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Abstract

We study the model of randomly perturbed dense graphs, which is the union of any
graph Gα with minimum degree αn and the binomial random graph G(n, p). For
p = ω(n−2/(∆+1)), we show that Gα ∪ G(n, p) contains any single spanning graph
with maximum degree ∆. As in previous results concerning this model, the bound
for p we use is lower by a log-term in comparison to the bound known to be needed
to find the same subgraph in G(n, p) alone.
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1 Introduction and Result

1.1 Thresholds in G(n, p)

Let G(n, p) be the binomial random graph model, where among n vertices
each possible edge is chosen independently with probability p.

An important part of random graph theory is the understanding of thresh-
old behaviour with respect to certain graph properties. We say that p̂ is a
threshold for a graph property F if P[G(n, p) ∈ F ] → 0 for p = o(p̂) and
P[G(n, p) ∈ F ] → 1 for p = ω(p̂). If the latter is true, then we say that
G(n, p) has the property F with high probability (whp) and that this p̂ is
an upper bound for the threshold. Containing a graph as a (not neccesarily
induced) subgraph is a monotone property and therefore admits a threshold
[7].

In the following we will focus on spanning subgraphs. In their early, sem-
inal work Erdős and Rényi [10] determined the threshold for perfect match-
ings in G(n, p), which is lnn/n. Pósa [21] and Korŝunov [15] independently
showed that the property of having a Hamilton cycle has the same threshold.
Recently, there has been a lot of work on the threshold for a bounded degree
spanning tree, where the current best bound, by the second author [18,19],
is p ≥ ∆ ln5 n/n. A breakthrough result was achieved by Johannson, Kahn
and Vu [13] who showed that the (sharp) threshold for a K∆+1-factor, that is
n/(∆ + 1) vertex-disjoint copies of K∆+1, is given by

p∆ := (n−1 ln1/∆ n)
2

∆+1 .

Turning to a much more general class of graphs, let F(n,∆) be the family
of graphs on n vertices with maximum degree at most ∆. For some absolute
constant C, Alon and Füredi [3] proved that, if p ≥ C(lnn/n)1/∆, then G(n, p)
contains a fixed graph from F(n,∆) whp. This is far from optimal and since
the clique-factor is widely believed to be the hardest graph in F(n,∆) to
embed, it is natural to state the following conjecture.

Conjecture 1.1 If ∆ > 0, F ∈ F(n,∆) and p = ω(p∆), then whp G(n, p)
contains a copy of F .

For ∆ = 2, this conjecture was very recently solved by Ferber, Kronenberg
and Luh [11], who in fact showed a stronger so-called universality statement,
is finding all graphs of the class simultaneously. larger ∆, Riordan [22] gave a
general result, which requires a probability larger by a factor of nΘ(1/∆2) from
p∆. The current best result in this direction is the following almost spanning



version by Ferber, Luh and Nguyen [12].

Theorem 1.2 ([12]) Let ε > 0 be any constant and let ∆ ≥ 5 be an integer.

Then, for every F ∈ F((1 − ε)n,∆) and p = ω(p∆), whp the random graph

G(n, p) contains a copy of F .

Their approach is based on ideas from Conlon, Ferber, Nenadov and Škorić
[8] who prove a stronger universality statement for the almost spanning case
with probability p ≥ n−1/(∆−1) ln5 n. This also extends Theorem 1.2 to the
case ∆ = 3, whereas ∆ = 4 remains open.

In the almost spanning case the ln-term in p∆ is expected to be redun-
dant [12], but this remains open. Essentially, we will show here that the
ln-term in p∆ is redundant if we add to G(n, p) a deterministic graph with
linear minimum degree.

1.2 Randomly perturbed graphs

We now change the setup in the following way, as first suggested by Bohman,
Frieze and Martin [6] (though they worked with G(n,m) instead of G(n, p)).
For α ∈ (0, 1), let Gα be any graph with minimum degree at least αn and
reveal more edges within the graph independently at random with probability
p. That is, we study the properties of Gα∪G(n, p). For a fixed Gα, containing
a subgraph is a monotone property in Gα ∪ G(n, p). Hence one can ask for
upper bounds on thresholds in this model.

For α ∈ (0, 1/2) Bohman, Frieze and Martin [6] showed that if p = ω(1/n)
then whp there is a Hamilton cycle in Gα ∪G(n, p) for any Gα. Furthermore,
this is optimal, as for p = o(1/n) there are graphs Gα such that Gα∪G(n, p) is
not Hamiltonian whp. Comparing this threshold to the threshold for Hamil-
tonicity in G(n, p) we note an extra factor of lnn in the latter. This lnn
term is necessary to guarantee minimum degree at least 2, otherwise clearly
no Hamilton cycle exists. Of course if α ≥ 1/2, then Gα is itself Hamiltonian
(Dirac’s Theorem) and so for smaller α a few random edges can compensate
for the loss in minimum degree.

Krivelevich, Kwan and Sudakov [16] studied the corresponding problem
for the containment of bounded degree trees and showed that p = ω(1/n) is
sufficient in this case. For p = ω(1/n) it is already possible to find any almost
spanning bounded degree tree in G(n, p) [4]. The addition of Gα ensures there
are no isolated vertices and allows every vertex to be incorporated into the
embedding.

Krivelevich, Kwan and Sudakov [17] also considered matchings and loose



cycles in uniform hypergraphs. In an r-uniform hypergraph all edges have
cardinality r and in a loose Hamilton cycle consecutive edges intersect in
exactly one vertex. The generalized minimum degree condition in Gα is that
all (r − 1)-sets are contained in at least αn edges. Here, only a large linear
number of edges is required in the random r-uniform hypergraph to ensure
both properties, matchings and loose cycles, in the union with Gα. Note that
for the loose Hamilton cycle the corresponding Dirac type theorem is known
[14]. Comparing these bounds to the threshold for matchings and loose cycles
in random hypergraphs (which are both n−r+1 lnn [9,13]), we again have a
difference of lnn.

Other monotone properties considered in this model include containing
a fixed sized clique, having a small diameter, k-connectivity [5] and non-2-
colorability [23].

1.3 Our Result

We analyze the modelG(n, p)∪Gα with respect to the containment of spanning
bounded degree graphs and obtain the following.

Theorem 1.3 Let α > 0 be a constant, ∆ ≥ 5 an integer and Gα a graph

with minimum degree at least αn. Then, for every F ∈ F(n,∆) and p =

ω
(

n−

2

∆+1

)

, whp G(n, p) ∪Gα contains a copy of F .

Observe that the bound on p is best possible. Indeed, in the case where F
is a K∆+1-factor on n vertices and Gα = Kαn,(1−α)n, we need to find an almost
spanning K∆+1-factor of size (1 − α∆)n in G(n, p). Furthermore, compared
to p∆ this is again better by a ln-term.

2 Overview of the proof of Theorem 1.3

We give a brief outline of the steps of the proof and the tools involved.

2.1 Embedding most of the graph

Similarly as for other results in this model, we first obtain an almost spanning
embedding of all but εn vertices of F , using only the edges of the random
graph G(n, p). For this we adapt the strategy of Ferber, Luh and Nguyen [12]
to decompose the graph, and embed it using a theorem of Riordan [22] and
Janson’s inequality. A major difference to previous methods is that we do not



choose precisely the large subgraph of F to embed, only seeking to embed an
almost spanning subgraph of F which covers the sparser parts of F .

2.2 Preparing the reservoir

The key part in our proof is to obtain a so-called reservoir set. To build this
we use that only random edges have been used so far and thus, the embedding
is independent of Gα. The reservoir set we develop is already covered by the
partial embedding. When, later in the proof, we need to use some vertices
from the reservoir set, we use the deterministic graph Gα to swap out some
vertices from the reservoir. Similar kind of reservoir structures were used for
embedding bounded degree trees [18] and tight Hamilton cycles in hypergraphs
[2], but we use the interplay of the random and deterministic graphs in a new
way to create this structure.

2.3 Finishing the embedding

Using additional edges of G(n, p) and Gα, we can embed the rest of F into the
reservoir. The approach for the embedding again follows [12], using Janson’s
inequality and a Hall-type matching argument for hypergraphs [1]. It is crucial
that we also use the deterministic edges of Gα here, to gain the ln-term in
comparison to p∆. Finally, we use the properties of the reservoir to complete
the embedding.

3 Concluding remarks

In fact Theorem 1.3 is valid also for ∆ ≤ 3 and basically the same approach
works. The difference is that the definition of the dense spots has to be slightly
adapted to each of the cases. For ∆ = 4, the only dense spots for which our
methods do not work are triangles with two pendant edges at each vertex
extending to the rest of the graph. We do not know how to deal with many
of these particular dense spots.

The multiround exposure is not crucial for our embedding, but it makes
the calculations for Janson’s inequality much simpler. Furthermore, we would
not need the hypergraph matching theorem, if we managed to use (∆ + 1)/2
many edges of Gα for the embedding of each dense spot. As there might not
be th many edges leaving a dense spot, we would also need to use edges inside
the dense spot, which is possible, but much harder to work with.

On the other hand, Riordan’s result, which is proven by second moment
calculations, is essential for our approach. Thus it seems unlikely that there is



a chance to extend this to a proof of a corresponding universality statement,
though we believe such a statement should hold. That is, we think that
G(n, p) ∪ Gα contains whp a copy of every graph in F(n,∆) simultaneously,
with p and α as in Theorem 1.3. Similarly, it is commonly believed that p∆ is
the threshold for the property that G(n, p) is universal for F(n,∆).

The third and fourth author [20] extended the result of Riordan [22] to
hypergraphs. Analogous generalizations for Theorems 1.2 and 1.3 would be
interesting.

Moreover, for the model G(n, p) ∪ Gα it would be nice to know if there
are any nontrivial spanning structures, for which this provides no advantage
compared to G(n, p), in the sense that the bound on p needed in Gα ∪G(n, p)
is of the same order as the corresponding threshold in G(n, p). For example,
it might be interesting to consider the d-dimensional cube, which appears in
G(n, p) shortly after p = 1/4 [22].
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