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Abstract

We provide a model of nonredundant credit default swaps (CDSs), building on the observation

that CDSs have lower trading costs than bonds. CDS introduction involves a trade-off: it crowds out

existing demand for the bond, but improves the bond allocation by allowing long-term investors to

become levered basis traders and absorb more of the bond supply. We characterize conditions under

which CDS introduction raises bond prices. The model predicts a negative CDS-bond basis, as well

as turnover and price impact patterns that are consistent with empirical evidence. We also show that

a ban on naked CDSs can raise borrowing costs. (JEL G10, G12, G13, G18)
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Credit default swap (CDS) markets have grown enormously over the past decade. However, al-

though there is a relatively large literature on the pricing of CDSs, much less work has been done

on the economic role of these markets. For example, in most pricing models, CDSs are redundant

securities, such that the introduction of a CDS market has no effect on the underlying bond market.

This irrelevancy feature makes a meaningful analysis of the economic role of CDS markets difficult.

In this paper, we develop a theory of nonredundant CDS markets, building on a simple, well-

documented empirical observation: trading bonds is expensive relative to trading CDSs. Based on

this observation, we develop a theory of the interaction of bond and CDS markets. Our model provides

an integrated framework that can explain many of the stylized facts in bond and CDS markets: the

ambiguous effect of CDS introduction on the price of the underlying bond (and therefore financing

cost for issuers), the relative pricing of the CDS and the underlying bond (the CDS-bond basis), and

trading volume and price impact in the bond and CDS markets. Our model also provides a tractable

framework to assess policy interventions in CDS markets, such as the recent EU ban of naked CDS

positions.

In our model, investors differ across two dimensions. First, investors differ in their investment

horizons: some investors are unlikely to have to sell their position in the future and are therefore

similar to buy-and-hold investors, such as insurance companies. Other investors are more likely to

receive liquidity shocks and therefore have shorter investment horizons. These latter investors can be

interpreted as traders that face redemption risk (e.g., mutual funds), investors who express short-term

views, or investors with frequent consumption needs. Second, investors have heterogeneous beliefs

about the bond’s default probability: optimistic investors view the default of the bond as unlikely,

while pessimists think that a default is relatively more likely. If only the bond is traded, relatively

optimistic investors with sufficiently long trading horizons buy the bond, whereas relatively pessimistic

investors with sufficiently long trading horizons take short positions in the bond. Investors with short

investment horizons stay out of the market, because for them the bond’s trading costs are too high.
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The introduction of a CDS affects the underlying bond market through three effects. First, some

investors who previously held a long position in the bond switch to selling CDS protection, putting

downward pressure on the bond price. Second, all investors who previously shorted the bond switch to

buying CDS protection because, in equilibrium, the relatively illiquid bond trades at a discount relative

to the CDS. The resulting reduction in short selling puts upward pressure on the bond price. Third,

some investors become “negative basis traders” who hold a long position in the bond and purchase

CDS protection (i.e., the model endogenously generates the negative basis trade, which has been a

popular trading strategy in recent years). If basis traders can take leverage—a natural assumption

given that they hold hedged positions—their presence pushes up the bond price. In practice, basis

trades are often highly levered and their leverage varies with financial conditions, leading to time-series

variation in the strength of this third effect.

Taken together, these three effects imply that the effect of CDS introduction on the underlying

bond price is ambiguous. This prediction is consistent with the empirical literature, which has found

no unconditional effect of CDS introduction on bond or loan spreads (Hirtle 2009; Ashcraft and

Santos 2009). More important, the model identifies the main economic trade-off associated with CDS

introduction. On the one hand, the migration of long and short bond investors to the CDS market

(the first and second effects) typically leads to a net crowding-out effect that reduces demand for the

bond. On the other hand, the emergence of basis traders (the third effect) facilitates an allocational

improvement in the bond market by allowing long-term investors to absorb more of the bond supply.

This basis-trader effect is stronger—and therefore CDS introduction is more likely to increase the

bond price—when basis traders can take substantial leverage and when there is a significant trading

cost difference between the bond and the CDS.

The endogenous emergence of leveraged basis traders highlights a novel economic role of CDS

markets: the introduction of the CDS allows buy-and-hold investors, who are efficient holders of the

illiquid bond, to hedge unwanted credit risk in the more liquid CDS market. In the CDS market, the

average seller of CDS protection is relatively optimistic about the bond’s default probability, but is
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not an efficient holder of the bond because of more frequent liquidity shocks. The role of CDS markets

is therefore similar to liquidity transformation—by repackaging the bond’s default risk into a more

liquid security, they allow the transfer of credit risk from efficient holders of the bond to relatively

more optimistic shorter-term investors. Hence, when bonds are illiquid, a liquid CDS can improve the

allocation of credit risk and thus presents an alternative to recent proposals that aim at making the

corporate bond market more liquid—for example, through standardization (e.g., BlackRock 2013).

Beyond the price effects of CDS introduction, our model generates testable predictions regarding

trading volume and price impact in bond and CDS markets that are consistent with recent empirical

evidence. First, our model predicts that CDS turnover is higher than bond turnover, consistent with

the evidence in Oehmke and Zawadowski (2014), who show that average monthly CDS turnover is

above 50%, whereas average monthly turnover in the associated bonds is around 7.5%. Second, our

model predicts that CDS introduction decreases turnover in the underlying bond. However, despite

this decrease in turnover, CDS introduction can reduce the price impact of supply shocks in the bond

market, because levered basis traders act as supply shock absorbers. Therefore, consistent with Das,

Kalimipalli, and Nayak (2014), the effect of CDS introduction on bond market liquidity can differ

depending on which particular liquidity measure (e.g., turnover or price impact) is used.

From an asset pricing perspective, the prediction that the equilibrium price of the bond is lower

than the price of a synthetic bond consisting of a risk-free bond and a short position in the CDS

replicates a well-documented empirical phenomenon known as the negative CDS-bond basis (see, e.g.,

Bai and Collin-Dufresne 2013). Our model generates a number of predictions regarding both the

time-series and cross-sectional variation in the CDS-bond basis: the basis is more negative for bonds

with higher trading costs, when there is more disagreement about the bond’s default probability and

when basis traders are restricted in the amount of leverage they can take.

Finally, our model provides a framework to study regulatory interventions with respect to CDS

markets. For example, a ban on naked CDS positions, as recently imposed by the European Union

on sovereign bonds through EU regulation 236/2012, may, in fact, raise yields for affected issuers.
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If pessimistic investors cannot take naked CDS positions, some of them will short the bond instead.

This exerts downward price pressure on bond prices: owing to differences in trading costs, naked CDS

positions are not equivalent to short positions in the bond because a different set of investors takes the

other side. Similarly, interventions that ban CDS markets altogether, or even both CDSs and short

selling of bonds, do not necessarily increase bond prices.

Our paper contributes to a growing literature on derivatives as nonredundant securities.1 In our

framework, a zero-net-supply derivative is nonredundant owing to a difference in the trading costs of

the underlying security and the derivative, combined with uninsurable liquidity shocks, which we model

using the classic framework of Amihud and Mendelson (1986). Given the well-documented illiquidity

of corporate bonds, this source of nonredundancy is likely to be particularly important in the context

of the CDS market. The existing literature has focused on different, potentially complementary

sources of nonredundancy. Gârleanu and Pedersen (2011) explore the relative pricing of derivatives

and underlying assets when derivatives have lower margin requirements and apply this framework to

the CDS-bond basis. Shen, Yan, and Zhang (2014) develop a model of financial innovation based

on differences in margin requirements. Neither of these two papers focuses on the consequences of

derivative introduction on the underlying asset, the main focus of our paper. Banerjee and Graveline

(2014) show that derivatives can relax binding short-sale constraints when the underlying security is

scarce (“on special”). In their model, the introduction of the derivative always decreases the price

of the scarce asset, at least under reasonable investor preferences. Our approach does not rely on

explicit short-sale constraints and, therefore, applies also in situations where the underlying asset can

be shorted relatively easily. The closest related papers are Fostel and Geanakoplos (2012) and Che

and Sethi (2014). Also set in a differences-in-beliefs setup, these papers show that, in the presence of

short-sale constraints, naked CDSs can facilitate negative bets that decrease the price of the underlying

asset because optimists must set aside collateral to take the other side (see also Geanakoplos 2010 and

Simsek 2013). Che and Sethi (2014) also show that when only covered CDS positions are allowed,

1Hakansson (1979) provides an early discussion of why derivatives should be studied in settings where they are not
redundant.
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CDS introduction can increase bond prices because it allows optimists to take leverage (equivalent

to collateralized borrowing). Their focus on short-sale constraints and leverage contrasts with our

focus on differences in trading costs. These differences in assumptions lead to different predictions:

for example, in Che and Sethi (2014), CDS introduction never raises borrowing costs if short selling is

possible. In addition, our liquidity-based approach generates predictions on the CDS-bond basis and

allows us to study turnover and price impact in the bond and CDS markets, as well as the effect of

CDS introduction on different bonds by the same issuer. Further sources of nonredundancy that have

been analyzed include market incompleteness (Detemple and Selden 1991), the informational effects

of derivative markets (Grossman 1988; Biais and Hillion 1994; Easley, O’Hara, and Srinivas 1998; and

Goldstein, Li, and Yang 2014), the possibility that derivatives generate sunspots (Bowman and Faust

1997), and changes in the relative bargaining power of a firm’s claim holders (Bolton and Oehmke

2011, Arping 2014).2

1 Model Setup

We consider a financial market with (up to) two risky assets: (i) a defaultable bond in positive supply

and (ii) a CDS that references the bond. The main assumption of our model is that the bond and the

CDS, which offer exposure to the same credit risk, differ in trading costs. This difference in trading

costs makes the zero-net-supply CDS nonredundant. Specifically, we follow Amihud and Mendelson

2More generally, there is a growing literature on the economic effects of CDSs. Duffee and Zhou (2001), Morrison (2005),
Parlour and Plantin (2008), Parlour and Winton (2013), and Thompson (2014) explore how CDS markets allow banks to lay
off credit risk and affect funding and monitoring outcomes. Allen and Carletti (2006) investigate how the availability of CDSs
affects financial stability. Yorulmazer (2013) develops a model of CDSs as a means of regulatory arbitrage. Zawadowski (2013)
develops a model in which CDSs are used to hedge counterparty exposures in a financial network. Atkeson, Eisfeldt, and
Weill (forthcoming) provide a model of the market structure of CDS and other over-the-counter (OTC) derivative markets.
Overviews of CDS markets and related policy debates can be found in Stulz (2010), Jarrow (2011), Bolton and Oehmke
(2013), and Augustin et al. (2014).
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(1986) and assume that investors incur exogenous trading costs when they trade the bond or the CDS.

Our main assumption is that these trading costs are lower for the CDS than the associated bond.3,4

There is strong empirical support for our main assumption. A number of empirical studies have

documented high trading costs in the corporate bond market, which contrast with the significantly

lower trading costs in CDS markets.5 This difference in trading costs is driven by a number of factors.

First, the CDS market is much more standardized than the bond market, where an issuer’s bonds are

usually fragmented into a number of different issues that differ in their coupons, maturities, covenants,

embedded options, and so on. Consistent with this argument, Oehmke and Zawadowski (2014) show

that CDS markets are more active and more likely to exist for firms whose outstanding bonds are

fragmented into many separate bond issues. Second, dealer inventory management is generally cheaper

for CDS dealers than for market makers in bond markets: because the CDS is a derivative and can

be created at will, there is no need to locate a security and no ex-ante inventory has to be held.

Third, a CDS investor who wants to terminate an existing position rarely sells the original CDS in

the secondary market; he simply enters an offsetting CDS contract (that can be created), which is

usually cheaper.

3For most of the paper, we take the difference in trading costs between the bond and the CDS as given. In Section 3.3.2,
we briefly discuss how our model could be extended to account for endogenous trading costs. A number of search-theoretic
models have explored endogenous differences in liquidity between assets with identical payoffs (Vayanos and Wang 2007;
Vayanos and Weill 2008; and Weill 2008). In this context, Praz (2014) studies the interaction between a (liquid) Walrasian
and a (less liquid) OTC market, while Sambalaibat (2014) studies the effect of naked CDS trading in search markets.

4There are two interpretations of the trading costs in our model. One view is that trading costs are simply transfers to
(competitive) dealers. Under this interpretation, trading costs simply reflect the dealers’ costs of efficient liquidity provision
and inventory management. Alternatively, trading costs may reflect undersupply of liquidity due to market power of dealers.
The positive results in the main part of our paper do not depend on the specific interpretation. However, the source of
trading costs matters when drawing normative conclusions (see Section 4.1).

5See, e.g., Bessembinder, Maxwell, and Venkataraman (2006), Edwards, Harris, and Piwowar (2007), and Bao, Pan, and
Wang (2011). Effective trading costs for bonds include bid-ask spreads and the price impact of trading. Using the most liquid
bonds in TRACE, Bao, Pan, and Wang (2011) estimate effective trading costs for corporate bonds of 74–221 basis points.
Hilscher, Pollet, and Wilson (forthcoming) report bid-ask spreads of 4–6 basis points for five-year credit default swaps on IG
bonds, which thus implies trading costs of around 20–30 basis points, significantly lower than the effective bond trading costs
reported by Bao, Pan, and Wang (2011). Randall (2013) points out that large trades ($10M+) are rare in the bond market
and usually have even larger transaction costs, whereas trades exceeding $10M in notional are common in CDS markets.
Biswas, Nikolova, and Stahel (2014) provide transaction-based evidence that, in general, CDSs are cheaper to trade than
bonds.
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1.1 Bond

A defaultable bond is traded in positive supply S > 0. We denote the bond’s equilibrium price by

p. The bond matures with Poisson arrival rate λ. As will become clear below, the assumption of

Poisson maturity is convenient because it guarantees stationarity, but none of our results depend on

this assumption. At maturity, the bond pays back its face value of $1 with probability 1 − π. With

probability π, the bond defaults and pays 0.6 For simplicity, we assume that the bond does not pay

coupons.

We capture illiquidity of the bond market in terms of a bond trading cost cB that arises when the

bond is traded. Specifically, following Amihud and Mendelson (1986), we assume that the bond can

be bought at the ask price p+ cB
2 and sold (or short sold) at the bid price p− cB

2 . The bond price p

can therefore be interpreted as the bond’s midquote. The bond trading cost cB should be interpreted

as capturing the bid-ask spread as well as temporary price impact costs that arise, for example, as a

result of dealer inventory management. The trading cost cB is distinct from permanent price impact

costs in response to supply shocks, which we derive endogenously later on.7

1.2 Credit default swap

In addition to the bond, a CDS that references the bond is available in zero net supply. The CDS

is an insurance contract on the bond’s default risk: if the bond defaults, the CDS pays out the loss

given default of $1 and pays zero otherwise. For simplicity we assume that the CDS matures at the

same time as the bond. We denote the CDS’s equilibrium price by q.8 The trading cost in the CDS

6This assumption implies that default only occurs at maturity. Alternatively, one could assume that default can occur
continuously with Poisson arrival rate. We chose the setup with default only at maturity because it is particularly tractable
and yields the same economic insights as a model with continuous default.

7Beyond the trading cost cB, which is incurred symmetrically for long and short positions, we do not impose any additional
cost on short selling. Although it would be straightforward to add this to the model, treating long and short positions
symmetrically highlights that, in contrast to a number of existing papers on CDS or derivative introduction (Banerjee and
Graveline 2014; Che and Sethi 2014; and Fostel and Geanakoplos 2012), our results do not require short-sale restrictions.

8In practice, CDS contracts have fixed maturities (also known as tenors), the most common being 1, 5, and 10 years. Our
setup, in which both the bond and the CDS randomly mature at the same time, is comparable to a setup in which investors
match maturities of finite-maturity bonds and CDSs. Moreover, CDS premia are usually paid over time (quarterly), with a
potential upfront payment at inception of the contract. The CDS price q should thus be interpreted as the present value of
future CDS premia and the upfront payment.
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market is denoted by cCDS, such that an investor can purchase CDS protection at the ask price q+ cCDS
2

and sell protection at the bid q − cCDS
2 . The CDS price q can therefore be interpreted as the CDS’s

midquote.

Our main assumption is that trading costs in the CDS market are lower than in the bond market:

cB ≥ cCDS ≥ 0. (1)

For most of our analysis, we follow Longstaff, Mithal, and Neis (2005) in assuming, for simplicity, that

the CDS market involves no transaction costs, such that cCDS = 0. In Section 3.3.3, we extend our

analysis to the case in which the CDS is also subject to trading costs, cCDS > 0.

1.3 Investors

There is a mass of risk-neutral, competitive investors who can trade the bond and the CDS. For sim-

plicity, we set the investors’ rate of time preference to zero. Investors are heterogeneous across two

dimensions: (i) expected holding periods and (ii) beliefs about default probabilities. Differences in ex-

pected holding periods imply that investors care differentially about trading costs, whereas differences

in beliefs about the bond’s default probability generate a motive for trade.

Expected holding periods differ across investors because investors are hit by uninsurable liquidity

shocks with Poisson intensity µi ∈ [0,∞). Investors with low µi can be interpreted as buy-and-

hold investors (for example, insurance companies or pension funds), whereas investors with high µi

are investors subject to more frequent liquidity shocks (for example, traders that are exposed to

redemption risk, that express shorter-term views, or that face frequent consumption needs). When

hit by a liquidity shock, an investor has to liquidate his position and exits the model. To preserve

stationarity, we assume that a new investor with the same characteristics enters.

With respect to investor beliefs, we assume that investors agree to disagree about the bond’s default

probability in the spirit of Aumann (1976). Specifically, investor i believes that the bond defaults at
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maturity with probability πi ∈ [π̄ − ∆
2 , π̄ + ∆

2 ]. These differences in subjective default probabilities

among investors lead to differences in valuation of the bond’s cash flows, thereby generating a motive

for trade.9 These differences in valuation of the bond could also be generated by differences in

investors’ nontraded endowment risks, which would result in risk-based (rather than beliefs-based)

private valuations of the bond. Under this alternative interpretation, 1− πi represents the risk-based

valuation of the cash flows paid by the bond at maturity, based on investor i’s marginal utilities in

the default and nondefault states.

We assume that investors’ beliefs about the bond’s default probability follow a uniform distribution,

with a mass one of investors at each liquidity shock intensity µi ∈ [0,∞). This assumption implies a

particularly simple conditional density function f(π|µ) = 1
∆ , which allows us to calculate equilibrium

prices in closed form.

Investors can take positions in the bond and the CDS, but are subject to portfolio restrictions

that reflect risk management constraints (given risk neutrality and differences in investor beliefs,

absent portfolio restrictions, investors would take infinite positions). Specifically, we assume that each

investor can hold up to one unit of credit risk. Accordingly, an investor can go long one bond, short

one bond, buy one CDS, or sell one CDS. In addition, investors can enter hedged portfolios. One

such option is to take a long position in the bond and insure it by also purchasing a CDS (a so-called

negative basis trade). Alternatively, investors can take a hedge position by taking a short position in

the bond and selling CDS protection (a so-called positive basis trade). Because hedged positions do

not involve credit risk, we allow investors to lever hedged positions to a maximum leverage of L ≥ 1.10

Empirically, this assumption matches the stylized fact that basis traders are usually highly levered.

Finally, investors can always hold cash, which yields a zero return.

9The differences-in-beliefs setup we use in our model implies that investors do not learn from prices. For models that
study the informational consequences of derivatives such as CDSs, see Grossman (1988), Biais and Hillion (1994), Easley,
O’Hara, and Srinivas (1998), and Goldstein, Li, and Yang (2014).

10Therefore, L = 1 implies that hedged investors cannot take leverage, whereas L > 1 implies that hedged investors
can lever up their positions. Positive leverage for basis traders can be interpreted as the outcome of an (unmodeled) risk
management problem: if investors start with the same economic capital, hedging their bets via the CDS allows them to take
larger positions against their loss-absorbing capacity. The funding for this is provided by outside investors who are indifferent
between holding cash and providing funding to basis traders.
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2 Benchmark: No CDS Market

We first consider the benchmark case in which only the bond trades. In Section 3, we then turn to

the joint equilibrium in bond and CDS markets and the effects of CDS introduction.

Investors maximize utility subject to portfolio constraints. When only the bond is trading, this

means that investors choose between taking a long or short position in the bond and holding cash.

Investor i’s net payoff from a long position in the bond is given by

VlongBOND,i = −
(
p+

cB
2

)
+

µi
µi + λ

(
p− cB

2

)
+

λ

µi + λ
(1− πi). (2)

The interpretation of this expression is as follows. The investor pays the ask price p+ cB
2 to purchase the

bond. With probability µi
µi+λ

, the investor has to sell the bond before maturity. Here, the stationarity

property of Poisson maturity implies that a nonmatured bond at some future liquidation date t trades

at the same midprice p as the bond today. Hence, the investor receives the bid price p − cB
2 when

selling the bond before maturity.11 If the bond matures before the investor is hit by a liquidity shock,

the investor receives an expected payoff of 1−πi, where πi is the investor’s subjective belief about the

bond’s default probability. This happens with probability λ
µi+λ

.

Similarly, investor i’s net payoff from a short position in the bond is given by

VshortBOND,i =
(
p− cB

2

)
− µi
µi + λ

(
p+

cB
2

)
− λ

µi + λ
(1− πi). (3)

An investor who takes a short position in the bond receives the bid price p− cB
2 today. If the investor

has to cover his short position before maturity, the investor has to purchase the bond at the ask

price p+ cB
2 (using stationarity as before), whereas if the bond matures, the investor has to cover his

11If the bond had finite maturity or if investors updated their beliefs about the bond’s default probability over time, the
above valuation equation would be more complicated because the bond would generally trade at a different price at future
dates. Nevertheless, the key trade-off would remain: for any price path p, investors with more frequent liquidity shocks are
affected more strongly by the trading cost cB .
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short position at an expected cost of 1− πi. The probabilities of these two events are µi
µi+λ

and λ
µi+λ

,

respectively.

Figure 1 illustrates the resulting demand for long and short positions.12 Investors who are opti-

mistic about the bond’s default probability and have sufficiently long trading horizons purchase the

bond, forming a triangle of buyers. On the boundary of the “buy” triangle, investors are indifferent

between taking a long position in the bond and holding cash, which requires that VlongBOND,i = 0.

Similarly, pessimistic investors with sufficiently long trading horizons short the bond, with the bound-

ary of the resulting “short” triangle defined by VshortBOND,i = 0. All other investors hold cash. The

gap between the triangle of long bondholders and short sellers arises because the bond trading cost

cB drives a wedge between the payoffs from long and short positions, which makes it optimal even for

some investors who do not face liquidity shocks to stay out of the market.

Market clearing requires that the bond price p adjusts such that the overall amount demanded by

long bondholders is equal to the amount shorted plus bond supply S.

Lemma 1. Benchmark: Bond market equilibrium absent a CDS market. When only the

bond trades, the equilibrium bond price is given by

pnoCDS = 1− π − cB
λ

∆

∆− cB
S. (4)

Lemma 1 shows that, in the absence of the CDS, the bond price is given by the investors’ average

belief about the bond’s expected payoff, 1−π, minus a term that captures the bond’s trading costs and

supply. Specifically, the term − cB
λ

∆
∆−cBS captures that, as the bond supply S increases, the marginal

bond investor becomes less optimistic and has shorter trading horizons, leading to a decrease in the

bond price. Note that the bond trades at a discount relative to the average expected payoff and that

the bond price is decreasing in bond trading costs.

12We focus on the case in which both long and short positions are taken in the bond-only equilibrium. This requires that
the bond trading cost is not so large that it unconditionally rules out short positions, cB < ∆, and that the bond supply S
is not too large. We provide the exact condition on the bond supply in the appendix.
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Figure 1
Bond market equilibrium in the absence of a CDS

The figure illustrates the equilibrium when only the bond is trading. Investors who are sufficiently
optimistic about the bond’s default probability and have sufficiently long holding horizons form a “buy
bond” triangle. Investors who are pessimistic about the bond’s default probability and have sufficiently
long holding horizons form a “short bond” triangle. Market clearing requires that the bond price adjust
such that demand from long investors is equal to bond supply plus short positions.

3 Introducing a CDS Market

We now introduce the CDS contract into the analysis. As before, we determine the demand for CDS

positions by calculating the payoffs from long and short CDS positions, as well as hedged positions in

the bond and the CDS. Comparing these payoffs with those from going long or short in the bond, we

then solve for equilibrium in the bond and the CDS market.

The net payoff to investor i of purchasing the CDS is given by

VbuyCDS,i = −
(
q +

cCDS

2

)
+

µi
µi + λ

(
q − cCDS

2

)
+

λ

µi + λ
πi. (5)

This expression reflects the purchase price q + cCDS
2 of the CDS, the payoff q − cCDS

2 from early

liquidation (using stationarity), and the expected CDS payoff of πi at maturity. As before, µi
µi+λ
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denotes the probability that the investor has to exit his position before CDS payoffs are realized.

Analogously, the payoff to investor i of selling CDS protection on the bond is given by

VsellCDS,i =
(
q − cCDS

2

)
− µi
µi + λ

(
q +

cCDS

2

)
− λ

µi + λ
πi. (6)

In addition to taking directional positions in the bond or the CDS, investors can enter hedged “basis

trade” positions. Taking into account leverage L ≥ 1, such hedged positions pay off L(VlongBOND,i +

VbuyCDS,i) in the case of a negative basis trade and L(VshortBOND,i + VsellCDS,i) for a positive basis

trade. Finally, investors can still hold cash.

Solving for equilibrium in the bond and CDS markets requires calculating the demand for bond and

CDS positions from the above payoffs and then imposing market clearing to determine the equilibrium

prices of the bond and the CDS. In our main analysis, we focus on the case in which the CDS market

is frictionless (cCDS = 0).

3.1 The effect of CDS introduction on prices and trading in the bond market

The advantage of assuming that the CDS market is frictionless is that the equilibrium in the CDS

market becomes particularly simple: when cCDS = 0, Equations (5) and (6) imply that all investors

with beliefs πi < q are willing to sell CDS protection (VsellCDS,i > 0), while all investors with πi > q

are ready to purchase CDS protection (VbuyCDS,i > 0). Given the infinite support of µi, the bond

market is then vanishingly small relative to the CDS market, such that the CDS market clears at a

price equal to the average investor belief about the bond’s default probability, irrespective of positions

in the bond market:13

q = π. (7)

To determine the equilibrium bond price in the presence of the CDS, it therefore suffices to investigate

how the availability of the CDS priced at q = π affects investors’ incentives to take long or short

13Strictly speaking, this is a limit argument: consider an upper bound µ for the frequency of the liquidity shock and then
take the limit µ→∞. As the mass of traders in the CDS market grows, the CDS price q converges to π.
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positions in the bond (i.e., when cCDS = 0, we can clear markets sequentially rather than having to

solve simultaneously for equilibrium prices in the bond and CDS markets).
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Figure 2
CDS introduction (basis traders cannot take leverage)

This figure illustrates the change in investor strategies that results from CDS introduction when basis
traders cannot take leverage L = 1, holding constant the price of the bond. The dashed lines illustrate
the long and short triangles in the absence of the CDS. The introduction of the CDS has three effects:
(i) some investors who, absent the CDS, would purchase the bond now choose to sell CDS protection,
cutting off the top of the bond-buying triangle; (ii) because the bond trades at a discount relative
to the CDS, all former short sellers prefer to purchase CDS protection, which eliminates the shorting
triangle; and (iii) investors who formerly bought the bond but whose beliefs about the bond’s default
probability are below the average belief π̄ become basis traders who purchase the bond and buy CDS
protection.

Consider first the case in which basis traders cannot take leverage (L = 1), depicted in Figure 2.

The figure shows that the introduction of the CDS results in three effects that change the equilibrium

in the bond market. First, when the CDS is available, investors with relatively short trading horizons,

who in absence of the CDS used to purchase the bond, now prefer to sell CDS protection. This can be

seen in Figure 2. The triangle of long bondholders has been cut off at the top (for ease of comparison,

the triangle of long bond positions in the absence of the CDS is depicted by the dashed line). The

14



resulting migration of long bond investors to the CDS market leads to a reduction in demand for the

bond, exerting downward pressure on the bond price.

Second, the introduction of the CDS eliminates short selling in the bond. In the figure, the triangle

of investors who formerly shorted the bond (depicted by the dotted line on the right) vanishes, because

those investors now prefer to purchase CDS protection instead of shorting the bond. The reason why

investors prefer to use the CDS market to take negative bets works through the equilibrium price:

because of its trading costs, the bond trades at a discount relative to the CDS. Hence, investors who

wish to take a bearish bet on the bond prefer to do this in the CDS market rather than through a

short position in the bond. By eliminating short sellers, the introduction of the CDS exerts upward

pressure on the bond price. Note, however, that the triangle of investors who previously shorted the

bond is strictly smaller than the triangle of long bond investors crowded out by the CDS. Under the

assumption of a uniform investor distribution, these first two effects therefore lead to a net crowding-

out effect that reduces demand for the bond, putting downward pressure on the bond price.

Third, the introduction of the CDS generates a new class of investors: hedged basis traders.

Specifically, when L = 1 we see that investors who, in the absence of the CDS, would have taken

a long position in the bond but whose beliefs about the bond’s default probability is less optimistic

than the average belief π now find it optimal to purchase both the bond and the CDS. These investors

thus become negative basis traders: they hold a hedged position in the bond and the CDS, thereby

locking in the equilibrium price difference between the underlying bond and the derivative. Rather

than taking bets on credit risk, these investors act as arbitrageurs.

When basis traders cannot take leverage (L = 1), as assumed in Figure 2, their presence does

not affect the bond price. The reason is that the investors in the basis-trader triangle would have

purchased the bond also in the absence of the CDS. When basis traders can take leverage (L > 1),

on the other hand, the ability to hedge with the CDS allows investors who become basis traders to

demand more of the bond. This basis-trader effect therefore exerts upward pressure on the bond price.

Figure 3 illustrates that the ability of basis traders to take leverage raises the equilibrium bond price in
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two ways. First, holding constant the number of basis traders (i.e., keeping the size of the basis-trader

triangle as in Figure 2), the ability to take leverage increases the demand for the bond from this given

set of basis traders. Second, leverage makes the basis trade more profitable and therefore draws more

investors into the basis trade: compared with Figure 2, the basis-trader triangle expands. In fact,

even some investors to the left of π now become basis traders. Even though for these investors the

CDS priced at q = π has a negative payoff when seen in isolation, they purchase the CDS because it

allows them to lever up their position in the bond.14
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Figure 3
Bond and CDS market equilibrium (basis traders can take leverage)

The figure illustrates the equilibrium when both the bond and the CDS are trading and basis traders
can take leverage (L > 1). The ability to take leverage makes the basis trade more attractive, such that
the basis-trader triangle expands compared with Figure 2. Because of the increased demand from basis
traders, more of the bond can be held by investors with long trading horizons, improving the allocation
in the bond market. For ease of comparison, the dashed line illustrates the rectangle of investors who
purchase the bond when basis traders cannot take leverage (L = 1).

14When the bond supply or basis-trader leverage is large, it is possible for the basis-trade region to extend all the way to
πi = π + ∆/2, thereby becoming a trapezoid. Although this would affect some of the analytic expressions calculated below,
it would not affect any of the economic predictions of our model. For brevity, we therefore rule out this case. We provide the
exact condition in the appendix.
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The endogenous emergence of leveraged basis traders highlights the key economic role of CDS

markets in our model: the introduction of the CDS allows buy-and-hold investors, who are efficient

holders of the illiquid bond, to hold a larger share of the bond supply and hedge unwanted credit risk

in the more liquid CDS market. In the CDS market, the average seller of CDS protection is relatively

optimistic about the bond’s default probability, but is not an efficient holder of the bond because of

more frequent liquidity shocks. The role of CDS markets is thus similar to liquidity transformation—

by repackaging the bond’s default risk into a more liquid security, they allow the transfer of credit risk

from efficient holders of the bond to relatively more optimistic shorter-term investors, improving the

allocation in the bond market.15 This liquidity-based view of CDS markets differs from the traditional

view that CDSs simply allow the separation of credit risk from interest rate risk (e.g., JPMorgan 2006).

In particular, separation of credit risk from interest rate risk is possible with an interest rate swap and

does not require a CDS. In contrast, the allocational improvement that results from the basis-trader

effect is possible only in the presence of a (liquid) CDS contract.

Given the discussion above, we now solve for the equilibrium bond price. Market clearing in the

bond market requires that the demand from investors with a long position in the bond and the demand

from basis traders add up to the bond supply S, given that the CDS market clears at q = π. Solving

for the bond price p that satisfies this market-clearing condition yields the following lemma.

Lemma 2. Bond price in presence of frictionless CDS market. When both the bond and a

frictionless CDS are traded, the CDS price is given by q = π and the equilibrium bond price is equal

to

pwithCDS = 1− π − ∆

2

√
1 + 8Φ cB

λ
S
∆ − 1

Φ
− cB

2
, (8)

where we define Φ ≡ 1 + 2L(L− 1).

15When trading costs have a deadweight component, this is an allocational improvement from a welfare perspective. When
trading costs are transfers to market makers, then the term “allocational improvement” should be interpreted from the
investor’s perspective (i.e., investors incur fewer trading costs).

17



Similar to Lemma 1, the bond price in the presence of the CDS is equal to the average expected

payoff 1 − π and a discount that captures the bond’s trading cost and the fact that, in contrast to

the CDS, the bond is in positive supply. In the presence of the CDS, this discount depends on the

amount of leverage basis traders can take. In addition, the ability to (synthetically) short the bond

via the CDS without incurring a trading cost reduces the bond’s midprice by the cost of setting up a

short position in the bond, which is given by the half spread cB/2.

Based on Lemmas 1 and 2, we are now in a position to characterize the effect of CDS introduction

on the price of the underlying bond.

Proposition 1. The effect of CDS introduction on the bond price. The change in the bond

price due to CDS introduction is given by

dp = pwithCDS − pnoCDS =
cB
λ

∆

∆− cB
S − ∆

2

√
1 + 8Φ cB

λ
S
∆ − 1

Φ
− cB

2
. (9)

(i) The price effect of CDS introduction on the underlying bond is ambiguous.

(ii) The CDS is redundant when cB = 0.

(iii) For CDS introduction to raise the bond price, it is necessary that the bond trading cost cB and

basis-trader leverage L are sufficiently high.

(iv) CDS introduction is more likely to raise the bond price when disagreement about the default

probability ∆ is small.

Proposition 1 shows that the price effect of CDS introduction is generally ambiguous and depends

on the bond trading cost and basis-trader leverage. Setting cB = 0, we see that the CDS is redundant

when the bond is perfectly liquid. In this case, the CDS has no liquidity advantage over the bond and

therefore does not affect the bond price, such that pwithCDS − pnoCDS = 0.

When cB > 0, on the other hand, CDS introduction affects the bond price and the direction of

the price effect depends on the balance between the crowding-out effect and the basis-trader effect.
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As discussed above, under the uniform investor distribution, the migration of (long and short) bond

investors to the CDS market leads to a net crowding-out effect. Therefore, CDS introduction invariably

reduces the bond price whenever the basis-trader effect is absent, which can happen for two reasons.

First, as discussed above, basis traders do not generate any additional demand for the bond when

they cannot take leverage (L = 1). Second, the basis-trader effect becomes negligible when the bond

trading cost is close to zero. In this case, the CDS-bond basis approaches zero and the basis-trader

triangle is vanishingly small, such that the additional bond demand from basis traders becomes second

order, irrespective of their ability to take leverage. In contrast, the migration of bond investors to the

CDS market still leads to a first-order reduction in bond demand.16 Although in Proposition 1 we set

the CDS trading cost cCDS to 0, these results continue to hold when both the bond and the CDS are

subject to strictly positive trading costs (see Section 3.3.3).

The above discussion highlights the main economic trade-off that arises when the CDS is intro-

duced. On one hand, CDS introduction can crowd out demand for the bond, which puts downward

pressure on the bond price. On the other hand, through the basis-trader effect CDS introduction im-

proves the allocation in the bond market, because it allows investors with long horizons to hold more

of the illiquid bond, putting upward pressure on the bond price. As shown above, CDS introduction

is more likely to increase the bond price when basis traders can take substantial leverage and when

there is a significant liquidity difference between the bond and the CDS.17

16The result that CDS introduction always reduces the bond price when the basis-trader effect is not present (i.e., L = 1
or cB → 0) is more general than the uniform investor distribution: it is sufficient to assume that the joint density f(µ, π) is
symmetric around π and satisfies translational invariance with respect to µ, i.e., f(µ, π) = f(µ′, π). However, relaxing these
assumptions, one can find distributions for which the reduction in short selling outweighs the crowding out of long positions.
In this case, CDS introduction can raise the bond price even when L = 1 or or cB → 0. From Figure 2, we see that this
requires that the mass of traders in the shorting triangle is larger than the mass of long bond investors crowded out by CDS
introduction. Note, however, that the main economic trade-off between (potential) crowding out of bond demand due to
migration of investors to the CDS market and the additional demand generated by basis traders remains unchanged.

17One way to isolate the forces at work is to consider the extreme cases in which only one of the two dimensions of
heterogeneity is present. If investors differ only in their trading frequencies and there is no disagreement about default
probabilities, then only the basis-trader effect is present: investors with infrequent trading needs hold levered basis positions,
purchasing CDS protection from investors with more frequent liquidity shocks. In this case, CDS introduction always raises
the bond price. In contrast, when there is only disagreement about the default probability, no basis traders emerge and only
the crowding-out effect is present: relatively optimistic investors are indifferent between holding the bond and selling CDS
protection, whereas pessimistic investors purchase CDS protection. In this case, CDS introduction lowers the bond price.
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The final result in Proposition 1 states that CDS introduction is more likely to increase the bond

price when there is little disagreement about the bond’s default probability. The intuition for this

result is that the positive price effect of CDS introduction is mainly driven by investors with moderate

beliefs, who become levered basis traders when the CDS is available. An increase in disagreement

reduces the mass of investors with moderate beliefs and therefore weakens the increase in bond demand

from basis traders.

The main empirical prediction of Proposition 1 is that the price effect of CDS introduction on bond

prices is generally ambiguous and depends on bond and firm characteristics. This is consistent with

the emerging empirical literature on the effect of CDSs on the cost of financing for firms. Moreover, the

specific empirical patterns regarding which issuers benefit from CDS introduction are in line with the

predictions of our model: consistent with the prediction that relative trading costs matter, Ashcraft

and Santos (2009) and Shim and Zhu (2014) find that CDS introduction tends to reduce funding

costs when bond and CDS differ sufficiently in liquidity.18 Similarly, Nashikkar, Subrahmanyam,

and Mahanti (2011) show that, controlling for bond liquidity (measured by their “latent liquidity”

measure), bonds of issuers with more liquid CDS contracts (in terms of bid-ask spreads) have lower

yields. Consistent with the prediction that CDS introduction is less likely to raise bond prices when

there is substantial disagreement, Ashcraft and Santos (2009) find that firms with high earnings

forecast dispersion face increased funding costs once a CDS is introduced. Finally, Jiang and Zhu

(2015) provide direct evidence for the investor holding patterns predicted by our model: mutual funds

with more frequent liquidity needs (proxied by fund flow volatility and portfolio turnover) are more

likely to substitute long bond positions with short positions in the CDS.

In addition to the result on the effects of CDS introduction on the bond price, our model generates

predictions regarding turnover and price impact in bond and CDS markets. We define turnover in the

bond market as bond trading volume divided by the supply of the bond, and CDS turnover as CDS

trading volume divided by the notional amount (open interest) of outstanding CDSs.

18Ashcraft and Santos (2009) proxy for CDS liquidity using the number of daily quotes, whereas Shim and Zhu (2014) use
the standard deviation of CDS quotes.
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Proposition 2. Turnover in the bond and CDS market.

(i) Turnover in the CDS market is higher than turnover in the bond market.

(ii) Turnover in the underlying bond decreases when the CDS is introduced.

The predictions in Proposition 2 follow relatively directly from the clientele effect that arises

because investors sort themselves into the bond and CDS markets depending on the frequency of their

liquidity shocks. Nevertheless, these predictions offer an additional dimension along which the model

can be linked to empirical evidence: Consistent with the first prediction in Proposition 2, Oehmke

and Zawadowski (2014) document average monthly CDS turnover of more than 50%, whereas average

turnover in the underlying bonds is around 7.5% per month. Consistent with the second prediction,

Das, Kalimipalli, and Nayak (2014) show that CDS introduction is indeed associated with a decrease

in turnover in the underlying bond.

However, even though CDS introduction unambiguously lowers bond turnover, this does not nec-

essarily imply that the bond market becomes less liquid in terms of the permanent price impact of

bond supply shocks, | dpdS |.
19 In fact, CDS introduction can reduce the permanent price impact of bond

supply shocks despite lower turnover in the bond market.

Proposition 3. The effect of CDS introduction on price impact in the bond market. CDS

introduction reduces price impact in response to bond supply shocks, | dpdS |, when

(i) basis-trader leverage L is sufficiently high,

(ii) the bond trading cost cB is sufficiently high, and

(iii) disagreement about the bond’s default probability ∆ is sufficiently low.

Proposition 3 shows that, depending on basis-trader leverage, bond trading costs, and disagree-

ment, CDS introduction can decrease the permanent price impact of bond supply shocks, | dpdS |. This

effect is driven by the presence of basis traders: levered basis traders cushion the price effect of bond

19Note that the permanent price impact of bond supply shocks is an endogenous object and therefore distinct from the
exogenous bond trading cost cB, which captures the bid-ask spread and temporary price impact costs.
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supply shocks, particularly when L and cB are large. This is consistent with the evidence in Massa and

Zhang (2012), who show that CDSs dampen the price impact of forced bond sales. Accordingly, the

effect of CDS introduction on bond “liquidity” can differ depending on the specific liquidity measure

used (e.g., turnover or price impact). Proposition 3 therefore provides a potential explanation for the

empirical results of Das, Kalimipalli, and Nayak (2014), who find that, even though CDS introduction

reduces bond turnover, there is no clear directional effect of CDS introduction on the Amihud (2002)

price impact measure.

3.2 The CDS-bond basis

In this section, we investigate the relative pricing of the bond and the CDS when both instruments

are available. The relative pricing of bonds and CDSs is captured by the CDS-bond basis, which has

attracted considerable attention in the wake of the financial crisis of 2007–09. The CDS-bond basis

is defined as the difference between the spread of a synthetic bond (composed of a long position in a

risk-free bond of the same maturity and coupon as the underlying risky bond and a short position in

the CDS) and the spread of the actual underlying bond. Intuitively speaking, when the CDS-bond

basis is negative, the bond spread is larger than the CDS spread, which means that the bond is cheaper

than the payoff-equivalent synthetic bond.

Absent frictions, the CDS-bond basis should be approximately zero. The reason is that a portfolio

consisting of a long bond position and a CDS that insures the default risk of the bond should yield

the risk-free rate.20 Since the financial crisis, the CDS-bond basis has been consistently negative for

many reference entities.21

In our framework, a negative basis between the bonds and the CDS arises endogenously from the

difference in trading costs. To calculate the basis, note that in our setting a risk-free bond with the

same maturity as the risky bond trades at a price of one (since there is no discounting). We can

20See Duffie (1999) for conditions under which this arbitrage relationship holds exactly.
21See, e.g., Bai and Collin-Dufresne (2013). Note, however, that positive bases do occur in some instances and are usually

attributed to frictions that are outside of our model, such as short-selling constraints that arise from imperfections in the
repo market, the cheapest-to-deliver option, and control rights associated with the underlying bond (see JPMorgan 2006).
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then calculate the spread of the risky bond above the risk-free rate as the price difference between

the risk-free and the risky bond divided by the expected time to maturity 1/λ. This yields a bond

spread of λ(1− p). Analogously, given the CDS price q we can calculate the CDS spread as λq. The

CDS-bond basis, defined at midprices, is then given by

basis = spreadCDS − spreadbond = −λ (1− p− q) . (10)

In addition, we define the “implementable basis,” which includes the cost of establishing the basis-trade

position and therefore reflects the basis-trade return available to an arbitrageur, as:

implementable basis = ask spreadCDS − ask spreadbond = basis− λcB + cCDS

2
, (11)

where, as in the preceding analysis, we set cCDS = 0. Based on the bond and CDS market equilibrium

derived above, the CDS-bond basis then satisfies the following properties.

Proposition 4. The CDS-bond basis. In the presence of a frictionless CDS market (cCDS = 0),

the CDS-bond basis is given by

basis = −λcB
2
− λ∆

2

√
1 + 8Φ cB

λ
S
∆ − 1

Φ
≤ 0, (12)

where Φ ≡ 1 + 2L(L − 1). The CDS-bond basis (and the implementable CDS-bond basis) is more

negative when

(i) bond supply S is large,

(ii) the bond trading cost cB is high,

(iii) basis traders can take less leverage (small L), and

(iv) disagreement about the bond’s default probability ∆ is high.

23



The source of the negative basis is straightforward. Because bond trading costs are higher than

those of the CDS, the bond trades at a discount relative to the CDS. The resulting CDS-bond basis

is larger when basis traders find it harder to trade against the basis (small L) and when the supply of

the bond is large.

Proposition 4 generates a number of time-series and cross-sectional predictions on the CDS-bond

basis. First, the basis becomes more negative in response to supply shocks in the bond market,

consistent with evidence in Ellul, Jotikasthira, and Lundblad (2011). Second, bonds with high trading

costs (relative to the associated CDS) are predicted to have more negative CDS-bond bases, consistent

with the evidence in Bai and Collin-Dufresne (2013), who find that higher bond bid-ask spreads are

associated with a more negative CDS-bond basis. Third, higher basis-trader leverage compresses

the negative basis. Therefore, at times when basis traders can take substantial leverage, the basis

should be close to zero (the implementable basis goes to zero as L→∞). In contrast, during times of

tough funding conditions, the equilibrium basis becomes more negative, consistent with the evidence in

Gârleanu and Pedersen (2011), Fontana (2012), and Mitchell and Pulvino (2012). Relatedly, Choi and

Shachar (2014) provide evidence that the unwinding of CDS-bond basis arbitrage trades was a main

cause of the large negative basis in 2008. Fourth, bonds characterized by substantial disagreement

about default probabilities have more negative bases. In practice, high-yield bonds usually have high

levels of disagreement and high trading costs. Consistent with our model, they also have more negative

CDS-bond bases (Gârleanu and Pedersen 2011; Bai and Collin-Dufresne 2013).

In addition to characterizing the determinants of the CDS-bond basis, our model pins down the

size of the basis trade.

Corollary 1. The size of the basis trade. The amount of bonds held by basis traders in equilibrium

is given by

size of the basis trade =
L
(
L− 1

2

)
∆λcB

(implementable basis)2. (13)
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In equilibrium, basis-trade positions are increasing in the bond supply S, the bond trading cost cB,

and basis-trader leverage L and are decreasing in disagreement ∆.

The main prediction of Corollary 1 is that the joint dynamics of the CDS-bond basis and the

size of the basis trade depend on the type of shock that moves the basis. When the basis becomes

more negative because of bond supply shocks or higher bond trading costs, this also makes the basis

trade more profitable, drawing more investors into the basis trade. In these cases, a larger negative

basis is associated with larger basis-trader positions. In contrast, lower basis-trader leverage and

higher disagreement make the basis more negative because they reduce the supply of basis-trader

capital, such that a larger negative basis is associated with smaller basis-trader positions. Consistent

with these predictions, Oehmke and Zawadowski (2014) document a positive cross-sectional relation

between CDS positions (a proxy for CDS demand by basis traders) and bond trading costs. They

also show that, as funding conditions worsen (i.e., basis-trader leverage L decreases), the correlation

between the CDS positions and the implementable negative basis weakens.

3.3 Extensions

In this section we discuss how our framework can be extended to allow for multiple bond issues,

endogenous trading costs, and positive trading costs in the CDS market.

3.3.1 Two bond issues

In this subsection, we briefly discuss an extension of our model to a setting where an issuer has multiple

bond issues outstanding: a more liquid issue and a less liquid issue. One interpretation of this setting

is that the liquid issue is a recently issued “on-the-run” bond, while the less liquid issue is an older “off-

the-run” bond. Alternatively, the liquid bond may be a relatively standard bond, whereas the illiquid

bond is more custom-tailored for a particular investor clientele. Because the liquid and illiquid bonds

are held by different investors, CDS introduction affects the prices of the two bonds differentially.

The liquid bond is held by investors with relatively frequent liquidity shocks and is therefore affected
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disproportionately by the crowding-out effect of CDS introduction. The illiquid bond, on the other

hand, benefits disproportionately from the increased demand from basis traders. This implies that

illiquid bonds generally benefit more from CDS introduction than liquid bonds. In fact, it is possible

that the price of the illiquid bond increases while the price of the liquid bond decreases in response

to CDS introduction (see section 1 of the online appendix for further details).

Given that illiquid bonds benefit disproportionately from CDS introduction, firms with CDSs may

issue more of these types of bonds. For example, when a CDS is available, firms may issue more

customized bonds that cater to specific investors (e.g., pension funds or insurance companies), given

that the CDS allows these investors to take levered hedged positions. To the extent that long-term

bonds are more illiquid than short-term bonds, CDS introduction may also induce firms to issue more

long-term bonds, consistent with the evidence in Saretto and Tookes (2013).

3.3.2 Endogenous trading costs

An important assumption of our analysis is that the trading costs cB and cCDS are exogenous and,

therefore, the bond trading cost cB is not affected by CDS introduction. While fully endogenizing

trading costs would go beyond the scope of this paper, the results on turnover presented in Proposition

2 allow us to consider endogenous trading costs in reduced form. In search models (e.g., Duffie,

Gârleanu, and Pedersen 2005), a reduction in trading activity is usually associated with higher trading

costs in the form of larger bid-ask spreads.22 We can allow for this possibility through a slight

adjustment in Equation (9): In the third term of the expression, cB would now be replaced by c̃B > cB

to reflect higher bond trading costs post CDS introduction. The increase in bond trading costs would

therefore put negative pressure on the bond price, partially offsetting the potential bond price increase

resulting from CDS introduction.23

22More formally, if CDS introduction reduces the intensity with which bond traders meet trading partners, this would
result in lower trading activity and higher bid-ask spreads.

23More generally, in such an extension the trading costs in the bond and CDS markets would be given by fixed points,
where each trading cost must be consistent with the amount of trading activity in the respective market. Note that such a
fixed-point argument may make the trading cost difference between the bond and the CDS self-sustaining, similar in spirit
to the results of Vayanos and Wang (2007).
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3.3.3 CDS market with frictions

Up to now, we have focused on the particularly tractable case in which CDSs involve no trading costs

(cCDS = 0). This assumption made solving for the equilibrium in the CDS market particularly easy

because it ensured that q = π, which allowed us to solve sequentially for equilibrium prices of the

CDS and the bond. When cCDS > 0, this is no longer possible and one has to jointly solve for bond

and CDS prices. Because the CDS price now also reflects trading frictions, it is generally the case

that q 6= π. Although closed-form solutions are not available for this case, the main economic results

derived above continue to hold (see section 2 of the online appendix for further details).

Figure 4 illustrates the equilibrium when there are also trading costs in the CDS market. In

contrast to the frictionless CDS case, investors with sufficiently frequent liquidity shocks now stay out

of the market altogether and hold cash. Despite this difference, the introduction of a CDS affects the

bond market through the same three effects as before: (i) the CDS crowds out some long bondholders;

(ii) the CDS eliminates short sellers; and (iii) the CDS leads to the emergence of hedged basis traders,

who exert upward pressure on the bond price when they can take leverage (L > 1).

Despite the added complexity of this case, the effect of CDS introduction is similar to the bench-

mark case discussed in the main part of the paper.

Proposition 5. CDS introduction when the CDS market is also subject to trading costs.

When the CDS market is also subject to trading costs, 0 < cCDS ≤ cB, then

(i) The price effect of CDS introduction on the underlying bond is ambiguous.

(ii) The CDS is redundant when cB = cCDS.

(iii) For CDS introduction to raise the bond price, it is necessary that both the trading cost advantage

of the CDS, cB − cCDS, and basis-trader leverage L are sufficiently high.

Therefore, the main economic trade-off between the crowding-out effect that reduces demand for

the bond and the basis-trader effect that leads to an improvement in the bond allocation is unchanged

when we allow for cCDS > 0.
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Figure 4
Bond and CDS market equilibrium when cCDS > 0 and L > 1

The figure illustrates the equilibrium when the CDS is also subject to trading costs (cCDS > 0) and
basis traders can take leverage (L > 1). Compared with Figure 3 (where cCDS = 0), the “sell CDS” and
“buy CDS” regions are now triangles, reflecting higher expected CDS trading costs for investors with
more frequent trading needs (higher µ). As in the case with frictionless CDS, the introduction of the
CDS has three effects: (i) Some investors who, absent the CDS, would purchase the bond now choose
to sell CDS protection, cutting off the top of the bond-buying triangle; (ii) because of the negative
CDS-bond basis, all former short sellers prefer to purchase the CDS, which eliminates the shorting
triangle; and (iii) basis traders (who take a levered hedged position in the bond and the CDS) emerge,
putting upward pressure on the bond price when L > 1.

4 Discussion and Policy Implications

4.1 Welfare

Our analysis up to now has focused on positive results—for example, how does CDS introduction

affect the price of the underlying bond? In this section, we discuss the extent to which our framework

allows us to draw normative conclusions: Does the introduction of a CDS improve welfare?

Welfare effects depend on the interpretation of the differences in valuations that generate trading

motives. We first consider the case in which differences in the valuations of the cash flows paid

by the bond and the CDS arise because of risk-based private valuations. We then discuss how the
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welfare conclusions change if trading motives are generated by differences in beliefs. Also note that

meaningful welfare discussion should include the issuer’s investment decision. We model this in the

simplest possible way by assuming that the issuer sells a fixed amount S of bonds and invests the

funds in a technology that pays R ≥ 1 per unit invested in the no-default state. We focus on total

(utilitarian) welfare and assume throughout that trading costs are deadweight, for example, because

they reflect market power of dealers.24

The key to assessing welfare is the observation that, holding fixed the issuer’s investment decision,

price changes due to CDS introduction cancel out. They are transfers, either between long and short

investors, or between long bondholders and the issuer. Therefore, what matters for welfare is the

ability of investors to share risk, the trading costs incurred to do so, and the issuer’s investment

decision. Denote an investor’s position in the bond or CDS by xBOND and xCDS, respectively. In

the online appendix, we show that, under risk-based private valuations πi and an objective default

probability of π, total welfare can be written as

W1 =

∫
(µ,π)

{
[xBOND(µ, π)− xCDS(µ, π)] (1− π)︸ ︷︷ ︸

payoff to investors

− |xBOND(µ, π)|
(

1

2
+
µ

λ

)
cB︸ ︷︷ ︸

bond trading costs

− |xCDS(µ, π)|
(

1

2
+
µ

λ

)
cCDS︸ ︷︷ ︸

CDS trading costs

}
dF (µ, π) + [(1− π)R− 1] pS︸ ︷︷ ︸

issuer NPV

− (1− π)S︸ ︷︷ ︸
issuer payment

. (14)

This expression captures the payoffs to investors, trading costs (consisting of the lifetime trading costs

of the bond and the CDS and the cost of setting up initial short positions), the net present value

(NPV) generated by the issuer’s investment, and the bond payment made by the issuer to investors.

Based on Equation (14), we see that our model highlights four positive welfare effects of CDS

introduction. First, the migration of offsetting long-short bond positions to the CDS market is welfare-

improving because it lowers the incidence of trading costs that agents pay to share risk (the price at

which this risk is shared changes, but this constitutes a transfer). Second, the availability of the CDS

24The analysis would be similar if trading costs represent pure transfers. The main difference is that when trading costs
are transfers, changes in incurred trading costs are not relevant for overall welfare.
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improves risk sharing because it allows investors who were previously sidelined by the bond’s high

trading cost to share risk via the CDS. Third, the emergence of levered basis traders improves the

bond allocation by reducing trading costs incurred by investors who hold the bond and by allowing,

via the CDS market, the transfer of credit risk to investors who are more efficient holders of default

risk. Fourth, Equation (14) shows that a bond price increase has a positive effect on welfare if it allows

the issuer to increase positive NPV investment. Note that, taken together, these findings imply that

a bond price increase (our focus in the main part of the paper) is a sufficient condition for an increase

in welfare if it allows the issuer to increase positive NPV investment. On the other hand, because of

improvements in risk sharing and reductions in trading costs, a decrease in the bond price does not

necessarily translate into lower welfare.

When trading motives are caused by differences in beliefs, the main change to the welfare analysis

is that offsetting positions now constitute zero-sum bets and do not generate risk-sharing benefits. In

this case, the welfare criterion proposed by Brunnermeier, Simsek, and Xiong (2014) implies that all

offsetting long-short bets (in the bond or the CDS) matter for welfare only to the extent that they

lead to the incidence of deadweight transaction costs.25 In the online appendix, we show that, for a

given belief π̂ about the issuer’s default probability, total welfare can then be written as

W2 = −
∫

(µ,π)

{
|xBOND(µ, π)|

(
1

2
+
µ

λ

)
cB︸ ︷︷ ︸

bond trading costs

+ |xCDS(µ, π)|
(

1

2
+
µ

λ

)
cCDS︸ ︷︷ ︸

CDS trading costs

}
dF (µ, π)

+ [(1− π̂)R− 1] pS︸ ︷︷ ︸
issuer NPV

. (15)

Equation (15) shows that, as before, the migration of long-short bets from the bond to the CDS

market is welfare-improving because it lowers the incidence of transaction costs that agents pay to

make these bets. However, if there is a trading cost also in the CDS market, this gain from moving

existing long-short bets in the bond to the CDS market has to be traded off against the trading

25Intuitively, deadweight transaction costs are the equivalent of the destruction of the pillow in the main example of
Brunnermeier, Simsek, and Xiong (2014).
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costs incurred through additional speculative bets that emerge in the CDS market (in contrast to the

risk-based private valuation case, these additional bets no longer generate any risk-sharing benefits).

Another important difference is that the welfare consequences of a change in investment in response to

a change in the bond price are more difficult to assess. Unless one imposes the restrictive assumption

that the issuer’s investment has positive NPV under any reasonable default probability π̂, no clear

statements can be made.

Finally, note that the above discussion implies that CDS introduction has distributional conse-

quences. For example, when CDS introduction leads to higher bond prices, some bondholders are

worse off (from an ex-ante perspective) when the CDS is available.

4.2 Bond standardization

The prediction that CDS markets allow buy-and-hold investors to absorb more of the bond supply

provides an interesting angle on the recent discussion on standardization in the bond market. For

example, in a recent proposal, BlackRock (2013) argues for more standardized corporate bonds, in an

attempt to improve secondary-market liquidity (i.e., lowering cB). However, as some market partici-

pants have pointed out, for issuers standardization may come at the expense of being able to tailor

bonds to particular clienteles; a bond that is tailored to a particular investor may fetch a higher

at-issue price, despite higher trading costs in the secondary market. Our results suggest that the pres-

ence of a CDS allows such issues to be held predominantly by buy-and-hold investors, which reduces

the incidence of higher secondary-market trading costs that come with customization. Therefore, the

introduction of the CDS can be viewed as a “backdoor” way to achieve some of the benefits of bond

standardization, while still allowing issuers to cater their bonds to specific investors.

Our model also highlights that bond standardization, like CDS introduction, has distributional

consequences. Proposals to standardize the bond market in order to improve secondary-market liq-

uidity are therefore unlikely to be supported by all market participants. Clearly, dealers may oppose

moves toward bond standardization if the resulting reduction in trading costs reduces dealer profits.
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But bond market participants may also be opposed; in particular, long-term bond investors are nega-

tively affected (in an ex-ante sense) because for them the bond price increase outweighs the reduction

in bond trading costs that they incur. This is easiest to see for the extreme case of pure buy-and-

hold investors (µi = 0), who pay a higher price for the bond but do not benefit from lower trading

costs. Generally speaking, the set of investors that loses from bond standardization is the same set

of investors that is negatively affected by CDS introduction that raises the bond price; in both cases,

buy-and-hold investors lose out, whereas investors with more frequent trading needs are more likely

to gain.

4.3 Naked (and other) CDS bans

In this section, we apply our framework to assess a number of policy interventions: (i) banning naked

CDS positions (as recently implemented for EU sovereign bonds), (ii) banning naked CDS and short

positions in the bond, (iii) banning CDS markets altogether, and (iv) banning both CDSs and short

positions in bonds. We mainly take a positive perspective and use our framework to assess these

interventions against the policy objective of reducing bond yields, and therefore borrowing costs, for

issuers. However, recall from Section 4.1 that, from a welfare perspective, potential benefits from

lower yields have to be traded off against restricted risk sharing.26

First, we consider a naked CDS ban. EU regulation 236/2012, in effect since November 1, 2012,

allows market participants to purchase CDS protection only if they own the underlying bond or have

other significant exposure to the sovereign, thereby restricting so-called naked CDS positions. Short

selling of the bond is allowed under this regulation as long as the short seller is able to borrow the

bond. The effect of a ban on naked CDS positions depends on what investors who were previously

26Clearly, the simple framework proposed here is not rich enough to yield detailed policy prescriptions. Moreover, some of
the policies that we discuss in the following subsections may be driven by considerations that are outside of our model. For
example, our model does not capture so-called bear raids, which are sometimes cited as a justification for the naked CDS ban
in Europe. Nevertheless, even in the context of our simple framework, the effects of CDS market interventions on bond yields
are subtle and can potentially go in the “wrong” direction (i.e., contrary to the policymaker’s objective, such interventions
can increase borrowing costs for issuers). Also note that, in the context of sovereign bonds, our assumption that the bond
has higher trading costs than the CDS implies that the following policy analysis is likely not applicable for the most liquid
sovereign bonds, such as U.S. Treasury bonds or German Bunds.
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holding naked CDS protection choose to do instead. Our framework highlights three effects, illustrated

in Figure 5. First, some investors switch from a naked CDS position to a short position in the bond.

Hence, as a result of a ban on naked CDSs, short sellers reappear, putting downward pressure on the

bond price. Second, some investors who formerly held a naked CDS position become basis traders

and hold the bond and the CDS, up to the maximum leverage L. This second effect increases demand

for the bond, resulting in upward pressure on the bond price. Third, some investors who previously

held naked CDS protection switch to simply holding cash.

The effect of banning naked CDS positions on the cost of borrowing therefore depends on the

relative size of these effects and, in the absence of restrictions on the investor distribution, can go in

either direction. In particular, it is possible that bond and CDS spreads move in opposite directions

in response to a naked CDS ban such that borrowing costs for issuers may rise, even when CDS

spreads decline. Consistent with this prediction, a recent report by the European Securities and

Markets Authority on the naked CDS ban in Europe (ESMA 2013) documents a modest 26-basis-

point reduction in CDS spreads, but finds no evidence that EU sovereign bond yields dropped as a

result of the naked CDS ban.

Second, a combined ban on naked CDSs and short positions always raises the bond price in our

framework. In particular, as seen above, by itself a naked CDS ban can be ineffective in lowering

bond yields because of the reemergence of short sellers in the bond market. In order to guarantee

a reduction in borrowing costs, a naked CDS ban has to be supplemented with restrictions on short

selling in the bond market.

Third, an outright ban of the CDS market amounts to a simple comparison of the equilibrium with

a CDS market to the equilibrium without a CDS market. From Proposition 1, we know that the effect

of CDS introduction on the bond yield is ambiguous. Therefore, banning CDS markets altogether

may either increase or decrease borrowing costs for issuers, depending on parameters. Accordingly, a

ban on CDSs is more likely to lead to a reduction in funding costs if trading costs in the bond and
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Figure 5
Banning naked CDS when cCDS > 0 and L > 1

The figure illustrates the change in investor strategies when naked CDS positions are banned, holding
constant the price of the bond. The dashed line shows the position of CDS buyers and basis traders
before the ban. Compared with Figure 4, which depicts the same setup except that naked CDS positions
are allowed, there are two major changes. Some investors who used to purchase naked CDS protection
now choose to short the bond, exerting downward pressure on the bond price. Some investors who
used to purchase naked CDS protection now become basis traders, which exerts upward pressure on
the bond price.

the CDS market are similar, and when basis traders are restricted in the amount of leverage they can

take.

Fourth, we consider the effect of banning both the CDS market and short positions in the bond.

This intervention amounts to a comparison of the bond and CDS market equilibrium described in

Proposition 1 to a setting where only long positions in the bond are allowed and no CDS is available.27

Perhaps surprisingly, this intervention does not necessarily lower bond yields for issuers. Although

restricting short positions prevents the reemergence of short sellers in response to a ban on CDS

positions, a trade-off now emerges from the countervailing effects of (i) increased demand for the bond

27This long-only case can be solved analogously to the no-CDS case in Lemma 1. The main difference is that the shorting
triangle in Figure 2 would disappear. Market clearing then requires that demand from the buying triangle be equal to bond
supply.
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from investors who formerly sold the CDS but now purchase the bond and (ii) the reduction in demand

for the bond that results from the elimination of basis traders. Because basis traders are price neutral

when they cannot take leverage (L = 1), in this case a joint ban on CDSs and short selling leads to

an unambiguous decrease in the bond yield. When basis traders can take leverage, on the other hand,

bond yields may increase or decrease, depending on the relative size of the two effects.

5 Conclusion

This paper provides a liquidity-based model of CDS markets, bond markets, and their interaction. In

our framework, CDSs are nonredundant because they have lower trading costs than the underlying

bonds. Our model shows that CDS introduction involves a trade-off; it reduces demand for the bond

(the crowding-out effect) but leads to an improvement in the bond allocation because it allows long-

term investors to become levered basis traders and absorb more of the illiquid bond (the basis-trader

effect).

CDS introduction is more likely to raise the price of the underlying bond when there is a sig-

nificant trading-cost difference between the bond and the CDS and when hedged basis traders can

take substantial leverage. For firms with multiple bond issues, the more illiquid bonds (such as off-

the-run bonds or custom-tailored issues) are more likely to benefit from CDS introduction. Beyond

characterizing the impact of CDS introduction on the pricing of the underlying bond, the model

also generates empirical predictions regarding trading volume in bond and CDS markets, as well as

the cross-sectional and time-series properties of the CDS-bond basis, thereby providing an integrated

framework that matches many of the stylized facts in bond and CDS markets. Finally, our framework

can be used to assess a number of policy measures related to CDS markets, such as the recent EU

ban on naked CDS positions.

To conclude, it is worth pointing out that the main insights from our model may apply to other

derivatives that have trading costs that are lower than those of the underlying asset. Beyond CDSs,

examples may include index futures, bond futures, and exchange-traded funds (ETFs).
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Appendix: Proofs

Parametric assumptions for closed-form solutions. We make three main parametric assumptions in

order to simplify the analysis. Our qualitative results do not depend on these assumptions, but relaxing these

assumptions would lead to slightly different expressions. Assumptions 1 and 2 ensure that both long and short

bond positions are present before CDS introduction (and, hence, the region of long bond investors is a triangle):

Assumption 1. ∆ > cB.

Assumption 2. S < λ
2

(∆−cB)2

cB∆ .

Assumption 3 ensures that the region of basis traders forms a triangle, which requires that basis-trader

leverage is not too high:

Assumption 3. S < λ
2

∆
cB

2L2+1
4L2 .

Proof of Lemma 1. It follows from Assumptions 1 and 2 that both long and short bond positions emerge.

Moreover, the regions of long and short investors are triangles, as depicted in Figure 2. Evaluating the zero-

valuation line of a long bond position, VlongBOND,i = 0, at µi = 0 and at πi = π − ∆
2 yields a right-angled

“buy” triangle with base 1− p− cB
2 − (π − ∆

2 ) and height λ
cB

[
1− p− cB

2 − (π − ∆
2 )
]
. Similarly, evaluating the

zero-valuation line of a short bond position, VshortBOND,i = 0, at µi = 0 and at πi = π+ ∆
2 yields a right-angled

“short” triangle with base π + ∆
2 −

(
1− p+ cB

2

)
and height λ

cB

[
π + ∆

2 −
(
1− p+ cB

2

)]
. Given the uniform

conditional density of investors, f(π|µ) = 1
∆ , market clearing then requires that

1

∆

{
1

2

λ

cB

[
1− pnoCDS −

cB
2
−
(
π − ∆

2

)]2

− 1

2

λ

cB

[
π +

∆

2
−
(

1− pnoCDS +
cB
2

)]2
}

= S, (A1)

which yields

pnoCDS = 1− π − cB
λ

∆

∆− cB
S. (A2)

Proof of Lemma 2. We first show that the equilibrium CDS price is given by q = π, irrespective of positions

taken in the bond market. This result allows us to solve sequentially for price of the CDS and the bond.

Formally, the pricing of the CDS follows from a limit argument. Suppose that the support of liquidity shock

intensities is given by [0, µ], where µ denotes the maximum liquidity shock intensity. Denote the associated

CDS price by q(µ). Because of the presence of long bondholders, market clearing in the CDS market requires
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that, for any finite µ, q(µ) > π. Intuitively, because long positions take away from potential CDS sellers, the

CDS price has to be slightly more attractive than the average default probability for markets to clear. However,

in the limit µ → ∞, bond positions become negligibly small relative to positions in the CDS market, which

implies that the price of the CDS converges to the average default probability, limµ→∞ q = π.

When a CDS priced at q = π is available, solving VsellCDS,i > VlongBOND,i for µi yields that any investor

with liquidity shock intensity µi >
λ
cB

(
1− p− cB

2 − q
)

strictly prefers selling a CDS to taking a long position in

the bond. Moreover, because of its trading costs, the bond must trade at a price below 1− π. Therefore, given

availability of the CDS priced at q = π, no investors will short the bond and, by the same observation, the positive

basis trade is not profitable. Comparing the payoff from a negative basis trade, L(VlongBOND,i + VbuyCDS,i),

with VlongBOND,i and VbuyCDS,i yields a right-angled basis-trader triangle with base (2L − 1)(1 − p − cB
2 − q)

and height λ
cB

(
1− p− cB

2 − q
)
. Assumption 3 guarantees that this basis-trader region is indeed a triangle.

Market clearing in the bond market requires that the demand from long bond investors (the “buy bond”

trapezoid) and basis traders (the “basis-trader triangle”) equals the supply of the bond:

1

∆

{
1

2

[
q −

(
π − ∆

2

)
+ q − (L− 1)

(
1− p− cB

2
− q
)
−
(
π − ∆

2

)][
λ

cB

(
1− p− cB

2
− q
)]

+
1

2

λ

cB
(2L− 1)

(
1− p− cB

2
− q
)2
}

= S, (A3)

which, substituting in for the equilibrium CDS price (q = π) and defining Φ ≡ 1 + 2L(L− 1), yields

pwithCDS = 1− π − ∆

2

√
1 + 8Φ cB

λ
S
∆ − 1

Φ
− cB

2
. (A4)

Proof of Proposition 1. The bond price change in response to CDS introduction can be calculated directly

from Lemmas 1 and 2:

dp = pwithCDS − pnoCDS =
cB
λ

∆

∆− cB
S − ∆

2

√
1 + 8Φ cB

λ
S
∆ − 1

Φ
− cB

2
. (A5)

Part (i) follows from the observation that (A5) cannot be signed unless we impose further restrictions on

parameters (in the proof of part (iii), we provide specific examples of both increases and decreases in the bond

price in response to CDS introduction). Part (ii) follows directly from setting cB = 0 in (A5), which yields

dp = 0. To show part (iii), we first show that, for a given level of basis-trader leverage L, the bond price
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decreases in response to CDS introduction when cB is sufficiently small. This can be seen by differentiating

Equation (A5) with respect to the bond trading cost and evaluating the resulting expression at cB = 0, which

yields − 1
2 −

S
λ < 0. Given that the bond price is not affected by CDS introduction when cB = 0, this implies

that for bond trading costs close to zero CDS introduction reduces the bond price. To show that the bond price

can only increase if basis-trader leverage is sufficiently high, we observe from (A5) that pwithCDS − pnoCDS < 0

when L = 1 and that

d(pwithCDS − pnoCDS)

dL
=

∆(2L− 1)
(
−
√

∆λ (8 (2L2 − 2L+ 1)ScB + ∆λ) + 4
(
2L2 − 2L+ 1

)
ScB + ∆λ

)
(2L2 − 2L+ 1)

2
√

∆λ (8 (2L2 − 2L+ 1)ScB + ∆λ)
> 0. (A6)

From Lemma 2 we see that pwithCDS|L→∞ = 1− π − cB
2 . Therefore, if pnoCDS < 1− π − cB

2 , CDS introduction

raises the bond price when L is sufficiently high. This is the case whenever S > λ
2

∆−cB
∆ , which is not ruled out

by either Assumption 2 or 3. To show (iv), we note that

d(pwithCDS − pnoCDS)

d∆
=

−4(2L2−2L+1)ScB−∆λ√
∆(8(2L2−2L+1)ScB+∆λ)

+
√
λ

2
√
λ (2L2 − 2L+ 1)

− Sc2B
λ (∆− cB) 2

< 0. (A7)

The above condition holds if and only if

√
∆λ (8 (2L2 − 2L+ 1)ScB + ∆λ)

[
λ (∆− cB) 2 − 2

(
2L2 − 2L+ 1

)
Sc2B

]
< λ (∆− cB) 2

[
4
(
2L2 − 2L+ 1

)
ScB + ∆λ

]
, (A8)

which can be shown to hold by bounding the left-hand side from above by dropping the negative term

−2
(
2L2 − 2L+ 1

)
Sc2B.

Proof of Proposition 2. To prove (i), we note that trading frequency of all investors selling the CDS is higher

than the trading frequency of any investor buying the bond through either a long-only trade or a basis trade

(see Figure 2). This implies that turnover generated by CDS sellers (their average trading frequency) is higher

than turnover in the bond market (the average trading frequency of investors who hold the bond). Note that

this argument even ignores additional CDS turnover generated by CDS buyers (i.e., the turnover generated by

CDS sellers strictly underestimates overall CDS turnover).
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To prove (ii), we observe that CDS introduction changes the bond-holding regions in two ways, both of

which lead to lower bond turnover (see Figure 2). First, the elimination of the shorting triangle unambiguously

decreases bond trading. Because the amount of bonds outstanding S is unchanged, this decreases bond turnover.

Second, of the remaining bond buyers (including basis traders) even those with the highest trading frequency

have a lower trading frequency than the bond buyers that have been eliminated through introduction of the

CDS. Because the overall required number of bond buyers decreases (the CDS eliminates short selling), the

mass of low turnover investors added to the bond buyers (if any) is smaller than the mass of former bond buyers

who are crowded out into the CDS market. Because these new bond buyers all have a lower trading frequency

than the bond investors crowded out by the CDS market, the amount of equilibrium trading diminishes. Given

that the bond supply S is unchanged, turnover in the bond market decreases.

Proof of Proposition 3. To compare price impact with and without the CDS, we can use the expressions in

Lemmas 1 and 2 to calculate

∣∣∣∣dpnoCDS

dS

∣∣∣∣ =
cB
λ

∆

∆− cB
(A9)∣∣∣∣dpwithCDS

dS

∣∣∣∣ =
cB
λ

2√
1 + 8Φ cB

λ
S
∆

. (A10)

This implies that price impact is lower in the presence of the CDS if

∆

∆− cB
>

2√
1 + 8Φ cB

λ
S
∆

, (A11)

where, as before, Φ ≡ 1 + 2L(L − 1). The results in the proposition then follow directly from (A11): First,

note that the right-hand side goes to zero as L→∞, whereas the left-hand side is positive and independent of

L. Hence, (A11) is satisfied if basis-trader leverage L is sufficiently high, proving (i). Second, as cB increases

toward its upper bound ∆, the left-hand side diverges to +∞, while the right-hand side decreases, proving (ii).

Third, as ∆ decreases toward its lower bound cB, the left-hand side diverges to +∞, while the right-hand side

stays bounded from above, proving (iii).
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Proof of Proposition 4. As discussed in the main text, the CDS-bond basis, defined at midprices, is given

by basis = −λ (1− p− q). Inserting p = pwithCDS and q = π yields

basis = −λcB
2
− λ∆

2

√
1 + 8Φ cB

λ
S
∆ − 1

Φ
≤ 0, (A12)

where, as before, Φ ≡ 1 + 2L(L− 1). The implementable basis (defined at ask prices) is given by

implementable basis = −λ∆

2

√
1 + 8Φ cB

λ
S
∆ − 1

Φ
≤ 0. (A13)

The comparative statics in the proposition follow directly from differentiating the basis with respect to S, cB,

L, and ∆ and are omitted for brevity.

Proof of Corollary 1. The size of the basis trade is defined as the amount of bonds (and, equivalently, CDSs)

that basis traders own in equilibrium. This can be calculated as the mass of traders in the basis-trader triangle

multiplied by the leverage parameter L. This yields

size of the basis trade =
L(2L− 1)

[√
∆ (8 (2L2 − 2L+ 1)ScB + ∆λ)−∆

√
λ
]2

8∆ (2L2 − 2L+ 1)
2
cB

, (A14)

which can be rearranged to yield the expression in the proposition. The comparative statics for S, cB, and ∆

follow directly from differentiating this expression with respect to the relevant parameters. The comparative

statics for L are slightly more complicated: The size of the basis trade is increasing in L if and only if

(
4L4 − 12L3 + 12L2 − 6L+ 1

) 8ScB
∆λ

<
(
8L3 − 6L2 − 2L+ 1

)(√
1 + (2L2 − 2L+ 1)

8ScB
∆λ

− 1

)
. (A15)

For L ≥ 1 this can be shown to hold if ScB
∆λ < 1, which is true by Assumption 3.

Proof of Proposition 5. When cCDS > 0, closed-form solutions for the equilibrium prices are only available

in special cases. Part (i) follows because, in the absence of further restrictions on parameters, the price effect

of CDS introduction can go either way (in the proof of part (iii), we provide specific examples of both increases

and decreases in the bond price in response to CDS introduction). To show part (ii), we first note that, when

cCDS is sufficiently close to cB, there are no basis traders (the negative basis is smaller than the trading cost to

set up the basis trade). Given that there are no basis traders in this case, we can then solve for the equilibrium
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prices in closed form:

pwithCDS = 1− π̄ − cB
2

+
∆

2
+
cCDS (∆− cCDS)

4 (cB − cCDS)
− 2cB − cCDS

4 (cB − cCDS)

√
(∆− cCDS) 2 + 8∆

S

λ
(cB − cCDS)(A16)

q = π̄ − cCDS (∆− cCDS)

4 (cB − cCDS)
+

cCDS

4 (cB − cCDS)

√
(∆− cCDS)

2
+ 8∆

S

λ
(cB − cCDS). (A17)

Note that taking the limit of (A16) as cCDS → cB, we recover Equation (4). This shows that the CDS is

redundant when CDS and bond trading costs are equal, establishing (ii). Holding fixed L and differentiating

(A16) with respect to cCDS and evaluating the derivative at cCDS = cB yields

dpwithCDS

dcCDS

∣∣∣∣
cCDS=cB

> 0, (A18)

which establishes that a small reduction of CDS trading costs starting from cCDS = cB always reduces the

bond price, establishing the first part of (iii). Finally, it follows from the observation that basis traders are

price neutral when they cannot take leverage, that basis-trader leverage L must be sufficiently high for CDS

introduction to increase the bond price. Closed-form solutions are available when L → ∞. In this case, the

basis-trader region shrinks to a point, demanding a finite amount of the bond and an equal amount of the CDS.

The implementable CDS-bond basis is zero (pwithCDS = 1− q), but, because of trading costs in the CDS, q 6= π.

From the equilibrium prices (omitted for brevity), one then finds that CDS introduction raises the bond price

whenever S > λ
2

∆−cB
∆

∆(c2B−c
2
CDS)−cCDSc

2
B

∆(cB−cCDS)2 , which converges to the condition given in the proof of Proposition

1, S > λ
2

∆−cB
∆ , when cCDS → 0.

46


	OehmkeZawadowski2015RFS_cover
	OehmkeZawadowski2015RFS
	Model Setup
	Bond
	Credit default swap
	Investors

	Benchmark: No CDS Market
	Introducing a CDS Market
	The effect of CDS introduction on prices and trading in the bond market
	The CDS-bond basis
	Extensions
	Two bond issues
	Endogenous trading costs
	CDS market with frictions


	Discussion and Policy Implications
	Welfare
	Bond standardization
	Naked (and other) CDS bans

	Conclusion


