceptability is quite com-
plex: ∀B∃C∀c, where the variables range over branches, crash-pairs and critical nodes
respectively. Its delicacy can be illustrated by trees for symmetric explosion and mingle
(given after Observation 2 below) that are not directly acceptable but do satisfy the weaker
∀B∀c∃C condition.

(4) Clearly the set of directly acceptable formulae is decidable. Given the undecidability
of R (Urquhart 1984), this already tells us that the two cannot coincide.

(5) Some further aspects of the definitions are reviewed in the appendices. A normal
form for our decomposition trees is given at the end of Appendix 1. The treatment of
disjunction is compared, in Appendix 2, with the way it is handled in standard systems of
natural deduction for relevance logic. The relationship of our trees to earlier tree/tableau
approaches to relevance logic is reviewed in Appendix 3.

5 Direct Acceptability – Exclusions

This section establishes some limits to direct acceptability, that is, results of the kind ‘only
formulae with such-and-such a property are directly acceptable’.

Observation 1. When → (as well as ∧,∨,¬) is read truth-functionally as material impli-
cation, every directly acceptable formula is a tautology.

Proof. Suppose that ϕ is directly acceptable. Then it has a directly acceptable decompo-
sition tree with root r : ¬ϕ; choose any one of them, T . Every branch of T contains a
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crash-pair. Since both modus ponens and counter-case rule are sound for truth-functional
implication (and all other decomposition rules are known to be sound for their connectives),
it follows that ¬ϕ is classically unsatisfiable, so that ϕ is a tautology.

Observation 2. Direct acceptability satisfies the letter-sharing condition. That is, when
ϕ,ψ share no sentence letters, then ϕ→ ψ is not directly acceptable.

The Observation follows from a rather elaborate but useful lemma.

Lemma for Observation 2. Let ϕ,ψ be formulae with no sentence letters in common.
Then for every directly acceptable decomposition tree T for ϕ → ψ, every node m : θ in
T after the root r : ¬(ϕ → ψ) has in its trace exactly one of the critical nodes n1 : ϕ and
n2 : ¬ψ obtained from the root by the counter-case rule, and every sentence letter occurring
in θ occurs in the formula, ϕ or ¬ψ, attached to that node.

Proof. We induce on the construction of T from its root. The base concerns the cases that
m : θ = n1 : ϕ or m : θ = n2 : ¬ψ , since these are the only items immediately obtainable
from a root of the form r : ¬(ϕ → ψ) by a single application of the decomposition rules
available, and the property is immediate. For the induction step, there are two cases to
consider.

Case 1. Suppose that m is obtained from a single node m′ other than the root by one of
the decomposition rules other than modus ponens. By the induction hypothesis, m′ has
the property in question. Since trace(m) = trace(m′) ∪ {m} it follows that m also has in
its trace exactly one of the critical nodes n1 : ϕ and n2 : ¬ψ obtained from the root by
counter-case; and since the decomposition rules do not introduce any new sentence letters,
m also satisfies the second part of the property.

Case 2. Suppose that m : θ is obtained from a pair of nodes m′ : α and m′′ : α → θ by
modus ponens. Neither of m′,m′′ can be the root-node – the latter because of the form of
α → θ and the former because is shorter than α → θ and so shorter than the root node
formula. So by the induction hypothesis, exactly one of n1 : ϕ and n2 : ¬ψ is in the trace
of m′ : α, and likewise for m′′ : α → θ. This gives rise to four subcases, coming in two
similar pairs.

Subcase 2.1.1. Suppose that n1 : ϕ is in the trace of both m′ : α and m′′ : α → θ. Then
n2 : ¬ψ is in the trace of neither of those two nodes. Hence n1 : ϕ is in the trace of m : θ
while n2 : ¬ψ is not, so that exactly one of the two is in the trace of m : θ. Moreover,
every letter in θ occurs in α → θ, and so by the induction hypothesis occurs in n1 : ϕ, as
desired.

Subcase 2.1.2. Suppose that n2 : ¬ψ is in the trace of both of m′ : α and m′′ : α→ θ. The
argument is similar to that for subcase 2.1.1.
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Subcase 2.2.1. Suppose that n1 : ϕ is in the trace of m′ : α while n2 : ¬ψ is in the trace
of m′′ : α → θ. We derive a contradiction. By the induction hypothesis, every letter in
α occurs in ϕ and every letter in α → θ occurs in ¬ψ. From the latter, every letter in α
occurs in ψ. Since α contains at least one letter, this implies that ϕ and ψ share a letter,
contrary to the initial supposition of the Lemma.

Subcase 2.2.2. Suppose that n1 : ϕ is in the trace of m′′ : α → θ while n2 : ¬ψ is in the
trace of m′ : α . The argument is similar to that for subcase 2.2.1.

Proof of Observation 2 from the Lemma. Suppose for reductio that T is a directly accept-
able decomposition tree with root r : ¬(ϕ → ψ), and that ϕ shares no sentence letters
with ψ. Let B be any branch of T , with crash-pair CB = {c : γ, c′ : ¬γ}. By the Lemma,
exactly one of n1 : ϕ and n2 : ¬ψ is in the trace of c, and exactly one of them is in the
trace of c′. If n1 (resp. n2) is in the trace of both of c, c′, then n2 (resp. n1) is in the trace
of neither of c, c′, violating the parity condition. Thus n1 is in the trace of c while n2 is in
the trace of c′, or inversely. Consider the first case, the second is similar. By the Lemma,
every letter in γ occurs in ϕ and every letter in ¬γ occurs in ψ. Since γ has at least one
letter, it follows that the formulae ϕ,ψ share at least one letter, contradicting the initial
supposition.

To illustrate Observation 2, it is instructive to consider the formula (p∧¬p)→ (q∨¬q)
(symmetric explosion), which notoriously fails the letter-sharing condition. The Observa-
tion tells us that it is not directly acceptable. This may be puzzling, since the following
tree for it may at first sight seem to be so.

• r : ¬[(p ∧ ¬p)→ (q ∨ ¬q)]
c© n1 : p ∧ ¬p
c© n2 : ¬(q ∨ ¬q)
• n3 : p

• n4 : ¬p
• n5 : ¬q
• n6 : ¬¬q

The tree has a unique branch, with a single critical pair {n1, n2} and two crash-pairs
{n3, n4} and {n5, n6}. But {n3, n4} fails the parity constraint because n1 is in its trace
while its partner n2 is not and, similarly, {n5, n6} fails the constraint because n2 is in its
trace while n1 is not. This illustrates the importance of the order of the quantifiers ∀B∃C∀c
in the definition of a directly acceptable tree, contrasting with ∀B∀c∃C; for symmetric
explosion, the latter is satisfied since for every critical node c there is a crash-pair C such
that (vacuously) if c is in the trace of C then so is its partner.

A similar pattern emerges in the decomposition tree for ¬(p→ p)→ (q → q), which we
might call ‘symmetric explosion for arrow’. It also appears for mingle, p→ (p→ p) which,
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unlike symmetric explosion, satisfies the letter-sharing condition. For mingle, we have the
following decomposition tree.

• r : ¬[p→ (p→ p)]

c© n1 : p

c© n2 : ¬(p→ p)

c© n3 : p

c© n4 : ¬p

There is a single branch, with two crash-pairs {n1, n4} and {n3, n4} sharing the node n4.
But the critical node n3 is not in the trace of the first crash-pair although its partner n4 is,
while the critical node n1 is not in the trace of the second one although its partner n2 is.
Hence the tree is not directly acceptable, failing the ∀B∃C∀c condition although it satisfies
the weaker ∀B∀c∃C one.

Mingle and symmetric explosion thus get ‘quite close’ to direct acceptability, missing
out only on the order of the quantifier prefix in the parity condition. This formal fact
resonates with a vague but strong intuition that they are, in some sense, among the least
irrelevant of the formulae rejected by relevantists. In contrast, the formula p → (q → p),
of which mingle is a substitution instance, and which we call ‘mangle’ in preference to the
more common but rather bland name ‘positive paradox’, is intuitively irrelevant to a more
serious extent, corresponding to the fact that its tree (write q in place of p at appropriate
places in the above) fails even the weaker ∀B∀c∃C condition.

We recall also that there are links between these ‘least irrelevant’ formulae. Meyer
has shown that the system RM defined by adding mingle to the standard axiomatization
of R contains α → β whenever it contains both ¬α and β. In particular, RM contains
both of the above forms of symmetric explosion, derivations of which can also be found in
Anderson & Belnap 1975 section 29.5 and Priest 2008 section 10.11, question 6.

6 Direct Acceptability – Inclusions

We now show the surprisingly broad reach of direct acceptability, with results of the kind
‘such-and-such formulae are directly acceptable’ and ‘the set is closed under such-and-such
operations’.

Observation 3. All axiom schemes of the standard axiomatization of the relevance logic
R are directly acceptable.

It suffices to check off the axiom schemes one by one, finding a directly acceptable decom-
position tree for each. The verifications are routine but often interesting, and are given in
Appendix 1.
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Observation 4. The set of all directly acceptable formulae is closed under substitution
and conjunction.

Proof. For conjunction, simply put the trees together with a new root to which is applied
the decomposition rule for negated conjunctions. For substitution, substitute throughout
the tree; if the original tree is directly acceptable then so is the one obtained.

Observation 5. There are directly acceptable formulae that are not in R.

Proof. The formula {(p → (q ∨ r)) ∧ (q → r)} → (p → r) is known to be absent from R
(using the matrix M0 of Anderson & Belnap 1975, pp. 252-253), but has the following
directly acceptable decomposition tree.

• r : ¬[{(p→ (q ∨ r)) ∧ (q → r)} → (p→ r)]
c© n1 : (p→ (q ∨ r)) ∧ (q → r)
c© n2 : ¬(p→ r)
c© n3 : p

c© n4 : ¬r
• n5 : p→ (q ∨ r)
• n6 : q ∨ r

• n7 : q • n8 : r

• n9 : q → r

• n10 : r

We remark in passing that this formula, given in Dunn 1986 section 4.6, is the simplest
of several that were shown by Dunn, Meyer and Urquhart not to be theses of R while valid in
Urquhart’s semi-lattice semantics; two others are {(p→ (q∨r))∧ (q → s)} → (p→ (s∨r))
and [(p → p) ∧ ((p ∧ q) → r) ∧ (p → (q ∨ r))] → (p → r) (see Humberstone 2011 page
1210, example 8.13.21, Bimbó & Dunn 2017 section 4). All three conspicuously involve
disjunction alongside the arrow, with discrete assistance from conjunction. One may ask
how they should be seen from a relevantist perspective. Our view is that bare intuition
gives us little guidance on the question and may legitimately be educated by the outcome
of a satisfying formal account.

7 Direct Acceptability – A Limitation

However, the example illustrating Observation 5 also points to a limitation of direct ac-
ceptability. Clearly, in R that formula is inter-derivable, using contraposition and then
commutation in the antecedent, with the formula {(p → q) ∧ ((p ∧ q) → r)} → (p → r)
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expressing cumulative transitivity of the arrow, so that the latter is likewise absent from
R. However, unlike {(p→ (q ∨ r))∧ (q → r)} → (p→ r), it is not directly acceptable, as is
easily checked. This suggests that there is something incomplete about direct acceptability,
which the following observation makes manifest.

Observation 6. The set of all directly acceptable formulae is not closed under detachment.

To avoid any misunderstanding, we emphasize that the question of the closure of the
set of all directly acceptable formulae under detachment is quite different from the presence
of modus ponens as one of the decomposition rules that is allowed when building trees.
Observation 6 tells us, in effect, that the latter does not imply the former. It is thus
advisable to retain different terms for the two operations.

Proof of Observation 6. Let ϕ be the formula of Observation 5, and ψ the formula ex-
pressing cumulative transitivity. Then each of ϕ,ϕ → ψ is directly acceptable, but ψ is
not.

Although this one example suffices to establish Observation 6, we mention several more,
because their variety casts light on the reasons for the failure and helps guide the way to
an appropriate response. In each example, we specify formulae ψ,ϕ with ψ not directly
acceptable although ϕ,ϕ→ ψ are so. The verifications are routine and so omitted but, in
the author’s experience, a lot can be learned by walking through them.

An example with just arrow as connective was noted by Lloyd Humberstone in corre-
spondence with the author. It puts ψ = ((p → p) → q) → q and ϕ = p → p. In both
this example and that used in the proof of Observation 6 above, the formula ψ would
become directly acceptable if we added modus tollens alongside modus ponens as a rule
for decomposing unnegated arrows.

However, rescue by modus tollens is not always possible, for instance when ψ = ¬[(p∨
¬p) → (p ∧ ¬p)] and ϕ = (p ∨ ¬p) ∧ ¬(p ∧ ¬p). Here ψ is a negated conditional and,
quite generally, no negated conditional has a directly acceptable tree, even if modus tollens
supplements modus ponens. For, given a root labelled ¬¬(α→ β) the only decomposition
rule we can apply is double negation elimination to get α → β, and the only rule that
might then be applied to α → β is modus ponens (or tollens), but there is no minor
premise available to do so.

Another example where addition of modus tollens is still of no avail, puts ψ = (p →
¬p) → ¬(¬p → p) and ϕ = (p ∨ ¬p). Here, ϕ and ϕ → ψ are directly acceptable (noting
that to ensure crash with parity for ϕ→ ψ, we need to apply modus ponens twice in each
branch, not stopping at the first crash-pair found), but ψ is not directly acceptable (even
with the help of modus tollens).

On the other hand, in the last two examples, ψ does become directly acceptable if we
add implicative forking as a further rule for decomposing unnegated arrows. But there
are also quite simple examples where that does not suffice to rescue ψ, even when used in
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combination with modus tollens and ponens. Such is the case for ψ = (¬¬p → ¬¬q) →
(p → q) and ϕ = p → ¬¬p, likewise for ψ = ((p ∧ p) → (q ∧ q)) → (p → q) and
ϕ = p → (p ∧ p). In both instances, a ‘relevantistically simplifiable’ formula is buried
inside ψ in a way that is not accessible by applications of modus ponens or tollens in the
decomposition tree; and while it can be accessed by implicative forking, doing so creates
branches that violate the crash-with-parity requirement.

In each of our six examples, while the consequent ψ is not directly acceptable, it nev-
ertheless appears to be agreeable from a relevantist point of view; indeed, except for the
very first, they are theses of R. The question thus arises: Is there a way of extending our
decomposition procedure to validate these formulae and, more generally, to ensure closure
under detachment – without losing the vital letter-sharing property?

8 Going Recursive

To answer that question, it is natural to introduce a recursive step into the construction of
decomposition trees. The basis of the recursion takes directly acceptable trees (as defined
in section 4) to be acceptable. For the recursion step, given an acceptable tree for a formula
ϕ→ ψ, we allow passage from a node m : ϕ to a node n : ψ in the construction of further
acceptable trees.

Strictly speaking, the recursive step is not one of decomposition, since there is no limit
on the complexity of the formula ψ compared to ϕ, nor even on the choice of its sentence
letters. Thus, with a formula called acceptable iff it has some acceptable tree, decidability
may well be lost although semi-decidability, i.e. recursive enumerability, is clearly retained.

Acceptability has some very attractive features.

Observation 7. All directly acceptable formulae are acceptable. Modus tollens and im-
plicative forking are admissible as decomposition rules in the construction of acceptable
decomposition trees. The set of acceptable formulae is closed under substitution, conjunc-
tion and detachment.

Proof. Modus tollens is admissible, since it may be taken as abbreviating an application of
the recursive rule using the directly acceptable formula (α→ β)→ (¬β → ¬α), followed by
modus ponens. Similarly for implicative forking, using the directly acceptable (α→ β)→
(¬α ∨ β) followed by the rule for decomposing disjunctions. Closure under substitution
and conjunction are checked in the same way as in the context of direct acceptability,
while detachment is verified as follows. Suppose α and α → β are both acceptable. From
the latter, ¬β → ¬α is acceptable, since we can build a tree with its negation as root,
apply counter-case to get ¬β and ¬¬α, double negation elimination to get α, then use the
acceptable formula α → β in the recursive rule to get β; this gives us a crash-pair with
both critical nodes in its trace. Finally, it follows that β is also acceptable: build a tree
with its negation as root, use the acceptable formula ¬β → ¬α in the recursive rule to get
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¬α, then paste in the acceptable tree for α. Clearly, since every branch of the tree for α
crashes with parity, so too for this one.

Corollary. All theses of the system R are acceptable (but not conversely).

Proof. Proof. Immediate from Observations 3, 7, 5.

We note that all our examples of formulae illustrating Observation 6, while not directly
acceptable are nevertheless acceptable, as can be verified directly (or via Observation 7, or
again for all but the first example, by the Corollary). The two formulae of Meyer, Dunn,
and Urquhart mentioned in the last paragraph of section 6, are also acceptable, the first
directly so.

On the other hand, we have not been able to determine whether the letter-sharing
property continues to hold when the recursive rule is introduced. This is the open question
of the title. As letter-sharing is an essential feature for any relevance logic worthy of the
name, the entire procedure of this paper collapses if the answer is negative. If, on the other
hand, the answer is positive, then our procedure would appear to supply a clear rationale
for relevance logic. Note that by Observation 7, its Corollary, and the remark in the last
paragraph of section 5, a positive answer to the question would also show that mingle and
mangle are inacceptable

One could also obtain all the positive features of Observation 7 simply by closing
the set of directly acceptable formulae under detachment. In effect, this is to treat that
(decidable) set as constituting the axioms of a Hilbertian system, with detachment as the
sole derivation rule. It is immediate from Observation 7 that all the derivable formulae of
such a system are acceptable in the sense we have defined; but we do not know whether
the converse holds, nor whether the set of derivable formulae of such a Hilbertian system
has the letter-sharing property.

We have not followed this alternative option, for two reasons. While the recursive
rule appears conceptually natural as a recycling device in the construction of trees, simple
closure of the set of directly acceptable formulae under detachment has the air of an
unprincipled add-on. It also takes attention away from decomposition trees to Hilbertian
derivations, with decomposition serving only to generate the axioms.

Appendix 1: Verifications for Observation 3

Observation 3. All axiom schemes of the relevance logic R are directly acceptable.

We are referring to the standard axiomatization in Anderson et al. 1992 page xxiv (also in
Mares 2004 Appendix A), which uses the basic connectives ¬,∧,∨,→. Some formulations
of R in the literature add auxiliary primitives, notably a two-place connective ◦ of ‘fusion’
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and/or a zero-ary connective (propositional constant) t, with a view to facilitating inves-
tigations of the basic system. Our decompositional account has no need for the auxiliary
apparatus.

Verification. For the first-degree axiom schemes, that is, those of the form α → β where
neither antecedent or consequent contains arrows, one can simply use the natural classical
decomposition tree for α ⊃ β, beginning with counter-case to get α,¬β and then applying
the rules for the classical connectives ¬,∧,∨ only, and checking by inspection that every
branch satisfies parity. That covers axiom schemes 1 (identity) α → α; 5 (∧-elimination)
(α ∧ β) → α and (α ∧ β) → β; 6 (∨-introduction) α → (α ∨ β) and β → (α ∨ β); 9
(distribution) (α ∧ (β ∨ γ)) → ((α ∧ β) ∨ (α ∧ γ)); and 11 (double negation elimination)
¬¬α → α. For each of the remaining schemes, which are of higher degree, we exhibit a
directly acceptable decomposition tree with comment.

Scheme 2 (suffixing): (α → β) → ((β → γ) → (α → γ)). The unique branch contains a
unique crash-pair with all six critical nodes in its trace, so parity is satisfied. The linearity
of the tree (i.e. single branch) is a consequence of the fact that the only connectives involved
are →,¬ (likewise for assertion and contraction below).

• r : ¬[(α→ β)→ ((β → γ)→ (α→ γ))]

c© n1 : α→ β

c© n2 : ¬[(β → γ)→ (α→ γ)]

c© n3 : β → γ

c© n4 : ¬(α→ γ)

c© n5 : α

c© n6 : ¬γ
•n7 : β

•n8 : γ

Scheme 3 (assertion): α → ((α → β) → β). This is the only axiom scheme from the
list that is unprovable in the weaker systems NR and E, which are intended to capture a
composite notion of relevant-and-necessary implication (see e.g. section 28.1 of Anderson
& Belnap 1975 or section 4 of Mares 2012). Assertion is directly acceptable: the unique
branch contains a unique crash-pair, and all four critical nodes are in its trace.
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• r : ¬[α→ ((α→ β)→ β)]

c© n1 : α

c© n2 : ¬[(α→ β)→ β)]

c© n3 : ¬β
c© n4 : α→ β

• β

Comment: If we were to handle unnegated arrows by the classical decomposition rule of
implicative forking, then parity would fail for all the higher-degree axiom schemes of R.
This is most concisely illustrated with assertion, since its tree has only one unnegated
arrow, at node n4. Imagine that from n4 we were to fork left to ¬α and right to β. Then
we would have a crash-pair α,¬α on the left branch, but critical node n3 would not be in
its trace although its partner n4 is. Moreover, we would have a crash-pair β,¬β on the
right branch, but critical node n1 would not be in its trace, although its partner n2 is.
In other words, in this example forking for the conditional obviates any need on the left
branch for the negation of its consequent; and dispenses with any call on the right branch
to the antecedent of a previous negated conditional.

Scheme 4 (contraction): (α → (α → β)) → (α → β). The unique branch contains a
crash-pair {n4, n6} with all four critical nodes in its trace.

• r : ¬[(α→ (α→ β))→ (α→ β)]

c© n1 : α→ (α→ β)

c© n2 : ¬(α→ β)

c© n3 : α

c© n4 : ¬β
• n5 : α→ β

• n6 : β

Comment: An interesting feature of this tree is that it also contains the crash-pair {n2, n5}
which, however, does not satisfy the parity condition since the critical node n4 is not in its
trace although its partner n3 is.

Scheme 7 (∧-introduction) {(α → β) ∧ (α → γ)} → {α → (β ∧ γ)}. Two branches each
with its crash-pair, every critical node in the trace of each crash-pair.
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• r : ¬[{(α→ β) ∧ (α→ γ)} → {α→ (β ∧ γ)}]
c© n1 : (α→ β) ∧ (α→ γ)
c© n2 : ¬(α→ (β ∧ γ)
c© n3 : α

c© n4 : ¬(β ∧ γ)

• n5 : ¬β • n6 : ¬γ
• n7 : α→ β • n8 : α→ γ

• n9 : β • n10 : γ

Comment: In this tree, n1 is a single critical node labelled by a conjunctive formula. If
instead we had two distinct critical nodes labelled by the respective conjuncts, as would
be the case if we were decomposing the third-degree formula (α → β) → {(α → γ) →
(α→ (β ∧ γ))}, then both branches would still crash, but without parity. This illustrates
a general point. From a relevantist point of view, there is a significant difference between
classically equivalent formulae (ϕ ∧ ψ) → θ and ϕ → (ψ → θ). In terms of trees, this
is because decomposing ϕ → (ψ → θ) gives rise to an additional application of counter-
case, thus a further critical pair that can fail the parity condition. Remarkably however,
suffixing (scheme 2 above), which is a form of transitivity, remains acceptable even in its
third-degree version. On the other hand, cumulative transitivity fares less well: its second-
degree form {(p→ q) ∧ ((p ∧ q)→ r)} → (p→ r) is acceptable (though not directly so, as
noted in Observation 6), but its third-degree version (p→ q)→ {((p∧ q)→ r)→ (p→ r)}
does not appear to be so.

Scheme 8 (∨-elimination): ((α → γ) ∧ (β → γ))→ ((α ∨ β)→ γ). Same comments as for
scheme ∧+.

• r : ¬[((α→ γ) ∧ (β → γ))→ ((α ∨ β)→ γ)]
c© n1 : (α→ γ) ∧ (β → γ)
c© n2 : ¬((α ∨ β)→ γ)
c© n3 : α ∨ β
c© n4 : ¬γ

• n5 : α • n6 : β

• n7 : α→ γ • n8 : β → γ

• n9 : γ • n10 : γ

Scheme 10 (contraposition): (α → ¬β) → (β → ¬α). The unique branch ends in a
crash-pair, and each of the four critical nodes is in its trace.
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• r : ¬[(α→ ¬β)→ (β → ¬α)]

c© n1 : α→ ¬β
c© n2 : ¬(β → ¬α)

c© n3 : β

c© n4 : ¬¬α
• n5 : α

• n6 : ¬β

The decomposition trees that we have use in the verification of Observation 3 all display
a certain normal form: (1) Each branch stops at its designated crash-pair; (2) In every
application of counter-case, the two output critical nodes are contiguous; (3) the designated
crash-pair of each branch has in its trace both of the critical nodes of every application of
counter-case carried out in that branch (which is more than the both-or-none required by
parity). It is not difficult to show that such a form is always available, that is, if a formula
has a directly acceptable (resp. acceptable) decomposition tree, then it has one satisfying
those three conditions.

Appendix 2: Disjunction

This appendix compares our treatment of disjunction with the way it is handled in the
standard system of natural deduction for the relevance logic R (Anderson & Belnap 1975).

To fix ideas, we begin with the example of the formula {(p→ (q∨r))∧(q → r)} → (p→
r) which, as noted in Observation 5, is directly acceptable but not in R. It is instructive to
recall how an attempt to derive it using natural deduction for R fails its proviso on ∨−.
From the suppositions (p→ (q∨r))∧ (q → r) and p one reaches q∨r; classically one would
then make two sub-proofs, the first supposing q to get r and the second supposing r to get
r. But while the first sub-derivation appeals to the supposition (p → (q ∨ r)) ∧ (q → r),
the second does not, violating the proviso that the two sub-derivations must make use
of the same suppositions (other than q and r themselves). On the other hand, in our
decomposition procedure the critical node labelled by (p → (q ∨ r)) ∧ (q → r) is used in
decomposing to q ∨ r and, while the tree then forks, the parity constraint acts on each
branch in its entirety, not as a comparison of sub-branches.

So, one may ask, why don’t mangle α→ (β → α) and its substitution instance mingle
α → (α → α) also come out as directly acceptable? Why doesn’t the decomposition
procedure allow us to replicate the notorious classical natural deduction in which one
supposes α, then supposes β, uses ∨+ to get α ∨ (β → α), and then carries out sub-
derivations with suppositions α and β → α respectively?

For direct acceptability, the answer is simply that trees can only decompose, never
compose, so that they have nothing corresponding to ∨+. For the more general notion
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of acceptability using the recursive rule of section 8, the answer is little more complex.
As remarked there, it is still an open problem to show that mingle is not acceptable; but
meanwhile we can see how a natural attempt using the recursive rule, fails.

• r : ¬[α→ (α→ α)]
c© n1 : α

c© n2 : ¬(α→ α)
c© n3 : α

c© n4 : ¬α
• n5 : α ∨ (α→ α)

• n6 : α • n7 : α→ α

• n8 : α

Up to n4 this tree is the same as that considered for direct acceptability in section 5,
and fails despite the presence of two crash-pairs {n1, n4} and {n3, n4}, since neither of
them satisfies parity. If one continues by applying the recursion rule to n1 to get n5 and
branching as above, the left branch gets a new crash-pair {n4, n6}, but that also fails parity
since the critical node n3 is not in its trace although its partner n4 is. Attempts to repair
this tree snag. For example, if one gets n5 from n3 instead of from n1 then the critical
node n1 disappears from the trace of {n4, n6} although its partner n2 remains.

Thus, formulae such as mangle and mingle, which relevantist natural deduction blocks
by its ‘same other suppositions’ proviso, are excluded from direct acceptability by the
parity requirement and natural attempts, like the above, to show them to be acceptable
in the recursive sense, snag. On the other hand, the mechanism for direct acceptability
allows safe passage for both distribution (see appendix 1) and the rather appealing formula
of Observation 5.

Blockage of distribution, forcing it to be postulated independently in a rather ad hoc
manner, has for long been a source of dissatisfaction or at least unease for relevantist natural
deduction. Already Anderson & Belnap 1975 section 27.2 devised a less restrictive version
of ∨−, calling it rule ∨Es, and noted that it implies distribution; but they refrained from
recommending it, presumably fearing that it might yield too much. Similar proposals with
varied presentations and perhaps differing a little in content were made by Urquhart 1989
(see also the brief remark in his 2016), Dunn & Restall 2002, and Brady 2006. The essential
idea behind all of them is that when in a derivation one reaches a formula α∨β and creates
auxiliary derivations headed respectively by α, β, those two formulae are not given fresh
dependency labels but are taken to depend on the same suppositions as did α ∨ β. This
has the effect of enlarging the set of suppositions that are considered as ‘used’ in each of
the auxiliary derivations, thereby cushioning the impact of the ‘same suppositions’ proviso;
both distribution and the formula of Observation 5 become derivable. Note, however, that
the move does not get rid of the ‘same suppositions’ constraint: it still appears as a proviso
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on the rules ∧+ and ∨−, its force in the latter diminished by the modified definition of
dependency.

Appendix 3: Earlier Work on Decomposition Trees for
Relevance Logic

Decomposition trees (aka semantic tableaux) for relevance logics were investigated by Dunn
1976 and by McRobbie in his doctoral thesis 1979, with parts of the latter published in the
abstracts McRobbie 1977, McRobbie & Belnap 1977 and the paper McRobbie & Belnap
1979. Later work includes Pabion 1979, Bloesch 1993, Priest 2008, Jarmużek & Tkaczyk
2015.

None of these decompose unnegated arrows by modus ponens; instead they fork into
the consequent and the negation of the antecedent. Nor do any introduce a recursion
into the decomposition procedure. On a more detailed level, we can make the following
comparisons.

Dunn’s 1976 construction using two trees works beautifully, but covers only first-degree
conditionals, i.e. formulae of the form ϕ→ ψ where ϕ,ψ contain no arrows. It is difficult
to extend further.

The language of McRobbie’s 1977 abstract lacks negation. It covers only formulae
in the positive connectives →,∧,∨, ◦ (non-classical ‘fusion’) and a truth-constant t, with
quite complex decomposition rules. The abstract ends with the remark: “Unfortunately,
the problem of extending our result in order to obtain a tableau system for all of R has till
this date proved intractable”.

Negation is available in McRobbie & Belnap 1977 and 1979, but the language is again
severely restricted, for arrow is the only other connective allowed in formulae. Their de-
composition trees may still have multiple branches, since unnegated arrows are decomposed
by forking. The trees make use of a dependency condition. It is rather loosely expressed
but, on the present author’s reading, it requires that there is a function taking each branch
B to a crash-pair CB on B such that for every node n there is a branch B containing n
such that n is in the trace of CB.

That condition contrasts with our crash-with-parity constraint, which can likewise be
expressed in functional language: for every critical node n and every branch B, if n is
in the trace of CB then so is its partner. This monitors only critical nodes, which is less
demanding than all nodes, but its second quantifier makes a demand on all branches, rather
than just some. The differences are essential for obtaining positive and negative verdicts on
distribution and disjunctive syllogism respectively, presumably explaining why McRobbie
and Belnap found themselves unable to extend their language to include ∧,∨.

We should also note a contrast of general perspective. For McRobbie and Belnap,
the priority task appears to have been to devise a decomposition procedure whose output
coincides with R. As that goal was not reached, a secondary one kicked in: do the same for
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some fragment with fewer connectives. Our goal is to articulate transparent decomposition
routines whose output set is attractive from a relevantist point of view, with less regard to
whether it coincides exactly with the most widely studied relevance logic.

The proposals of Pabion 1979, Bloesch 1993 and Priest 2008 are all inspired by the
Routley-Meyer semantics for relevant logics, seeking to make it computationally more man-
ageable by expressing it in terms of decomposition trees. Under the influence of Kripke’s
earlier work on semantic tableaux for modal logic, they mirror much of the machinery of the
Routley-Meyer semantics in the labelling and management of the tableaux themselves – for
example, a three-place accessibility relation for tableaux, a range of difficult-to-motivate
conditions on the relation, and a star operation for dealing with negation. The proposals
thus serve primarily as tableau presentations of the Routley-Meyer semantics rather than
independent accounts.

Jarmużek & Tkaczyk 2015 construct decomposition trees for a logic that avoids right
explosion, but their goal is very modest. They work only with classical formulae, charac-
terizing in terms of trees the relation that holds between a set A of such formulae and an
individual one β iff there is some subset A′ ⊆ A such that A′ is both classically consistent
and tautologically implies β.
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