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ABSTRACT 

Bandyopadhyay, Taper, and Brittan (BTB) advance a measure of evidential 

support that first appeared in the statistical and philosophical literature four 

decades ago and has been extensively discussed since. I have argued 

elsewhere, however, that it is vulnerable to a simple counterexample. BTB 

claim that the counterexample is flawed because it conflates evidence with 

confirmation. In this reply, I argue that the counterexample stands, and is 

fatal to the doctrine of likelihoodism. 

 

 

1. Introduction 

 

A focus of interest in formal philosophy of science for well over half a century has been 

the analysis of the idea of the amount of evidential support for a hypothesis, or the 

evidential strength in favour of a hypothesis, which some given set of observational data 

affords. Just what form an admissible measure should take, however, has been a subject 

of controversy, with no universally accepted candidate emerging. According to one 

widespread view, the Bayesian view, it is inseparable from considerations of changes in 

belief induced by the data, where belief is of course measured by a probability function 

(and hence from considerations of confirmation: the Bayesian qualitative criterion of 

confirmation is that P(H|E) > P(H)). Thus Jan Sprenger: ‘Evidential support is based on 

comparing past and present degrees of belief’ (Sprenger 2014, 7). This does however 

raise the question of how the comparison should be rendered in terms of a measure: 

should that be a simple difference, or a ratio, or some other function? In a well-known 

article, Ellery Eells and Branden Fitelson (2002) evaluated several candidate measures 

against a list of what they took to be relevant criteria. One of those measures, scoring 
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equal highest on Eells and Fitelson’s criteria and which will figure strongly in the 

subsequent discussion, was the logarithm of the likelihood-ratio (henceforward LR), 

P(E|H) / P(E|~H). Eells and Fitelson’s article sparked a strong revival of interest in 

measures of evidential support, and a good deal of further work in the area was 

published, including the very systematic investigation by Vincenzo Crupi, Katya 

Tentori, and Michel Gonzalez (2007), a novel feature of which is an empirical 

comparison contributing, as the authors see it, to the psychology of inductive reasoning. 

 The LR is distinctive in being simply a coefficient of proportionality relating 

prior and posterior beliefs in the odds form of Bayes’s theorem: 

 

 Odds(H|E) = LR  Odds(H) (1) 

 

Logging both sides gives the additive form 

 

 lodds(H|E) = logLR + lodds(H) 

 

where ‘lodds’ is short for ‘logOdds’. The logarithm with a base greater than 1 is an 

increasing function, so logging the LR gives an ordinally equivalent measure that adds 

over conditionally independent pieces of evidence.
1
 Since Odds(H|E) > Odds(H) if and 

only if P(H|E) > P(H), equation (1) tells us immediately that a necessary and sufficient 

condition for H to confirm E Bayesianwise is that LR > 1, assuming of course that 

Odds(H), and hence P(H), is nonzero. 

 Probably the first to note the relationship displayed in (1) between the LR and 

prior and posterior odds was the eminent Bayesian pioneer, geophysicist, and 

statistician, Sir Harold Jeffreys. He called logLR the ‘support’ for H by E, but he 

attached a caution to that use of the measure: ‘It is reasonably clear that [H] has a 

moderate prior probability in practical cases, for if it had one near 0 we should not 

consider its truth worth investigating’ (Jeffreys 1936, 416; in ‘practical cases’ he took 

the priors of H and ~H as 0.5). In the light of the challenge of Prasanta S. 

Bandyopadhyay, Mark L. Taper, and Gordon Brittan, Jr. (2016; henceforward BTB) to 

me, we shall see that the caution was prescient. 

  I. J. Good later called the LR the ‘weight of evidence’ in favour of H (Good 

1983, 36; following, as he tells us, the lead of Alan Turing, Good thought 10 the most 

appropriate base for the logarithm). ~H is of course just one alternative hypothesis to H, 

so it is natural to generalise the measure to an arbitrary pair H, H' (where H' does not 

even need to be inconsistent with H) as P(E|H) / P(E|H'), or its log as did Good (1983, 

159).
2
 In this case we can rewrite (1) as 
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 Odds(H, H'|E) = LR  Odds(H, H') (2) 

 

where Odds(H, H') = P(H) / P(H'); similarly for the conditional case. 

 

 

 

2. Likelihoodism 

 

There is another camp, comprising people often called likelihoodists, which also adopts 

the LR as a measure of evidential support, but repudiates any justification of it in terms 

of incremental belief: on the contrary, likelihoodists see the LR as an objective, stand-

alone measure of evidential support independent of any beliefs anyone might have in 

the hypotheses so compared. This view, which had its roots in the writings of R. A. 

Fisher, became widely publicised by the geneticist and statistician Anthony Edwards in 

an influential book, in which he proclaimed it ‘The Likelihood Axiom’ (Edwards 1972). 

He was followed by, among others, the statistician Richard Royall (1997) and the 

philosopher of science Elliott Sober (2002). For later reference, here is Edwards’s 

statement of his axiom: 

 

Within the framework of a statistical model, all the information which the 

data provide concerning the relative merits of two hypotheses is contained 

in the likelihood ratio of those hypotheses on the data, and the likelihood 

ratio is to be interpreted as the degree to which the data support the one 

hypothesis against the other. (Edwards 1972, 31; emphasis in the original) 

 

It can be quickly verified from an inspection of BTB’s text that Edwards’s axiom is 

identical, apart from details of wording, to what BTB describe, without mentioning 

Edwards, as ‘our account of evidence based on the likelihood-ratio measure’ (BTB 

2016, 3; ‘their’ account is that the LR is an objective, belief-independent measure of the 

relative strength of evidence for pairs of statistical hypotheses—i.e. the Likelihood 

Axiom). Nor do BTB cite any of the very extensive literature comparing the merits of 

functions of the evidence other than the LR as measures of evidential support. Instead 

they offer their own justification of the LR: 

 

The first reason for choosing LR is that it is the most efficient evidential 

function in the sense that we can gather strong evidence for the best model 

with the smallest amount of data. Second, LR as a measure is insensitive to 

the choice of priors, whereas the posterior and prior difference measure and 
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many other measures of confirmation are not (see section 4 for an example). 

This captures the idea of evidence being objective, i.e. not unduly 

influenced by the agent’s prior probability. Third, compared to some other 

measures of evidence [they cite Christensen and Joyce] ... LR, as a measure 

of evidence, does not behave erratically ... If any measure of evidence fails 

to reflect the change in the probability of data when the priors of the 

hypotheses do not have any effect on any such measure, then the latter can 

be branded as an inadequate measure of evidence. In contrast, LR does not 

have such a counterintuitive consequence. And fourth, likelihoods and the 

LR are already embedded in the Bayesian approach and this familiarity 

makes the distinctions easier to grasp. (BTB 2016, 4–5) 

 

None of these reasons is compelling, and three can be immediately discounted. 

Consider the fourth: for authors who propose the LR as a non-Bayesian measure of 

evidential support, to cite its embedding in the Bayesian approach as a point in its 

favour verges on the bizarre. The first reason can also be ignored, begging as it does the 

question that the LR is a measure of evidential strength at all. The second reason 

actually rules out the LR measure when alternatives of the form H and ~H are permitted 

into its domain. At the beginning of their article, BTB say that they will restrict their 

account to so-called simple statistical hypotheses, i.e. statistical hypotheses with all 

parameter values specified and hence conferring a definite probability on the data, but 

the restriction is later relaxed with one of the pairs allowed to be the negation of the 

other (BTB 2016, 4).
3
 But admitting LRs of the form P(E|H) / P(E|~H) means a 

dependence on priors, since the probability calculus tells us that P(E|~H) = P(~H)
–1

 

iP(E|Hi)P(Hi) for every finite partition of ~H. In the light of this observation, the third 

reason in the list above is simply not applicable. 

 BTB and likelihoodists generally may want to divorce their measure from any 

consideration of prior probabilities, but given the preceding paragraph this seems 

unfeasible without crippling restrictions on its domain. BTB also claim that ‘very strong 

evidence [as equated by BTB with a large LR] for a hypothesis does not entail that it is 

more believable’ (BTB 2016, 3), but inspection of (1) undermines that assertion. For 

suppose LR is large, in the minimal sense of exceeding unity. It immediately follows 

from (1) that Odds(H|E) > Odds(H) which entails that P(H|E) > P(H). Similarly, we can 

quickly infer from (2) that 

 

 P(E|H) / P(E|H') = [P(H|E) / P(H)]  [P(H'|E) / P(H')]. 
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So a LR greater than 1 implies that the ratio increment of belief in H exceeds the ratio 

increment of belief in H', whence it follows that if the priors of H and H' are equal the 

LR is just the ratio of posterior probabilities. These elementary demonstrations assume 

positive priors, but that is something that BTB (2016, 4) assume. 

 I think it does no good to claim, as does Sober (2002, 25), that likelihoodists can 

ignore these facts because they are not committed to a probabilistic, i.e. Bayesian, 

theory of partial belief. Pioneering work by Bruno de Finetti and L. J. Savage famously 

showed that if an agent evaluates courses of action under uncertainty according to 

intuitively compelling criteria of consistency, they will behave as if they were expected 

utility maximisers equipped with a prior probability distribution over a state-space. 

Indeed, it is on this foundation that modern Bayesian theory squarely rests. One may 

criticise the consistency postulates employed by de Finetti and Savage, but they have 

been successively refined since those classic papers were published, and the claim that 

consistent beliefs should obey at least the finite probability axioms is now so widely 

accepted that to say you simply don’t accept that view is not an adequate response. 

 Armed with these preliminary observations, we can now turn to the 

counterexample whose cogency BTB’s article challenges. 

 

 

3. The Counterexample 

 

I first advanced the example against Edwards’s Likelihood Axiom in Howson (2002), 

except that there ‘God’ replaced ‘Santa’, and later against Stathis Psillos’s similar claim 

that LRs by themselves ‘capture the comparative impact of the evidence on competing 

hypotheses’ (Psillos 2009, 67; Howson 2013). Here is the counterexample, quoted by 

BTB from my 2013 discussion: 

 

Consider a hypothesis H that everyone agrees is plainly false, for example, 

that Santa willed the outcome of 100 flips of a fair-looking coin. If the 

outcome is specified in H then [the reciprocal of the likelihood ratio], where 

~H is plausibly the hypothesis that the coin is approximately fair, is very 

small indeed (2
100

 = 1.267 x 10
30

), but that is not sufficient to induce any 

feeling that H might be true. (Howson 2013, 209) 

 

It should be clear that the example is intended to show that any serious 

explanatory theory can always be weakly or strongly dominated in terms of the 

LR by any preposterous pseudo-hypothesis cooked up to deliver the data, and that 

therefore the LR cannot sensibly be interpreted by itself as a measure of relative 
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evidential strength. But BTB’s paraphrase of the quotation completely misstates 

my position: 

 

The crux of Howson’s argument against a non-subjective account of 

evidence is that although everyone believes that the Santa hypothesis is 

false, i.e., highly implausible, our account of evidence based on the 

likelihood-ratio measure provides very strong evidence for it. He is right to 

point out that in his example the evidential support for H against ~H equals 

1.267 x 10
30

, which signifies very strong evidence for the Santa hypothesis 

against the fair-coin hypothesis. So, he concludes, that there must be 

something wrong with this account, on which very strong evidence for a 

hypothesis does not entail that it is more believable. (BTB 2016, 3) 

 

I clearly did not ‘point out’ that the evidential support for H against ~H is equal to 1.267 

x 10
30

, nor does the quotation from me in any way justify the claim that I believe the 

data are very strong evidence for H. On the contrary, as I remarked above, the point of 

the example is to illustrate that because of its very nature the data provide no genuine 

evidence whatever for H, a view of the matter I underlined by saying that H was 

‘plainly false’. ‘Plainly false’ here is most plausibly construed in terms of a prior 

probability whose value is effectively zero, in the sense of being actually zero or positive 

but infinitesimal.
4
 It follows immediately from (1) that any increase in such a prior 

probability induced by the LR, however large that might be, is effectively zero. 

 For a Bayesian this disposes of the challenge of facile ‘hypotheses’ like Santa, 

whose credibility is zero and whose fit to the data is guaranteed in advance. But for the 

likelihoodist like BTB there is no way out. An obvious consequence of their position is 

that it is trivially easy to outscore any seriously proposed explanatory theory. Indeed, 

any sufficient condition for the data would strictly dominate any theory giving the data 

less than 100% probability, which of course includes any purely statistical hypothesis. 

Interpreting LRs as stand-alone measures of relative evidential strength therefore not 

only flies in the face of common sense
5
 but makes a nonsense of scientific 

methodology. BTB may claim that such counterexamples ‘conflate confirmation with 

evidence’, but what else is evidence all about? Other things being equal, if the evidence 

is stronger for one theory than for another the former is more believable, given that 

evidence. This is a judgement the Bayesian theory corroborates in its result, noted 

earlier, that if the priors are equal and nonzero so are the posterior probabilities. On the 

other hand, assigning an effectively zero prior probability precludes any such absurd 

judgement as that {‘The moon is made of cheese’}{M} gets comparable evidential 

support with Einstein’s field equations from the Mercury perihelion observations (M).
6
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 Sober tried to pre-empt this way of dismissing gerrymandered pseudo-

explanations by claiming that Bayesians will assign them only an intermediate prior 

probability because ‘Bayesians usually reserve priors of 0 or 1 for tautologies and 

contradictions’ (Sober 2002, 25n6). Even were that statement true, it ignores the 

possibility of assigning infinitesimal values. But it is not true: though some Bayesians 

(notably the late Dennis Lindley) have argued in favour of restricting the extreme 

probability values in the way Sober describes, that view
7
 has never, for what I believe 

are very good reasons,
8
 been part of ‘official’ Bayesian doctrine. As the Bayesian 

Wesley C. Salmon pointed out, ‘we have good reasons for avoiding the assignment of 

extreme values to the priors of the hypotheses with which we are seriously concerned’ 

(Salmon 1991, 184; emphasis added); and Santa is of course hardly a hypothesis with 

which we are seriously concerned. Recall also Jeffreys’s caution that the prior 

probabilities in the LR be not too small when the latter is interpreted as strength of 

evidence. BTB take a similar line to Sober’s (without however mentioning him), 

claiming that Bayesians do not assign the extreme values to what BTB call ‘empirical 

hypotheses’ because doing so would prevent learning from experience via the rule of 

conditionalisation (BTB 2016, 4).
9
 But I doubt that any Bayesian would want to ‘learn’ 

Santa by conditionalising on the data that Santa was constructed to entail. Santa’s not 

for learning, as one might put it. 

  But BTB have not yet finished with their attempt another to undermine the Santa 

counterexample: 

 

On our account of evidence, we always compare the merits of two 

hypotheses.
10

 For a different pair of hypotheses, e.g., the coin being double-

headed and the Santa hypothesis, given the outcomes of 100 heads out of 

100 flips, both hypotheses are equally supported. We cannot distinguish the 

double-headed hypothesis from the Santa hypothesis given the data. 

Therefore, it does not follow that given the data we will always find very 

strong evidence for the Santa hypothesis as it depends on what two 

competing hypotheses we are dealing with. (BTB 2016, 7; emphases in the 

original) 

 

Note the sadly characteristic disregard of my own words: I certainly did not claim that 

‘we would always find strong evidence for the Santa hypothesis’, and BTB’s 

emphasising ‘not’ and ‘always’ makes their misreporting even less pardonable. 

Distortion apart, this quotation reveals a strange misunderstanding of what a 

counterexample actually is. If one pair of hypotheses is a counterexample to a claim, the 

possibility that a different pair can be found that is not is, of course, quite irrelevant. 
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 Not content with trying to demolish Santa, BTB mount a challenge to another 

part of the same paper of mine from which that example was drawn, where I wrote, ‘If 

anything characterises Bayesians ... it is the conviction that no satisfactory 

reconstruction of scientific inference is possible without appealing to prior probabilities’ 

(Howson 2013, 208; emphasis in the original). Not only do BTB misquote this into the 

inequivalent sentence, ‘it is the conviction [of the author] that no satisfactory 

reconstruction of scientific inference is possible without appealing to prior probabilities’ 

(also dropping my emphasis), but they then completely misrepresent it: citing the fact 

that Pauli and others were prepared to bet on the truth of parity conservation prior to the 

experiments that disproved it, BTB say, ‘This episode is evidence that the invocation of 

subjective prior probabilities can sometimes be detrimental to scientific progress, 

contrary to what Howson claims (see his sentence quoted in section 2 for it)’ (BTB 

2016, 8). The ‘sentence quoted in section 2’ is the sentence misquoted above, which is 

clearly not a claim that invoking prior probabilities is never detrimental to scientific 

progress: my claim was that no reconstruction of theory evaluation in the sciences can 

ignore prior probabilities. 

 

 

4. Conclusion 

 

BTB end their paper with this claim: 

 

We launched a three-pronged argument against Howson. First, we 

demonstrated that his counterexample against our likelihood ratio–based 

account of evidence conflates confirmation with evidence. Second, for a 

different pair of hypotheses, we showed his counterexample does not work. 

Third, in scientific practice he ignores the role of evidence, which, we 

argued, is agent independent. (BTB 2016, 8) 

 

I hope that in the light of the foregoing the reader can accept that none of these charges 

comes anywhere near being substantiated. The third, which on the face of it is simply 

preposterous, in fact garbles a claim BTB made more clearly earlier in their paper, 

which is that I 

 

ignore a fundamental part of scientific inference in which data’s providing 

evidence for one hypothesis against its alternative does not entail a belief 

that it is true. (BTB 2016, 8) 

 



9 

But since I never said that providing evidence for one hypothesis against its alternative 

does entail a belief that it is true, this charge is one more misrepresentation among a 

depressing multitude. 

 I conclude on a more general note. Although likelihoodism has seemed to some 

a plausible alternative to classical frequentism (hypothesis testing à la Fisher or 

Neyman-Pearson, plus associated estimation criteria) and Bayesianism, unlike either of 

those two it is fatally vulnerable to the easy manufacture of pseudo-hypotheses like the 

Santa example, gerrymandered to fit the data but (of course) meriting no credit for so 

doing. 
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Notes 

 
 

                                                           
1
 Another measure ordinally equivalent to the LR is [P(E|H) – P(E|~H)]  [P(E|H) + 

P(E|~H)]. This function was derived from their own list of adequacy criteria for 

measures of factual support by Kemeny and Oppenheim (1952). 
2 Good also explicitly included a symbol K to signify background information. 

Nowadays most authors regard this information as absorbed in P. 
3
 Allowing only simple hypotheses would preclude the enormously wide range of 

applications where simple hypotheses are tested against composite alternatives: e.g. a 

simple null hypothesis specifying a parameter value t = t0 against a composite 

alternative like t  t0 or t > t0 or t < t0. But why should a measure of evidential support 

be restricted to statistical hypotheses, and not theories generally? BTB do not say. The 

Santa hypothesis at the centre of my counterexample is not statistical but deterministic, 

so it may be that BTB mean to include such hypotheses as limiting cases (as we shall 

see, Santa predicts the data with probability 1). 
4
 An infinitesimal is a number less in absolute magnitude than any positive real number. 

I should emphasise that these are perfectly respectable numbers. In the mid-twentieth 

century, Abraham Robinson exploited the resources of model theory to show that there 

is an elementary extension of the real numbers, a field of so-called hyperreal numbers, 

containing besides copies of the real numbers themselves, infinitesimals and infinite 

reciprocals of infinitesimals. Nonstandard analysis, nonstandard probability theory and 

nonstandard physics have since become flourishing fields in their own right, offering 

often much simpler proofs of classical results. A well-known result of Bernstein and 

Wattenberg (1969) is that positive infinitesimal probability values can be assigned to all 

the members of a continuum-sized outcome-space in such a way that the values sum, in 

a suitable sense, to 1. 
5
 We can note that the great Bayesian, Laplace, famously described the Bayesian theory 

as common sense reduced to a calculus—‘le bon sens réduit au calcul’. 
6
 Ironically BTB themselves find the conflation they condemn irresistible: a positive 

outcome from a diagnostic test for TB in which the LR is 25.7 shows, they say, ‘that the 

individual is more likely (approximately 26 times more likely) to have the disease than 

not’ (BTB 2016, 6; emphasis added). 
7
 It is known as the principle of Regularity, so named by Rudolf Carnap. The technical 

problem for Regularists is that many of the outcome spaces of statistics are intervals of 

real numbers, and it is mathematically impossible to assign positive real-valued 
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probabilities to all the points in them. There have been appeals to infinitesimals to solve 

the problem (see note 5 above), though these attempts are controversial. Howson (2017) 

is my own contribution to the discussion. 
8
 Mentioned in Howson (2017). 

9 It is easy to show that no evidence can increase a probability of 0, or for that matter 1, 

by that means. BTB also misstate the principle, which they claim ‘says that [the agent’s] 

degree of belief in H1 after the data are known is given by the conditionalisation 

principle Pr(H1|D), assuming the Pr(D) is not zero’ (BTB 2016, 4). But Pr(H1|D) is a 

number, not a principle. What the principle does say is that after learning D, and 

nothing stronger, the agent’s new belief function should be PD( . ) := P( . |D). Nor is 

there any need to assume that P(D) is nonzero: there are well-known axiomatisations of 

conditional probability in which the second argument can have probability 0, so long as 

it is consistent. 
10

 Recall that this provision is part of Edwards’s Likelihood Axiom! 
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