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BOOTSTRAP INFERENCE OF MATCHING ESTIMATORS FOR
AVERAGE TREATMENT EFFECTS

TAISUKE OTSU AND YOSHIYASU RAI

Abstract. Abadie and Imbens (2008) showed that the naive bootstrap is not asymp-

totically valid for a matching estimator of the average treatment effect with a fixed

number of matches. In this article, we propose asymptotically valid inference meth-

ods for matching estimators based on the weighted bootstrap. The key is to construct

bootstrap counterparts by resampling based on certain linear forms of the estimators.

Our weighted bootstrap is applicable for the matching estimators of both the average

treatment effect and its counterpart for the treated population. Also, by incorporating a

bias correction method in Abadie and Imbens (2011), our method can be asymptotically

valid even for matching based on a vector of covariates. A simulation study indicates

that the weighted bootstrap method is favorably comparable with the asymptotic normal

approximation by Abadie and Imbens (2006). As an empirical illustration, we apply the

proposed method to the National Supported Work data.

1. Introduction

The method of matching is widely applied in empirical research for treatment effects

and program evaluations. In a series of papers, Abadie and Imbens (2006, 2008, 2011,

2012) studied various aspects of matching estimators for average treatment effects with

fixed numbers of matches. In contrast to other studies on nonparametric estimation of

treatment effects (e.g., Heckman, Ichimura and Todd, 1998, and Hirano, Imbens and Rid-

der, 2003), Abadie and Imbens analyzed rather nonstandard behaviors of the matching

We thank Joachim Freyberger, Jack Porter, Xiaoxia Shi and Christopher Taber for thoughtful comments.
We also thank Martin Huber for a computer program. We acknowledge substantial comments from an
anonymous referee regarding the general weighted bootstrap scheme. Financial support from the ERC
Consolidator Grant (SES-0720961) is gratefully acknowledged (Otsu).
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estimators due to lack of smoothness of the functional forms caused by the fixed numbers

of matches. Abadie and Imbens (2006) showed that the matching estimators are not
√
N -

consistent in general, where N is the sample size. Abadie and Imbens (2011) proposed a

bias correction method based on nonparametric series regression. In addition to the non-

standard asymptotic behavior of the point estimator, Abadie and Imbens (2008) provided

an example to show that the standard naive bootstrap (i.e., resampling from observations

with equal weights) fails to provide an asymptotically valid standard error and quantiles

for a matching estimator. As Abadie and Imbens (2008) argued, the main reason for this

failure is that the naive bootstrap fails to reproduce the distribution of the number of

times each unit is used as a match.1 Given this negative result on the bootstrap, Abadie

and Imbens (2008) recommended using the asymptotic standard error derived in Abadie

and Imbens (2006) or subsampling (Politis and Romano, 1994) for inference.

In this paper, we propose an alternative inference method for the matching estimators

based on the weighted bootstrap (e.g., Mason and Newton, 1992, and Pauly, 2011). We

show that even though the naive bootstrap is not valid for the matching estimator, the

weighted bootstrap approach based on a linear form of the estimator can still be valid for

inference based on the estimator. The intuition for the validity of our weighted bootstrap

is that we treat the number of times unit i is used for a match (i.e., KM(i) defined in (2.1))

as one of the characteristics of unit i and directly resample it. Such resampling preserves

the distribution of KM(i) in bootstrap resamples and circumvents the problem in Abadie

and Imbens (2008). The weights for bootstrapping are flexible: they can be multinomial,

Dirichlet (as in the Bayesian bootstrap by Rudin, 1981), or some two-point distribution

(as in the wild bootstrap by Mammen, 1993). We note that the weighted bootstrap

using multinomial weights (which resamples from the linear form of the estimator) is
1Denoted by KM (i) in (2.1) below. It means how many times unit i’s observation appears to estimate
potential outcomes by imputations.
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different from the naive bootstrap (which resamples from the original data). Indeed,

Abadie and Imbens (2008, p. 1546) mentioned the possibility of using the wild bootstrap

for valid inference. As a special case, this paper formally confirms their conjecture. Also,

Abadie and Imbens (2012) provided a representation of the matching estimator based on

a martingale sequence of length 2N . We argue that although it is possible to conduct

the weighted bootstrap based on this martingale representation (where we draw weights

of size 2N), it is indeed enough to resample from the linear form of the estimator (where

we draw weights of only size N).

We show the asymptotic validity of the weighted bootstrap for both the average treat-

ment effect and its counterpart on the treated population. Also, by incorporating a bias

correction method in Abadie and Imbens (2011), our method can be asymptotically valid

even for matching based on a vector of covariates. A small simulation study indicates

that our weighted bootstrap method is favorably comparable with the asymptotic normal

approximation by Abadie and Imbens (2006). Finally, the proposed method is illustrated

by an empirical analysis using the National Supported Work data.

The paper is organized as follows. Section 2 introduces our basic setup and notation.

In Section 3, we present the weighted bootstrap method and show its asymptotic validity.

Section 4 presents some simulation results. In Section 5, we apply the weighted bootstrap

method to the National Supported Work data. Section 6 concludes. In Appendix A, we

list assumptions for the main theorem and provide some remarks. All proofs are contained

in Appendices B and C. Tables are presented in Appendix D. In the web appendix, we

present an analogous result of bootstrap validity for the case of the average treatment

effect on the treated population and sketch how our weighted bootstrap approach may

be applied to the average derivative estimator under the small bandwidth asymptotics of

Cattaneo, Crump and Jansson (2010, 2014).
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2. Setup

Let us introduce the basic setup. For each unit i = 1, . . . , N , we observe an indicator

variable Di for a treatment (Di = 1 if treated and Di = 0 otherwise), and outcome

Yi =


Yi(0) if Di = 0

Yi(1) if Di = 1

,

where Yi(0) and Yi(1) are potential outcomes for Di = 0 and 1, respectively. Also we

observe a vector of covariates Xi for each unit. Based on the non-experimental obser-

vations {Yi, Di, Xi}Ni=1 of size N , we wish to conduct inference on the average treatment

effect τ = E[Yi(1) − Yi(0)]. Let I{A} be the indicator function for an event A and ‖x‖

be the Euclidean norm. To estimate τ , we consider the matching estimator based on the

distance measured by the covariates,

τ̂ =
1

N

N∑
i=1

{Ŷi(1)− Ŷi(0)},

where Ŷi(0) and Ŷi(1) are estimates of the potential outcomes by imputations defined as

Ŷi(0) =


Yi if Di = 0,

1
M

∑
j∈JM (i) Yj if Di = 1,

Ŷi(1) =


1
M

∑
j∈JM (i) Yj if Di = 0,

Yi if Di = 1,

and JM(i) is the set of indices of the first M matches for unit i,

JM(i) =

{
j ∈ {1, . . . , N} : Dj = 1−Di,

∑
l:Dl=1−Di

I{‖Xl −Xi‖ ≤ ‖Xj −Xi‖} ≤M

}
.

For the estimator τ̂ , each unit may be used as a match more than once (matching with

replacement). Here, the distance ‖·‖ for matching may be replaced with the weighted

4



Euclidean distance. Let KM(i) denote the number of times unit i is used as a match

KM(i) =
N∑
l=1

I{i ∈ JM(l)}. (2.1)

In practice, it is common that the number of matches M can be small (could be one)

even though the sample size N is large. To characterize behaviors of the matching es-

timators in such a practical scenario, Abadie and Imbens (2006) analyzed asymptotic

properties of τ̂ as N increases to infinity with fixed M (called fixed-M asymptotics).

Let µ(d, x) = E[Y |D = d,X = x] and σ2(d, x) = V ar(Y |D = d,X = x). Note

that Assumption M (iii) in Appendix A guarantees µ(d, x) = E[Y (d)|X = x]. Under

Assumption M, Abadie and Imbens (2006, Theorems 3 and 4) showed that τ̂ is consistent

and asymptotically normal, i.e.,

√
N(τ̂ −BN − τ)

σN

d→ N(0, 1), (2.2)

as N → ∞ (but M is fixed), where BN and σ2
N are asymptotic bias and variance terms,

respectively, defined as

BN =
1

N

N∑
i=1

(2Di − 1)

 1

M

∑
j∈JM (i)

{µ(1−Di, Xi)− µ(1−Di, Xj)}

 ,

σ2
N = σ2

1N + σ2
2,

σ2
1N =

1

N

N∑
i=1

{
1 +M−1KM(i)

}2
σ2(Di, Xi),

σ2
2 = E[{(µ(1, Xi)− µ(0, Xi))− τ}2]. (2.3)

In empirical applications, researchers typically choose a smallM even for large samples.

The fixed-M asymptotics in (2.2) provides a useful approximation for the distributions of

the matching estimators in such situations. A key feature of the asymptotic distribution
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in (2.2) is the presence of the bias term BN that depends on M . As shown in Abadie and

Imbens (2006, Theorems 1 and 2), this bias term satisfies BN = Op(N
−1/k), where k is

the dimension of X. Therefore, if k ≥ 2, τ̂ is not
√
N -consistent for τ .

To deal with this problem, Abadie and Imbens (2011) estimated BN by

B̂N =
1

N

N∑
i=1

(2Di − 1)

 1

M

∑
j∈JM (i)

{µ̂(1−Di, Xi)− µ̂(1−Di, Xj)}

 , (2.4)

where µ̂(d, x) is a nonparametric estimator of µ(d, x). Requirements on µ̂(d, x) are pre-

sented in Assumption R in Appendix A. Abadie and Imbens (2011, Theorem 2) employed

a series estimator for µ̂(d, x) and showed a remarkable result:
√
N(B̂N − BN)

p→ 0 un-

der certain regularity conditions allowing X to be a vector.2 As clarified in Abadie and

Imbens (2011), this surprisingly fast convergence rate follows from the fact that B̂N ba-

sically estimates the contrast µ(d, ẋ) − µ(d, x) with ẋ − x → 0. However, in contrast to

the number of matches M , the series length should increase to infinity to guarantee the

fast convergence rate.3 Due to the fast convergence property of B̂N , the bias corrected

estimator τ̃ = τ̂ − B̂N satisfies
√
N(τ̃ − τ)/σN

d→ N(0, 1) (Abadie and Imbens, 2011, The-

orem 2). Since the asymptotic variance σ2
N can be consistently estimated (see, Theorem

2More specifically, Abadie and Imbens (2011) proposed a power series regression estimator for µ̂(d, x)

with k-dimensional x. For a vector of nonnegative integers λ = (λ1, . . . , λk), let |λ| =
∑k
h=1 λh and

xλ =
∏k
h=1 x

λh

h , where xh is the h-th element of x. Define a series {λ(l)}∞l=1 for all distinct vectors of λ
such that |λ(l)| is nondecreasing. Based on this series, consider an L-vector pL(x) = (xλ(1), . . . , xλ(L))′

of power functions of x. The power series estimator of µ(d, x) is given by

µ̂(d, x) = pL(x)′

( ∑
i:Di=d

pL(Xi)p
L(Xi)

′

)− ∑
i:Di=d

pL(Xi)Yi,

for d ∈ {0, 1} and x ∈ X, where (·)− is a generalized inverse. Suppose that µ(d, x) is infinitely differentiable
at x ∈ X and that the series length L grows with the sample size N and satisfies L = O(Nv) with
v ∈ (0,min{2/(4k + 3), 2/(4k2 − k)}). Then, as shown in Abadie and Imbens (2011, Theorem 2), the
power series estimator µ̂(d, x) satisfies Assumption R in Appendix A and achieves the fast convergence√
N(B̂N −BN )

p→ 0 for the bias term.
3A major requirement on the choice of the series length is to achieve |µ̂(d, ·)−µ(d, ·)|k−1 = op(N

−1/2+1/k)
(the last condition of Assumption R in Appendix A). When the dimension k of X is large, this condition
typically requires more stringent smoothness on µ(d, x) in x. For example, Abadie and Imbens (2011,
Theorem 2) imposed infinite differentiability of µ(d, x) in x.
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6 of Abadie and Imbens, 2006), this asymptotic normality result on τ̃ yields a confidence

interval for τ , which is valid under fixed-M asymptotics.

Alternatively, one may consider bootstrap inference based on some resampling scheme.

However, Abadie and Imbens (2008) provided an example showing that the naive boot-

strap method (i.e., resampling from the observations {Yi, Di, Xi}Ni=1 with uniform weights)

is not valid to estimate the standard error of a matching estimator under fixed-M asymp-

totics. This failure is due to the fact that the naive bootstrap is not able to reproduce

the distribution of KM(i) in (2.1), the number of times each unit is used as a match. To

the best of our knowledge, currently there is no valid bootstrap procedure to approximate

the distribution of
√
N(τ̃ − τ) under fixed-M asymptotics. Indeed, Abadie and Imbens

(2008, p. 1546) conjectured that a wild bootstrap method may be asymptotically valid

because of the fact that τ̃ can be written by some linear forms. In this paper, we confirm

and generalize their conjecture by developing a new weighted bootstrap method that is

valid under fixed-M asymptotics and contains the wild bootstrap as a special case.

3. Weighted Bootstrap

In this section, we present a valid bootstrap method for the bias corrected matching

estimator τ̃ = τ̂ − B̂N under fixed-M asymptotics. By the definitions of τ̂ and B̂N , and

the fact that µ̂(1−Di, Xj) = µ̂(Dj, Xj) for j ∈ JM(i), the estimator τ̃ can be written as

a linear form

τ̃ =
1

N

N∑
i=1

(2Di − 1)

{Yi − µ̂(1−Di, Xi)} −
1

M

∑
j∈JM (i)

{Yj − µ̂(1−Di, Xj)}


=

1

N

N∑
i=1

(2Di − 1)
(
Yi − µ̂(1−Di, Xi) +M−1KM(i){Yi − µ̂(Di, Xi)}

)
≡ 1

N

N∑
i=1

τ̃i, (3.1)
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where KM(i) is defined in (2.1). Let êi = Yi − µ̂(Di, Xi) and ξ̂i = (2Di − 1){µ̂(Di, Xi)−

µ̂(1−Di, Xi)} − τ̃ . Then we are able to write the i-th ‘residual’ as

τ̃i − τ̃ = (2Di − 1){1 +M−1KM(i)}êi + ξ̂i. (3.2)

This expression is insightful. If we consider the population counterparts ei = Yi−µ(Di, Xi)

and ξi = (2Di−1){µ(Di, Xi)−µ(1−Di, Xi)}−τ of êi and ξ̂i, respectively, then the variance

components σ2
1N and σ2

2 appearing in (2.3) can be written as

σ2
1N = V ar

(
1√
N

N∑
i=1

(2Di − 1){1 +M−1KM(i)}ei

∣∣∣∣∣D,X
)
,

σ2
2 = V ar

(
1√
N

N∑
i=1

ξi

)
,

respectively, where D = (D1, . . . , DN) and X = (X1, . . . , XN). This suggests that valid

bootstrap inference may be possible if we treat {τ̃i}Ni=1 like ‘observations’ and resample

them. Precisely speaking, we construct the weighted bootstrap counterpart of
√
N(τ̃ − τ)

as follows
√
NT ∗ =

N∑
i=1

W ∗
i (τ̃i − τ̃), (3.3)

where {W ∗
i }Ni=1 is a sequence of random variables satisfying Assumption W in Appendix

A. Assumption W is general enough to include several popular bootstrap methods. For

example, the nonparametric bootstrap (Efron, 1979) sets the weight as W ∗
i = M∗

i /
√
N ,

where (M∗
1 , . . . ,M

∗
N) is a multinomial random vector with N draws on N equal probability

cells. The Bayesian bootstrap (Rubin, 1981) sets the weight as W ∗
i = δ∗i /

√
N , where

(δ∗1, . . . , δ
∗
N) is drawn from a Dirichlet distribution. The wild bootstrap (Wu, 1986, and

Mammen, 1993) sets the weight as W ∗
i = ε∗i /

√
N , where {ε∗i }Ni=1 is an i.i.d. sequence
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with E[ε∗i ] = 0 and E[ε∗2i ] = 1.4 It should be noted that the nonparametric bootstrap

with the weight W ∗
i = M∗

i /
√
N is different from the naive bootstrap (i.e., draw from

the original observations {Yi, Di, Xi}Ni=1 with equal weights) investigated by Abadie and

Imbens (2008). See Remark 2 below for a detailed discussion.

Our main theorem, asymptotic validity of the weighted bootstrap under fixed-M asymp-

totics, is presented as follows (see Appendices B and C for a proof).

Theorem. Under Assumptions M, W, and R in Appendix A,

sup
r
|Pr{
√
NT ∗ ≤ r|Z} − Pr{

√
N(τ̃ − τ) ≤ r}| p→ 0,

as N →∞ with fixed M .

Remarks. 1. This theorem says that the distribution of the bootstrap statistic
√
NT ∗

consistently estimates that of the target object
√
N(τ̃−τ) under the Kolmogorov distance.

For example, let q∗α/2 and q∗1−α/2 be the (α/2)-th and (1− α/2)-th quantiles of T ∗ respec-

tively. These quantiles can be estimated by simulating T ∗. Then based on this theorem,

the 100(1−α)% bootstrap confidence interval of τ is obtained as [τ̃ − q∗1−α/2, τ̃ − q∗α/2]. In

our simulation study below, we employ this confidence interval.

2. As we mentioned above, our bootstrap method allows the nonparametric bootstrap

weights (i.e., W ∗
i = M∗

i /
√
N with multinomial M∗

i ) while Abadie and Imbens (2008)

showed failure of the naive bootstrap. This is not a contradiction because these methods

resample different objects. The naive bootstrap draws a resample {Y ∗i , D∗i , X∗i }Ni=1 from

4In the simulation and empirical studies below, we employ Mammen’s (1993) two point distribution

ε∗i =

{
−(
√

5− 1)/2 with probability (
√

5 + 1)/2
√

5

(
√

5 + 1)/2 with probability (
√

5− 1)/2
√

5
.
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the original observations {Yi, Di, Xi}Ni=1 and then computes the bootstrap counterpart

τ̃ ∗ =
1

N

N∑
i=1

(2D∗i − 1)
(
Y ∗i − µ̂(1−D∗i , X∗i ) +M−1K∗M(i){Y ∗i − µ̂(D∗i , X

∗
i )}
)
.

Note thatK∗M(i) is computed by the bootstrap resample. As argued by Abadie and Imbens

(2008), this approach causes a problem because in the naive bootstrap resample the same

unit may appear multiple times, which occurs with probability 0 in the population. This

event affects the number of times unit i is used as a match. As a result, the distribution

of K∗M(i) fails to approximate that of KM(i), and the naive bootstrap counterpart τ̃ ∗ fails

to recover the distribution of τ̃ .

In contrast, the nonparametric bootstrap with W ∗
i = M∗

i /
√
N treats KM(i) as one of

the characteristics of unit i. Indeed our bootstrap draws a resample from {Yi, Di, Xi, KM(i)}Ni=1

and then computes the bootstrap counterpart without recomputing KM(i). Thus, our

bootstrap circumvents the above problem.

3. An insightful paper by Abadie and Imbens (2012) pointed out that the (bias cor-

rected) matching estimators can be written as martingale sequences. For instance, con-

sider the triangular array

ξN,i =


1√
N

(2Di − 1){µ(Di, Xi)− µ(1−Di, Xi)} − τ for i = 1, . . . , N

1√
N

(2Di − 1){1 +M−1KM(i)}(Yi − µ(Di, Xi)) for i = N + 1, . . . , 2N

and filtration FN,` = σ{D1, . . . , D`, X1, . . . , X`} for ` = 1, . . . , N and FN,` = σ{D,X, Y1, . . . , Y`−N}

for ` = N+1, . . . , 2N . Abadie and Imbens (2012) argued that
{∑`

i=1 ξN,i,FN,`, ` = 1, . . . , 2N
}

is a martingale sequence satisfying
√
N(τ̂−BN−τ) =

∑2N
i=1 ξN,i, and that asymptotic nor-

mality of the estimator directly follows from the martingale central limit theorem. This

finding is closely related to our bootstrap statistics. Indeed, since τ̃i = ξ̂N,i + ξ̂N,N+i, our
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bootstrap statistic in (3.3) can be written as
√
NT ∗ =

∑N
i=1W

∗
i (ξ̂N,i+ ξ̂N,N+i), where ξ̂N,i

is an estimated counterpart of ξN,i. Also we are able to utilize the martingale structure

more directly by constructing a bootstrap statistic
√
NT̃ ∗ =

∑2N
i=1W

∗
i ξ̂N,i. Basically the

same argument shows asymptotic validity of T̃ ∗.

4. Abadie and Imbens (2012) considered two other applications of the above martingale

representation approach, matching without replacements and hot-deck imputation. It is

easy to modify our weighted bootstrap method for those applications.

5. Instead of the weighted bootstrap method described above, one may use subsam-

pling (Politis and Romano, 1994) as an alternative inference method. In our setting, the

subsampling confidence interval for τ can be obtained as follows.

(i): Compute τ̃ , σ̂N , µ̂(1, x), and µ̂(0, x) from the entire sample.

(ii): Draw subsamples {Y ∗i , D∗i , X∗i }Si=1 without replacement from the entire sample.

(iii): Compute σ̂S and the bias corrected estimator τ̃S = τ̂S−B̂S from the subsample

drawn in (ii), where

B̂S =
1

S

S∑
i=1

(2D∗i − 1)

 1

M

∑
j∈J ∗

M (i)

{µ̂(1−D∗i , X∗i )− µ̂(1−D∗i , X∗j )}

 .

(iv): Repeat (ii)-(iii) for different subsamples and report [τ̃ −
√
S/Nσ̂Nq

∗
1−α/2, τ̃ −√

S/Nσ̂Nq
∗
α/2] as the 100(1−α)% subsampling confidence interval, where q∗α/2 and

q∗1−α/2 are the (α/2)-th and (1−α/2)-th quantiles of
√
S(τ̃S − τ̃)/σ̂S, respectively.

By Politis and Romano (1994), this subsampling confidence interval is asymptotically valid

under mild conditions if S → ∞ and S/N → 0 as N → ∞. In the special case where

the estimator τ̃ is
√
N -consistent without bias adjustment, we do not need to subtract

B̂S. Thus, unlike our weighted bootstrap approach, the subsampling method does not

involve any nonparametric estimator of µ(d, x). On the other hand, subsampling requires
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the choice of the size of subsamples S, which may be a difficult task. Our simulation

results below suggest the subsampling confidence interval is sensitive to the choice of S

when the sample size N is moderate. Also, we note that the computational cost of our

weighted bootstrap is significantly cheaper than that of subsampling (see, Section 4 for

some example). This is because the weighted bootstrap does not require computation of

matches in the bootstrap resamples.

6. As suggested by an Associate Editor, it is an interesting direction for future research

to see whether the basic idea of our bootstrap approach (i.e., resample properly linearized

objects by the weighted bootstrap) can be applied to other contexts, where the naive

bootstrap is invalid due to lack of asymptotic linearity. In the Web Appendix, we sketch

and conjecture how our weighted bootstrap approach for matching estimators may be

applied to the average derivative estimator under the small bandwidth asymptotics of

Cattaneo, Crump and Jansson (2010, 2014).

4. Simulation

In this section, we evaluate the finite sample performance of our weighted bootstrap

method by Monte Carlo simulation. Based on Frölich (2004) and Busso, DiNardo and

McCrary (2014), we consider the following data generating process for {Yi, Di, Xi}Ni=1,

Yi(1) = τ +m(‖Xi‖) + εi, Yi(0) = m(‖Xi‖) + εi,

Di = I{P (Xi) ≥ νi}, νi ∼ U [0, 1],

P (Xi) = γ1 + γ2 ‖Xi‖ , Xi = (X1i, . . . , Xki)
′,

Xji = ξi|ζji|/ ‖ζi‖ for j = 1, . . . , k,

ξi ∼ U [0, 1], ζi ∼ N(0, Ik), εi ∼ N(0, 0.22),

12



where (εi, νi, ξi, ζi) are mutually independent. In this simulation design, the average treat-

ment effect is τ , which is set as τ = 0. For the parameters of P (Xi), we set γ1 = 0.15

and γ2 = 0.7.5 For the function m(·), we consider six curves presented in Table 1. For

k = dim(X), we consider k = 1, 2, . . . , 5.

For all cases, we set the number of matches as M = 8,6 and consider the bias corrected

estimator τ̃ = τ̂ − B̂N , where B̂N is given by the OLS of the linear regression µ̂i =

α̂ + Xiβ̂.7 We compare five inference methods: (i) wild bootstrap (weighted bootstrap

with W ∗
i = ε∗i /

√
n, where ε∗i is drawn from Mammen’s (1993) two point distribution),

(ii) nonparametric bootstrap (weighted bootstrap with W ∗
i = M∗

i /
√
n), (iii) asymptotic

t using Abadie and Imbens’ (2006) standard error, (iv) naive bootstrap (i.e., resample

from {Yi, Di, Xi}ni=1 with uniform weights), and (v) subsampling. Except for the naive

bootstrap, all methods are valid under fixed-M asymptotics. Methods (i) and (ii) are

proposed in this paper. For Method (v), we report the cases of S = 20, 30, 50, and

a data-driven method based on Bickel and Sakov (2008) for the subsample size.8 For

each simulation design, we report coverage rates of the 95% confidence intervals by the

above methods. We also report average lengths (over Monte Carlo replications) of the

confidence intervals. The sample size is set as N = 100. Simulation results based on

10,000 replications are presented in Tables 2 and 3.

Our findings are summarized as follows. First, for all cases, the coverage probabilities

of the naive bootstrap confidence intervals are below the nominal level. Since the naive

5We tried several different combinations of (γ1, γ2) and the case where εi follows the centered lognormal
with the standard deviation 0.2. Results are similar overall.
6In a preliminary simulation study, results are similar for different values of M including M = 1,4, and
16.
7The linear regression is understood to be a special case of the power series estimator of µ(d, x) presented
in Footnote 2. In a preliminary simulation study, we consider different series lengths and find that results
are similar overall.
8More precisely, the data-driven subsample size is chosen by S∗ = arg minSj

{supx |LSj
(x) − LSj+1

(x)|},
where LSj (·) is the subsampling cumulative distribution function of

√
Sj(τ̃Sj − τ̃)/σ̂Sj and Sj = 50− 2j

for j = 0, 1, . . . , 20.
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bootstrap is asymptotically invalid as shown by Abadie and Imbens (2008), this result

is reasonable.9 Thus, we need to employ other asymptotically valid inference methods.

Second, Tables 3 shows that the coverage rates of the subsampling confidence intervals

are always below the nominal level. The data-driven choice of S does not improve the

under-coverage in general. Furthermore, the results are sensitive to the choice of the

subsample size S. Thus, even though subsampling is asymptotically valid, it does not

work well to approximate the finite sample distribution of the matching estimator in this

setup. Third, across all cases, our weighted bootstrap (both wild and nonparametric)

and the asymptotic t confidence intervals by Abadie and Imbens (2006) are reasonably

close to the nominal level. Overall these coverage rates slightly decrease as k = dim(X)

increases, but the results are not sensitive to k. For example, for Curve 1, the coverage

of the wild bootstrap decreases from 0.9342 (for k = 1) to 0.9152 (for k = 5). Fourth,

the average lengths of the weighted bootstrap (wild and nonparametric) are similar to

those of the asymptotic t confidence intervals except for some cases where the asymptotic

t shows under-coverage. Finally, for Curve 6, our weighted bootstrap methods (wild and

nonparametric) show better coverage than the asymptotic t method across all cases. For

example, if k = 1, the coverage of the wild bootstrap confidence interval is 0.9500 but for

the asymptotic t is 0.8731.

Overall our simulation results are encouraging: the weighted bootstrap inference method

developed in this paper is favorably comparable to the asymptotic t method in Abadie

and Imbens (2006, 2011).

We close this section with a remark on the computational cost. For Curve 1 with

k = 1 and N = 100, we implemented 1,000 Monte Carlo replications of the confidence

intervals based on the wild and nonparametric bootstrap (with 999 bootstrap replications),
9Abadie and Imbens (2008) showed that the naive bootstrap can produce both under- and over-covarage.
In our simulation designs, we only observe under-coverage.
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asymptotic t, and subsampling (with S = 20) by a laptop with Intel Core i7-3540M

3.0GHz. In terms of CPU seconds, it takes 11.11 for the wild bootstrap, 11.28 for the

nonparametric bootstrap, 8.85 for the asymptotic t, and 8859.17 for the subsampling.

Also, for N = 8000, one Monte Carlo replication takes 11.16 for the wild bootstrap

(with 29,999 bootstrap repetitions), 7.45 for the nonparametric bootstrap (with 29,999

bootstrap repetitions), 1.70 for the asymptotic t, and 592.70 for the subsampling (with

S = 300). Therefore, except for subsampling, the computational costs to implement these

methods are small.

5. Empirical Application

In this section, we apply our weighted bootstrap method to an empirical analysis based

on the National Supported Work (NSW) data. The NSW demonstration was a program

which aimed to provide subsidized work experience to individuals with longstanding em-

ployment problems. The NSW dataset was first analyzed by Lalonde (1986) and subse-

quently by Heckman and Hotz (1989), Dehejia and Wahba (1999, 2002) (hereafter, DW),

and Smith and Todd (2005) among others. Here we use the dataset uploaded by Rajeev

Dehejia (http://users.nber.org/~rdehejia/nswdata2.html). In particular, we analyze two

experimental samples and two non-experimental ones. The first experimental sample is

also used by Lalonde (1986) (labelled NSW-L). It includes a male sample with ex-addict,

ex-offender, and/or high school dropout having complete ex-ante and ex-post earning

data. The second experimental sample is also used by DW (labelled NSW-DW). This is

a subset of the first experimental sample for males who were randomly assigned in either

January to April of 1976 or October of 1976 to August of 1977, and had zero earnings

in the 13-24 months before the random assignment. Two non-experimental samples were

also analyzed by Lalonde (1986) and DW. The first non-experimental sample is drawn
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from the Current Population Survey (labelled CPS) with matched Social Security earn-

ings data. It includes all males less than 55 years old. The second non-experimental

sample is drawn from the Panel Study Income Dynamics (labelled PSID). It contains all

male household heads who were less than 55 years old and did not classify themselves as

retired in 1975. We follow the previous studies and focus on the average treatment effect

τ t = E[Yi(1)− Yi(0)|Di = 1] for the treated population. The weighted bootstrap method

for τ t and its validity are presented in the web appendix (Section A). From the experi-

mental samples, we can obtain unbiased estimates for τ t. We then compute the matching

estimators from the experimental participants and non-experimental control groups from

the CPS and PSID.

We first summarize the data. Table 6 reports the means, standard errors (in parenthe-

ses), and normalized distances between the experimental and non-experimental samples

of the control groups defined as (X̄1−X̄0)/
√

(S2
0 + S2

1)/2, where X̄d =
∑

i:Di=d
Xi/Nd and

Sw =
∑

i:Di=d
(Xi − X̄d)

2/(Nd − 1).10 The two experimental samples (NSW-L and NSW-

DW) have similar characteristics except for real earnings in 1975 (RE75). This difference

in RE75 is due to the fact that NSW-DW contains more observations with zero earn-

ings. On the other hand, the characteristics of the experimental and non-experimental

samples (particularly age, marital status, ethnicity, and earnings) are very different. This

difference is confirmed by the large normalized distances of the covariates between the

experimental treated and non-experimental control groups. Therefore, it is generally dif-

ficult to find good matches from these samples.

For each pair of samples for the treated and control groups, we implement the matching

estimator for τ t and then compute its standard error by Methods (i)-(iv) in Section 4.11

10This normalized distance is employed in Abadie and Imbens (2011). Note that this distance is different
from the t-statistic (X̄1 − X̄0)/

√
S2
0/N0 + S2

1/N1 to test the null hypothesis E[X1] = E[X0].
11The matching is based on the Mahalanobis distance. The estimator µ̂(d, x) for the bias correction in
(2.4) is given by the OLS of the linear regression µ̂i = α̂+Xiβ̂, which is understood to be a special case
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Recall that Methods (i) and (ii) are proposed in this paper, and that Method (iv) (naive

bootstrap) is invalid under fixed-M asymptotics (Abadie and Imbens, 2008). For the

number of matches M , we consider the cases M = 1, 4, and 16.

Table 7 summarizes the results for the matching estimates and standard errors. The

first row presents the mean differences between the treatment and control groups. The

unbiased estimates of τ t are 886.30 and 1794.34 for the NSW-L and NSW-DW samples,

respectively. The simple covariate matching works well for the NSW-DW sample, but

not for the NSW-L sample. For the standard errors, we find that our weighted bootstrap

methods (wild and nonparametric) provide similar values as the asymptotic method by

Abadie and Imbens (2006). On the other hand, the naive bootstrap standard errors take

somewhat different values compared to the others. This result suggests that statistical

inference based on the naive bootstrap can be misleading and we recommend employing

asymptotic or weighted bootstrap inference, which are valid under fixed-M asymptotics.

6. Conclusion

This paper proposes a weighted bootstrap inference method for matching estimators of

treatment effects. In contrast to the naive bootstrap, our weighted bootstrap method is

valid under asymptotics with a fixed number of matches. Our method is applicable to both

the average treatment effect and its counterpart for the treated population. Simulation

results indicate that the weighted bootstrap method works well in finite samples and is

favorably comparable with the asymptotic normal approximation. Although it is beyond

the scope of this paper, it would be interesting to investigate higher-order properties of

the weighted bootstrap method under fixed-M asymptotics (see, Kline and Santos, 2012,

for higher-order analysis under standard asymptotics). Also an extension of the weighted

of the power series estimator in Footnote 2. Since results are not sensitive to the length of series, we
report only the case of linear regression.
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bootstrap method to propensity score matching is currently under investigation by the

authors.

Appendix A. Assumptions

Recall µ(d, x) = E[Y |D = d,X = x], σ2(d, x) = V ar(Y |D = d,X = x), and N0 =

N −N1. Assumptions for the main theorem are listed as follows. All limits are taken as

N →∞ while M is fixed.

Assumption M. (Conditions for τ̂)

(i): {Yi, Di, Xi}Ni=1 is an i.i.d. sample of (Y,D,X).

(ii): X is continuously distributed on a compact and convex support X ⊂ Rk. The

density of X is bounded and bounded away from zero on X.

(iii): D is independent of (Y (0), Y (1)) conditional on X = x for almost every x.

There exists a positive constant c such that Pr{D = 1|X = x} ∈ (c, 1 − c) for

almost every x.

(iv): For each d ∈ {0, 1}, µ(d, x) and σ2(d, x) are Lipschitz in X, σ2(d, x) is bounded

away from zero on X, and E[Y 4|D = d,X = x] is bounded uniformly on X.

Assumption W. (Conditions for W ∗)

(i): (W ∗
1 , . . . ,W

∗
N) is exchangeable and independent of Z = (Y,D,X).

(ii):
∑N

i=1(W
∗
i − W̄ ∗)2

p→ 1, where W̄ ∗ = N−1
∑N

i=1W
∗
i .

(iii): maxi=1,...,N |W ∗
i − W̄ ∗| p→ 0.

(iv): E[W ∗2
i ] = O(N−1) for all i = 1, . . . , N .

Let λ = (λ1, . . . , λk)
′ be a k-dimensional vector of non-negative integers and ∂λa(x) =

∂
∑k

l=1 λla(x)/∂xλ11 · · · ∂x
λk
k . Define |a(·)|m = max∑k

l=1 λl≤m
supx∈X |∂λa(x)|.
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Assumption R. (Conditions for µ(d, x))

For each d ∈ {0, 1} and λ satisfying
∑k

l=1 λl = k, the derivative ∂λµ(d, x) exists and

satisfies supx∈X |∂λµ(d, x)| ≤ C for some C > 0. Furthermore, µ̂(d, x) satisfies |µ̂(d, ·)−

µ(d, ·)|k−1 = op(N
−1/2+1/k) for each d ∈ {0, 1}.

Remarks. 1. Assumption M, employed in Abadie and Imbens (2006), is used for

the estimator τ̂ . Assumption M (i) is on the sampling process. Assumption M (ii) is

on the distributional form of the covariates X. The assumption that X is continuously

distributed can be relaxed. Discrete covariates with finite support can be accommodated

by using subsamples which does not change our main result. On the other hand, for

continuous and high dimensionalX, the assumption that the density ofX is bounded away

from zero can be restrictive. In practice, we can trim observations where the estimated

densities of X are too low. Assumption M (iii) contains standard unconfoundedness and

overlap conditions to identify the average treatment effect τ . Assumption M (iv) lists

boundedness and smoothness conditions for the conditional mean and variance functions.

Although Assumption M (iv) is relatively mild, Assumption R typically requires more

stringent conditions on the smoothness of µ(d, x) (particularly for high dimensional X).

2. Assumption W (i)-(iii) are standard in the literature of the weighted bootstrap (e.g.,

Mason and Newton, 1992). Assumption W (iv) is imposed to deal with the estimation

error of µ̂.

3. Assumption R is imposed to guarantee a sufficiently fast convergence rate on the

bias estimator B̂N in (2.4), i.e.,
√
N(B̂N − BN)

p→ 0. For example, µ̂(d, ·) can be a

series estimator with a suitable choice of series length (see, Footnote 2). Other candidates

of µ̂(d, ·) are the kernel estimator and nearest neighborhood estimator with adequate

trimming (Stone, 1977). For any choice of µ̂(d, ·), we need to select a tuning constant
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that varies with N to guarantee fast convergence of the bias estimator. As mentioned

in Footnote 3, when k = dim(X) is large, the last condition typically calls for stringent

smoothness of µ(d, x) in x, such as infinite (or very higher-order) differentiability.

Appendix B. Proof of Theorem

Here we present only the proof of part (i) of the theorem. The proof of part (ii) is

similar. By definition, the bootstrap counterpart T ∗ is decomposed as

√
NT ∗ =

N∑
i=1

W ∗
i (τ̃i − τ̃) =

N∑
i=1

(W ∗
i − W̄ ∗)(τ̃i − τ̃)

=
N∑
i=1

(W ∗
i − W̄ ∗)

[
(2Di − 1){1 +M−1KM(i)}êi + ξ̂i

]
=
√
N(T ∗N +R∗1N +R∗2N),

where

√
NT ∗N =

N∑
i=1

(W ∗
i − W̄ ∗)

[
(2Di − 1){1 +M−1KM(i)}ei + ξi

]
,

√
NR∗1N =

N∑
i=1

(W ∗
i − W̄ ∗)(2Di − 1){1 +M−1KM(i)}{µ(Di, Xi)− µ̂(Di, Xi)},

√
NR∗2N =

N∑
i=1

(W ∗
i − W̄ ∗)(ξ̂i − ξi).

Thus, it is enough for the conclusion to show that

Pr{
√
N |R∗1N | > ε|Z} p→ 0, Pr{

√
N |R∗2N | > ε|Z} p→ 0, (B.1)

for any ε > 0, and

sup
r
|Pr{
√
NT ∗N ≤ r|Z} − Pr{

√
N(τ̃ − τ) ≤ r}| p→ 0. (B.2)

20



For (B.1), the definition of R∗1N , (2Di − 1)2 = 1, and Assumption W (i) imply

E[(
√
NR∗1N)2|Z]

= NE[(W ∗
1 − W̄ ∗)2]

1

N

N∑
i=1

{1 +M−1KM(i)}2{µ(Di, Xi)− µ̂(Di, Xi)}2

+N(N − 1)E[(W ∗
1 − W̄ ∗)(W ∗

2 − W̄ ∗)]

× 1

N(N − 1)

∑
i 6=j

 (2Di − 1){1 +M−1KM(i)}{µ(Di, Xi)− µ̂(Di, Xi)}

×(2Dj − 1){1 +M−1KM(j)}{µ(Dj, Xj)− µ̂(Dj, Xj)}

 .

Assumption W (iv) guarantees NE[(W ∗
1−W̄ ∗)2] = O(1) and N(N−1)E[(W ∗

1−W̄ ∗)(W ∗
2−

W̄ ∗)] = O(1). Therefore, by |µ̂(d, ·) − µ(d, ·)|k−1 = op(N
−1/2+1/k) (Assumption R) and

the fact that E[KM(i)q] is uniformly bounded over N for any q > 0 (Lemma 3 of Abadie

and Imbens, 2006), we obtain E[(
√
NR∗1N)2|Z]

p→ 0. Then the Markov inequality im-

plies Pr{
√
N |R∗1N | > ε|Z} p→ 0. A similar argument yields Pr{

√
N |R∗2N | > ε|Z} p→ 0.

Therefore, we obtain (B.1).

We now show (B.2). Define

ηi =
[
(2Di − 1){1 +M−1KM(i)}ei + ξi

]
/
√
N,

so that T ∗N =
∑N

i=1W
∗
i ηi. From Polya’s theorem and Pr

{√
N

σN
(τ̃ − τ) ≤ r

}
→ Φ(r) for all

r ∈ R (Abadie and Imbens, 2006, Theorem 4), it is enough for (B.2) to verify

Pr

{
√
N

N∑
i=1

(W ∗
i − W̄ ∗)ηi
σN

≤ r

∣∣∣∣∣Z
}
− Φ(r)

p→ 0 for all r ∈ R, (B.3)

where Φ(r) is the standard normal distribution function. By Lemma (i) in Appendix C

and
∑N

i=1(W
∗
i − W̄ )2

p→ 1, (Assumption W (ii)), it is enough for (B.3) to show
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Pr{ZN ≤ r|Z} − Φ(r)
p→ 0 for all r ∈ R, (B.4)

where

ZN =
√
N

N∑
i=1

(W ∗
i − W̄ ∗)ηi√∑N

i=1(W
∗
i − W̄ ∗)2

√∑N
i=1(ηi − η̄)2

,

and η̄ = N−1
∑N

i=1 ηi. To show, (B.4), we adapt the argument in Mason and Newton

(1992) to our setup. In particular, let (R1, . . . , RN) be a random vector which takes

each permutation of (1, . . . , N) with equal probability and is independent from Z and

(W ∗
1 , . . . ,W

∗
N). Define

Z∗N =
√
N

N∑
i=1

(W ∗
Ri
− W̄ ∗)ηi√∑N

i=1(W
∗
i − W̄ ∗)2

√∑N
i=1(ηi − η̄)2

.

Since (W ∗
1 , . . . ,W

∗
N) is exchangeable (Assumption W (i)), ZN and Z∗N follow the same

distribution. Thus, it is enough for (B.3) to show

Pr{Z∗N ≤ r|Z} − Φ(r)
p→ 0 for all r ∈ R,

as N → ∞, or equivalently, every subsequence {Nk}k∈N ⊂ N contains a further subse-

quence {Nk(l)}l∈N ⊂ {Nk}k∈N such that

Pr{Z∗Nk(l)
≤ r|Z} − Φ(r)

a.s.→ 0 for all r ∈ R, (B.5)

as l→∞.
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Pick any r ∈ R. Now define

Vi =
W ∗
i − W̄ ∗√∑N

i=1(W
∗
i − W̄ ∗)2

, Ui =
ηi − η̄√∑N
i=1(ηi − η̄)2

,

dN(δ) =
N∑
i=1

N∑
j=1

U2
i V

2
j I{NU2

i V
2
j > δ}.

From Assumption W and Lemmas (ii)-(iii), we have

max
1,...,N

|Vi|
p→ 0, max

1,...,N
|Ui|

p→ 0, dN(δ)
p→ 0, (B.6)

as N → ∞. Pick any subsequence {Nk}k∈N ⊂ N. By (B.6), there exists a further

subsequence {Nk(l)}l∈N ⊂ {Nk}k∈N such that

max
1,...,Nk(l)

|Vi|
a.s.→ 0, max

1,...,Nk(l)

|Ui|
a.s.→ 0, dNk(l)

(δ)
a.s.→ 0, (B.7)

as l → ∞. Notice that Z∗Nk(l)
is a simple linear rank statistic conditional on Z and

(W ∗
1 , . . . ,W

∗
Nk(l)

). Thus, under (B.7), we can apply the rank central limit theorem (Hájek,

1961), that is

Pr{Z∗Nk(l)
≤ r|Z,W ∗

1 , . . . ,W
∗
Nk(l)
} − Φ(r)

a.s.→ 0,

as l→∞. Furthermore, the bounded convergence theorem implies

Pr{Z∗Nk(l)
≤ r|Z} − Φ(r) = E

[
Pr{Z∗Nk(l)

≤ r|Z,W ∗
1 , . . . ,W

∗
Nk(l)
} − Φ(r)

∣∣∣Z] a.s.→ 0,

as l→∞. Therefore, we obtain (B.5) and the conclusion follows.
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Appendix C. Lemmas

Lemma. Use the same notation in Appendix B. Under Assumptions M, W, and R in

Appendix A, (i)
∑N

i=1(ηi − η̄)2 − σ2
N

p→ 0, (ii) max1,...,N |Ui|
p→ 0, and (iii) dN(δ)

p→ 0, as

N →∞.

Proof of (i). First, we show
∑N

i=1 η
2
i − σ2

N

p→ 0. By definition, decompose
∑N

i=1 η
2
i =

σ̂2
1N + σ̂2

2N + 2CN , where

σ̂2
1N =

1

N

N∑
i=1

{1 +M−1KM(i)}2e2i , σ̂2
2N =

1

N

N∑
i=1

(τi − τ)2,

CN =
1

N

N∑
i=1

(2Di − 1){1 +M−1KM(i)}ei(τi − τ).

The law of large numbers guarantees σ̂2
2N

p→ σ2
2. For σ̂2

1N , note that

E[(σ̂2
1N − σ2

N)2] =
1

N
E
[
{1 +M−1KM(i)}4E[{e2i − σ2(Di, Xi)}2|Di, Xi]

]
≤ 1

N
E[{1 +M−1KM(i)}4] sup

d∈{0,1},x∈X
E[e4i |Di = d,Xi = x]→ 0,

where the convergence follows from Assumption M (iv) and boundedness of E[KM(i)q]

for all q > 0 uniformly over N (Lemma 3 of Abadie and Imbens, 2006). Thus, the Markov

inequality implies |σ̂2
1N − σ2

1N |
p→ 0. Similarly, by the Cauchy-Schwarz inequality, we

obtain

E[C2
N ] =

1

N
E
[
{1 +M−1KM(i)}2e2i (τi − τ)2

]
≤ 1

N
E[{1 +M−1KM(i)}4]1/2

(
E[(τi − τ)4] sup

d∈{0,1},x∈X
E[e4i |Di = d,Xi = x]

)1/2

→ 0,

and thus CN
p→ 0.
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Next, we show

η̄
p→ 0. (C.1)

Since (a) supd∈{0,1},x∈XE[|ei||Di = d,Xi = x], (b) supx∈XE[|ξi||Xi = x], and (c) E[{1 +

M−1KM(i)}] is uniformly bounded over N , we have

E|η̄| ≤ 1√
N
E[{1 +M−1KM(i)}(|ei|+ |ξi|)]→ 0.

Thus, the Markov inequality implies (C.1).

Finally, by using
∑n

i=1 ηi/σN
d→ N(0, 1) (Theorem 4 of Abadie and Imbens, 2006) and

E[σN ] = O(1) (Lemma 3 of Abadie and Imbens, 2006), we obtain Nη̄ = Op(1). Therefore,

combining all these results, we obtain the conclusion as

N∑
i=1

(ηi − η̄)2 − σ2
N =

(
N∑
i=1

η2i − σ2
N

)
−Nη̄2 p→ 0.

Proof of (ii). By Lemma (i) and (C.1), it is enough to show max1,...,N |ηi|
p→ 0. This

follows by

Pr

{
max
1,...,N

|ηi| > ε

}
≤ N Pr{|ηi| > ε} ≤ 1

Nε4
E[({1 +M−1KM(i)}ei + ξi)

4]→ 0,

for any ε > 0, where the first inequality follows from a set inclusion relationship and the

fact that {ηi}Ni=1 are identically distributed, the second inequality follows from the Markov

inequality, and the convergence follows from Assumption M (iv) and uniform boundedness

of E[KM(i)q] over N and q > 0 (Lemma 3 of Abadie and Imbens, 2006).

25



Proof of (iii). Pick any ε > 0. It holds that with probability approaching one,

dN(δ) ≤
N∑
i=1

U2
i I{NU2

i > δ/ε} ≤ ε

δ
N

N∑
i=1

U4
i

=
ε

δ

(
N∑
i=1

(ηi − η̄)2

)−2
1

N

N∑
i=1

({1 +M−1KM(i)}ei + ξi)
4,

where the first inequality follows from max1,...,N |Vi|
p→ 0 (by Assumption W (ii)-(iii))

and
∑N

j=1 V
2
j = 1. Note that

(∑N
i=1(ηi − η̄)2

)−2
= Op(1) by Lemma (i) and that σ2

N is

uniformly bounded from below (σ2
N ≥ infd∈{0,1},x∈X σ

2(d, x)). Thus, if we can show that

1

N

N∑
i=1

({1 +M−1KM(i)}ei + ξi)
4 = Op(1), (C.2)

then we obtain the conclusion by taking ε arbitrarily small.

It remains to show (C.2). Let γi = {1 +M−1KM(i)}ei + ξi. Note that

γ4i = {1 +M−1KM(i)}4e4i + 4{1 +M−1KM(i)}3e3i ξi + 6{1 +M−1KM(i)}2e2i ξ2i

+4{1 +M−1KM(i)}eiξ3i + ξ4i .

By Assumption M (iv), maxq=1,...,4E|ei|q < C for some C > 0. By Abadie and Imbens

(2006, Lemma 3), E[KM(i)q] is uniformly bounded for any q. By the Lipschitz continuity

of µ (Assumption M (iv)) and the compact support of X (Assumption M (ii)), it holds

|ξi| < C ′ a.s. for some C ′ > 0. Combining these results, we can see that E
[∣∣∣ 1N ∑N

i=1 γ
4
i

∣∣∣]
is bounded uniformly over N . Therefore, the Markov inequality implies (C.2), and the

conclusion follows.
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Appendix D. Tables

Table 1. Simulation designs for m(·)

Curves m(z)

1 0.15 + 0.7z
2 0.1 + z/2 + exp(−200(z − 0.7)2)/2
3 0.8− 2(z − 0.9)2 − 5(z − 0.7)3 − 10(z − 0.6)10

4 0.2 +
√

1− z − 0.6(0.9− z)2

5 0.2 +
√

1− z − 0.6(0.9− z)2 − 0.1z cos(30z)
6 0.4 + 0.25 sin(8z − 5) + 0.4 exp(−16(4z − 2.5)2)
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curve 1
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curve 4
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curve 5
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curve 6
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Table 2. Simulation results for bootstrap and asymptotic t methods

Wild Nonparametric Asymptotic t Naive
Average Average Average Average

k Curve 95% CI CI length 95% CI CI length 95% CI CI length 95% CI CI length
1 1 0.9342 0.1696 0.9342 0.1701 0.9423 0.1760 0.8575 0.1435

2 0.9396 0.2063 0.9397 0.2071 0.9068 0.1901 0.8317 0.1649
3 0.9298 0.1936 0.9307 0.1941 0.9026 0.1786 0.8236 0.1556
4 0.9395 0.1837 0.9406 0.1841 0.9309 0.1775 0.8642 0.1518
5 0.9424 0.1855 0.9426 0.1859 0.9325 0.1799 0.8719 0.1533
6 0.9500 0.2400 0.9503 0.2406 0.8731 0.1904 0.8576 0.1890

2 1 0.9257 0.1689 0.9268 0.1693 0.9390 0.1775 0.8572 0.1420
2 0.9282 0.1982 0.9282 0.1987 0.9256 0.1980 0.8472 0.1634
3 0.9394 0.1911 0.9394 0.1915 0.9257 0.1817 0.8659 0.1570
4 0.9210 0.1807 0.9205 0.1811 0.9154 0.1784 0.8398 0.1506
5 0.9264 0.1818 0.9268 0.1822 0.9211 0.1800 0.8459 0.1515
6 0.9473 0.2381 0.9476 0.2385 0.9119 0.2092 0.8819 0.1942

3 1 0.9243 0.1692 0.9247 0.1696 0.9396 0.1799 0.8561 0.1426
2 0.9234 0.1956 0.9242 0.1960 0.9286 0.1994 0.8478 0.1627
3 0.9323 0.1920 0.9329 0.1924 0.9205 0.1847 0.8627 0.1585
4 0.9073 0.1810 0.9083 0.1814 0.9003 0.1794 0.8143 0.1515
5 0.9154 0.1816 0.9163 0.1820 0.9094 0.1806 0.8215 0.1520
6 0.9282 0.2388 0.9296 0.2393 0.8979 0.2145 0.8535 0.1956

4 1 0.9184 0.1695 0.9191 0.1699 0.9360 0.1819 0.8501 0.1431
2 0.9151 0.1941 0.9154 0.1945 0.9226 0.2002 0.8413 0.1622
3 0.9300 0.1932 0.9313 0.1937 0.9201 0.1871 0.8597 0.1598
4 0.9029 0.1812 0.9024 0.1816 0.8980 0.1800 0.8111 0.1520
5 0.9061 0.1817 0.9076 0.1821 0.9025 0.1811 0.8145 0.1525
6 0.9228 0.2396 0.9239 0.2401 0.8918 0.2177 0.8264 0.1972

5 1 0.9152 0.1698 0.9150 0.1702 0.9370 0.1835 0.8439 0.1437
2 0.9127 0.1933 0.9126 0.1938 0.9227 0.2012 0.8375 0.1622
3 0.9270 0.1940 0.9281 0.1944 0.9181 0.1884 0.8528 0.1607
4 0.8961 0.1817 0.8960 0.1821 0.8901 0.1807 0.7932 0.1528
5 0.8976 0.1827 0.8979 0.1831 0.8919 0.1824 0.7920 0.1535
6 0.9103 0.2404 0.9111 0.2409 0.8782 0.2201 0.8069 0.1986
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Table 3. Simulation results for subsampling

S = 20 S = 30 S = 50 Bickel-Sakov
Average Average Average Average

k Curve 95% CI CI length 95% CI CI length 95% CI CI length 95% CI CI length
1 1 0.8920 0.1549 0.8630 0.1462 0.8080 0.1269 0.8562 0.1422

2 0.8775 0.1700 0.8430 0.1619 0.8020 0.1371 0.7909 0.1642
3 0.8603 0.1735 0.8150 0.1628 0.7787 0.1375 0.8015 0.1688
4 0.8740 0.1725 0.8320 0.1613 0.7920 0.1365 0.8766 0.1590
5 0.8788 0.1722 0.8392 0.1609 0.7968 0.1363 0.8889 0.1614
6 0.8713 0.1805 0.8285 0.1686 0.7942 0.1421 0.7773 0.1967

2 1 0.8720 0.1769 0.8324 0.1653 0.7939 0.1396 0.8347 0.1382
2 0.8709 0.1777 0.8346 0.1661 0.7934 0.1402 0.8185 0.1602
3 0.8749 0.1780 0.8391 0.1659 0.7954 0.1400 0.8742 0.1615
4 0.8751 0.1771 0.8409 0.1650 0.7945 0.1393 0.8426 0.1561
5 0.8745 0.1765 0.8415 0.1642 0.7940 0.1387 0.8469 0.1578
6 0.8768 0.1802 0.8449 0.1679 0.7958 0.1414 0.8607 0.1914

3 1 0.8768 0.1782 0.8453 0.1661 0.7960 0.1402 0.8401 0.1385
2 0.8754 0.1785 0.8441 0.1665 0.7951 0.1404 0.8294 0.1604
3 0.8765 0.1786 0.8470 0.1664 0.7961 0.1404 0.8949 0.1636
4 0.8750 0.1781 0.8446 0.1657 0.7934 0.1399 0.8341 0.1566
5 0.8746 0.1778 0.8440 0.1652 0.7913 0.1395 0.8291 0.1586
6 0.8753 0.1802 0.8460 0.1677 0.7918 0.1414 0.8557 0.1980

4 1 0.8748 0.1788 0.8465 0.1665 0.7919 0.1405 0.8384 0.1386
2 0.8751 0.1791 0.8471 0.1667 0.7922 0.1407 0.8179 0.1619
3 0.8754 0.1791 0.8477 0.1667 0.7921 0.1407 0.8762 0.1655
4 0.8736 0.1787 0.8448 0.1661 0.7889 0.1403 0.8123 0.1571
5 0.8724 0.1784 0.8433 0.1657 0.7874 0.1400 0.8115 0.1579
6 0.8728 0.1800 0.8441 0.1675 0.7871 0.1414 0.8240 0.2020

5 1 0.8722 0.1790 0.8440 0.1666 0.7866 0.1408 0.8330 0.1375
2 0.8715 0.1790 0.8437 0.1667 0.7852 0.1408 0.8447 0.1627
3 0.8720 0.1790 0.8447 0.1667 0.7860 0.1408 0.8467 0.1647
4 0.8702 0.1787 0.8423 0.1663 0.7837 0.1405 0.7693 0.1587
5 0.8685 0.1784 0.8404 0.1660 0.7816 0.1402 0.7976 0.1593
6 0.8677 0.1799 0.8404 0.1674 0.7806 0.1413 0.8111 0.2029
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Table 4. Summary statistics
# of obs Age Education Black Hispanic

NSW-L
Treated 297 24.63 10.38 .80 .09

(6.69) (1.82) (.40) (.29)
Control 425 24.45 10.19 .84 .11

(6.59) (1.62) (.40) (.32)
NSW-DW
Treated 185 24.45 10.19 .84 .06

(7.16) (2.01) (.36) (.24)
Control 260 25.05 10.09 .83 .11

(7.06) (1.61) (.38) (.31)
PSID 2,490 34.85 12.11 .25 .03

(10.44) (3.08) (.43) (.18)
CPS 15,992 33.22 12.02 .07 .07

(11.05) (2.87) (.26) (.25 )
Normalized difference
NSW-L T/C .03 .11 .003 -.06
NSW-L/PSID -1.17 -.69 1.32 -1.95
NSW-L/CPS -0.94 -.69 2.16 -1.31
NSW-DW T/C .11 .14 .04 -.17
NSW-DW/PSID -1.01 -.68 1.48 .13
NSW-DW/CPS -.80 -.68 2.43 -.05

No degree Married RE74 RE75
NSW-L
Treated .73 .17 3,066

(.37) (.44) (4,874)
Control .81 .16 3,026

(.36) (.39) (5,201)
NSW-DW
Treated .71 .19 2,095 1,532

(.39) (.46) (4,886) (3,219)
Control .83 .15 2,107 1,267

(.36) (.37) (5,687) (3,102)
PSID .31 .87 19,429 19,063

(.46) (.34) (13,406) (13,596)
CPS .29 .71 14,016 13,650

(.45) (.46) (9,570) (9,270)
Normalized difference
NSW-L T/C -.20 .03 .008
NSW-L/PSID .26 .94 -1.57
NSW-L/CPS .08 .97 -1.43
NSW-DW T/C -.30 .09 -.002 .08
NSW-DW/PSID .88 -1.84 -1.72 -1.77
NSW-DW/CPS .90 -1.23 -1.57 -1.75

* Earnings (RE74 and RE75) are expressed in 1982 dollars.
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Table 5. Covariate matching
NSW-L NSW-DW

NSW-L CPS PSID NSW-DW CPS PSID
Mean difference 886.30 1794.34

(488.20) (671.00)
Covariate matching
M = 1 361.80 19.80 -638.54 2046.21 2186.92 742.54
Wild bootstrap (590.08) (655.89) (1018.55) (762.77) (891.21) (1262.48)
Nonparametric bootstrap (593.25) (668.62) (1001.16) (738.83) (864.54) (1303.98)
Asymptotic t (619.24) (687.29) (1139.77) (739.40) (924.67) (1262.48)
Naive bootstrap (613.46) (674.26) (977.71) (805.07) (849.30) (1055.76)

M = 4 881.31 -340.29 -1122.87 1908.52 1688.37 1460.62
Wild bootstrap (500.76) (546.06) (984.54) (704.27) (734.14) (831.73)
Nonparametric bootstrap (519.47) (560.89) (987.79) (676.26) (744.72) (860.74)
Asymptotic t (511.36) (560.47) (1008.49) (678.94) (735.24) (902.77)
Naive bootstrap (534.03) (605.76) (925.64) (699.86) (763.08) (898.42)

M = 16 952.86 -427.62 -928.56 1959.27 1430.83 1687.08
Wild bootstrap (502.91) (530.95) (777.75) (668.78) (657.65) (800.84)
Nonparametric bootstrap (499.09) (529.05) (783.63) (670.20) (669.93) (799.79)
Asymptotic t (487.19) (508.27) (785.43) (664.68) (654.88) (846.48)
Naive bootstrap (522.84) (535.95) (774.82) (712.53) (663.70) (790.79)

References

[1] Abadie, A. and G. W. Imbens (2006) Large sample properties of matching estimators for average

treatment effects, Econometrica, 74, 235-267.

[2] Abadie, A. and G. W. Imbens (2008) On the failure of the bootstrap for matching estimators,

Econometrica, 76, 1537-1557.

[3] Abadie, A. and G. W. Imbens (2011) Bias-corrected matching estimators for average treatment

effects, Journal of Business & Economic Statistics, 29, 1-11.

[4] Abadie, A. and G. W. Imbens (2012) A Martingale representation for matching estimators, Journal

of the American Statistical Association, 107, 833-843.

[5] Bickel, P. J. and A. Sakov (2008) On the choice of m in the m out of n bootstrap and confidence

bounds for extrema, Statistica Sinica, 18, 967-985.

[6] Busso, M., DiNardo, J. and J. McCrary (2014) New evidence on the finite sample properties of

propensity score matching and reweighting estimators, Review of Economics and Statistics, 96, 885-

897.

31



[7] Cattaneo, M. D., Crump, R. K. and M. Jansson (2010) Robust data-driven inference for density-

weighted average derivatives, Journal of the American Statistical Association, 105, 1070-1083.

[8] Cattaneo, M. D., Crump, R. K. and M. Jansson (2014) Bootstrapping density-weighted average

derivatives, Econometric Theory, 30, 1135-1164.

[9] Dehejia, R. and S. Wahba (1999) Causal effects in nonexperimental studies: reevaluating the evalu-

ation of training programs, Journal of the American Statistical Association, 94, 1053-1062.

[10] Dehejia, R. and S. Wahba (2002) Propensity score-matching method for nonexperimental causal

studies, Review of Economics and Statistics, 84, 151-161.

[11] Efron, B. (1979) Bootstrap methods: Another look at the jackknife, Annals of Statistics, 7, 1-26.

[12] Frölich, M. (2004) Finite-sample properties of propensity-score matching and weighting estimators,

Review of Economics and Statistics, 86, 77-90.

[13] Hájek, J. (1961) Some extensions of the Wald-Wolfowitz-Noether theorem, Annals of Mathematical

Statistics, 32, 506-523.

[14] Heckman, J. and J. Hotz (1989) Choosing among alternative nonexperimental methods for estimating

the impact of social programs: the case of manpower training, Journal of the American Statistical

Association, 84, 862-874.

[15] Heckman, J., Ichimura, H. and P. Todd (1998) Matching as an econometric evaluation estimator,

Review of Economic Studies, 65, 261-294.

[16] Hirano, K., Imbens, G. and G. Ridder (2003) Efficient estimation of average treatment effects using

the estimated propensity score, Econometrica, 71, 1161-1189.

[17] Kline, P. and A. Santos (2012) Higher order properties of the wild bootstrap under misspecification,

Journal of Econometrics, 171, 54-70.

[18] Lalonde, R. J. (1986) Evaluation the econometric evaluations of training programs with experimental

data, American Economic Review, 76, 604-620.

[19] Mammen, E. (1993) Bootstrap and wild bootstrap for high dimensional linear models, Annals of

Statistics, 21, 255-285.

[20] Mason, D. M. and M. A. Newton (1992) A rank statistics approach to the consistency of a general

bootstrap, Annals of Statistics, 20, 1611-1624.

32



[21] Pauly, M. (2011) Weighted resampling of martingale difference arrays with applications, Electronic

Journal of Statistics, 5, 41-52.

[22] Politis, N. and J. Romano (1994) Large sample confidence regions based on subsamples under min-

imal assumptions, Annals of Statistics, 22, 2031-2050.

[23] Rubin, D. (1981) The Bayesian bootstrap, Annals of Statistics, 9, 130-134.

[24] Smith, J. and P. Todd (2005) Does matching address Lalonde’s critique of nonexperimental estima-

tors?, Journal of Econometrics, 125, 305-353.

[25] Stone, C. J. (1977) Consistent nonparametric regression, Annals of Statistics, 5, 595-620.

[26] Wu, C. F. J. (1986) Jackknife, bootstrap, and other resampling methods in regression analysis,

Annals of Statistics, 14, 1261-1295.

Department of Economics, London School of Economics, Houghton Street, London,

WC2A 2AE, UK.

E-mail address: t.otsu@lse.ac.uk

Department of Economics, University of Wisconsin-Madison, 1180 Observatory Drive,

Madison, WI 53706, USA.

E-mail address: yrai@wisc.edu

33


	bootstrap inference_Accepted_Cover. 
	bootstrap inference_Accepted. 

