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Putting on the Garber Style? Better Not
Colin Howson*y

This article argues that not only are there serious internal difficulties with both Garber’s
and later ‘Garber-style’ solutions of the old-evidence problem, including a recent proposal
of Hartmann and Fitelson, but Garber-style approaches in general cannot solve the prob-
lem. It also follows the earlier lead of Rosenkrantz in pointing out that, despite the appear-
ance to the contrary which inspired Garber’s nonclassical development of the Bayesian
theory, there is a straightforward, classically Bayesian, solution.
1. The ‘Old Evidence Problem’. The ‘old evidence problem’ is reckoned
to be a problem for Bayesian analyses of confirmation in which evidence E
confirms hypothesis H just in case P(HjE) > P(H). It is reckoned to be a prob-
lem because in such classic examples as the rate of advance of Mercury’s
perihelion (M) supposedly confirming general relativity (GR), the evidence
had been known before the theory was proposed; thus, before GRwas devel-
oped P(M) was and remained equal to 1, and Bayes’s Theorem tells us that
therefore P(GRjM) 5 P(GR). The failure is all the more embarrassing since
M was not used by Einstein in constructing his theory (he wrote that he had
heart palpitations when he discovered that M followed straightforwardly
fromGR) and so to all intents and purposes was ‘new’ evidence vis-à-visGR.

Among notable attempts to solve the problem was Garber’s, building on
the suggestion of Glymour (1980) that what confirmed GR was not M itself
but that GR entails M, a fact discovered of course by Einstein himself. In de-
veloping this idea into a general solution, Garber expanded the domain of Pr
to include not only H and E for arbitrary H and E but also ‘H ⊢ E’ as an addi-
tional proposition capable of taking probability less than 1 (while P(E) 5 1)
and sought to show that by imposing appropriate ‘logical’ constraints on the
probabilistic behavior of ‘H ⊢ E’ he could prove that P(Hj‘H ⊢ E ’) > P(H).
*To contact the author, please write to: 16 TranbyAvenue, Toronto, ONM5R 1N5, Canada;
e-mail: howson.colin@gmail.com.
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In this he was only partly successful, but a later refinement due to Earman
(1992) yielded the required result.

A recent paper by Hartmann and Fitelson (2015) takes further the Garber-
style strategy of expanding the domain of the probability function to include
suitable metalevel propositions and seeks to show that it succeeds in a broader
environment where P(E) is not assumed to be 1 or indeed to take any partic-
ular value.1 In what follows I argue that there are severe technical and explan-
atory difficulties with Garber-style approaches in general, including Hartmann
and Fitelson’s, and that in any case no Garber-style approach is in principle
capable of solving the old evidence problem. In the final section I show that
a minimalist version of Objective Bayesianism does straightforwardly solve
the problem, and I argue that only it is capable of furnishing a satisfactory
probabilistic theory of inductive inference.

2. What’s Wrong with Garber-Style Approaches? A prima facie prob-
lematic feature of Garber’s approach is that, as he himself pointed out, it ap-
pears to require a nonclassical probability function to assign values, and in
particular a value less than 1, to statements of the form ‘H ⊢ E’when they are
true. Garber partly circumvented this by taking ‘H ⊢ E’ to be an atomic sen-
tence in a propositional language L closed off under the Boolean operations,
onwhich awholly classical probability function is defined. However, as Eells
pointed out, there is then the anomalous situation that there may be sentences
U and Vof L such that ‘U→V’ is a tautology and hence has probability 1,
while there are two other sentences H and E of exactly the same respective
truth functional for such that ‘H ⊢ E’ is atomic in L and has probability less
than 1 (1990, 214, 215). Thus, it may be that the probability distribution over
the items in L is coherent but only when the bets are not on the content of
those expressions: it is a case of selective blindness. Clearly, a similar situ-
ation can arise if the language in question is first order.

There is another curious feature of the ‘Garber-style’ claim that it is some
logico-epistemological fact, rather than an empirical one, that confirms a sci-
entific theory H—in Garber’s own treatment the logico-epistemological fact
in question is of course just a logical one, namely, that H ⊢ E. Now whether
the language of H and E is propositional or first order, the sentence ‘H ⊢ E’ is
actually a disguised pure-mathematical assertion, indeed essentially an ar-
ithmetical one. In the first-order case, under a Gödel numbering mapping the
formal structure of a first-order language into the standard model of first-
order arithmetic, Gödel’s famous incompleteness proof shows that the entail-
1. They introduce two binary variables X and Y, where X is “the hypothesis H is a satis-
factory explanation of the evidence E” and Y is “the nearest competitor to H is a satisfac-
tory explanation of E,” and show that if X and Y satisfy four allegedly plausible con-
straints, then P(HjX) > P(H) (Hartmann and Fitelson 2015).
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PUTTING ON THE GARBER STYLE? 661
ment relation is a∑1 arithmetical relation (it is of the form ∃xA(x,y,z), where
A(x,y,z) is recursive); in the propositional case it is recursive. Thus, what
Garber, following Glymour, is in effect claiming is that a scientific theory
may be confirmed, Bayesianwise, by a statement that is true for purely arithmet-
ical reasons. That sounds bizarre, and indeed to my mind it is.

In Hartmann and Fitelson’s treatment, also, incoherence lurks not far be-
neath, if not above, the surface. A probability distribution over a propositional
language in which H, X, and Yare the only atomic sentences might be coher-
ent, but not when, so to speak, we look inside those atoms to see what they
assert. Thus, given the sorts of constraints determining what is and what is
not a satisfactory explanation that we would ordinarily assume incorporated
in background information and so ‘built into’ P, it should be an entailment
from that information that H is a satisfactory explanation of E if in fact it
is. In that case, if X is true then, modulo that background information, it is
equivalent to a logical truth T. But since by assumption (to solve the initial
problem) P(X) < 1, we must by coherence have P(T) < 1, which is incoher-
ent. Hartmann and Fitelson say that they “suspect” that their “approach can
be made compatible evenwith subjective Bayesian accounts of scientific ex-
planation” (2015, 717 n. 5). In view of the above, that is rather more than
doubtful.

Not only are there substantial internal problems with Garber-style ap-
proaches, but there is a fundamental, and to my mind devastating, explana-
tory objection. Ever since Einstein published his proof that GR (which I take
to be simply the assumption of a static spherically symmetric field around the
sunwithMercury amaterial point traveling along a geodesic) yielded a straight-
forward explanation of the anomalous amount of Mercury’s perihelion pre-
cession “in full agreement” with the astronomical data (Einstein 1915, 839),
it has been almost universally assumed that GR was strongly confirmed by
the observed perihelion motion, including by Einstein himself: “I found
an important confirmation of that radical Relativity theory; it exhibits itself
namely in the secular turning of Mercury in the course of its orbital motion,
as was discovered by Le Verrier” (831; my emphasis). Indeed, of the three
early tests of GR, gravitational red shift, deflection of light by the sun, and
Mercury’s perihelion motion, the last is regarded by (as far as I am aware)
practically the entire physics community then and now as the most powerful
in its confirming power. Earman sums up the general view: “we want to say
that the perihelion phenomenon did (and does) lend strong support to Ein-
stein’s theory” (1992, 121).

Arguably a desideratum for an adequate confirmation theory is that when
there is such unanimity among the principal actors, it should be modeled
within that theory, or if not, some convincing reason should be supplied
why they are mistaken. Taking his lead from the subjective Bayesian theory,
Garber does, implicitly, argue that they were mistaken, and they were mis-
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taken because they failed to identify the true reason for their increase in con-
fidence in GR: “If old evidence can be used to raise the probability of a new
hypothesis, then it must be by way of the discovery of previously unknown
logical relations. In the cases that give rise to the problem of old evidence,
we are thus dealing with circumstances in which hypotheses are confirmed
not by the empirical evidence itself, but by the discovery . . . that h ⊢ e”
(1983, 120).2

But this is a non sequitur: while it is almost certainly true that the imme-
diate cause of the increase in confidence in GR was the discovery that GR
predicted the observations of Mercury’s deviant perihelion motion (M), it
does not follow that M itself did not confirm GR. As Rosenkrantz pointed
out in a paper published in the same year as Garber’s, according to a Bayes-
ian confirmation theory of long pedigree—going back to Bayes himself—
M provably confirms GR (and to a very large degree) in the usual Bayesian
sense of raising its probability above the prior (assumed nonzero). We will
see in due course that a simple Bayes’s Theorem calculation shows that M
strongly confirmed GR becauseMwas strongly expected given GR (because
it was entailed by GR) and extremely unlikely given the only theory rival to
GR. It follows that, without any appeal to Garber-style modifications of the
formalism, that calculation will explain both how the discovery that GR en-
tailed M justified an augmented confidence in GR and why it was neverthe-
lessM itself that did the confirming.3 In this light, the failure of Garber’s own
theory to account for the virtually unanimous opinion of the science commu-
nity about the confirming nature of M—indeed, implicitly denying it—seems
nothing less than a massive explanatory failure.

All this will of course depend on showing that ‘P(M) 5 1’ can be denied
within the sort of Bayesian theory Rosenkrantz was advocating without sac-
rificing either consistency or the intuitive plausibility of Bayesian reasoning
famously summed up by Laplace as “common sense reduced to a calculus”
2. Tohave ‘h ⊢ e’ confirming h is impossible unless ‘h ⊢ e’ has a probability less than 1. But
in standard subjective Bayesianism a logico-mathematical proposition has probability 1 if
true, whence Garber famously—and (I will argue) wrongly—diagnosed the old evidence
problem as due toBayesianism’s presumption of “logical omniscience” (1983, 106). Good
prepared the ground for the charge of logical omniscience when he claimed that learning
that H implies E should be represented by a transition from P(EjH) < 1 to P(EjH) 5 1
within a theory of what he called “evolving,” or “dynamic,” probability (107; the paper re-
ferred to was first published in 1977).

3. Nothing I have said should be taken to imply that this was Einstein’s own reasoning,
which almost certainly it was not. All that it purports to show is how a fully equipped
Bayesian robot, of a sort whose acquaintance we will make later, might reason when
informed that GR entails M. It does not follow either that because the discovery caused
an increased degree of belief in GR the discovery itself confirmed GR. A drug might also
cause an increased belief in GR.
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PUTTING ON THE GARBER STYLE? 663
(le bon sens réduit au calcul ). To that end, it will be helpful to make a closer
acquaintance with that theory.

3. A Tale of Two Bayesianisms. Now usually referred to as Objective
Bayesianism, it was theBayesian theory until subjective Bayesianism gained
a wider audience after the SecondWorldWar, with a roll call of distinguished
advocates who were largely working scientists united in their view that the
rules of probability furnish the logic of scientific inference. And the reference
to logic is not idle: according to a view promulgated vigorously by Jeffreys
and Jaynes,4 whose earlier inspiration was Keynes, this is a theory in which
the rules of probability are interpreted, formally at any rate, as a generaliza-
tion of deductive entailment, with a two-place function P(AjB) from pairs of
propositions (A,B) with B consistent, into [0,1], and taking the value 1 if B
entails A and 0 if B entails the negation of A. Those values are interpreted as
degrees of plausibility of A given B, unlike the binary valid/invalid verdicts
of classical deductive logic depending on logical structure alone. Jaynes him-
self described the theory as the operating system ofwhat he called a “thinking
computer,” or “robot,” incorporating rules of plausible reasoning in addition
to those of deductive logic andmathematics (2003, 4). Unsurprisingly, among
those rules are those of probability itself. In a proof that Jaynes adopted, and
slightly adapted, as the foundation of his own theory, another physicist, Rich-
ard T. Cox, had shown that from two very general constraints on any accept-
able real-valued measure m(AjB) (my notation) of what he called the “ratio-
nal expectation” of A given B, there is a rescaling of it into the closed unit
interval satisfying the finitely additive conditional probability axioms (1946).5

Cox also saw his axioms as part of what he called “a logic of inference and
enquiry,” specifically an inductive logic (1976, 1), but I should stress again
that the ‘logic’ towhich all these authors appealed is quite distinct from deduc-
tive logic, which since the remarkable advances in the discipline inaugurated
by Frege’s seminal work has tended to appropriate the title uniquely to itself
(throughout the eighteenth and nineteenth centuries it was common for ‘logic’
to subsume two distinct subdisciplines, deductive logic, also called ‘the logic
of certainty’, and the theory of uncertain inference; Keynes, Jeffreys, Cox,
and Jaynes in effect continued that earlier tradition into the twentieth century).
4. Jaynes’s posthumously published book (2003) has the title Probability Theory: The
Logic of Science.

5. In fact there are three constraints if sentences are the domain of themeasure,when equiv-
alent sentences are assumed to take the same value. Cox’s proof was charged with incon-
sistency by Halpern (1996), but the charge seems to have arisen from a misreading of Cox
and was later retracted (Snow [2001] contains a detailed discussion). Terenin and Draper
(2015) show that, by adding domain-extension and continuity axioms, what they call the
Cox-Jaynes derivation can be extended to deliver a countably additive probability.
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Subjective Bayesianism is of course also a theory of plausible reasoning
and uncertain inference (and was also credited with logical status by its two
celebrated pioneers Ramsey and de Finetti; I will come back to this point in
sec. 5), but as far as the theory itself is concerned its probabilities—all of
them, not just the priors—merely reflect the personal beliefs of the agent sub-
ject to the weak constraint of consistency (‘coherence’) imposed by the prob-
ability axioms. To justify its name, then, there presumably ought to be some
authentic standard of objectivity satisfied by the Objective theory. Its evalu-
ation of so-called likelihoods does seem satisfactorily objective, as we will
see in due course, but the priors have always presented a problem, so much
so that the subjective theory with its frank confession of fallibility in such
matters, combined with theorems appearing to prove that with accumulating
evidence the priors eventually get ‘washed out’, in the Bayesian vernacular,
became the more attractive option for many Bayesians. The tendency of the
objectivist theory to see objectivity in what are often called ‘informationless’
priors unfortunately mired it in paradox and controversy, from the notorious
Principle of Indifference onward through more recent appeals to reference
priors, invariant priors, entropic priors, and others.6 It also left it vulnerable
to the charge that always trying to impose prior neutrality is misconceived
because it may mean throwing away background information capable of
making relevant prior discriminations between competing hypotheses. Is it
sensible, for example, to demand prior neutrality betweenwhat qualified opin-
ion judges a serious explanatory hypothesis and one without any such pedi-
gree, cooked up simply to ‘explain’ an experimental result (I present an ex-
treme example in the next section)?

The last observation/question suggests that a more promising avenue to
pursue is to identify plausible indicators of explanatory potential and let the
priors reflect these. Familiar candidates have been non-adhocness, simplicity
(whose ancient pedigree is signaled in the Latin simplex sigillum veri [sim-
plicity is the seal of truth]), analogy, unification, correspondence (reproduc-
ing existing theory in the limit of some parameter or parameters), and perhaps
other qualities specifically relevant to the discipline, for example, possessing
suitable symmetries.7 That is all very well, youmight say, but (a) do not these
criteria beg the question of their reliability? And (b) even were that question
6. Purely logical criteria fail by themselves to determine any probability measures, as
Carnap found in the context of extremely simple formal languages barely stronger than
those of propositional logic. Jeffreys and Jaynes pioneered the use of invariance, and there
have been some interesting results: e.g., in his discussion of Bertrand’s famous chord prob-
lem Jaynes (1973) showed that invariance under the three transformation groups—scale,
rotations, and translations—determines one of the three solutions Bertrand had claimed
equally valid. But Jaynes also acknowledged that the method does not always work. In ad-
dition, it generates so-called improper (divergent) priors for scale parameters.

7. This list overlaps with that of Salmon (1990), another Objective Bayesian.
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PUTTING ON THE GARBER STYLE? 665
answered, howwithout some very dubious hand-waving do you extract prior
probabilities from that list? Question a is of course just the old inductive-
skeptical question, with its own vast literature that I have neither world
enough nor time to attempt to summarize other than referring the reader to
Goodman’s classic discussion (1946, chap. 3) where he argues, I now think
convincingly, that even the canons of deductive logic derive their authority
from reflection on accepted deductive practice and that inductive rules should
be judged by the same standard (although this is not necessarily to endorse
his views about entrenchment).

As to b, while it would indeed seem impossible to condense those items
into a single number, it is far from clear that this is a weakness. If we want
a result valid for a single piece of evidence, like M, for example, then in
the light of the observations above specifying a single number for the prior
would arguably be overprecise (an observation applying also to interval-
valued priors where the intervals themselves have sharp endpoints; for this
reason the usual name ‘imprecise probabilities’ is not wholly apt),8 with the
result failing the test of robustness. Prominent objective Bayesians have
not always seen lack of precision a problem: Jeffreys, who promoted a the-
ory of simplicitymeasured by fewness of independent adjustable parameters
(the Standard Model would not do very well), saw it only as inducing a prior
ordering, and given that in most inferential contexts a reliable qualitative
comparison is all that is wanted, that can be perfectly adequate. But Jeffreys
also went further and showed that with evidence of a suitable kind a robust
conclusion can be obtained by combining a purely objective function of the
evidence with a prior characterized only very qualitatively. In the next sec-
tion we will see how the combining operation works and that M is just the
kind of evidence to generate such a conclusion.

4. Bayes’s Theorem, Odds and Likelihoods. A combining operation is
performed by Bayes’s Theorem in its odds form:

Odds HjE&Cð Þ 5 Odds HjCð ÞLR, (1)

where Odds(HjC) are the prior odds, C is relevant background information,
and LR is the so-called likelihood ratio (sometimes also called the Bayes
factor) equal to P(EjH&C)=P(Ej ∼ H&C). Since odds are an increasing func-
tion of probabilities, the usual Bayesian criterion for the confirmation of H
by E given C (i.e., P(HjE&C) > P(HjC)) implies that E confirms H given C
just in case Odds(HjE&C) > Odds(HjC), which, by (1), holds just in case
LR > 1, assuming nonzero prior odds. Equation (1) makes evident the cen-
tral role that LR plays in Bayesian confirmation theory generally, since not
8. One can always specify lower (or upper) bounds, but greatest lower (or least upper)
bounds arguably face the same problem as point values themselves.
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only does it supply a simple criterion for whether E confirms H, but it also
shows exactly how much the prior odds get raised. Odds and probabilities
are equally legitimate measures of uncertainty, but in the context of confir-
mation theory the odds scale has the advantage in making the relation be-
tween prior and posterior uncertainties linear with LR furnishing the gradi-
ent. Thus, (1) tells us immediately that for a sufficiently large LR all except a
small interval [0,ε) of prior probabilities will generate posterior probabili-
ties/odds greater than any specified value. This fact will be useful later.

With GR substituted for H and M for E, (1) is a simple consequence of
the probability axioms and hence true independently of whether P is inter-
preted according to the subjective or the objective account. We know, how-
ever, that in the former, M is part of C, and so of course Odds(GRjM&C) re-
duces to Odds(GRjC), with the consequence that no Bayesian confirmation
of GR by M is possible. The situation is entirely different in the objectivist
theory. Here the Jaynesian robot’s task is first to compute the probability of
GR given information about other relevant parts of theoretical and experi-
mental physics at the time, including information relevant to its prediction
of M, and then see what difference to the probability is caused by adding
M itself to that information.

Let us for the moment put the first computation on one side and examine
the second. Equation (1) tells us that this amounts to evaluating the LR,
P(MjGR&C)=P(Mj ∼ GR&C). In the subjective theory, of course, these prob-
abilities are also ‘contaminated’ with the presumption that M is true, so both
numerator and denominator will be equal to 1. But how dowe proceedwithin
the objectivist account? The answer is simple in the case of the numera-
tor P(MjGR&C): the observational data (i.e., M) specifiedMercury’s perihe-
lion advance at 4500 ± 500 per century, and Einstein predicted it to be 4300,
which means that we can reasonably regard M as entailed by GR&C, so that
P(MjGR&C) 5 1 by the laws of probability alone. As to P(Mj ∼ GR&C),
we can simplify: since the only seriously entertained alternative at the time to
GRwas CT, we can to a good enough approximation equate P(Mj ∼ GR&C)
to P(MjCT&C), giving another simple likelihood so that P(MjGR&C)=
P(MjCT&C) becomes a true LR.

So far so good. To evaluate P(MjCT&C) itself, remember that in this ap-
proach the term on the left-hand side of the vertical stroke depends only on
that on the right, with P functioning simply as an inference engine. Thus, here
there is no contamination of the probability byM itself, whence P(MjCT&C)
can be equated simply to the probability that CT&C themselves assign to M.9

That the probabilities appearing in statistical models determine rational ex-
pectations seems to have been assumed from the early eighteenth century on-
9. This coheres with the fact that if H&C entails E then P(EjH&C) 5 1: H&C asserts
that E will occur with a probability of 100%.
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PUTTING ON THE GARBER STYLE? 667
ward, and all applied science and all societal infrastructure employing those
models assumes such interpretability (in the extreme case, casino op-
erators).10 Indeed, the rule has seemed sufficiently obvious to generations
of Bayesians to be invoked without comment, starting with the eponymous
founder himself and continuing through to the present.11 In Jeffreys’s seminal
work (1961) the likelihoods are called “direct probabilities,”12 a terminology
Hawthorne repeats in calling the likelihoods “direct inference” likelihoods
(2005, 286).

To continue, we know that Mwas strongly at variance with the prediction
of CT, which in conjunction with the known probable error would assign
the advance an extremely small probability,13 whence in accordance with
the rule just enunciated we set P(MjCT&C) equal to that same very small
probability. Thus, the very small value of P(MjCT&C) implies that we have
a very large LR in favor of GR. That by itself, however, does not tell us any-
thing about how large a confirmation, in terms of incremental probability,
M accords GR. It is obviously true that for any given positive ε, no matter
how small, a value of the LR exists such that for all prior odds greater than
ε the posterior odds will exceed any value specified in advance.14 But the
other side of the coin is that however large the LR is, for any given positive
ε, all prior odds less than ε/LR will give posterior odds less than ε. Perhaps,
though, we can circumvent the need for priors at all by simply taking the LR
itself as a standalone measure of confirmation or some suitably increasing
function of it like the log to any base greater than 1 (logging means that the
measure adds over conditionally independent pieces of conjoined evidence).
Taking the name from Peirce, Good (1983, 159) called log10LR “weight of
10. As the previous footnote indicates, this does not exclude these probabilities from be-
ing parameters in physical or biological systems like statistical and quantum physics,
genetics, etc.

11. In his celebrated calculation of the posterior distribution of a binomial parameter,
Bayes simply set the likelihood P(Sn 5 rjB(n, p) & Q) equal to nCrpr(1 2 p)n2r , where
B(n,p) states that the sample is drawn from a Bernoulli process of length n with prob-
ability parameter p, Sn is the number of successes in the sample, and Q describes the
experimental setup, a uniformly smooth, level billiard table with balls set to roll a ran-
dom distance parallel to one side (the notation is not of course Bayes’s own).

12. These are “a pure matter of inference from the hypothesis to the probabilities of dif-
ferent events” (Jeffreys 1961, 57).

13. “Calculation gives for the planet Mercury a rotation of the orbit of 430 0 per century,
corresponding exactly to astronomical observation. . . . The astronomers have discov-
ered in the motion of the perihelion of this planet, after allowing for all disturbances
by other planets, an inexplicable remainder of this magnitude” (Einstein 1916/1952,
200).

14. I hope I will be forgiven for occasionally switching back and forth in midtext be-
tween odds and probabilities; they differ only in choice of scale, and sometimes it is
more convenient to refer to one rather than the other.
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evidence” (but as we will see below, he added a crucial caveat), suggesting
that it does furnish such a measure of confirmation. That way we still get
the desired conclusion—that M strongly confirms GR—without having to
worry about prior odds at all.

Although the idea has had influential advocates (it is one of several can-
didate measures of evidential support studied by Eells and Fitelson [2001];
they awarded it top equalmarkswith themeasure P(HjE) 2 P(H)), it is vulner-
able to easily manufactured counterexamples. Suppose that a fair-looking
coin is tossed 100 times and the observed frequency f is within the 95% prob-
ability interval conditional on H, the independent, identically distributed hy-
pothesis. Let E state the value of f and let H0 be the conjunction of E and
‘most of themoon ismade of green cheese’: P(EjH) is extremely small, while
P(EjH0) 5 1, giving an astronomical LR in favor of H0. But nobody in his
or her right mind (presumably) would say that H0 is enormously confirmed
by E, particularly if, as seems reasonable, H0 is assigned prior odds of 0; on
the contrary, the verdict should be that E gives H0 no support whatever but
supports H quite well. On the zero prior assignment, Bayes’s Theorem cor-
rectly gives H0 zero posterior odds however large the LRmight be. One can-
not object that the likelihood for a hypothesis with zero prior probability/
odds is undefined, for it is well known that within extant axiomatizations
of conditional probability zero-probability propositions can be consistently
conditionalized so long as they are not formal contradictions. Nor should
we agree with the demand sometimes made that only formal contradictions
be assigned probability 0 (this is the doctrine called Regularity), since it is
(a) arbitrary—there seems no good reason to deny probability 0 to certainly
false contingent sentences, like the one in the example—and (b) inconsistent
with the ubiquitous employment of continuous distributions in mathematical
probability and statistics. In continuum-sized outcome spaces all but count-
ably many possibilities must be assigned probability 0. In any case the exam-
ple is scarcely weakened if H0 is assigned a minuscule positive probability.15

We need priors after all.
So how shouldwe evaluate the prior odds/probability onGR?GRwas and

still is almost universally reckoned to be a theory of great simplicity, organ-
ically unified around a powerful heuristic incorporating Mach’s Principle,
the Equivalence Principle, general covariance, the need to deliver Newton’s
15. Or even infinitesimal positive probability: such assignments are now known to be per-
fectly consistent relative to the first-order theory of the real numbers. They are an elemen-
tary extension of the reals. Some people have appealed (I think unsuccessfully) to infini-
tesimals in an attempt to save Regularity from objection b (Howson 2016). Compare
Good, on the evidential support of the Schrödinger equation: “The large weight of evi-
dence [logLR]makes it seem, to peoplewho do not stop to think, that the initial probability
of the equation . . . is irrelevant; but really there has to be an implicit judgment that the
initial probability is not too low” (he suggested a threshold of 10250; 1983, 37).
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gravitation law inweak gravitational fields, and using no special assumptions
to predict M and the other early successes. Moreover, since the Jaynesian ro-
bot’s standards are our own idealized standards built into its probability func-
tion, we might in principle simply let the prior odds reflect the opinion of
those whose own reasoning is usually supposed to approach most closely the
ideal, that is to say the expert opinion represented by the upper end of the sci-
entific hierarchy (e.g., Salmon 1990, 182). While not all were at first as en-
thusiastic about its intrinsic virtues as Einstein himself and others like Ed-
dington (and later Dirac),16 the speed with which almost the entire physics
community swung behind GR after the early tests would have been very un-
likely lacking any confidence in the fundamental theory (to take awell-known
example, Dirac all his life thought that the existing theory of quantum elec-
trodynamics was fundamentally wrong despite its “excessively good agree-
ment” with experiment, i.e., predicting the magnetic dipole moment of the
electron to an accuracy of 11 decimal places; Dirac 1984, 66).17

These observations seem (more than) enough to justify endowing GR
with a prior that need not be further specified—which anyway seems hardly
possible—to allow us to reasonably conclude that GRwas very strongly con-
firmed by M even though M was old evidence (a fact that has clearly been
irrelevant to that calculation).18 Good, considering the impact not of M but
of the gravitational deflection of light, claimed that “General Relativity
has very heavy odds on as compared with Newtonian physics,” noting that
in the calculation he had employed “extravagantly large” initial odds on
Newtonian physics to make the point just how little, because of the magni-
tude of the LR, such inaccuracy influences the posterior odds (1983, 161).

In Hartmann-Fitelson language (see n. 1) we can conclude that GR is an
eminently satisfactory explanation of M compared with that provided by
CT, with satisfactoriness rendered in a straightforwardly Bayesian way as
the possession of a very large LR in its favor combined with a nonnegligi-
ble prior whose exact value is irrelevant. Thus, we have a classical Bayesian
explanation not only of why Glymour, Garber, and others were correct in
highlighting the role played by the prediction of M in very strongly con-
16. “The Einstein theory of gravitation has a character of excellence of its own. Anyone
who appreciates the fundamental harmony connecting the way Nature runs and general
mathematical principles must feel that a theory with the beauty and elegance of Einstein’s
theory has to be substantially correct” (Dirac 1978).

17. No-Miracles Argument enthusiasts might ponder this. It was pointed out in Howson
(2000, 56–58) that the condition for that argument to be probabilistically valid is that the
prior odds be not too small.

18. As Rosenkrantz (1983, 85) noted, we have an explicit expression for the probability of
M itself given C: by the theorem of total probability, P(MjC) 5 P(MjGR&C)P(GRjC) 1
P(MjCT&C)P(CTjC) 5 p 1 ε(1 2 p), where p 5 P(GRjC) and ε is very small, whence
we infer that even granted the indeterminate nature of p, P(MjC) is certainly less than 1.
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firming GR but also of why they were wrong in denying that it was M itself
that was the confirming agent. I suggested earlier that any situation in which
expert opinion decides, as seems par excellence to be the case with M and
GR, that a piece of evidence powerfully confirms some given scientific the-
ory can plausibly be seen as a test case for any theory of confirmation, to see
whether it succeeds in modeling that opinion without undue difficulty. Apart
from ruling out Garber-style accounts, this desideratum also rules out a Bayes-
ian confirmation theory based on subjective probabilities because of the old
evidence problem. By contrast, the Objective Bayesian account seems to suc-
ceed very well.

There is a large overlap between theObjectiveBayesian solution to the old
evidence problem and one offered recently by Hawthorne (2005), in which
he develops a theory of what he calls agent-based “support functions,”whose
posterior evaluations (“posterior plausibilities”) are based on the sorts of
“public” quasi-logical likelihoods central to the Objective theory, combined
with priors required only to discount any evidence for them that introduces a
prior bias for or against the hypothesis whose posterior plausibility is to be
evaluated (305). As I noted earlier, Hawthorne even uses the phrase “direct
inference likelihoods,” echoing the great Objective Bayesian Harold Jeffreys
who called them “direct probabilities,” yet Hawthorne never mentions Jef-
freys or the Objective theory or Rosenkrantz’s demonstration 30 years earlier
that it solves the old evidence problem using standard Bayesian techniques.
Worse, Hawthorne’s account does not actually solve the old evidence prob-
lem, which was to explain in Bayesian terms why informed scientific opinion
should believe that M very powerfully confirmed GR. Hawthorne’s theory
does not do this precisely at the point it departs from the Objective theory,
in the freedom Hawthorne allows in the choice of priors. To take an admit-
tedly extreme case, a follower of Popper who believes that the priors on all
general scientific hypotheses should be set at 0 could still be a Hawthornian,
evaluating the posterior support of GR at 0 onM. Of course, the priors can be
set to give amore appropriate result, but parameterfixing to save the phenom-
ena hardly counts as an explanation. If Garber fails the explanatory test here,
as I have argued, so does Hawthorne. And it is not clear why, as Hawthorne
claims, Bayesians also need a subjective belief function when, as he justly
points out, constrained only by coherence both the priors and the likelihoods
are otherwise free parameters. It is true that he requires the belief functions to
be ‘aligned’with the support functions, but that makes the latter fundamental
and the former effectively (or perhaps ineffectively) otiose.

5. Loose Ends. Some loose ends remain to be tied: three to be precise.
The first concerns logic, more specifically logic in the context of Bayesian
probability. According to its principal authors Frank Ramsey and Bruno de
Finetti, the subjective Bayesian theory should also be subsumed under the
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heading of logic, by which they meant a logic of probabilistic consistency,
according to which if this is your degree of belief at time t, then that must also
be on pain of inconsistency (Ramsey 1926/1931, 184; de Finetti 1974, 215).19

In this logic, probability assignments function as premises, from which de-
ductive logic plus the probability calculus elicits consequences. Now, how-
ever, we seem to have a problem: if the subjective theory also has a logical
character, then it might seem that anything the Objective Bayesian theory
can do in the way of presenting a Bayes’s Theorem inference sub specie ae-
ternitatis, as it were, the subjective theory can do likewise—even if the ap-
pearance might differ. In principle, then, it seems that it might solve the
old evidence problem after all: simply adopt as a premise that P(M) < 1
and infer within this logic that P(GRjM) > P(GR).20 Sadly no: the inference
is valid but not sound, since for a subjective Bayesian the premise P(M) < 1
is incoherent: a basic principle of the subjective theory is that your subjective
probability function must reflect your true beliefs at the time; otherwise,
when penalized by a proper scoring rule for inaccuracy in your forecasting
of random events (de Finetti 1974, 90), you will do better, with regard to ex-
pectations, to change it to one that does reflect that belief.21

The second loose end is what Garber called ‘logical omniscience’. One
of the probability axioms is that every logical truth receives probability 1.
To be able to decide logical truth for arbitrary sentences in anything stron-
ger than propositional logic is something that Church’s Theorem tells us not
even a Universal Turing Machine can do. Hence, talk of these probabilities
being ‘degrees of rational belief ’, or ‘rational expectations’, might appear
to make any theory of epistemic probability based on the usual axioms vul-
nerable to the charge of being hopelessly unrealistic. Fortunately, that fear is
groundless: ‘logical omniscience’ is no more problematic for this theory than
it is for deductive logic itself (where no one suggests that it should be weak-
ened to take account of Church’s result).Wemay not be able to decidewhether
an arbitrary sentence is a logical truth, but we can be taught to recognize some
logical truths, usually by proving them or having them proved for us within
some accepted deductive system. And we can and do tie our notion of ratio-
nality to the capacity to be convinced by arguments shown tomeet the canons
19. In English translations of Finetti’s later work, “consistency” has been supplanted by
“coherence,” but de Finetti certainly regarded his theory as a species of logic (actually,
multivalued logic). Howson (2000, 127–34) argues that there is an interesting kinship
between probabilistic and deductive consistency (both exemplify the mathematical idea
of consistency as solvability subject to constraints).

20. We see later that this is the strategy of the so-called counterfactual solution of the old
evidence problem.

21. De Finetti’s scoring rule, a version of the well-known Brier rule, is equal to minus
the mean-squared error. A proper scoring rule, of which that is one, minimizes your ex-
pected penalty just when your estimates reflect your true beliefs.
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of logical deduction, as the drive for logical rigor and the development of
provably sound deductive systems for mathematics over the last century at-
tests. It is of course true, as Garber so famously pointed out, that the learning
of a logico-mathematical truth cannot confirm any hypothesis in any theory
based on the usual probability axioms, but if the foregoing is correct that is
irrelevant to the solution of the old evidence problem.

Finally we need to see how, or for that matter whether, the solution offered
above escapes the objections brought against Objective Bayesianism in an
influential work on Bayesian confirmation theory by Earman (1992). Earman
voices two general objections, neither of which seems very compelling. The
first concerns familiar difficulties in the way of ‘objectifying’ prior probabil-
ities. It is indeed true, as I pointed out earlier, that the usual attempts to do so
have hardly met with unalloyed success, but I argued that where the LR is
very large the problem can be largely avoided by exploiting the robustness
of the posterior odds under very large variations in the prior and assuming,
as seemed very reasonable in the case of GR, a nonnegligible but otherwise
undetermined prior probability. To the objection that this does not extend to
cases in which the LR is not so large, my answer is that it actually does, al-
though generally at the cost of some degree of indeterminacy. But just as ad-
mitting priors is, I believe, an unavoidable feature of sound inductive infer-
ence, equally unavoidable in my opinion is indeterminacy, sometimes more,
sometimes less, and sometimes unfortunately quite a lot. But probably that
is just how it should be: things are not always precise, and where they are
not it is usually a mistake to try to make them so. Garbage in, as they say,
garbage out.

Earman’s other objection is that if the probability in question is “inter-
preted as degree of belief, rational or otherwise, then it must be time-indexed”
(1992, 120). No argument is provided for this judgment, which is contradicted
by the fact that under the objectivist interpretation the probability relation
(described by Cox as determining degree of rational expectation) is not of
this type and also by Earman’s own exercise in Bayesian confirmation theory
applied to Hume’s famous argument against miracles, where he says this:
“My proposal starts from the fact that Hume describes a situation in which
it is known that the witness has testified to the occurrence of a miraculous
event. Thus, we should be working with probabilities conditioned on t(M)
[i.e., the testimony that M is true, where M is the claim that the miracle oc-
curred], as well as on the evidence of experience [E] and the other back-
ground knowledge K. In such a setting, the probability of the event the tes-
timony endeavours to establish is Pr(Mjt(M) & E&K)” (Earman 2000, 41;
my emphasis).

6. ‘Counterfactual’ and Related Approaches. That Earman in the quo-
tation above is ostensibly appealing to the subjective Bayesian theory, yet
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he assigns to old evidence a probability less than 1 given other background
information, seems to be an example of what has become known as the ‘coun-
terfactual’ solution of the old evidence problem (even though Earman [1992]
is dismissive of it). According to that account, for the purpose of assessing the
confirmation of a new theory H by old evidence E, E is simply dropped, to the
extent that doing so is possible, from the body of the agent’s total knowledge
even though the probability function is supposedly a subjective one. Indeed,
Howson and Urbach’s well-known subjective Bayesian tract (2006) defends
the counterfactual view, proposing the same less-than-unity total probability
evaluation of P(MjC) as P(MjGR)P(GR) 1 P(MjCT)P(CT) as in the Objec-
tive theory, with the likelihoods 1 and a small number, respectively.

In defense of this position, one might observe that the word ‘prior’ in ‘prior
probabilities’ is usually understood tomean ‘prior to the evidence’, andwhen
the evidence is already there it seems a natural move to see whether it can
somehow be kept separate from the rest of the information on which one ba-
ses one’s beliefs. Unfortunately for naturalness, there are two reasons why
in the context of the subjective theory this is not a feasible strategy. First,
as has often been pointed out, the attempt to shield the measure of confirma-
tion from evidence already known is not always possible: in certain cases that
evidence may be too entangled with other parts of the background informa-
tion to be cleanly extracted from it (Howson and Urbach [2006] agree). Sec-
ond, it is actually inconsistent, or incoherent in standard subjective Bayesian
language, since as I pointed out earlier, under the rules of that theory you are
compelled to assign probability 1 to all your current beliefs. In effect the coun-
terfactual strategy is an attempt to graft Objective probability evaluations
onto a subjectivist stock, and apart from being rather obviously ad hoc it
does not work.

A recent development of the counterfactual approach to the old evidence
problem—although the authors do not describe it as such—is developed in
Romeijn andWenmackers (2016), although the sort of old evidence they are
principally concerned with is that which suggests that a new hypothesis, H,
provides a better account of it than those initially considered, and their objec-
tive is to explain how what they call ‘standard Bayesianism’ can be adapted
to deal with such a situation. In the course of their discussion, they argue that
in computing the degree of confirmation of H by such evidence E, E may be
assigned a probability less than 1 even though it was known and indeed instru-
mental in generating H. The authors claim that this strategy also solves the
historical old evidence problems (presumably including the Mercury one
even though GR was not constructed to accommodate the anomalous orbital
motion), but in that case their approach is practically indistinguishable from
the counterfactual one and, hence, also vulnerable to the same charge of adhoc-
ness: they agree that what they are doing might be described as “reverse-
engineering” the priors (1242), yet they also claim that their time-indexed
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probability function represents the “rational degree of belief of an agent”
(1230). But the rational degree of belief in E of an agent who already knows
E is 1 (the Objective account, also nominally one of rational degree of belief,
can legitimately assign E a probability less than 1 because it is relative to
specified information). I think the verdict must be that within the formal
and interpretive confines of Romeijn andWenmackers’ theory the historical
old evidence problem remains unsolved.

7. Conclusion. The subjective Bayesian theory as developed, for example,
by Savage in his classic text (1954; Savage calls it “personal probability”)
may justly claim for itself a rigorous development from first principles,22

but it cannot solve the deceptively simple but actually intractable old evi-
dence problem, whence as a foundation for a logic of confirmation at any
rate, it must be accounted a failure. I argued in the first part of this article that
the nonclassical developments of that theory initiated by Garber in an at-
tempt to solve the problem fail too: in addition to experiencing severe and
I believe insuperable internal problems they cannot explain why, according
to practically all expert opinion including that of Einstein himself, Mercury’s
anomalous orbital motion was an extremely strong confirmation of GR, and
we have seen Garber himself implicitly deny it. By contrast, the Objective
Bayesian approach has no difficulty in accommodating it in a simple Bayes’s
Theorem computation.

This is not to say that Garber’s theory and the subsequent developments
it has generated are of no interest: that is far from true, andGarber highlighted
a problem that all varieties of Bayesianism must at some point confront,
which is how it can be extended to pure-mathematical theories (and this in-
cludes questions of logical derivability since these can be encoded within set
theory and indeed, if they concern first-order logic, within arithmetic). These
theories are after all factual propositions of a sort (I am assuming without ar-
gument that mathematical logicism is to all intents and purposes dead), and
mathematicians certainly talk about the probability that some conjecture or
other, like theRiemann hypothesis, is true given evidence consisting of a very
large number of ‘confirming’ instances. To put this in good Bayesian order is
indeed a pressing need (for a comprehensive discussion of the problems fac-
ing such an account, see Corfield [2001]). That said, I fear that in Garber’s
claim, quoted earlier, that “if old evidence can be used to raise the probability
of a new hypothesis, then it must be by way of the discovery of previously
unknown logical relations. In the cases that give rise to the problem of old
evidence, we are thus dealing with circumstances in which hypotheses are
confirmed not by the empirical evidence itself, but by the discovery . . . that
22. Although as is well known some of these, like the independence principle, have been
seriously questioned.
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h ⊢ e,”wemerely have a non sequitur generating aminor industry in proving
something that is not true.
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