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Decomposing tournaments into paths
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Abstract

In this work we consider a generalisation of Kelly’s conjecture which is due Alspach,
Mason, and Pullman from 1976. Kelly’s conjecture states that every regular tournament
has an edge decomposition into Hamilton cycles, and this was proved by Kühn and
Osthus for large tournaments. The conjecture of Alspach, Mason, and Pullman concerns
general tournaments and asks for the minimum number of paths needed in an edge
decomposition of each tournament into paths. There is a natural lower bound for this
number in terms of the degree sequence of the tournament and they conjecture this
bound is correct for tournaments of even order. Almost all cases of the conjecture are
open and we prove many of them.

1 Introduction

There has been a great deal of recent activity in the study of decompositions of graphs
and hypergraphs. The general prototypical question is this area asks whether, for some
given class C of graphs, hypergraphs or directed graphs, the edge set of each H ∈ C can
be decomposed into parts satisfying some given property. A striking development in the
area is the proof of the existence of designs due to Keevash [7] (and proved later by a
different method by Glock, Kühn, Lo, and Osthus [5]) resolving a 150 year old problem.
The special case of this problem where one wishes to establish the existence of Steiner
systems asks for a decomposition of the edge set of the complete r-uniform hypergraph
into r-uniform cliques of a fixed given size. In a different direction, the development of
the robust expanders technique by Kühn and Osthus [8] is a second major breakthrough
allowing the resolution of several conjectures relating to the decomposition of (directed)
graphs into spanning structures such as matchings and Hamilton cycles; see e.g. [4, 9].

The problem we address in this paper is that of decomposing tournaments into paths.
A tournament is an orientation of the complete graph, that is, one obtains a tournament
by assigning a direction to each edge of the (undirected) complete graph. Let us begin
however in the more general setting of directed graphs.
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Let D be a directed graph with vertex set V(D) and edge set E(D). A path decomposition
of D is a collection of paths P1, . . . , Pk of D whose edge sets E(P1), . . . , E(Pt) partition E(D).
Given any directed graph D, it is natural to ask what the minimum number of paths is in
a path decomposition of D. This is called the path number of D and is denoted pn(D).
A natural lower bound on pn(D) is obtained by examining the degree sequence of D. For
each vertex v ∈ V(D), write d+D(v) (resp. d−D(v)) for the number of edges exiting (resp.
entering) v. The excess at vertex v is defined to be exD(v) := max{d+D(v)− d−D(v), 0}. We
note that in any path decomposition of D, at least ex(v) paths must start at v and therefore
we have

pn(D) ≥ ex(D) := ∑
v∈V(D)

ex(v),

where ex(D) is called the excess of D. Any digraph for which equality holds above is called
consistent. Clearly not every digraph is consistent; in particular any nonempty digraph D
of excess 0 cannot be consistent. However, Alspach, Pullman, and Mason [1] conjectured
that every even tournament is consistent.

Conjecture 1.1. Every tournament T with an even number of vertices satisfies pn(T) = ex(T).

It is almost immediate to see that this conjecture is a considerable generalisation of
Kelly’s conjecture stated below.

Conjecture 1.2. (Kelly; see e.g. [3]) The edge set of every regular tournament can be decomposed
into Hamilton cycles.

Kühn and Osthus [8] proved Kelly’s conjecture for large tournaments using their pow-
erful robust expanders technique, which was subsequently used to prove several other
conjectures on edge decompositions of (directed) graphs [9, 4].

Theorem 1.3. Every sufficiently large regular tournament has a Hamilton decomposition.

To see that Conjecture 1.1 implies Conjecture 1.2, take any regular (n + 1)-vertex tour-
nament T and any v ∈ V(T), and note that ex(T − v) = n/2. If Conjecture 1.1 holds,
then T − v can be decomposed into n/2 paths, so they must be Hamilton paths. Adding v
back to T − v, it is easy to see that each path can be completed to a Hamilton cycle, giving
a Hamilton decomposition of T. The converse is also easy to see. Thus the special case
of Conjecture 1.1 in which ex(T) = n/2 is equivalent to Kelly’s Conjecture. In general,
however, ex(T) can take a large range of values.

Proposition 1.4. If T is an n-vertex tournament with n even, then n/2 ≤ ex(T) ≤ n2/4. Fur-
thermore each value in the range occurs.

As we saw, the lower bound occurs for any almost-regular tournament and it is easy to
verify that the upper bound occurs for the transitive tournament (in fact for any tournament
with a vertex partition into two equal parts A and B where all edges are directed from A
to B). Alspach and Pullman [2] showed that for any tournament T, pn(T) ≤ n2/4 thus
verifying Conjecture 1.1 for the special case ex(T) = n2/4 (and this was generalised to
digraphs [11]). Thus the conjecture has been solved for the two extreme values of excess,
namely n/2 and n2/4: for every other value of ex(T) between n/2 and n2/4 the conjecture
remains open. Our main contribution is to solve many more cases of the conjecture.
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Theorem 1.5. There exists ε > 0 and n0 ∈ N such that if T is a tournament on n > n0 vertices
with n even and ex(T) ≥ n2−ε, then pn(T) = ex(T).

The proof of this result is self-contained relying on a novel application of the absorption
technique due to Rödl, Ruciński, and Szemerédi [12] (with special forms appearing in ear-
lier work e.g. [10]). However, we believe that a refinement of the ideas used for Theorem 1.5
combined with Theorem 1.3 will allow us to prove the following result, which is work in
progress.

Theorem 1.6. There exists C > 0 such that if T is an n-vertex tournament with n even and
ex(T) > Cn then pn(T) = ex(T).

In the next section we discuss the ideas behind the proof of Theorem 1.5.

2 Sketch proof of Theorem 1.5

Below we state some easy observations about oriented graphs in the form of a proposition.
These turn out to be useful in the proof of Theorem 1.5.

Proposition 2.1. (a) If G is an acyclic oriented graph then pn(G) = ex(G).

(b) For every oriented graph G, we can find edge-disjoint subgraphs GA and GE of G such that
GA is acyclic, GE is Eulerian, and G = GA ∪ GE.

Proof. Part (a) can be shown e.g. by repeatedly removing a path of maximum length, and
part (b) by repeatedly removing cycles from G and adding them to GE until no cycles
remain.

The key step in our proof of Theorem 1.5 is to show that for every tournament T with
ex(T) ≥ n2−ε, we can find a oriented subgraph H of T which has the following properties:

(i) pn(H) = ex(H);

(ii) writing H′ := T − E(H), we have ex(T) = ex(H) + ex(H′);

(iii) for any Eulerian graph F on V(T) that is edge-disjoint from H, we have pn(H ∪ F) =
ex(H ∪ F) = ex(H).

We call a subgraph H of T that satisfies (i), (ii), and (iii) an absorber. If we can find an
absorber H in T then it follows that the tournament is consistent. Indeed let H′ = T− E(H)
and using the proposition, decompose H′ as H′ = H′A ∪ H′E where H′A is acyclic and H′E is
Eulerian. Now T = (H ∪ H′E) ∪ HA and we have

ex(T) ≤ pn(T) ≤ pn(H ∪ H′E) + pn(H′A) = ex(H) + ex(H′A) = ex(H) + ex(H′) = ex(T).

The absorber H can in fact be easily described. We define a (k, `)-path system of an
n-vertex tournament T = (V, E) to be a collection of nk paths Pv

i of T indexed by v ∈ V and
i = 1, . . . , k, where

• for each fixed v, Pv
1 , . . . , Pv

k are vertex disjoint paths except that they all pass through
v;
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• all paths are edge disjoint;

• every path has length at most `;

• the oriented graph H formed by taking the union of the paths and the oriented graph
H′ = T − E(H) satisfy pn(H) = ex(H) = nk and ex(H) + ex(H′) = ex(T).

For suitable values of k, `, the union of paths in any (k, `)-path-system of T gives an
absorber. The reason for this is roughly as follows. Suppose F ⊆ T is any Eulerian subgraph
of T that is edge disjoint from H. Then by a result of Huang, Ma, Shapira, Sudakov, and
Yuster [6], one can decompose any Eulerian graph into at most n3/2 cycles. We can use the
path decomposition of H to absorb the cycles of F one at a time into the path system as
follows. Given a cycle C, we carefully pick vertices v1, . . . , vt on C and paths Q1, . . . , Qt from
the path system such that Qj is one of the paths that passes through vj, i.e. one of the paths
P

vj
i . Assume each path Qi is from vertex ai to bi. If we make our choices carefully, then

we can ensure that Qj is vertex-disjoint from vj−1Cvj+1 the segment of the cycle between
vj−1 and vj+1 (where indices are understood to be modulo t). Now each path Qi can be
replaced by the path aiQiviCvi+1Qi+1bi+1. These new paths contain all the edges of the
original paths and the edges of C. Showing that every cycle in the cycle decomposition of
F can be absorbed in this way shows that H has the property of an absorber.

Finally, provided the tournament T has sufficiently high excess ex(T) > n2−ε, a careful
iterated application of Menger’s Theorem allows us to construct a (k, `)-path system in T.
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