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When Does Regression Discontinuity Design Work?

Evidence from Random Election Outcomes
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Abstract: We use elections data in which a large number of ties in vote counts between
candidates are resolved via a lottery to study the personal incumbency advantage. We
benchmark non-experimental RDD estimates against the estimate produced by this
experiment that takes place exactly at the cutoff. The experimental estimate suggests that
there is no personal incumbency advantage. In contrast, conventional local polynomial RDD
estimates suggest a moderate and statistically significant effect. Bias-corrected RDD
estimates applying robust inference are, however, in line with the experimental estimate.
Therefore, state-of-the-art implementation of RDD can meet the replication standard in the
context of close elections.
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1 Introduction

A non-experimental empirical tool meets a very important quality standard if it can
reproduce the results from a randomized experiment (LaLonde 1986, Fraker and Maynard
1987, Dehejia and Wahba 2002 and Smith and Todd 2005). In a regression discontinuity
design (RDD), individuals are assigned dichotomously to a treatment if they cross a given
cutoff of an observable and continuous forcing variable, whereas those who fail to cross the
cutoff form the control group (Thistlethwaite and Campbell 1960, Lee 2008, Imbens and
Lemieux 2008). If the conditional expectation of the potential outcome is continuous in the
forcing variable at the cutoff, correctly approximating the regression function above and
below the cutoff and comparing the values of the regression function for the treated and
control groups at the cutoff gives the average treatment effect at the cutoff. We study
whether RDD can in practice reproduce an experimental estimate that we obtain by utilizing
data from electoral ties between two or more candidates in recent Finnish municipal
elections.’

The unique feature of our data is that ties were resolved via a lottery and that the
random assignment occurs right at the cutoff. This feature means that if RDD works, it
should produce an estimate that exactly matches our experimental estimate. Unlike in the
prior work comparing RDD and an experiment, our experimental treatment effect is the
same as the one that RDD targets. The setup of both the experiment and RDD refer to the
same institutional context, to the same population of units, and basically to the same
estimand.’

To explore whether RDD reproduces the experimental estimate, we utilize data set that
includes nearly 200 000 candidates who run for a seat in municipal councils in local Finnish
elections every fourth year during 1996-2012. The elections were organized in a shared

institutional environment and allow us to study whether there is a personal incumbency

! Investigating the performance of RDD in an electoral setting seems particularly important, as numerous
applications of RDD have used close elections to estimate the effects of electoral results on a variety of
economic and political outcomes (see, e.g., Lee et al. 2004, Ferreira and Gyourko 2009, Gerber and Hopkins
2011, Folke and Snyder 2012, De Magalhaes 2014). De la Cuesta and Imai (2016) and Skovron and Titiunik
(2015) are recent surveys of the close elections RDD analyses.

% Black et al. (2007) come close to our analysis, because their experiment targets a population within a small
bandwidth around the cutoff. However, as Black et al. (2007, p. 107) point out, the experimental and non-
experimental estimands are not quite the same in their setup: “Except in a common effect world, [...], the non-
experimental estimators converge to a different treatment effect parameter than does the experimental
estimator”.



advantage, i.e., extra electoral support that an incumbent politician of a given party enjoys
when she runs for re-election, relative to her being a non-incumbent candidate from the
same party and constituency (see, e.g., Erikson and Titiunik 2015). Our experimental
estimate of the personal incumbency advantage is estimated from data on 1351 candidates
for whom the (previous) electoral outcome was determined via random seat assignment due
to ties in vote counts.® The experimental estimate provides no evidence of a personal
incumbency advantage; it is close to zero and quite precisely estimated. As we explain later,
this null finding is neither surprising nor in conflict with the prior evidence when interpreted
in the context of local proportional representation (PR) elections.

Since the seminal paper on RDD by Hahn et al. (2001), non-parametric local linear
regression has been used widely in applied work to approximate the regression function
near the cutoff. A key decision in implementing local methods is the choice of a bandwidth,
which defines how close to the cutoff the estimation is implemented; various methods have
been proposed for selecting it (e.g., Ludwig and Miller 2007, Imbens and Kalyanaram 2012,
Calonico et al. 2014a; see also Calonico et al. 2016a). For example, a mean-squared-error
(MSE) optimal bandwidth trades off the bias due to not getting the functional form
completely right for wider bandwidths with the increased variance of the estimate for
narrower bandwidths. We find that when RDD is applied to our elections data and
implemented in the conventional fashion using local-polynomial inference with MSE-optimal
bandwidths, the estimates indicate a statistically significant positive personal incumbency
advantage. This finding means that the conventional implementation, which still appears to
be the preferred approach by many practitioners, can lead to misleading results.

The disparity between the experimental and RDD estimates suggests that the
implementation of RDD using local-polynomial inference with MSE-optimal bandwidths is

deficient.* Local methods may produce biased estimates if the parametric specification is not

* Use of lotteries to solve electoral ties is not unique to Finland. For example, some US state elections and
many US local elections have used lottery-based rules to break ties in elections (see, e.g., UPI 14.7.2014, The
Atlantic 19.11.2012, and Stone 2011). Lotteries have been used to determine the winner in case of ties also in
the Philippines (Time 17.5.2013), in India (The Telegraph India 7.2.2014), in Norway as well as in Canada and
the UK (http://en.wikipedia.org/wiki/Coin_flipping#Politics). We acknowledge that in some of these elections
ties are probably too rare for a meaningful statistical analysis, but this nevertheless hints at the possibility of
carrying out similar comparisons in other countries. At least in countries where a similar open list system is
used at the local level, there should be enough ties to replicate our analysis. For example, Chile and Colombia
might be such countries.

* Another potential reason why the experimental estimate and the estimate that our standard implementation
of a close election RDD generates do not match is that the conditional expectation of the potential outcome is
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a good approximation of the true regression function within the bandwidth (e.g., Imbens
and Lemieux 2008). If the bias is relatively large, the MSE-optimal bandwidth does not
provide a reliable basis for inference, as it then produces confidence intervals that have
incorrect asymptotic coverage (Calonico et al. 2014a).

We find that when an ad hoc under-smoothing procedure of using smaller (than MSE-
optimal) bandwidths is used to reduce the bias (see, e.g., Imbens and Lee 2008; Calonico et
al. 2016a), the null hypothesis of no personal incumbency advantage is no longer rejected.
However, we cannot determine whether this is due to better size properties or wider
confidence intervals (inefficiency). More importantly, we show that the bias-correction and
robust inference procedure of Calonico et al. (2014a) brings the RDD estimate(s) in line with
the experimental estimate, provided that one does not allow for too large a bandwidth for
bias estimation. This finding is important for applied RDD analysis, as this implementation of
RDD corrects for the bias in the confidence intervals and results in narrower confidence
intervals (implying more power than the ad hoc under-smoothing procedures) that have
faster vanishing coverage error rates (see also Calonico et al. 2016a). Given that we build on
a real-world experiment, we provide an independent verification of the empirical
performance of Calonico et al. (2014a) procedure: We find that the procedure is less
sensitive to the choice of the bandwidth (than ad hoc under-smoothing) and works
especially well when the bandwidth used for bias estimation (“bias bandwidth”) and the
bandwidth used to estimate the regression discontinuity effect (“RD effect bandwidth”) are
set equal. These findings support the results of Monte Carlo simulations and formal analyses
reported in Calonico et al. (2014a) and Calonico et al. (2016a). Our evidence complements
these Monte Carlo results, as the experimental estimate provides an alternative benchmark
against which RDD can be compared. Unlike the benchmark provided by the Monte Carlo,
our approach (like LaLonde 1986) does not force the econometrician to assume that the true
data generating process is known.

We also find, in line with the prior work, that using richer local polynomial specifications
for a given bandwidth optimized for the linear specification can eliminate the bias. However,

when higher order local polynomials are used and the bandwidths are accordingly

not continuous at the cutoff. We find no signs of this key RDD assumption being violated using covariate
balance checks.
> In our case, curvature is clearly visible within the bandwidth optimized for the local linear specification.
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optimized, the bandwidths tend to become too large and the bias typically remains. This
implies that MSE-optimal bandwidths may be problematic more generally. Consistent with
this, the recent work of Calonico et al. (2016a) suggests that a particular bandwidth
adjustment (“shrinkage”) is called for to achieve better coverage error rates and more power
when MSE-optimal bandwidths are used.

Echoing Calonico et al. (2014a), we provide a word of caution to practitioners, since the
local (linear) regression with an MSE-optimal bandwidth, which is often used in applied
work, appears to lead to an incorrect conclusion. Our results show that careful
implementation of the bias-correction and robust inference procedure of Calonico et al.
(2014a) can meet the replication standard in the context of close elections.

Previous work has compiled a good body of evidence about how valid the RDD
identification assumptions are in various contexts, including elections. However, this paper
is, to our knowledge, the first to provide direct evidence of the remaining fundamental
question of how well the various RDD estimation techniques perform, separate from the
questions of identification. That is, how well these various approaches work when the
identification assumptions are met? Our results demonstrate that the inferences in RDD can
be sensitive to the details of the implementation approach even when the sample size is
relatively large.

Our empirical analysis also bears on four other strands of the literature. First, there is an
emerging literature on within-study comparisons of RDDs to experiments (Black et al. 2007,
Cook and Wong 2008, Cook et al. 2008, Green et al. 2009, Shadish et al. 2011, Wing and
Cook 2013) that explores how the performance of RDD depends on the context in which it is
used. A key limitation of all these studies is that the experimental treatment effects are
different from the one that RDD targets. Moreover, they do not use the most recent RDD
implementations.® Thus, while insightful, it is unclear how relevant these prior papers are for
the currently ongoing RDD development efforts. Second, it has been argued that in close
elections, the conditions for covariate balance (and local randomization) around the cutoff
do not necessarily hold, especially in post-World War Il U.S. House elections (Snyder 2005,

Caughey and Sekhon 2011, and Grimmer et al. 2012). Eggers et al. (2015) convincingly

® The current view of this literature is that RDD is able to reproduce - or at least to approximate - experimental
results in most, but not in all, settings (see Cook et al. 2008 and Shadish et al. 2011). There are also a number of
unpublished working papers on this topic, but they suffer from the same limitations as the published ones.

5



challenge this conclusion (see also Erikson and Rader 2017).” We contribute to this ongoing
debate by showing whether and when the close election RDD is capable of replicating the
experimental estimate. Third, we provide evidence that the local randomization approach
advocated by Cattaneo et al. (2015) is also able to replicate the experimental estimate.
Finally, our findings add to the cumulating evidence on limited personal incumbency
advantage in proportional representation (PR) systems (see, e.g., Lundqgvist 2011, Redmond
and Regan 2015, Golden and Picci 2015, Dahlgaard 2016 and Kotakorpi et al. 2017).

The rest of this paper is organized as follows: In Section 2, we describe the institutional
environment and our data. The experimental and non-experimental results are reported and
compared in Section 3. We discuss the validity and robustness of our findings in Section 4.
Section 5 concludes. A large number of additional analyses are reported in an online

appendix that supplements this paper.

2 Institutional context and data

2.1 Institutional environment

Finland has a two-tier system of government, consisting of a central government and a large
number of municipalities at the local level.® Finnish municipalities have extensive tasks and
considerable fiscal autonomy. In addition to the usual local public goods and services,
municipalities are responsible for providing most of social and health care services and
primary and secondary education. Municipalities are therefore of considerable importance
to the whole economy.’

Municipalities are governed by municipality councils. The council is by far the most
important political actor in municipal decision making. For example, mayors are public
officials chosen by the councils and can exercise only partial executive power. Moreover,
municipal boards (i.e., cabinets) have a preparatory role only. The party presentation in the

boards follows the same proportional political distribution as the presentation in the council.

” The criticism on the close election RDD builds on the argument that outright fraud, legal and political
manipulation and/or sorting of higher quality or better positioned candidates may naturally characterize close
elections. However, Eggers et al. (2015) show that post-World War Il U.S. House elections are a special case
and that there is no imbalance in any of the other elections that their dataset on 40 000 close political races
cover.

®n 1996, Finland had 436 municipalities and in 2012, 304.

° Municipalities employ around 20 percent of the total workforce. The most important revenue sources of the
Finnish municipalities are local income taxes, operating revenues, such as fees, and funding from the central
government.



Municipal elections are held simultaneously in all municipalities. All municipalities have
one electoral district. The council size is determined by a step function based on the
municipal population. The median council size is 27. The elections in our data were held on
the fourth Sunday of October in 1996, 2000, 2004, 2008 and 2012. The four-year council
term starts at the beginning of the following year. The seat allocation is based on PR, using
the open-list D’Hondt election rule. There are three (1996-2008 elections) or four (2012
elections) major parties, which dominate the political landscape of both the municipal and
national elections, as well as four other parties that are active both locally and nationally.
Moreover, some purely local independent political groups exist. In the elections, each voter
casts a single vote to a single candidate. One cannot vote for a party without specifying a
candidate. In this setting, voters (as opposed to parties) decide which candidates are
eventually elected from a given list, because the number of votes that a candidate gets
determines the candidate’s rank on her party’s list.

The total number of votes over the candidates of a given party list determines the votes
for each party. The parties’ votes determine how many seats each party gets. The procedure
is as follows: First, a comparison index, which equals the total number of votes cast to a
party list divided by the order (number) of a candidate on the list, is calculated for all the
candidates of all the parties. The candidates are then ranked according to the index and all
those who rank higher than (S+1)th (S being the number of council seats) get a seat.

An important feature of this election system is that in many cases, there is an exact tie in
the number of votes at the margin where the last available seat for a given party list is
allocated. This means that within a party, the rank of two or more candidates has to be
randomly decided. For example, it is possible that a party gets k seats in the council and that
the k™ and (k+1)th ranked candidates of the party receive exactly the same number of votes.
For them, the comparison index is the same. The applicable Finnish law dictates that in this
case, the winner of the marginal (kth) seat has to be decided using a randomization device.
Typically, the seat is literally allocated by drawing a ticket (name) from a hat. The procedure
appears to be very simple: One of the (typically female) members of the municipal election
committee wears a blindfold and draws the ticket in the presence of the entire committee.™®

While we have not run an experiment nor implemented a randomized controlled trial, we

¥ see e.g. an article in one of the major Finnish tabloids, lltasanomat, on 12.4.2011.
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can use the outcomes from these lotteries to generate an experimental treatment effect
estimate for the effect of incumbency status on electoral support.

It is also possible that two (or more) candidates from different parties face a tie for a
marginal seat. However, within party ties are much more common in practice. Therefore, we
do not analyze ties between candidates from different parties. Besides resulting in a larger
sample in which the candidates had a tie, there are three additional reasons to focus on the
within party ties. First, using the within party ties allows for a simpler implementation of
RDD, as we do not have to worry about discontinuities and possible party-level incumbency
effects that are related to party lines.!* Second, focusing on the within party dimension
allows a cleaner identification of the personal incumbency effect, net of the party
incumbency effect. Third, the use of within party ties increases the comparability of our RDD
analysis, which uses multi-party PR elections data, with the prior studies that use data from
two-party (majoritarian) systems. This is so as within a party list, the Finnish elections follow

the N-past-the-post rule. In both cases, personal votes determine who gets elected.

2.2 Data
Our data originate from several sources. The first source is election data provided by the
Ministry of Justice. These data consist of candidate-level information on the candidates’ age,
gender, party affiliation, the number of votes they received, their election outcomes (elected
status) and the possible incumbency status. The election data were linked to data from KEVA
(formerly known as the Local Government Pensions Institution) to identify municipal
workers, and to Statistics Finland’s data on the candidates’ education, occupation and socio-
economic status. We further added income data from the Finnish tax authority. Finally, we
matched the candidate-level data with Statistics Finland’s data on municipal
characteristics."

We have data on 198 121 candidates from elections held in years 1996, 2000, 2004, 2008

and 2012." Summary statistics (reported in Appendix A) show that the elected candidates

! see Folke (2014) for the complications that multi-party-systems generate and Snyder et al. (2015) on issues
with partisan imbalance in RDD studies.

2 The candidate-level demographic and occupation data usually refer to the election year, with the exception
that occupation data from 1995 (2011) are matched to 1996 (2012) elections data.

3 Two further observations on the data are in order: First, to be careful, we omit all data (about 150
candidates) from one election year (2004) in one municipality, because of a mistake in the elected status of one
candidate. The mistake is apparently due to one elected candidate being disqualified later. Second, the data on
the candidates running in 2012 are only used to calculate the outcome variables.
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differ substantially from those who are not elected: They have higher income and more
often a university degree and are less often unemployed. The difference is particularly
striking when we look at the incumbency status: 58% of the elected candidates were

incumbents, whereas only 6% of those who were not elected were incumbents.

3 Main results

3.1 Experimental estimates
In this section, we estimate the magnitude of the personal incumbency advantage using the
data from the random election outcomes. We define this added electoral support as the
treatment effect of getting elected today on the probability of getting elected in the next
election. We measure the event of getting elected today by a binary indicator, Y;, which
takes value of one if candidate i was elected in election year t and is zero otherwise. Our
main outcome is a binary variable, Y;:1, which equals one if candidate i is elected in the next
election year t+1 and is zero otherwise.

In elections between 1996 and 2008, 1351 candidates had a tie within their party lists for
the last seat(s), i.e. at the margin which determines whether or not the candidates get a
seat.’ In these cases, a lottery was used to determine who got elected. This implies that Y;

was randomly assigned in our lottery sample, i.e. among the candidates who had a tie.

Covariate balance tests for the lottery sample

Was the randomization required by the law conducted correctly and fairly? To address this
question, we study whether candidates’ characteristics balance between the treatment
(randomly elected) and the control group (randomly not elected) within the lottery sample.
The results are reported in Table 1. The differences are statistically insignificant and small in
magnitude. These findings support the view that Y;; is randomly determined in the lottery

sample.

“In addition, there were 202 ties in 2012. We do not include them in the lottery sample, because we don’t
have data on the subsequent election outcomes for these candidates. When we include these ties in the
balancing tests, the results do not change. Notice also that a tie may involve more than two candidates and
more than one seat. For example, three candidates can tie for two seats.

> The candidates’ party affiliations and municipal characteristics should be balanced by design, because we
analyze lotteries within the party lists. The corresponding balancing tests (reported in Appendix B) confirm this.



Table 1. Covariate balance tests for the lottery sample.

Elected (N = 671) Not elected (N = 680)
Std. Std. p-value
Variable N Mean Dev. N Mean Dev. Difference  p-value (clustered)
Vote share 671 1.54 0.69 680 1.53 0.67 0.00 0.93 0.97
Number of votes 671 41 39 680 41 38 0 0.83 0.93
Female 671 0.39 0.49 680 0.38 0.49 0.01 0.80 0.80
Age 671 4542 11.87 680 45.69 11.54 -0.27 0.67 0.67
Incumbent 671 0.29 0.45 680 0.31 0.46 -0.02 0.34 0.35
Municipal employee 671 0.24 0.43 680 0.25 0.44 -0.01 0.62 0.62
Wage income 478 22521 14928 476 22256 13729 265 0.78 0.82
Capital income 478 2929 18612 476 3234 12085 -305 0.76 0.81
High professional 671 0.18 0.38 680 0.18 0.38 0.00 0.97 0.97
Entrepreneur 671 0.24 0.43 680 0.24 0.43 0.00 0.84 0.87
Student 671 0.02 0.15 680 0.03 0.16 0.00 0.76 0.76
Unemployed 671 0.06 0.24 680 0.05 0.22 0.01 0.37 0.37
University degree 537 0.13 0.34 545 0.13 0.34 0.00 0.86 0.86

Notes: Difference in means has been tested using t-test with and without clustering at municipality level.
Sample includes only candidates running in 1996-2008 elections. For 1996, income data are available only for
candidates who run also in 2000, 2004 or 2008 elections. Wage and capital income are annual and expressed in

nominal euros.

Experimental estimate for the personal incumbency effect

Is there a personal incumbency effect? Before we can answer this question, we have to point
out that a subsequent electoral outcome is observed for 820 out of the 1351 candidates who
participated in the lottery between 1996 and 2008, because they reran in a subsequent
election. We do not know what happened to those who decided not to rerun. This attrition
is a possible source of concern, because the decision not to rerun may mirror for example
the candidates’ expected performance. If it does, analyses based on the selected sample,
from which those who did not rerun are excluded, would not provide as us with the correct
treatment effect. Rerunning is an (endogenous) outcome variable and we therefore cannot
condition on it, unless the treatment has no effect on the likelihood of rerunning. Relying on
such an assumption would be neither harmless nor conservative.’® Our baseline results

therefore refer to the entire lottery sample. This means that we code our main outcome

In the party level analysis of Klasnja and Titiunik (2016), the dependent variable is a binary variable equal to 1
if the party wins the election at t + 1, and is equal to zero if the party either runs and loses at t + 1 or does not
run at t + 1. Similar to ours, their main analysis includes all observations (i.e., does not condition on whether a
party reruns). Klasnja and Titiunik (2016) also report an analysis conditioning on running again in an appendix.
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variable so that it is equal to one if the candidate is elected in the next election, and is set to
zero if the candidate is not elected or does not rerun.

The fraction of candidates who get elected in election year t+1 conditional on not winning
the lottery in election year t is 0.325, whereas the same fraction conditional on winning the
lottery is 0.329. The difference between the two fractions provides us with a first
experimental estimate of personal incumbency advantage. It is small, = 0.004. Because Y is
randomly assigned in the lottery sample, the difference estimates the average treatment
effect (ATE). Note that due to the way the lottery sample is constructed, this ATE is
estimated precisely at the cutoff point of political support which determines whether or not
a candidate gets elected. It is therefore an ideal benchmark for the non-experimental RDD
estimate, because the sharp RDD targets exactly the same treatment effect.

To perform inference (and to provide a set of complementary experimental estimates),
we regress Y1 on Y using OLS and the sample of candidates who faced within-party ties.
Table 2 reports the point estimates and 95% confidence intervals that are robust to
heteroscedasticity and, separately, that allow for clustering at the level of municipalities. In
the leftmost column, Y, is regressed on Y and a constant using OLS. The coefficient of Yj; is
0.004, as expected. The estimate is statistically insignificant: Both 95% confidence intervals
include zero. The estimate is insignificant also if a conventional (non-robust, non-clustered)
t-test is used: The p-value of the standard t-test is 0.87. In the remaining columns we report
the OLS results from a set of specifications that include control variables and fixed effects.
Three main findings emerge. First, there is no evidence of a personal incumbency advantage.
The estimated effect is close to zero across the columns and the 95% confidence intervals
always include zero. Second, the coefficient of Y is relatively stable across the columns and
is thus not correlated with the added controls or fixed effects. This further supports the view
that Y, is random. Third, the confidence intervals are fairly narrow. For example in
specification (1), effects larger than 5.3 percentage points are outside the upper bound of
the clustered confidence interval. We can thus at least rule out many of the (much) larger

effects typically reported in the incumbency advantage literature on majoritarian elections.
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Table 2. Experimental estimates of the personal incumbency advantage.

(1) (2) (3) (4)

Elected 0.004 0.001 -0.010 -0.010
95% confidence interval (robust) [-0.046,0.054] [-0.049,0.051] [-0.064,0.040] [-0.060, 0.040]
95% confidence interval (clustered)  [-0.044, 0.053] [-0.048, 0.050] [-0.067,0.047] [-0.075, 0.055]
N 1351 1351 1351 1351

R 0.00 0.03 0.28 0.44
Controls No Yes Yes Yes
Municipality fixed effects No No Yes No
Municipality-year fixed effects No No No Yes

Notes: Only actual lotteries are included in the regressions. Set of controls includes age, gender, party
affiliation, socio-economic status and incumbency status of a candidate, and total number of votes. Some
specifications include also municipality or municipality-year fixed effects. Confidence intervals based on
clustered standard errors account for clustering at municipality level. Unit of observation is a candidate i at
year t.

We have considered the robustness of the experimental estimate(s) in various ways. First,
0.9% of the candidates run in another municipality in the next election. For Table 2, they
were coded as rerunning. The results (not reported) are robust to coding them as not re-
running. Second, we have considered the vote share in the next election as an alternative
outcome. While more problematic, we follow the same practice with this alternative
outcome as above and set it to zero if the candidate did not rerun in the next election. The
results (reported in Appendix B) show that Y; has no impact on the vote share. Third, we
have studied small and large elections separately (see Appendix B). We still find no evidence
of a personal incumbency advantage. Finally, we get an experimental estimate close to zero
(for both the elected next election and vote share next election outcomes) if we use a
trimmed lottery sample that only includes the rerunners (reported in Appendix B).

We have also checked that when the event of rerunning in the next election is used as the
dependent variable, the experimental estimate is small and statistically not significant (see
Appendix B). The past winners are therefore not more (or less) likely to rerun, giving
credence to the view that the treatment effect on which we focus is a valid estimate of the

incumbency effect.

Discussion of the experimental estimate

The personal incumbency advantage refers to the added electoral support that an

incumbent politician of a given party enjoys when she runs for re-election, relative to her
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being a non-incumbent candidate from the same party and constituency.'” Such an
advantage could stem from various sources, such as from having been able to serve the
constituency well, having enjoyed greater public visibility while holding the office, improved
candidate quality (through learning while in power), reduced competitor quality (due to a
“scare-off” effect; see Cox and Katz 1996, Erikson and Titiunik 2015), and the desire of voters
to disproportionately support politicians with past electoral success (“winners”). The earlier
(mostly U.S.) evidence suggests that the existence of an incumbent advantage in two-party
systems is largely beyond question (see, e.g., Erikson and Titiunik 2015, and the references
therein). It is clear that the size of the advantage may nevertheless vary and be context
specific; see e.g. Desposato and Petrocik (2003), Grimmer et al. (2012), Uppal (2009) and
Klasnja and Titiunik (2016), who find evidence of a party-level disadvantage in systems
characterized by weak parties.

In our view, the null finding of no personal incumbency advantage is neither surprising
nor in conflict with the prior evidence, for two reasons: First, we are looking at personal
incumbency advantage in the context of small local PR elections. It is possible that in this
context, the randomized political victories take place at a relatively unimportant margin. For
example, such a political win does not, per se, typically lead to a visible position in media or
a prominent position in the wider political landscape. Perhaps being the last elected
candidate of a party in the Finnish municipal elections conveys limited opportunities to serve
one’s constituency or to improve one’s quality as a candidate through learning-by-doing.*®
What’s more, it is certainly plausible that getting the last seat by a lottery or by only a very
small margin does not work to scare off good competitors in the subsequent elections. Such
a political victory provides the voters with a limited opportunity to picture and support the
candidate as a political winner. It is thus not surprising if there is no personal incumbency

advantage at the margin that we study.

' The party incumbency advantage, in turn, measures the electoral gain that a candidate enjoys when she is
from the incumbent party, independently of whether she is an incumbent politician or not (Gelman and King
1990, Erikson and Titiunik 2015). Following Lee (2008), most of the earlier RDD analyses refer to the party
advantage (e.g., Broockman 2009, Caughey and Sekhon 2011, Trounstine 2011; see also Fowler and Hall 2014).
18 Similarly, being the first non-elected candidate of a party may convey some opportunities to participate in
the municipal decision making, e.g., by serving as a deputy councilor or as a member in municipal committees.
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Second, it is important to recall that most of the recent RDD evidence on the positive and
large incumbency effects mirrors both a party and a personal effect.® In contrast, the
random election outcomes in our data allow recovering a treatment effect estimate for the
personal incumbency advantage that specifically excludes the party effect, because it is
estimated from within-party variation in the incumbency status. If the party effect is
positive, the effects we find are likely to be lower than what has been reported in the prior
work. Moreover, the existing studies that look at a personal incumbency advantage in the PR
systems of developed countries find typically only modest or no incumbency effects

(Lundgvist 2011, Golden and Picci 2015, Dahlgaard 2016 and Kotakorpi et al. 2017).

3.2 Non-experimental estimates
Implementing RDD for PR elections

Our forcing variable is constructed as follows. We measure closeness within a party list in
order to focus on the same cutoff where the lotteries take place, and to abstract from multi-
party issues in constructing the forcing variable and potential party effects in PR systems
(see Folke 2014). To this end, we calculate for each ordered party list the pivotal number of
votes as the average of the number of votes among the first non-elected candidate(s) and
the number of votes among the last elected candidate(s). A candidate’s distance from
getting elected is then the number of votes she received minus the pivotal number of votes
for her list (party). We normalize this distance by dividing it by the number of votes that the
party list got in total and then multiply it by 100.%° This normalized distance is our forcing
variable v;;.2!

Four observations about our forcing variable are in order: First, it measures closeness
within a party list in vote shares. It is thus in line with the existing measures for majoritarian
systems. As usual, all candidates with v;; > 0 get elected, whereas those with v;; < 0 are
not elected. All those candidates for whom v;; = 0 face a tie and get a seat if they win in the

lottery. Second, the histogram of the forcing variable close to the cutoff (reported in

® These two effects cannot typically be distinguished from each other unless parametric assumptions are made
(Erikson and Titiunik 2015).

%% This definition of the forcing variable means that all those party lists from which no candidates or all
candidates got elected are dropped out from the analysis. In total, this means omitting about 6000 candidate-
election observations. This corresponds to roughly 3% of the observations in the elections organized between
1996 and 2012.

2 Dahlgaard (2016), Golden and Picci (2015), Lundqvist (2011) and Kotakorpi et al. (2017) study quasi-
randomization that takes place within parties in a PR system using an approach similar to ours
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Appendix C) shows that there are observations close to the cutoff and thus that some, but
not extensive, extrapolation is being done in the estimation of the RDD treatment effect.
Third, the assumption of having a continuous forcing variable is not at odds with our forcing
variable. For example, among the 100 closest observations to the cutoff, 92 observations
obtain a unique value of v;; and there are 4 pairs for which the value is the same within each
pair. Finally, our normalized forcing variable and the (potential alternative) forcing variable
based on the absolute number of votes operate on a very different scale, but they are
correlated (their pairwise correlation is in our data 0.34, p-value < 0.001; see also Appendix
C).22 Moreover, as we discuss later in connection with robustness tests, our RDD results are
robust to using alternative definitions of the forcing variable.

A special feature of a PR election system is that it is much harder than in a two-party
majoritarian system for a candidate or a party to accurately predict the precise location of
the cutoff that determines who gets elected from a given party-list. The reason for this is
that the number of seats allocated to the party also depends on the election outcome of the
other parties. This makes it more likely that the forcing variable cannot be perfectly
manipulated.

The function of the forcing variable is estimated separately for both sides of the cutoff.
Choice of the bandwidth determines the subsample near the cutoff to which the function of
the forcing variable is fitted and from which the treatment effect is effectively estimated
(Imbens and Lemieux 2008, Lee 2008, Lee and Lemieux 2010). For our baseline RDD, we use
a triangular kernel and the widely used implementations of the (MSE-optimal) bandwidth
selection of Imbens and Kalyanaraman (2012, IK) and Calonico et al. (2014a, CCT).Z We
report results from a sharp RDD for the subsample of candidates that excludes the
randomized candidates, because a typical close election RDD would not have such lotteries

in the data.

2 n large elections, it is more likely that small vote share differences are observed (rather than small
differences in the number of votes). The opposite holds for small elections.

2 Two further points are worth mentioning here: First, the IK and CCT bandwidths are two different
implementations of the estimation of the MSE-optimal theoretical bandwidth choice (i.e.,, the one that
optimizes the asymptotic mean-squared-error expansion). The older (2014) version of the Stata software
package rdrobust (developed by Calonico et al. 2014a and 2014b) offered the possibility of using these two
bandwidth selectors. In the upgraded version of the package, the IK and CCT bandwidth selectors have been
deprecated. The upgraded version now uses a third implementation of the estimation of the MSE-optimal
theoretical bandwidth choice (see Appendix E). Second, we have also calculated the bandwidths proposed by
Fan and Gijbels (1996) and Ludwig and Miller (2007). As those were always broader than both the IK and CCT
bandwidths and are currently less often used in practice, we do not report them.
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RDD estimations: Graphical analysis

We start by displaying the relation between the forcing variable and the outcome variable
close to the cutoff in Figure 1.>* The graph suggests that there is substantial curvature in this
relation. In Panel A, the width of the x-axis is one IK bandwidth of the local linear
specification on both sides of the cutoff. The fits are those of local linear (on the left),
quadratic (in the middle) and cubic (on the right) regressions. The figure on the left clearly
shows that that there is curvature in the data near the cutoff, making the linear
approximation inaccurate. This finding is not due to using the linear probability model, as
Logit and Probit models generate similar insights (not reported). The quadratic local
polynomial in the middle seems to capture the curvature quite well. This finding suggests
that a polynomial specification of order two might be flexible enough for the bandwidth that

has been optimized for a polynomial of order one.

** The figure has been produced by the rdplot command for Stata that approximates the underlying unknown
regression functions without imposing smoothness (Calonico et al. 2015). The key contribution in Calonico et
al. (2015) is to provide a data driven approach for choosing the bin widths which allows bin sizes to vary,
instead of using ad hoc bins of equal sizes. In Appendix C, we provide an alternative version of Figure 1 with a
richer illustration of the raw data.
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specification) as the optimal bandwidths are calculated for. In the center graph, the fit uses a p+1 specification
and on the right side, the graphs are based on a p+2 specification. Gray dots mark binned averages where the
bins are chosen using the IMSE-optimal evenly-spaced approach of Calonico et al. (2015).

Figure 1. Curvature between the forcing variable and the outcome.
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The same observation can be made from Panels B and C of Figure 1, where the
bandwidths are optimal for the quadratic (Panel B) and cubic (Panel C) specifications. Like in
Panel A, the graphs on the left hand side of these panels display the fits that are based on
the same order of the local polynomial specification, p, for which the optimal bandwidth is
calculated. In the middle graph, the fit uses a p+1 local polynomial, but the bandwidth is the
same as on the left hand side. In the graphs on the right hand side, the displayed fits are
based on a p+2 local polynomial. The approximation is better especially near the cutoff when
the richer p+1 polynomial is used. Moreover, the experimental estimate indicates that there
should not be a jump at the cutoff. The graphs on the left are therefore consistent with a
poor local approximation, because there a jump can be detected. The jumps are nearly
invisible or completely non-existent in the graphs displayed in the middle (p+1) or on the

right (p+2).%

RDD estimations: Baseline results

Table 3 reports our baseline RDD estimation results. In each panel of the table, we report
the conventional RDD point estimates and the 95% confidence intervals that are robust to
heteroscedasticity and, separately, that allow for clustering at the level of municipalities.*®
The panels differ in how the bandwidths and local polynomials are used.

In Panel A of Table 3, the bandwidth is selected optimally for the local linear specification
using either the IK or CCT implementation of the bandwidth selection. The panel reports for
these bandwidth choices the local linear (specifications (1)-(2)), quadratic (specifications (3)-
(4)) and cubic (specifications (5)-(6)) RDD estimates of the personal incumbency advantage.
As specifications (1)-(2) show, both local linear RDD specifications with bandwidths that are
optimally chosen for the linear specification indicate a positive and statistically significant
incumbency advantage. The local linear RDD with optimal bandwidth is thus not able to
replicate the experimental estimate. This is likely to happen when the regression function

has curvature within the optimal bandwidth that the linear approximation cannot capture.

%> We checked that a polynomial specification p+1 is flexible enough for bandwidth optimized for p from p=0 to
p=5 in our case. We have also checked that these findings are not specific to the way we define the forcing
variable. The same patterns can be observed also if we use the absolute number of votes as the forcing variable
(reported in Appendix C).

% We report the confidence intervals that are robust to heteroscedasticity only (i.e., that do not allow for
clustering), because the bandwidth selection techniques are not optimized for clustered inference. On the
other hand, clustering is common among applied researchers. We therefore also report cluster-robust
confidence intervals (but acknowledge that the choice of the clustering unit is hard to justify). See Bartalotti
and Brummet (2016) for a recent analysis of cluster-based inference in the context of RDD.
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The next specifications (specifications (3)-(6)) in the panel show that the curvature of the
regression function indeed matters. Using the richer quadratic and cubic local polynomials
aligns the RDD estimates with the experimental results for the bandwidths that are MSE-
optimal, as determined by IK and CCT implementations of the MSE-optimal bandwidth for
the linear specifical“ion.27

In Panel B of the table, we report the results using bandwidths that are half the optimal
bandwidth of the local linear specification. This under-smoothing ought to reduce the
(asymptotic) bias, which it indeed appears to do. When the local linear polynomial
specification and bandwidths half the size of the IK or CCT bandwidths are used, the point
estimates decrease in size and the results are in line with the experimental benchmark
(specifications (7)-(8)). The null hypothesis of no personal incumbency effect cannot be
rejected either when the quadratic and cubic polynomials are used (specifications (9)-(11)).

Finally, in Panel C, we report the results for the quadratic and cubic specifications, with IK
and CCT implementations of the MSE-optimal bandwidths that have been re-optimized for
these more flexible specifications. As the panel shows, we find, bar one exception, positive
and statistically significant effects.

These findings are consistent with the view that when the MSE-optimal bandwidths are
used in the local polynomial regression, there is a risk of over-rejection because the
distributional approximation of the estimator is poor (Calonico et al. 2014a). What also is in
line with the recent econometric work is that holding the order of the polynomial constant,
smaller bandwidths align our RDD results with the experimental benchmark (see Calonico et
al. 2014a for a discussion of under-smoothing).”® Moreover, we find that holding the
bandwidth constant, richer polynomials align our RDD results with the experimental

benchmark, too.?

*” The IK and CCT bandwidths are quite close to each other and they give similar results. For example, the IK
bandwidth corresponds to 0.53% of the total votes of a list (that is 5.3 votes out of 1000). This typically
translates into a small number of votes. However, the bandwidths are not that small when compared to the
vote shares that the candidates at the cutoff get (6.5 % vote share, see Table 1). We use here only the CCT
bandwidth selection criteria, but not yet the bias-correction or robust inference method that Calonico et al.
(2014a) also propose, i.e., CCT-correction.

*® Obviously, in some other applications, especially if there is less data available, the bias-variance trade-off
could result in larger bandwidths being the preferred approach.

?® Card et al. (2014) propose selecting the order of the local polynomial by minimizing the asymptotic MSE. We
have used polynomials of orders 0-5 with the IK bandwidths optimized separately for each polynomial
specification. We failed to reproduce the experimental estimate using this procedure.
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Table 3. Local polynomial RDD estimates.

Panel A: Bandwidth optimized for local linear specification

(1) (2) (3) (4)

(5) (6)

Elected

95% confidence interval (robust)

Linear Quadratic

Cubic

0.039 0.052 0.008 0.022

[0.010,0.068]  [0.028, 0.076] [-0.037,0.053] [-0.015, 0.059]

-0.022 -0.004

[-0.087,0.043] [-0.056, 0.048]

95% confidence interval (clustered) [0.008,0.069]  [0.027,0.077] [-0.039, 0.055] [-0.039, 0.055] [-0.088, 0.044] [-0.058, 0.049]
N 19407 26999 19407 26999 19407 26999
R’ 0.03 0.05 0.03 0.05 0.03 0.05
Bandwidth 0.53 0.74 0.53 0.74 0.53 0.74
Bandwidth implementation IK ccr IK ccr IK cer
Panel B: 0.5 * bandwidth optimized for local linear specification
@) (8) ) (10) (11) (12)
Linear Quadratic Cubic

Elected 0.007 0.024 -0.022 -0.015 -0.018 -0.025
95% confidence interval (robust) [-0.036,0.050] [-0.011, 0.059] [-0.095, 0.050] [-0.073, 0.043] [-0.128,0.092] [-0.111,0.061]

95% confidence interval (clustered)

[-0.039, 0.044] [-0.013.0.061] [-0.094, 0.049] [-0.074, 0.045]

[-0.126,0.090] [-0.108, 0.058]

N 9808 13496 9808 13496 9808 13496
R? 0.01 0.02 0.01 0.02 0.02 0.02
Bandwidth 0.27 0.37 0.27 0.37 0.27 0.37
Bandwidth implementation IK ccr IK ccr IK ccr
Panel C: Bandwidths optimized for each specification separately
(13) (14) (15) (16) (17) (18)
Linear Quadratic Cubic
Elected 0.039 0.052 0.039 0.057 0.030 0.055
95% confidence interval (robust) [0.010, 0.068]  [0.028, 0.076] [0.013,0.065] [0.036, 0.078] [-0.000, 0.060] [0.035, 0.076]
95% confidence interval (clustered) [0.008,0.069]  [0.027,0.077] [0.013,0.066] [0.036, 0.078] [-0.002, 0.062] [0.035, 0.076]
N 19407 26999 54464 78469 70576 112398
R? 0.03 0.05 0.11 0.16 0.15 0.23
Bandwidth 0.53 0.74 1.41 2.09 1.84 3.98
IK ccT IK ccT IK ccT

Bandwidth implementation

Notes:

Table shows estimated incumbency advantage using local polynomial regressions within various

bandwidths. All estimations use a triangular kernel. Confidence intervals based on clustered standard errors
account for clustering at the municipality level. Unit of observation is a candidate i at year t. The IK and CCT
bandwidths are two different implementations of the estimation of the MSE-optimal theoretical bandwidth

choice.

Even though a typical applied researcher does not have access to an experimental

estimate and hence cannot benchmark her RDD estimate to the experimental one, it is of

interest to ask whether the experimental estimate (Table 2, specification (1)) is statistically

different from the non-experimental estimates that the local linear RDD with optimal

bandwidths produce (Table 3, specifications (1)-(2)). The reason is that an alternative
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interpretation for our findings is that our experimental estimate is imprecise and, in fact,
consistent with a small and positive incumbency effect. The experimental estimate (0.004) is
88.6% smaller than the RDD estimate (0.039) produced by the local linear RDD with the IK
bandwidth, but we cannot reject the null hypothesis that the two estimates are equal (p-
value with clustering = 0.24). However, the difference is statistically significant at 10% level
when the RDD estimate based on the CCT bandwidth is used (p-value with clustering =
0.09).%° It is important to stress that this comparison is not what a typical applied researcher
using RDD absent the experiment could do.

The graphical evidence in Figure 1 suggested that the difference in the estimates is due
to the conventional RDD implementation not being able to capture the curvature of the
regression function rather than just due to statistical uncertainty. To analyze this further,
Figure 2 displays RDD estimates for a large number of bandwidths using the three local
polynomial regressions. The vertical bars indicate the location of the optimal bandwidth,
which varies with the order of the polynomial. The figure provides us with two main findings.
First, the bias relative to the experimental benchmark estimate of 0.004 seems to be almost
monotonic in the size of the bandwidth. The approximation gets worse, as more and more
data are included in the RDD sample. Even in the absence of the experimental estimate, this
finding suggests that there is a need to go beyond a local linear polynomial (or to use a bias-
correction; see below). This further illustrates the importance of taking the curvature of the
regression function into account. Second, when bandwidths narrower than the optimal ones
are used, RDD no longer rejects the null hypothesis of no personal incumbency advantage.
The null hypothesis is not rejected for the narrower bandwidths both because the point

estimate gets smaller and because the confidence intervals get wider.

*® |nference is similar without clustering.
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Figure 2. Conventional RDD estimates using various bandwidths.

Bias-corrected RDD estimations

Calonico et al. (2014a) have recently proposed a procedure for bias-correction and robust
inference when implementing RDD. The procedure separates point estimation from
inference and its goal is to provide valid inference.** The procedure corrects for a bias in the
distributional approximation by re-centering and re-scaling the conventional t-statistic when
calculating the robust confidence intervals. In what follows, we call this procedure “CCT-
correction”. To evaluate how the procedure works, we report a number of RDD estimates
using the CCT-correction in Table 4. In this method, a pth order local polynomial is used to
estimate the main RD effect whereas a (p+1)th order local polynomial is used to estimate the
(potential) bias. Table 4 consists of three panels. We report in each panel the bias-corrected
estimates in order to see how they change relative to the conventional point estimates,
reported earlier in Table 3, as well as the non-clustered and clustered 95% confidence
intervals.

In Panel A, we use bandwidths optimized for the linear specification, but report the
estimates from linear, quadratic and cubic local polynomial specifications. For this panel we
choose the bias bandwidth (used to estimate the bias) either by the data-driven method
suggested by Calonico et al. (2014a; using the default option in the pre-2016 rdrobust Stata-
package; see Calonico et al. 2014b) or by using the IK implementation. When the bias

bandwidth is chosen by the data-driven method of Calonico et al. (2014a), the RD effect

*! The procedure does not improve point estimation: The conventional RDD point estimator is consistent and
MSE optimal. The bias-corrected point estimator is consistent, but not MSE optimal.
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bandwidth is determined to be MSE-optimal, based on the CCT implementation. When the
bias bandwidth is chosen by the IK implementation, so is the RD effect bandwidth. The
results of this panel show that the CCT-correction is able to meet the replication standard, in
the sense that when the CCT-corrected estimates and standard errors are used, we do not,
in general, reject the null hypothesis of no effect. The important exception to this result is
the data-driven bias bandwidth calculation suggested by Calonico et al. (2014a). It
apparently leads to too wide bias bandwidths. When the bias and RD effect bandwidths are
chosen by the IK implementation, the bandwidths are narrower. In this case, the CCT-
correction meets the replication standard, irrespectively of which local polynomial
specification is used.

In Panel B, we again report the estimates from linear, quadratic and cubic local
polynomial specifications, but choose the bandwidths differently. We optimize the RD effect
bandwidths for the linear specification using the CCT and IK implementations. We then
impose the bias bandwidth to be the same as the RD effect bandwidth. This is in line with
the recent recommendation of Calonico et al. (2016a), who argue that this is a natural choice
with good (numerical) properties. From the perspective of the point estimate, CCT-
correction with the same bias and RD effect bandwidth amounts to using the conventional
local polynomial approach, but with the twist that the main effect is estimated using a one
order higher polynomial specification (p+1) than the specification for which the bandwidth is
selected (p); see also Calonico et al. (2014a). It follows that the point estimate (but not the
confidence interval) is the same in columns (4) and (5) of Table 3 as it is in columns (7) and
(8) of Panel B of Table 4. The results of this panel show that when implemented in this way,
the CCT-correction is able to meet the replication standard.

In Panel C, we use the bandwidths optimized for the quadratic and cubic local
specifications. They are chosen as in Panel A. We again find that the CCT-correction is able to
meet the replication standard, provided that the bias and RD effect bandwidths are chosen
by the IK implementation. The data-driven method suggested by Calonico et al. (2014a)

again seems to lead to a too large bias bandwidth.
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Table 4. CCT bias-corrected local polynomial RDD estimates with robust inference.

Panel A: CCT-correction, bias and RD effect bandwidths optimized for local linear specification

(1 ) (3) (4) (5) (6)
Linear Quadratic Cubic

Elected (bias-corrected) 0.030 0.046 0.006 0.021 -0.023 -0.004
95% confidence interval (non-clustered) [-0.001, 0.060] [0.022, 0.069] [-0.040, 0.051]  [-0.015, 0.057] [-0.088, 0.042] [-0.055, 0.046]
95% confidence interval (clustered) [-0.004,0.063]  [0.020, 0.071] [-0.042,0.054] [-0.018, 0.060] [-0.089, 0.043]  [-0.057, 0.048]
N 19407 26999 19407 26999 19407 26999
RD effect bandwidth 0.53 0.74 0.53 0.74 0.53 0.74
Bias bandwidth 114 3.03 114 3.03 114 3.03

IK CCT IK CCT IK CCT

Bandwidth implementation

Panel B: CCT-correction, bias and RD effect bandwidths set equal, optimized for local linear specification

7) (8) (9 (10) (11) (12)
Linear Quadratic Cubic

Elected (bias-corrected) 0.008 0.022 -0.022 -0.004 -0.033 -0.021
95% confidence interval (non-clustered) [-0.036, 0.051] [-0.014, 0.057] [-0.086, 0.042]  [-0.055, 0.046] [-0.122, 0.056] [-0.090, 0.048]
95% confidence interval (clustered) [-0.038,0.053] [-0.017, 0.060] [-0.087,0.043]  [-0.056, 0.048] [-0.118,0.051]  [-0.091, 0.048]
N 19407 26999 19407 26999 19407 26999
RD effect bandwidth 0.53 0.74 0.53 0.74 0.53 0.74
Bias bandwidth 0.53 0.74 0.53 0.74 0.53 0.74

IK CCT IK CccT IK CccT

Bandwidth implementation

Panel C: CCT-correction, bias and RD effect bandwidths optimized for each polynomial specification

(13) (14) (15) (16) (17) (18)
Linear Quadratic Cubic
Elected (bias-corrected) 0.030 0.046 0.026 0.052 0.025 0.052
95% confidence interval (non-clustered) [-0.001, 0.060]  [0.022, 0.069] [-0.007,0.060]  [0.030, 0.073] [-0.012,0.062]  [0.031, 0.072]
95% confidence interval (clustered) [-0.004, 0.063]  [0.020, 0.071] [-0.009, 0.061]  [0.030, 0.073] [-0.014,0.064]  [0.031, 0.072]
N 19407 26999 54464 78469 70576 112398
RD effect bandwidth 0.53 0.74 1.41 2.09 1.84 3.98
Bias bandwidth 1.14 3.03 1.49 5.38 1.92 7.90
IK ccT IK ccT IK ccT

Bandwidth implementation

Notes: Table shows estimated incumbency advantage using local polynomial regressions within various
bandwidths. CCT-correction refers to bias-corrected local polynomial RDD estimates with robust inference. All
estimations use a triangular kernel. Confidence intervals without clustering are computed using
heteroscedasticity-robust standard errors, and clustered confidence intervals account for clustering at
municipality level. Unit of observation is a candidate i at year t. The IK and CCT bandwidths are two different
implementations of the estimation of the MSE-optimal theoretical bandwidth choice.

To explore how the bias-corrected and robust estimates vary with different bandwidths
and how the two bandwidth choices interact, we display in Figure 3 the bias-corrected RDD
estimates and their robust 95% confidence intervals for a fixed bias bandwidth, but for
different RD effect bandwiths. For this figure, we use the IK implementation to determine

the bias bandwidth, because it seemed to lead to narrower bandwidths and worked well.
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The figure shows that when fixing the bias bandwidth to be IK optimal, the estimated effect
is quite robust to the choice of the RD effect bandwidth and most of the time not

significantly different from zero.
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Figure 3. Bias-corrected RDD estimates, fixed bias bandwidth.

In Figure 4, we allow both bandwidths to vary and report the corresponding CCT-
corrected estimates and their robust confidence intervals. While the results for the linear
local polynomial resemble a bit those we reported earlier (Figure 2) for the conventional
RDD, there nevertheless is a difference: The figure shows that when the CCT-correction is
used and the RD effect bandwidth is chosen to be IK optimal or smaller, the null hypothesis
of no effect is not rejected in any of the specifications. In line with this, Calonico et al.
(2016a) argue that a bandwidth adjustment (“shrinkage”) is called for to achieve better

coverage error rates when MSE-optimal bandwidths are used.
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Figure 4. Bias-corrected RDD results, both bandwidths vary.

Furthermore, following the recommendation of Calonico et al. (2016a), we set both
bandwidths equal and report the corresponding CCT-corrected estimates and their robust
confidence intervals in Figure 5. When the CCT-correction is used and the RD effect
bandwidth is chosen to be IK optimal or smaller and equal to the bias bandwidth, the null
hypothesis of no effect is not rejected. This shows that CCT-correction is less sensitive to the
choice of the bandwidth (than ad hoc under-smoothing) and works especially well when the
bias and RD effect bandwidths are set equal.

In sum, the above findings support the results of Monte Carlo simulations and formal
analyses reported in Calonico et al. (2014a) and Calonico et al. (2016a). The above analyses,
and especially Figure 5, also support the idea that the CCT bandwidths should be adjusted by
a shrinkage factor, as proposed by Calonico et al. (2016a). Unlike ad hoc under-smooting, the
adjustment improves the coverage error rates of the MSE-optimal bandwidths. For our
sample size, the proposed adjustment factors are be 0.55, 0.51 and 0.51 for the linear,
guadratic and cubic specification, respectively. As can be seen from Figure 5, applying the
shrinkage factors moves the CCT bandwidth closer to the IK bandwidth and reproduces the
experimental result of not rejecting the null hypothesis of no effect. Had the adjustment not

been done, the result would have been different.®?

270 keep the graphs comparable, we have not drawn the vertical line for the unadjusted CCT-bandwidth of
the cubic specification (on the right). The bandwidth is 3.98, leading to a point estimate of 0.035 (with 95% ClI
of [0.009, 0.060]).
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Figure 5. Bias-corrected RDD results, bandwidths equal.

We believe that the above results are useful and of interest to applied econometricians,
because most of the existing published and on-going work applying RDD uses the same
implementations of the MSE-optimal bandwidth and bias-correction approach as we have so
far done. We analyze some more recent developments briefly in a robustness test reported

in the next section.

4 Discussion and robustness

4.1 RDD falsification and smoothness tests

The standard pattern of validity tests for the RDD includes the McCrary (2008) manipulation
test, covariate balance tests, which are an indirect test of the smoothness assumption, and
placebo tests, where the location of the cutoff is artificially redefined. We do not report the
results of the validity tests in detail here. It suffices to note the following (see Appendix D for
details).

First, there is no jump in the amount of observations at the cutoff of getting elected.
Second, when testing for covariate balance, we allow for the possibility that the covariates
have slopes (or even curvature) near the cutoff (e.g., Snyder et al. 2015 and Eggers et al.
2015) and estimate local polynomial specifications. We calculate the optimal bandwidths
(and half the optimal ones) for different polynomials to address potential slope and

curvature issues. We do this for each covariate separately. The covariate balance tests
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produce somewhat mixed evidence, but overall they suggest that RDD ought to work well in
our application. This finding is somewhat in contrast with those of Caughey and Sekhon
(2011), who mention the possibility that purposeful sorting by the candidates may invalidate
the use of RDD also in the closest races. We find some evidence that there are fewer
rejections of covariate balance when more flexible local polynomial specifications (or under-
smoothing) are used.

Finally, the placebo cutoff tests provide signals that cast doubt on the appropriateness of
standard local linear (and polynomial) RDD specifications with the MSE-optimal bandwidths
in our context. Moreover, the placebo tests do not suggest that under-smoothing
procedures and use of higher degree local polynomials without adjusting the bandwidth
accordingly would not work. This finding echoes the conclusion that when these bias-
correction tools are used, RDD is able to reproduce the experimental estimate. In sum, this

shows that the placebo cutoff tests can be useful in detecting too inflexible specifications.

4.2 Robustness of RDD estimates
We have conducted a large number of auxiliary analyses and tests to probe the robustness
of our RDD findings. Taking each of them in turn (see Appendix E for details):

First, RDD is sometimes implemented using higher order global polynomials of the forcing
variable. We have redone the RDD analysis using such parametric RDDs, using five different

st_gth degree). These parametric RDD generates positive and statistically

polynomials (1
significant incumbency effects that are roughly similar in magnitude to those reported in Lee
(2008). Consistent with what Gelman and Imbens (2014) argue, we find that this approach to
implementing RDD provides misleading findings. The bias here is an order of magnitude
larger than the one in the local polynomial specifications.

Second, we have considered the vote share in the subsequent elections as an alternative
measure of incumbency advantage. As we reported earlier, the experimental estimate
suggests no incumbency advantage when this alternative measure is used. In contrast, the
RDD results suggest a positive effect when RDD is implemented in a standard fashion, using
the local linear polynomial and various (MSE) optimal bandwidths.

Third, ties appear a bit more often in elections in the smaller municipalities. As we

reported earlier, the experimental estimate is quite precisely estimated and close to zero

both in small and in large elections. However, our normalized forcing variable can get values
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really close to zero only when parties get a large amount of votes, which tends to happen in
the elections in the larger municipalities. To check what this implies for our RDD findings, we
have rerun parts of the RDD analysis separately for small and large municipalities. These
estimations show that for both the larger and smaller municipalities, the bias increases with
the bandwidth and decreases as the degree of local polynomial increases. It thus seems that
our conclusions are not driven by the size of the municipalities.

Fourth, another potential explanation for why the local linear RDD point estimates
increase is heterogeneity in the personal incumbency effect across municipalities (and party-
lists).>® To explore how much this kind of heterogeneity matters, we have repeated the RDD
analysis using only those party-lists that were involved in the lotteries. In this case,
increasing the bandwidth adds new candidates from the same lists, but does not add new
lists or municipalities. Our main results remain unchanged. This analysis is also important
because it guarantees that the same set of within-party cutoffs is used both in the
experimental sample and the RD sample.

Fifth, we have rerun the RDD estimations using alternative definitions for the forcing
variable. The results show that our RDD findings are not driven by the choice of the forcing
variable. For example, we get very similar results if the forcing variable is either the vote
margin that is calculated in terms of the number of votes or vote shares.

Sixth, we have studied whether there is heterogeneity in the effect between the parties.
We found no evidence for substantial heterogeneity in the personal incumbency advantage
between the parties.

Seventh, we have already mentioned that the experimental estimate does not change if
those who do not rerun are excluded from the lottery sample. We have replicated our
baseline RDD analysis using the sample from which those who do not rerun are similarly
excluded. Our results remain unchanged.

Finally, we want to acknowledge that a major upgrade of rdrobust software is now
available (Calonico et al. 2016b). The updated version introduces a new implementation of
the MSE-optimal bandwidth choice, replacing the IK and CCT implementations. The new

implementation of the MSE-optimal bandwidth estimates the same asymptotic quantity as

3 Changing the bandwidth used for estimation does not change the parameter that is being identified. When
the width of the bandwidth is changed, the accuracy of the approximation used to estimate the parameter
changes.

29



the CCT and IK implementations. The updated software allows for clustering when
calculating standard errors and bandwidths. We have re-estimated the most relevant
specifications of the previous sections using the new implementation of the MSE-optimal
bandwidth with and without clustering at municipality level. The results largely echo our
earlier findings (Appendix E). In particular, because the new implementation of the MSE-

optimal bandwidth is similar to the CCT implementation, the results look alike. 34

4.3 When is RDD as good as random?

One reason for the popularity of RDD is that close to the cutoff, variation in the treatment
status may be as good as random, provided that the forcing variable cannot be precisely
manipulated (Lee 2008, p. 676). RDD is widely believed to meet the replication standard
because of this feature. While somewhat distinct from our previous analysis, this naturally
leads to the question of whether we can identify a neighborhood around the cutoff where
the randomization assumption is plausible (Cattaneo et al. 2015). To answer the question,
we explore the largest bandwidth in which the as-good-as-random assumption holds and
then compare the sample means of the outcome variable across the cutoff.®*® We find that
(see Appendix F), with some caveats, we can reproduce the experimental estimate using the

approach proposed by Cattaneo et al. (2015).

5 Conclusions

We have made use of elections data in which the electoral outcome was determined via a
random seat assignment for a large number of candidates because of a tie in their vote
count. These instances provide us with a randomized experiment against which we have

benchmarked non-experimental RDD estimates of personal incumbency advantage. To our

** Moreover, the update introduces the so-called coverage-error-rate -optimal (CER-optimal) bandwidth, which
is a bandwidth choice based on a higher-order Edgeworth expansion (Calonico et al. 2016b). This bandwidth
optimizes coverage error but does not necessarily have desirable properties for point estimation. The results
based on the CER-optimal bandwidth also echo our earlier findings (Appendix E).

> As Cattaneo et al. (2014), Cattaneo et al. (2016b), de la Cuesta and Imai (2016) and Skovron and Titiunik
(2015) have emphasized, the (local) randomization assumption differs from the usual assumption of no
discontinuity in the conditional expectation function of the potential outcome. This randomization feature of
RDD may be the reason why RDD has been used as a benchmark against which other non-experimental
estimators have been compared (see, e.g., Lemieux and Milligan 2008). We know that in a sample that only
includes the lotteries (i.e., when the neighborhood is degenerate at the cutoff), the randomization assumption
is satisfied in our data. The subsample that we use to explore the plausibility of the randomization assumption
excludes the randomized candidates.
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knowledge, the experiment is unique in the literature, because it takes place exactly at the
cutoff. This means that both the experiment and RDD target the same treatment effect.®

We find no evidence of a personal incumbency advantage when the data from the
randomized elections are used. The point estimate of the incumbency advantage is close to
zero and relatively precisely estimated. We argue that this finding is neither surprising nor in
conflict with the prior evidence, because we are looking at the effect of incumbency status
on electoral success at a rather special context, in small local PR elections. It is possible that
the randomized electoral victories as well as the close elections that we study take place at a
relatively unimportant margin, providing limited scope for the emergence and creation of
personal incumbency advantage.

Our two main RDD findings are the following: First, when RDD is applied in conventional
fashion (i.e., using local linear regression with MSE-optimal bandwidths) to the same close
elections, the estimates suggest a moderate and statistically significant personal incumbency
effect. Second, the recent bias correction and robust inference method of Calonico et al.
(2014a) is able to recover the experimental benchmark, provided not too wide bias
bandwidths are used. We find that the procedure is less sensitive to the choice of the
bandwidth (than ad hoc under-smoothing) and works especially well when the bias and RD
effect bandwidths are set equal. These results are important, because compared to the
often-used alternative approach of under-smoothing, the method of Calonico et al. (2014a)
is more efficient and has faster vanishing coverage error rates. Our findings corroborate the
findings of the simulation and formal analyses of Calonico et al. (2014a) and Calonico et al.
(2016a), which demonstrate that the method of Calonico et al. (2014a) ought to work better
than the conventional ad hoc adjustments.

These findings lead to two key conclusions. First, RDD can indeed meet the replication
standard in the context of close elections. Second, and more interestingly, the results may
be sensitive to the details of implementation even when the researcher has a relatively large
number of observations. The recently proposed implementation approaches work better

than the older ones.

*® To be precise, this statement is true if the cutoff were the same for all observations. In our application, there
are multiple cutoffs that are all normalized to zero. As Cattaneo et al. (2016) explain, the pooled RDD estimand
over multiple cutoffs depends on two things. First, it depends on the density of observations at the individual
cutoffs. Second, the estimand is a function of the probability of each observation facing a given cutoff value. In
our robustness tests, we restrict the sample so that the cutoff is the same for all observations in the estimation.
Our main findings are robust in this regard.
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We report here the additional empirical analyses to which the main text refers. The supplement consists of
Appendices A-F. Appendix A reports summary statistics for our data. In Appendix B, we describe a number of
empirical results for the lottery sample. Appendix C characterizes graphically the forcing variable used in the
regression discontinuity design (RDD). In Appendix D, we evaluate the validity of the RDD. A large battery of
robustness checks is reported in Appendix F. Appendix E reports covariate balance tests for various RDD samples,

determined by different bandwidth choices, as well as a brief evaluation of the local randomization assumption.



Appendix A: Supplementary information to Section 2.2 (Data)

In this appendix, we report summary statistics for our data.

Table Al: This table reports descriptive statistics for the individual candidates. As the table shows, the
variables that can be regarded as (rough) measures of candidate quality: Many of them obtain, on average,
higher values for the elected candidates. For example, the elected candidates have higher income, are
more often university-educated and are less often unemployed. The difference is particularly striking when
we look at incumbency status: 58% of the elected candidates were incumbents, whereas only 6% of those

who were not elected were incumbents.

Table Al. Descriptive statistics for individual candidates.

All data (N=198118) Elected (N=56734) Not elected (N =141384)

Variable N Mean Std. Dev. N Mean Std. Dev. N Mean Std. Dev.
Elected next election (only re-runners) 82946 0.38 0.48 32070 0.79 0.41 50876 0.12 0.32
Elected next election (all candidates) 160727 0.19 0.40 46982 0.54 0.50 113745 0.05 0.22
Running next election 160727 0.52 0.50 46982 0.68 0.47 113745 0.45 0.50
Number of votes next election 82946 76 180 32070 131 268 50876 41 65
Vote share next election 82946 1.14 1.31 32070 2.05 1.54 50876 0.57 0.68
Vote share 198117 0.97 1.20 56734 2.22 1.50 141383 0.46 0.47
Number of votes 198117 61 149 56734 127 257 141383 34 45
Female 198118 0.39 0.49 56734 0.35 0.48 141384 0.40 0.49
Age 198117 46.75 12.64 56734 4815 11.15 141383 46.18 13.15
Incumbent 198118 021 041 56734 058 0.49 141384 0.06 0.24
Municipal employee 160993 0.23 042 47060 0.27 0.44 113933 0.22 041
Wage income 117787 23738 26978 34566 27813 41548 83221 22045 17417
Capital income 117787 2650 35446 34566 4775 61116 83221 1767 14973
High professional 198022 0.19 0.0 56721 0.24  0.43 141301 0.18 0.38
Entrepreneur 198022 0.15 0.36 56721 0.23 0.42 141301 0.12 0.33
Student 198022 0.04  0.20 56721 0.02  0.13 141301 0.05 0.22
Unemployed 198022 0.07 0.25 56721 0.03 0.18 141301 0.08 0.27
University degree 159437 0.16  0.37 46711 020 0.40 112726 0.14 035
Coalition Party 198118 0.15 0.36 56734 0.15 035 141384 0.16 0.36
Social Democrats 198118 0.18 0.38 56734 0.18 0.38 141384 0.18 0.38
Center Party 198118 0.22 042 56734 0.30 0.6 141384 0.19  0.40
True Finns 198118 0.02 0.15 56734 0.01 0.12 141384 0.03 0.16
Green Party 198118 0.04  0.19 56734 0.02 0.15 141384 0.04 0.20
Socialist Party 198118 0.09 0.29 56734 0.07 0.26 141384 0.10 0.30
Swedish Party 198118 0.03  0.17 56734 0.04 0.20 141384 0.02 0.16
Christian Party 198118 0.04  0.18 56734 0.03 0.16 141384 0.04 0.19
Other parties 198118 0.23 0.42 56734 0.20 0.40 141384 0.24 0.43

Notes: Income data are not available for 2012 elections, and in 1996 elections they are available only for candidates who run also in 2000,
2004 and 2008 elections. Income is expressed in euros. Municipal employee status is not available for 2012 elections.



Table A2: This table reports descriptive statistics for municipalities, measured using the candidate level
data. As can be seen (the panel on the left), there are three major parties in Finland. The three largest
parties’ seat shares total to over 70%. There are two main reasons why there are differences in the
variables related to elections between the elected candidates’ municipalities (the panel in the middle) and
the not-elected candidate's municipalities (the panel on the right). First, a larger share of all running
candidates is elected in smaller municipalities. For example, the Center Party has a larger vote share in
smaller municipalities. Second, there are more candidates in the larger municipalities. The table also shows
that in a number of dimensions, like income, age and unemployment rate, there are no major differences

in the municipal characteristics between elected and non-elected candidates.

Table A2. Descriptive statistics for municipalities.

Municipality characteristics

All data (N=198118) Elected (N=56734) Not elected (N =141384)

Variable N Mean Std. Dev. N Mean Std. Dev. N Mean Std. Dev.
Total number of votes 198118 19935 43682 56734 10607 26431 141384 23677 48421
Coalition Party seatshare 198118 19.58 10.10 56734 17.61 10.52 141384 20.38 9.81
Social Democrats seatshare 198118 21.88 10.21 56734 20.62 10.88 141384 22.38 9.88
Center Party seatshare 198118 30.58 20.52 56734 35.20 21.14 141384 28.73 19.97
True Finns seat share 198118 3.77 5.87 56734 3.49 5.87 141384 3.88 5.86
Green Party seat share 198118 4.25 541 56734 2.89 4.30 141384 4.79 5.70
Socialist Party seat share 198118 8.57 7.37 56734 8.14 7.72 141384 8.74 7.22
Swedish Party seat share 198118 4.39 13.87 56734 5.19 16.80 141384 4.07 12.49
Christian Party seat share 198118 341 3.56 56734 3.24 3.79 141384 3.48 3.47
Other parties' seatshare 198118 3.45 6.74 56734 3.50 7.56 141384 3.43 6.39
Voter turnout 196329 62.20 6.28 56174 63.40 6.28 140155 61.72 6.21
Population 197307 43407 95692 56581 22944 58177 140726 51634 106027
Share of 0-14-year-olds 196385 17.84 3.28 56331 17.96 3.47 140054 17.79 3.20
Share of 15-64-year-olds 196385 64.41 3.48 56331 63.49 3.27 140054 64.78 3.49
Share of over-65-year-olds 196385 17.75 4.82 56331 18.55 4.99 140054 17.43 4.72
Income per capita 196385 21204 5876 56331 20364 5634 140054 21543 5937
Unemployment 197307 13.50 5.71 56581 13.77 5.85 140726 13.39 5.65

Notes: Income per capita is expressed in euros.



Appendix B: Supplementary information to Section 3.1 (Experimental
estimates)

In this appendix, we report a number of empirical results obtained using the lottery sample (i.e., the
sample which only includes the candidates that had a tie). These results bear on the robustness of the

experimental estimate.

Table B1: This table shows additional balance checks for party affiliation and municipality characteristics in
the lottery sample. These characteristics should be balanced by construction, as we construct the forcing
variable within party lists. The table shows that the samples are, indeed, almost identical. The small and
insignificant differences in the means are likely due to the fact that in some lotteries there are more than

two candidates.



Table B1. Additional balance checks.

Individual characteristics

Elected (N=671)

Not elected (N = 680)

Variable N Mean Std. Dev. N Mean Std. Dev. Difference
Coalition Party 671 0.20 0.40 680 0.20 0.40 0.00
Social Democrats 671 0.18 0.39 680 0.18 0.39 0.00
Center Party 671 0.42 0.49 680 0.42 0.49 0.00
True Finns 671 0.02 0.13 680 0.02 0.13 0.00
Green Party 671 0.01 0.11 680 0.01 0.11 0.00
Socialist Party 671 0.08 0.27 680 0.08 0.27 0.00
Swedish Party 671 0.03 0.18 680 0.04 0.19 -0.01
Christian Party 671 0.02 0.15 680 0.02 0.15 0.00
Other parties 671 0.03 0.18 680 0.03 0.18 0.00
Municipality characteristics
Elected (N=671) Not elected (N = 680)

Variable N Mean Std. Dev. N Mean Std. Dev. Difference
Total number of votes 671 4467 12006 680 4395 11921 71
Coalition Party seat share 671 16.88 11.08 680 16.76 10.88 0.13
Social Democrats seatshare 671 19.70 10.76 680 19.63 10.95 0.07
Center Party seat share 671 41.46 19.98 680 41.57 20.17 -0.11
True Finns seatshare 671 1.92 4.79 680 1.89 4.59 0.02
Green Party seat share 671 1.72 3.29 680 1.73 331 -0.01
Socialist Party seat share 671 7.55 791 680 7.56 7.82 0.00
Swedish Party seatshare 671 3.70 14.42 680 3.97 14.95 -0.27
Christian Party seatshare 671 2.87 3.92 680 2.83 3.92 0.04
Other parties' seat share 671 3.76 8.59 680 3.63 8.48 0.13
Voter turnout 664 65.23 5.90 673 6538 6.02 -0.15
Population 671 9316 25430 680 9145 25241 171
Share of 0-14-year-olds 667 18.31 3.31 676 18.42 3.33 -0.11
Share of 15-64-year-olds 667 6297 2.87 676 62.89 2.90 0.07
Share of over-65-year-olds 667 18.72 4.69 676 18.69 4.68 0.03
Income per capita 667 18457 5372 676 18413 5372 44
Unemployment 671 1485 6.75 680 14.80 6.69 0.05

Notes : Differences in means have been tested usingt test adjusted for clustering at municipality level.
Sample includes only candidates runningin 1996-2008 elections. Income data are not available for 2012
elections, and in 1996 elections they are available only for candidates who run also in 2000, 2004 and
2008 elections. Income and income per capita are expressed in euros.



Table B2: This table reports experimental results for the alternative outcomes, vote share (Panel A) and
running (Panel B) in the next elections. The regressions use the entire lottery sample. They provide no
evidence of personal incumbency advantage. We have also checked that the effect is close to zero and not

significant if the absolute number of votes in the next election is used as the outcome variable (not

reported).

Table B2. Experimental results for alternative outcomes.

Panel A: Vote share next election

(1) (2) (3) (4)

Elected 0.012 0.006 -0.020 -0.014
95% confidence interval [-0.102,0.125] [-0.108,0.121] [-0.152,0.111] [-0.160, 0.133]
N 1351 1351 1351 1351
R? 0.00 0.06 0.37 0.52

Panel B: Running next election

(5) (6) (7) (8)

Elected 0.011 0.007 0.001 0.005
95% confidence interval [-0.040,0.062] [-0.044,0.058] [-0.058,0.059] [-0.060,0.071]
N 1351 1351 1351 1351

R’ 0.00 0.05 0.30 0.45
Controls No Yes Yes Yes
Municipality fixed effects No No Yes No
Municipality-year fixed ef No No No Yes

Notes : Only actual lotteries are included in the regressions. Vote share is set to zero for those candidates
thatdo not runin the next election. Set of controls includes age, gender, party affiliation, socio-economic
status and incumbency status of a candidate, and total number of votes. Some specifications include also
municipality or municipality-year fixed effects.Confidence intervals are based on standard errors
clustered at the municipality level. Unit of observationis a candidate i atyeart.



Table B3: In this table, we look at elections in small and large municipalities separately. We split the
sample based on the median number of total votes in the municipality in the lottery sample. This median is
2422. The median is slightly higher (2662) in the entire sample. The regressions reported in the table below
do not include any controls. They should therefore be compared to the result in column (1) in Table 2 in
the main text of HMSTT. As can be seen from the table, we do not find evidence for an incumbency

advantage in either sub-sample.

Table B3. Experimental results for small and large elections.

Outcome: Elected next election

(1) (2)

Elected 0.002 0.006
95% confidence interval [-0.064,0.067] [-0.065,0.077]
N 687 664

R 0.00 0.00
Sample Small elections Large elections

Notes : An election is considered small (large), ifat most (more than)
2422 votes are cast. Only actual lotteries are included in the
regressions.Confidence intervals are based on standard errors
clustered at municipality level. Unit of observationis a candidate i
atyeart.



Table B4: We have reproduced the experimental estimate using a sample from which those who do not
rerun are excluded. We report these results for our main outcome and the alternative outcome (the vote

share). These results provide no evidence of a personal incumbency advantage.

Table B4. Experimental estimates for rerunners.

Outcome: Elected next election

(1) (2) 3) (4)

Elected -0.003 -0.002 0.025 0.035
[-0.071, 0.066] [-0.073, 0.068] [-0.073, 0.124] [-0.091, 0.160]

N 820 820 820 820

R? 0.00 0.04 0.41 0.64

Outcome: Vote share next election

(5) (6) (7) (8)

Elected -0.012 -0.009 0.051 0.021
[-0.145,0.122] [-0.142,0.124] [-0.110, 0.212] [-0.184, 0.226]

N 820 820 820 820

R’ 0.00 0.17 0.67 0.80

Controls No Yes Yes Yes

Municipality fixed effects No No Yes No

Municipality-year fixed effects No No No Yes

Notes : Only actual lotteries and rerunning candidates are included in the regressions. Set of controls
includes age, gender, party affiliation, socio-economic status and incumbency status ofa candidate, and
total number of votes. Some specifications include also municipality or municipality-year fixed effects. Unit
of observationis a candidate /i atyeart.



Appendix C: Supplementary information to Section 3.2 (Non-experimental
estimates)

This appendix provides additional figures to characterize our forcing variable, v;;. We call our forcing
variable “Vote margin (%)” in some of the graphs below, where the margin refers to the distance to the
cutoff. The forcing variable is reported in percentage points. For example, a value 0.5 refers to 5 votes out

of 1000.

Figure C1: In this figure, we graph the distribution of the number of votes within different bandwidths in
the forcing variables. The figures show how many votes the candidates involved in close elections receive.

The distribution gets a large amount of mass around 30-50 votes.
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Notes: Figure shows the distribution of number of votes within one bandwidth on both sides of the cutoff for different bandwidths. Bin size is 1 vote. x-axis is

restricted to 100 votes.

Figure C1. The distribution of the number of votes for different bandwidths.

Figure C2: This figure displays the relationship between the forcing variable and the distance to cutoff

(vote distance), as measured by the absolute number of votes. The density graphs show that, as expected,



the candidates are further away from the cutoff in terms of absolute number of votes as the bandwidth

becomes wider. For all reported bandwidths, the most common distance is only one or two votes.
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Figure C2. Distribution of the distance to cutoff in absolute votes for different bandwidths of the forcing

variable.
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Figure C3: This figure maps the relationship between the forcing variable (vote margin, x-axis) and the
distance to cutoff measured in the absolute number of votes (y-axis). It shows that, overall, the two are
positively correlated within the reported bandwidth. There are fairly many observations also on or close by
the horizontal line. This means that, within the reported bandwidth, for each value of the forcing variable
there are many observations that are only one or two votes from the cutoff. This echoes what Figure C2

shows.
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Figure C3. Relationship between the forcing variable and the distance to cutoff measured in absolute

votes.
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Figure C4: These histograms show the distribution of the forcing variable within two very small bandwidths
nearby the RDD cutoff. The histograms suggest that the forcing variable can be treated as continuous for
the purposes of RDD. The dip in the density of the forcing variable between -0.01 and 0.01 is related to the
fact that the forcing variable can obtain such small values only when the party lists are large. For example,
a value of 0.01 refers to one vote out of ten thousand. Lists that get more than ten thousand votes exist

only in the larger municipalities.

0 . . X 0
Vote margin (%) Vote margin (%)

Notes: Figure A shows histogram of the forcing variable with bins of 0.005, and figure B uses bins of 0.001. Values of the forcing variable are limited between -0.1

and 0.1. Lotteries have been excluded.

Figure C4. Histogram of the forcing variable close to the cutoff.

Figure C5: These figures are similar to Figure 1 in the main text, but they give a richer picture of the
underlying data, as they show the binned averages within a larger number of bins. These bins have been
chosen applying mimicking variance evenly spaced method using spacing estimators (see Calonico et al.
2015). We estimate the optimal Imbens-Kalyanaraman bandwidth for the left-most specification in each

panel, and then increase the degree of the control polynomial by one or two.
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Notes: Figure shows local polynomial fits with a triangular kernel within the optimal Imbens-Kalyanaraman (2012) bandwidth optimized for the linear
specification in Panel A, quadratic specification in Panel B and cubic specification in Panel C. On left side, the graphs display the fits that are based on the same p
(order of local polynomial specification) as the optimal bandwidths are calculated for. In the midmost graph, the fit uses a p+1 specification and on the right side,
the graphs are based on a p+2 specification. Gray dots mark binned averages chosen using mimicking variance evenly-spaced method using spacing estimators
(see Calonico et al. 2015).

Figure C5. Curvature between the forcing variable and the outcome
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Figure C6: These figures display RDD fit and a scatter of plot of observation bins around the cutoff when
the forcing variable is defined as the (non-normalized) number of votes. The main purpose of these figures
is to show that the documented features in the relationship between the forcing variable and outcome are
not unique to the way we define the forcing variable in the main text. This indeed appears not to be the
case: As the figures show, there is a clear jump at the cutoff in the figure on the left and evidence of

curvature in the middle and on the right.
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Notes: Figure shows local polynomial fits with triangular kernel within the optimal Imbens-Kalyanaraman (2012) bandwidth optimized for the linear

specification. Gray dots mark binned averages.

Figure C6. Curvature between the non-scaled forcing variable (number of votes) and the outcome
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Appendix D: Supplementary information to HMSTT Section 4.1 (RDD
falsification and smoothness tests)

In this appendix, we report validity tests to for RDD. The reported pattern of validity tests includes i) the
McCrary (2008) manipulation test, ii) covariate balance tests, and iii) placebo tests where the location of

the cutoff is artificially redefined.

Figure D1: This figure reports the McCrary (2008) tests. The test asks whether there is a jump in the
amount of observations at the cutoff of getting elected. Such jump would indicate that some candidates
have been able to manipulate into getting the treatment. There is no jump. The estimated difference in
height is -0.0140 (standard error 0.0474) in graph A (the values of the forcing variable restricted between -
1 and 1), and -0.5701 (standard error 0.6616) in graph B (the values of the forcing variable restricted
between -0.1 and 0.1). This is not surprising, since there cannot be a jump in the amount of candidates
elected: The number of council seats available is fixed. If one candidate is able to manipulate into getting

elected, another candidate will not be elected.

0 . 0
Vote margin (%) Vote margin (%)

Notes: Graph A shows the McCrary (2008) density test with the forcing variable within -1 and 1. Graph B shows the density test with forcing variable within -0.1
and 0.1.

Figure D1. McCrary density test.
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Table D1: The main identification assumption in RDD is that covariates develop smoothly over the cutoff.
The recent literature (e.g. Snyder et al. 2015 and Eggers et al. 2015) argues that especially in close election
applications, balance tests based on the comparisons of means across the cutoff are likely to (wrongly)
signal imbalance, because the covariates may vary strongly with the forcing variable near the cutoff. One
should, therefore, control for this co-variation (“slopes”) when implementing the balance tests. Panel A of
Table D1 uses therefore the optimal bandwidth for the local linear specification computed for each
covariate separately. When testing for covariate smoothness, bandwidth needs to be optimized for each
covariate separately, because they are each unique in their relation to the forcing variable. We report in
Panel B of Table D1 also the results that use half the optimal bandwidth. We do so to check how under-
smoothing influences the covariance balance tests and to make sure that curvature issues (similar to those
we report for our main outcome) do not lead to wrong conclusions about the covariate balance. If some of
the covariates have a lot of curvature nearby the cutoff, one might wrongly infer that there is imbalance
unless under-smoothing, or some other de-biasing method, is used to obtain more valid confidence

intervals.

As can be seen from Panel A and B, there are some significant estimates. We cannot rule out that the
few imbalances are due to multiple testing, because Panel A and B are not completely in line with each
other in this regard. It is also possible that the estimated jumps are due to substantial curvature in the
relationship between the given covariate and the forcing variable near the cutoff. This seems to be at least
partly the case, since many of the jumps are no longer statistically significant when more flexible
specifications (smaller bandwidths for a given local polynomial or higher order polynomials for a given
bandwidth) are used. This means that there are fewer rejections of covariate balance when more flexible

local polynomial specifications (or under-smoothing) are used.

We conclude that, taken together, the covariate balance tests provide somewhat mixed evidence.

Overall, they do not cast clear doubt on the validity of RDD.
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Table D1. Covariate smoothness test.
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Figure D2: Figure D2 reports a series of placebo tests where the location of the cutoff is artificially
redefined. If there are jumps in locations other than the true cutoff, it would suggest that strong
nonlinearities or discontinuities in the relationship between the forcing variable and the outcome may be
driving the RDD result (instead of a causal effect at the cutoff). Typically, these tests are used in
applications where there is a documented effect at the cutoff (that is statistically different from zero) and
the researcher wants to show that this statistically significant jump is unique (or, at least, that only 5% of

the placebo cutoffs show jumps that are significant at the 5% level).

In Panel A and B, we display the placebo RDD estimates that are based on the conventional local
linear and quadratic specification, using the corresponding IK optimal bandwidths. As we report in the
main text, the RDD estimates produced by these specifications indicate that there would be a positive
jump at the true cutoff. This is in contrast to what our experimental estimate suggests. As the placebo
estimates on the left of these panels show, there also are statistically significant jumps at some of the
placebo cutoffs located close by the true cutoff. Some of these jumps are even larger than the one found
at the true cutoff. These placebo tests are thus indicative of these RDD specifications not working properly.
The placebo graphs on the right have been produced using the same specifications as on the left, but with

the CCT-correction. They, too, are indicative of these specifications not working as expected.

In Panels C and D, we explore whether those RDD specifications that in our context seem to work
are problematic in the light of the placebo tests. Panel C reports the results for half the optimal (IK)
bandwidths: On the left, we use the conventional local linear specification for this under-smoothing
approach. The corresponding estimates based on the CCT-correction are displayed on the right. In Panel D
we explore whether a polynomial of order p+1 is flexible enough for the bandwidth that has been
optimized for a polynomial of order p. The panel reports these results for the quadratic and cubic local
polynomials. As the two panels show, there are no jumps at any of the placebo cutoffs, implying that these
specifications work appropriately. In sum, the placebo tests reported in Panel C and D do suggest that the
under-smoothing procedure or the use of higher degree local polynomials without adjusting the bandwidth
accordingly may work. These findings thus suggest that the placebo cutoff tests seem to be of use in

detecting too inflexible specifications.
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Notes: The figure shows the RDD point estimates and the 95% confidence intervals from specifications using local polynomial regression with a triangular kernel.
All the left hand graphs and also the right hand graph in Panel D use conventional approach with optimal IK bandwidths and confidence intervals constructed
using standard errors clustered by municipality. All the right hand graphs in Panels A-C use IK bandwidth and bias-correction and robust inference by Calonico et
al. (2014a). We report the results at various artificial (placebo) cutoffs where the location of the artificial cutoff relative to the true cutoff is reported in the x-
axis. In Panel A, bandwidth is optimized for the linear specification, In Panel B, bandwidth is half the one in Panel A and in Panel C, bandwidth is optimized for
the quadratic specification. In Panel D, bandwidth is optimized for p-order polynomial specification whereas the fit is based on p+1 order. Optimal bandwidth is

based on the specification and sample at the real cutoff. Vertical red line marks the real cutoff.

Figure D2. RDD estimates at the artificial cutoffs.



Appendix E: Supplementary information to Section 4.2 (Robustness tests)
This appendix discusses the robustness tests (#1-#8) that we have conducted.

Robustness test #1: Global polynomial RDD

Table E1: In this table we report results for a parametric RDD specification using higher order global
polynomials (1“—5th degree) of the forcing variable on both sides of the cutoff. As the table shows, the
treatment effect estimates tend to get smaller when the degree of the polynomial increases, but even for
the 5% degree polynomial, they are positive, very large in size, and highly significant. The bias using global
polynomials seems to an order of magnitude larger than the one obtained using local polynomials. This
approach generates incumbency effects that are roughly similar in magnitude to those reported in Lee
(2008). It should be noted, however, that his estimates refer to an amalgam of party and personal

incumbency effects and apply to a very different institutional context.

Table E1. Parametric RDD with 15" order polynomials.

Outcome: Elected next election

(1) (2) (3) (4) (5)

Elected 0.432 0.386 0.342 0.296 0.255
95% confidence interval [0.422,0.442] [0.374,0.398] [0.328,0.355] [0.281,0.311] [0.239,0.272]
N 154543 154543 154543 154543 154543

R? 0.33 0.33 0.33 0.34 0.34
Order of control polynomial 1st 2nd 3rd 4th 5th

Notes : Each specification uses the whole range of data. Confidence intervals are based on standard errors clustered at
municipality level. Unit of observationis a candidate j atyeart.
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Robustness test #2: Alternative measure of incumbency advantage

Table E2: In this table, we look at the effect of being elected in election at time t on the vote share in the
election at time t+1. As we reported earlier (Table B2 in Appendix B), the effect is not statistically different
from zero in the lottery sample when this variable is used as an alternative outcome. As the table below
shows, the conventional RDD using optimal bandwidths and local linear specification produces a positive
and significant effect. The more flexible specifications reproduce the experimental estimate: The estimates
suggest that the under-smoothing procedure and the use of higher degree local polynomials without
adjusting the bandwidth accordingly work. The bias-correction procedure of Calonico et al. (2014a)
reproduces the experimental estimate for this outcome (Panel C). Adjusting the MSE-optimal bandwidths
with the adjustment factor suggested by Calonico et al. (2016a) also shows that the RDD estimates are in
line with the experimental estimate (Panel D). It is, however, important to point out that some of the

estimates in Panel B are negative and quite large in the absolute value.
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Table E2. RDD results, incumbency advantage in vote share.

Outcome: Vote share next election

Panel A: Bandwidth optimized for local linear specification

(1) (2) 3) (4) (5) (6)

Linear Quadratic Cubic
Elected 0.049 0.036 0.006 -0.001 -0.019 -0.034
95% confidence interval (clustered) [0.012,0.086] [-0.004,0.077] [-0.046, 0.059] [-0.061, 0.059] [-0.090, 0.052] [-0.111, 0.044]
N 36834 28925 36834 28925 36834 28925
Bandwidth 0.99 0.79 0.99 0.79 0.99 0.79
Bandwidth selection method 1K CCT 1K CCT 1K CCT
Panel B: 0.5 * bandwidth optimized for local linear specification
(7) (8) (9) (10) (11) (12)
Linear Quadratic Cubic
Elected 0.016 0.007 -0.026 -0.052 -0.086 -0.100
95% confidence interval (clustered) [-0.034,0.066] [-0.048,0.063] [-0.100, 0.048] [-0.136,0.031] [-0.187,0.016] [-0.213,0.012]
N 17930 14348 17930 14348 17930 14348
Bandwidth 0.49 0.39 0.49 0.39 0.49 0.39
Bandwidth selection method 1K CCT 1K CCT 1K CCT
Panel C: Bandwidths optimized for each specification, CCT-procedure
(13) (14) (15) (16) (17) (18)
Linear Quadratic Cubic
Elected (bias-corrected) 0.006 -0.001 -0.003 0.002 -0.015 0.010
95% confidence interval (robust) [-0.048, 0.060] [-0.061, 0.058] [-0.056, 0.050] [-0.049, 0.053] [-0.076,0.046] [-0.039, 0.058]
N 36834 28925 70205 76855 79078 109826
Bandwidth 0.99 0.79 1.83 2.03 2.11 3.76
Bandwidth selection method 1K CCT 1K CCT 1K CCT
Panel D: Adjusted optimal bandwidths for each specification, CCT-procedure
(19) (20) (21) (22) (23) (24)
Linear Quadratic Cubic
Elected (bias-corrected) -0.020 -0.042 -0.021 -0.015 -0.045 -0.015
95% confidence interval (robust) [-0.090, 0.050] [-0.120, 0.036] [-0.093, 0.051] [-0.084, 0.053] [-0.128,0.038] [-0.079, 0.048]
N 19742 15763 34189 38513 40965 73930
Bandwidth 0.54 043 0.92 1.03 1.09 1.94
Bandwidth selection method 1K CCT 1K CCT 1K CCT

Notes: Table shows estimated incumbency advantage usinglocal polynomial regressions within various bandwidths. Confidence intervals in panels Aand B use
standard errors clustered at municipality level. Panels Cand D use the same main and bias bandwidths. Unit of observation is a candidate / atyeart.
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Robustness test #3: Small vs. large municipalities

Tables E3 and E4: These tables reports RDD results separately for small (Table E3) and large (Table E4)
municipalities and thus for small and large elections. We use the median number of votes in the
municipality in the lottery sample as the point of division (i.e., 2422 votes). As is noted in the main text of
HMSTT (and in Appendix B), ties usually appear in elections held in slightly smaller municipalities (those
with a small number of voters). This means that our experimental estimate may mostly apply to such
elections. As we reported earlier, the experimental estimate is very close to zero both in small and in large
elections. However, our forcing variable, v;;, can get values really close to zero only when parties get a
large amount of votes. This tends to happen in larger elections. The RDD estimates, which use the
narrowest bandwidths, may thus mostly apply to them. To check whether the discrepancy between the
experimental and the RDD estimates is driven by the size of the municipalities, Tables E3 and E4 reports
parts of our RDD analysis separately for small and large municipalities. The results show that our
conclusions are not driven by the size of the elections. The bias-correction procedure of Calonico et al.
(2014a) reproduces the experimental estimate (Panel C) for IK and CTT bandwidths, except for the cubic
specification. Adjusting the MSE-optimal bandwidths with the adjustment factor suggested by Calonico et

al. (2016a) brings all the RDD estimates in line with the experimental estimate (Panel D).
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Table E3. RDD results for small municipalities.

Outcome: Elected next election

Panel A: Bandwidth optimized for local linear specification

(1 (2) (3) 4) (5) (6)

Linear Quadratic Cubic
Elected (conventional) 0.112 0.036 0.034 0.013 0.011 0.002
95% confidence interval (clustered) [0.090, 0.135] [-0.001, 0.072] [0.001,0.067] [-0.044,0.071] [-0.033, 0.055] [-0.076,0.079]
N 23967 10611 23967 10611 23967 10611
Bandwidth 4,01 1.41 4.01 1.41 4.01 1.41
Bandwidth selection method 1K CCT 1K CCT IK CCT
Panel B: 0.5 * bandwidth optimized for local linear specification
(7) (8) (9) (10) (11) (12)
Linear Quadratic Cubic
Elected (conventional) 0.051 0.018 0.017 0.007 0.010 0.039
95% confidence interval (clustered) [0.021,0.082] [-0.035,0.072] [-0.030, 0.064] [-0.078,0.092] [-0.054,0.074] [-0.100, 0.178]
N 14563 5598 14563 5598 14563 5598
Bandwidth 2.00 0.71 2.00 0.71 2.00 0.71
Bandwidth selection method 1K CCT 1K CCT IK CCT
Panel C: Bandwidths optimized for each specification, CCT-procedure
(13) (14) (15) (16) (17) (18)
Linear Quadratic Cubic
Elected (bias-corrected) 0.034 0.013 0.014 0.012 0.012 0.010
95% confidence interval (robust) [0.000, 0.068] [-0.046,0.073] [-0.045,0.073] [-0.036, 0.060] [-0.057,0.081] [-0.035, 0.054]
N 23967 10611 17625 22640 20274 29461
Bandwidth 4,01 1.41 2.51 3.62 3.05 6.53
Bandwidth selection method 1K CCT 1K CCT IK CCT
Panel D: Adjusted optimal bandwidths for each specification, CCT-procedure
(19) (20) (21) (22) (23) (24)
Linear Quadratic Cubic
Elected (bias-corrected) 0.019 0.011 0.003 0.010 0.001 0.016
95% confidence interval (robust) [-0.025, 0.062] [-0.073,0.096] [-0.085, 0.091] [-0.058,0.079] [-0.103, 0.105] [-0.046,0.078]
N 16738 6557 10373 14448 12645 22713
Bandwidth 2.37 0.83 1.38 1.98 1.70 3.64
Bandwidth selection method 1K CCT 1K CCT 1K CCT

Notes: Table shows estimated incumbency advantage usinglocal polynomial regressions within various bandwidths. Confidence intervals in panels Aand Buse
standard errors clustered at municipality level.Panels Cand D use the same main and bias bandwidths. Unit of observation is a candidate i atyeart. Sample
includes only small elections in which at most 2422 votes were given.
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Table E4. RDD results for large municipalities.

Outcome: Elected next election

Panel A: Bandwidth optimized for local linear specification

(1) (2) 3) (4) (5) (6)

Linear Quadratic Cubic
Elected 0.051 0.064 0.010 0.024 -0.026 -0.007
95% confidence interval (clustered) [0.019,0.082] [0.036,0.091] [-0.038,0.058] [-0.020, 0.067] [-0.090, 0.038] [-0.063, 0.049]
N 17665 22917 17665 22917 17665 22917
Bandwidth 0.62 1.11 0.62 1.11 0.62 1.11
Bandwidth selection method 1K CCT 1K CCT 1K CCT
Panel B: 0.5 * bandwidth optimized for local linear specification
(7) (8) (9) (10) (11) (12)
Linear Quadratic Cubic
Elected 0.010 0.028 -0.035 -0.026 -0.031 -0.039
95% confidence interval (clustered) [-0.035,0.056] [-0.012,0.067] [-0.103, 0.034] [-0.086,0.035] [-0.129,0.067] [-0.121,0.043]
N 8945 11344 8945 11344 8945 11344
Bandwidth 0.31 0.55 0.31 0.55 0.31 0.55
Bandwidth selection method 1K CCT IK CCT 1K CCT
Panel C: Bandwidths optimized for each specification, CCT-procedure
(13) (14) (15) (16) (17) (18)
Linear Quadratic Cubic
Elected (bias-corrected) 0.010 0.024 0.026 0.037 0.016 0.041
95% confidence interval (robust) [-0.035, 0.055] [-0.016, 0.063] [-0.013,0.065] [0.005,0.068] [-0.030,0.061] [0.012,0.070]
N 17665 22917 42757 64160 50079 88588
Bandwidth 0.62 1.11 1.38 2.12 1.60 4.00
Bandwidth selection method 1K CCT IK CCT 1K CCT
Panel D: Adjusted optimal bandwidths for each specification, CCT-procedure
(19) (20) (21) (22) (23) (24)
Linear Quadratic Cubic
Elected (bias-corrected) -0.029 -0.016 -0.017 0.014 -0.035 0.023
95% confidence interval (robust) [-0.094, 0.036] [-0.071, 0.040] [-0.075,0.041] [-0.031, 0.058] [-0.104,0.034] [-0.017,0.062]
N 9939 12571 20183 32711 24196 63415
Bandwidth 0.35 0.44 0.71 1.09 0.84 2.09
Bandwidth selection method 1K CCT 1K CCT 1K CCT

Notes: Table shows estimated incumbency advantage usinglocal polynomial regressions within various bandwidths. Confidence intervals in panels Aand B use
standard errors clustered at municipality level.Panels Cand D use the same main and bias bandwidths. Unit of observationis a candidate i atyeart. Sample
includes only large elections in which more than 2422 voters voted.
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Robustness test #4: Heterogeneity in the personal incumbency effect

Figure E1: This figure shows RDD point estimates and their 95 % confidence intervals for a wide range of
bandwidths, obtained using only those party-lists that were involved in the lotteries. When these party-
lists are used, increasing the bandwidths adds new candidates from the same lists, but does not add new
lists or municipalities to the sample. The reason for reporting these results is that, besides the bias caused
by the potentially incorrect linear approximation, the point estimates may increase due to heterogeneity in
the personal incumbency effect across municipalities (and thus party-lists). Our baseline RDD may identify
the effect for a different set of municipalities than what we have in the experimental sample. Moreover,
we are in practice pooling many different thresholds located for example at different absolute number of
votes to be located at the same normalized zero location in the forcing variable. In this exercise we are
pooling exactly the same thresholds in both the experimental and RD sample. In Figure E1, we report the
results both using the conventional approach (Panel A) and the CCT-procedure (Panel B) with the bias
bandwidth fixed to the RD effect bandwidth. The findings reported below do not support the explanation
of heterogeneous treatment effects, as the patterns that we find here are similar to those reported in the

main text of HMSTT (Figure 2).
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Notes: The graph displays the point estimates of incumbency advantage for various bandwidths using conventional approach (Panel A) and CCT-procedure
(Panel B) with the same RD effect and bias bandwidth. Dashed lines mark the 95 % confidence intervals. In some of the figures, we do not display the confidence
intervals for the smallest bandwidths in order to keep the scale of y-axes the same and thus the figures comparable. Red solid vertical line marks the optimal
bandwidth chosen using IK implementation. Long-dashed vertical line marks the optimal CCT bandwidth and short-dashed line marks the adjusted CCT

bandwidth. To keep the x-axes comparable, the (MSE-optimal and adjusted) CCT-bandwidths are shown only if they are smaller than 2.5. The sample includes
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only candidates from party lists that have lotteries.
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Figure E1. RDD estimates using only party lists with lotteries.
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Robustness test #5: Alternative definitions for the forcing variable.

Figure E2: This figure reports RDD results when a non-scaled version of our forcing variable is used. The
forcing variable is defined as in the main text of HMSTT, but is not scaled with the total number of votes
the party got. We display the RDD estimates for linear, quadratic and cubic local polynomial specifications,
separately for the conventional approach and the CCT-procedure. As the figure shows, the results that we
obtain using this alternative forcing variable echo our baseline RDD results. The local linear polynomial
produces biased results, but the higher order polynomials and bandwidths smaller than optimal work
better. As Panel B shows, the bias-correction procedure of Calonico et al. (2014a) works well, especially if

the MSE-optimal bandwidths are adjusted with the shrinkage factor suggested by Calonico et al. (2016a).
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Notes: The graph displays the point estimates of incumbency advantage for various bandwidths using conventional approach (Panel A) and CCT-procedure
(Panel B) with the same RD effect and bias bandwidth. Dashed lines mark the 95 % confidence intervals. In some of the figures, we do not display the confidence
intervals for the smallest bandwidths in order to keep the scale of y-axes the same and thus the figures comparable. Red solid vertical line marks the optimal
bandwidth chosen using IK implementation. Long-dashed vertical line marks the optimal CCT bandwidth and short-dashed line marks the adjusted CCT
bandwidth. To keep the x-axes comparable, the (MSE-optimal and adjusted) CCT-bandwidths are shown only if they are smaller than 24. The forcing variable is

as in the main text but not scaled with the total number of votes the party got.

Figure E2. RDD estimates using absolute vote margin, measured in number of votes, as the forcing

variable.

Figure E3: This figure reports RDD results when another alternative version of our forcing variable is used.
For this figure we define the cutoff as the number of votes of the first non-elected (last elected) candidate
of the ordered party list for the elected (non-elected) candidates. The forcing variable is then the distance
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from this cutoff multiplied by 100 and divided by the number of party’s votes. As the figure shows, the
results echo our baseline RDD results. Moreover, as Panel B shows, the bias-correction procedure of
Calonico et al. (2014a) works well, especially if the MSE-optimal bandwidths are adjusted with the

shrinkage factor suggested by Calonico et al. (2016a).
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Notes: The graph displays the point estimates of incumbency advantage for various bandwidths using conventional approach (Panel A) and CCT-procedure
(Panel B) with the same RD effect and bias bandwidth. Dashed lines mark the 95 % confidence intervals. In some of the figures, we do not display the confidence
intervals for the smallest bandwidths in order to keep the scale of y-axes the same and thus the figures comparable. Red solid vertical line marks the optimal
bandwidth chosen using IK implementation. Long-dashed vertical line marks the optimal CCT bandwidth and short-dashed line marks the adjusted CCT
bandwidth. To keep the x-axes comparable, the (MSE-optimal and adjusted) CCT-bandwidths are shown only if they are smaller than 2. The forcing variable is

then the distance from this cutoff multiplied by 100 and divided by the number of party’s votes.

Figure E3. RDD estimates using the distance to the first non-elected (or last elected) candidate as the

forcing variable.
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Robustness test #6: Heterogeneity in the effect between parties.

Figures E4 and E5: These figure reports graphically the RDD results separately for each of the three large
parties (Panel A: Center Party, Panel B: National Coalition Party and Panel C: Social Democratic Party).
Figure E4 shows results from conventional RDD estimations and Figure E5 reports the estimates obtained
using CCT-procedure. The graphs allow us to study whether there is heterogeneity in the effect between
the parties. Our motivation to look at such heterogeneity is that it could be an alternative explanation for
the disparity between the experimental estimate and non-experimental RDD estimates. Suppose, for
example, that there is no incumbency advantage within party A but a positive advantage within party B.
Then if party A is more often involved in lotteries and if for some reason party B is overrepresented in the
RDD samples (that are based on larger bandwidths), we might observe that the experimental estimate is
zero and that RDD estimates produce a positive effect, especially when larger bandwidths are used. Figures
E4 and E5 allow us to rule out such explanations. It seems that there is no substantial heterogeneity in the
within party personal incumbency advantage between parties. As Figure E5 shows, the bias-correction
procedure of Calonico et al. (2014a) works relatively well here, especially if the MSE-optimal bandwidths

are adjusted with the shrinkage factor suggested by Calonico et al. (2016a)
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Panel A: Center Party
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Panel C: Social Democratic Party
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Notes: The graph displays the point estimates of incumbency advantage for various bandwidths. Dashed lines show the 95 % confidence intervals. In some of the
figures, we do not display the confidence intervals for the smallest bandwidths in order to keep the scale of the y-axes the same and thus the figures

comparable. Red vertical line marks the optimal bandwidth chosen using IK implementation. The figure for linear specification also displays the estimate from

the lottery sample and its 95 % confidence interval.

Figure E4. RDD estimates for different parties, conventional approach.
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Notes: The graph displays the point estimates of incumbency advantage for various bandwidths. Dashed lines show the 95 % confidence intervals. In some of the

figures, we do not display the confidence intervals for the smallest bandwidths in order to keep the scale of y-axes the same and thus the figures comparable.

Red solid vertical line marks the optimal bandwidth chosen using IK implementation. Long-dashed vertical line marks the optimal CCT bandwidth and short-

dashed line marks the adjusted CCT bandwidth. To keep the x-axes comparable within panels, the (MSE-optimal and adjusted) CCT-bandwidths are shown only if

they are smaller than 2 (Panels A and C) or 2.5 (Panel B).

Figure E5. RDD estimates for different parties, CCT-procedure.
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Robustness test #7: Excluding from the sample those who do not rerun

Tables E5 and E6: These tables report RDD results for a sample from which those who do not rerun are
excluded. Table E5 reports the results for our main outcome, the effect of getting elected at period t on
getting elected at period t+1. In Table E6, we look at an alternative outcome, incumbency advantage in
vote share t+1. As we reported earlier (in Appendix B), the experimental estimates suggest no effect on
these outcome variables when the sample from which those who do not rerun are excluded. Our
motivation to report these results is that the previous literature is mixed on how those who do not rerun
should be treated: For instance, Uppal (2010) report the results for a sample that includes all candidates
and for a sample that only includes those who rerun, whereas de Magalhaes (2014) argues in favor of
including all the candidates.

We again find that the standard implementation (local linear with IK optimal bandwidth) of RDD
generates a positive and significant effect in both tables. We also find that undersmoothing appears to
work (with one exception in Table E5, Panel B), and that the use of higher degree local polynomials without
adjusting the bandwidth reproduces the experimental estimate in the sense that we do no reject the null
hypothesis of no effect. These insignificant findings are largely, but not in each case, due to greater
standard errors, as the estimated effects do not systematically become closer to zero as the more flexible
approaches are used.

In Table E5, CCT-procedure suggests that there could be a small and statistically significant effect on
getting elected at t+1. However, most of these estimates lose their statistical significance once we adjust
the bandwidths following Calonico et al. (2016). The estimated effects are mostly smaller, but the
conclusion of a zero effect is largely due to increased standard errors. Table E6 shows that, again, the local
linear RDD with IK and CCT optimal bandwidths generates a positive and significant effect. However, both
richer polynomials and the CCT-procedure recover the experimental estimate, irrespectively of whether

the bandwidths are adjusted or not.
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Table E5. RDD estimates using rerunners only, elected next election.

Outcome: Elected next election

Panel A: Bandwidth optimized for local linear specification

(1) (2) 3) (4) (5) (6)

Linear Quadratic Cubic
Elected 0.067 0.075 0.051 0.053 0.037 0.043
95% confidence interval (clustered) [0.026,0.109] [0.038,0.112] [-0.010,0.111] [-0.002,0.108] [-0.047,0.121] [-0.030,0.115]
N 12058 15079 12058 15079 12058 15079
Bandwidth 0.54 0.69 0.54 0.69 0.54 0.69
Bandwidth selection method 1K CCT 1K CCT 1K CCT
Panel B: 0.5 * bandwidth optimized for local linear specification
(7) (8) (9) (10) (11) (12)
Linear Quadratic Cubic
Elected 0.048 0.057 0.034 0.035 0.056 0.034
95% confidence interval (clustered) [-0.010,0.107] [0.006,0.109] [-0.055, 0.124] [-0.044,0.114] [-0.077,0.190] [-0.077,0.144]
N 6209 7745 6209 7745 6209 7745
Bandwidth 0.27 0.34 0.27 0.34 0.27 0.34
Bandwidth selection method 1K CCT IK CCT 1K CCT
Panel C: Bandwidths optimized for each specification, CCT-procedure
(13) (14) (15) (16) (17) (18)
Linear Quadratic Cubic
Elected (bias-corrected) 0.051 0.053 0.059 0.056 0.060 0.051
95% confidence interval (robust) [-0.009, 0.110] [0.001,0.105] [0.013,0.105] [0.016,0.097] [0.012,0.108] [0.014,0.087]
N 12058 15079 31503 39265 42257 56704
Bandwidth 0.54 0.69 1.47 1.90 2.10 3.62
Bandwidth selection method 1K CCT 1K CCT 1K CCT
Panel D: Adjusted optimal bandwidths for each specification, CCT-procedure
(19) (20) (21) (22) (23) (24)
Linear Quadratic Cubic
Elected (bias-corrected) 0.030 0.038 0.043 0.052 0.045 0.061
95% confidence interval (robust) [-0.056, 0.116] [-0.035,0.112] [-0.025,0.111] [-0.006,0.110] [-0.025,0.115] [0.010,0.111]
N 7017 8783 16780 21631 24365 39851
Bandwidth 0.31 0.39 0.77 0.99 1.12 1.93
Bandwidth selection method 1K CCT IK CCT 1K CCT

Notes : Table shows estimated incumbency advantage usinglocal polynomial regressions within various bandwidths. Sample includes only rerunning candidates.
Confidence intervals in panels Aand B use standard errors clustered at municipality level.Panels Cand D use the same main and bias bandwidths. Unit of
observationis a candidate j atyeart.
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Table E6. RDD estimates using rerunners only, vote share next election.

Outcome: Vote share next election

Panel A: Bandwidth optimized for local linear specification

(1) (2) 3) (4) (5) (6)

Linear Quadratic Cubic
Elected 0.049 0.049 0.047 0.047 0.049 0.052
95% confidence interval (clustered) [0.002,0.096] [0.002,0.097] [-0.017,0.111] [-0.019,0.113] [-0.037,0.134] [-0.037,0.141]
N 16668 15697 16668 15697 16668 15697
Bandwidth 0.76 0.72 0.76 0.72 0.76 0.72
Bandwidth selection method 1K CCT 1K CCT 1K CCT
Panel B: 0.5 * bandwidth optimized for local linear specification
(7) (8) (9) (10) (11) (12)
Linear Quadratic Cubic
Elected 0.058 0.060 0.037 0.026 -0.028 -0.028
95% confidence interval (clustered) [-0.003,0.118] [-0.002,0.122] [-0.053,0.127] [-0.066,0.119] [-0.145,0.089] [-0.148,0.093]
N 16668 15697 16668 15697 16668 15697
Bandwidth 0.38 0.36 0.38 0.36 0.38 0.36
Bandwidth selection method 0.5 * 1K 0.5 * CCT 0.5 * 1K 0.5 * CCT 0.5 * 1K 0.5 * CCT
Panel C: Bandwidths optimized for each specification, CCT-procedure
(13) (14) (15) (16) (17) (18)
Linear Quadratic Cubic
Elected (bias-corrected) 0.047 0.047 0.028 0.029 0.038 0.030
95% confidence interval (robust) [-0.028,0.122] [-0.030,0.124] [-0.041,0.097] [-0.037,0.095] [-0.031,0.106] [-0.033,0.092]
N 16668 15697 35817 39168 49438 55966
Bandwidth 0.76 0.72 1.70 1.89 2.72 3,51
Bandwidth selection method 1K CCT 1K CCT 1K CCT
Panel D: Adjusted optimal bandwidths for each specification, CCT-procedure
(19) (20) (21) (22) (23) (24)
Linear Quadratic Cubic
Elected (bias-corrected) 0.051 0.046 0.052 0.048 0.056 0.038
95% confidence interval (robust) [-0.044, 0.146] [-0.051,0.143] [-0.038,0.143] [-0.039,0.134] [-0.033,0.145] [-0.042,0.117]
N 9709 9129 19329 21566 31212 38886
Bandwidth 0.43 0.41 0.89 0.99 1.45 1.87
Bandwidth selection method 1K CCT IK CCT 1K CCT

Notes : Table shows estimated incumbency advantage usinglocal polynomial regressions within various bandwidths. Sample includes only rerunning candidates.
Confidence intervals in panels Aand B use standard errors clustered at municipality level.Panels Cand D use the same main and bias bandwidths. Unit of
observationis a candidate j atyeart.
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Robustness test #8: New rdrobust package

We have re-estimated the most relevant specifications of our analysis using the new MSE- and CER-
bandwidths, made available by the updated version of rdrobust software (see Calonico et al. 2016b). The
CER-optimal bandwidth is based on a higher-order Edgeworth expansion. This bandwidth optimizes
coverage error but does not necessarily have desirable properties for point estimation. The updated
software also allows for clustering when calculating the standard errors and the bandwidths.

Tables E7 and E8: Table E7 reports conventional point estimates in Panel A, bias-corrected point estimates
in Panels B and C, and confidence intervals allowing for clustering at the municipality level. In Panel A of
Table E7, we use the conventional approach and the bandwidth is selected optimally either for the local
linear specification (columns (1)-(4)) or the local quadratic specification (columns (5) and (6)) using the new
MSE- and CER-bandwidths. Panels B and C report results obtained using the CCT-procedure. In Panel B, we
estimate the bandwidths for the RDD effect and bias separately, while these two are fixed to be equal in
Panel C. The results largely echo our earlier findings and support our earlier conclusions. In particular,
fitting local polynomials within optimal bandwidths may lead to misleading results if the bandwidths are
too wide. The new implementation of the MSE-optimal bandwidth is similar to the CCT implementation in
the older version of rdrobust software. The results that the new MSE implementation produces are
therefore similar to what we report for the CCT implementation. More generally, it seems that the exact
way of implementing the MSE-optimal bandwidth is less relevant than following the recommendations of
Calonico et al. (2016a); what reproduces the experimental estimate in our data is fitting polynomials of
degree p+1 within the optimal bandwidth for p or setting the RDD effect and bias bandwidths equal (Panel
C). We also allowed for different bandwidths for the treatment and the control groups; that did not
substantially affect the results (not reported). Table E8 replicates Table E7 but reports non-clustered (but

heteroscedastic-robust) standard errors. As can be seen, the results are similar, if no clustering is used.

36



Table E7. RDD estimates with new MSE and CER-optimal bandwidths (clustered standard errors).

Panel A: Conventional approach

(1) () 3) (4) (5) (6)

Linear Quadratic (bandwidth for p = 1) Quadratic (bandwidth for p = 2)
Elected 0.051 0.038 0.021 0.006 0.059 0.041
95% confidence interval (clustered) [0.026, 0.077] [0.006, 0.069] [-0.019, 0.061] [-0.041, 0.054] [0.039, 0.080] [0.016, 0.067]
N 26463 18804 26463 18804 80971 57225
R? 0.05 0.03 0.05 0.03 0.17 0.12
Bandwidth 0.73 0.52 0.73 0.52 2.18 1.48
MSE CER MSE CER MSE CER

Bandwidth implementation

Panel B: CCT-procedure with optimal bandwidths

7) (8) (9) (10) (11) (12)
Linear Quadratic (bandwidth for p = 1) Quadratic (bandwidth for p = 2)
Elected (bias-corrected) 0.045 0.034 -0.005 -0.024 0.055 0.040
95% confidence interval (clustered) [0.019,0.071]  [0.003, 0.065] [-0.058,0.048]  [-0.091, 0.042] [0.034,0.076]  [0.014, 0.067]
N 14506 10415 14506 10415 41983 27580
RD effect bandwidth 0.73 0.52 0.73 0.52 2.18 1.48
Bias bandwidth 3.01 3.01 3.01 3.01 6.34 6.34
MSE CER MSE CER MSE CER

Bandwidth implementation

Panel C: CCT-procedure with RD effect bandwidth equal to bias bandwidth

(13) (14) (15) (16) (17) (18)
Linear Quadratic (bandwidth for p = 1) Quadratic (bandwidth for p = 2)
Elected (bias-corrected) 0.021 0.006 -0.005 -0.024 0.033 0.026
95% confidence interval (clustered) [-0.018, 0.060] [-0.040, 0.053] [-0.058, 0.048] [-0.091, 0.042] [0.004, 0.061] [-0.010, 0.062]
N 14506 10415 14506 10415 41983 27580
RD effect bandwidth 0.73 0.52 0.73 0.52 218 1.48
Bias bandwidth 0.73 0.52 0.73 0.52 2.18 1.48
MSE CER MSE CER MSE CER

Bandwidth implementation
Notes: Table shows estimated incumbency advantage using local polynomial regressions within various bandwidths. All
estimations use a triangular kernel. Confidence intervals account for clustering at municipality level. Unit of observation is a
candidate i at year t. The MSE bandwidth is a newer implementation of the estimation of the MSE-optimal bandwidth choice
(see Calonico et al. 2016b).
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Table E8. RDD estimates with new MSE and CER-optimal bandwidths (non-clustered standard errors).

Outcome: Elected next election

Panel A: Conventional approach

(1) (2) 3) (4) (5) (6)
Linear Quadratic (bandwidth for p =1) Quadratic (bandwidth for p =2)
Elected 0.051 0.028 0.020 -0.012 0.060 0.034
95% confidence interval (non-clustered) [0.026,0.076] [-0.006,0.062] [-0.017,0.058] [-0.067,0.043] [0.039,0.081] [0.005, 0.064]
N 26221 14404 26221 14404 81696 42090
R? 0.05 0.02 0.05 0.02 0.17 0.09
Bandwidth 0.72 0.40 0.72 0.40 2.20 1.11
Bandwidth selection method MSE CER MSE CER MSE CER
Panel B: Bias-correction with optimal bandwidths
(7) (8) ) (10) (11) (12)
Linear Quadratic (bandwidth for p=1) Quadratic (bandwidth for p =2)
Elected (bias-corrected) 0.045 0.026 -0.005 -0.026 0.056 0.034

95% confidence interval (non-clustered)

[0.020,0.070] [-0.008, 0.060] [-0.059,0.048] [-0.109,0.056]

[0.035,0.077] [0.005,0.063]

N 26221 14404 26221 14404 81696 42090
Bandwidth 0.72 0.40 0.72 0.40 2.20 1.11
Bias bandwidth 3.05 3.05 3.05 3.05 6.53 6.53
Bandwidth selection method MSE CER MSE CER MSE CER
Panel C: Bias-correction with main bandwidth equal to pilot bandwidth
(13) (14) (15) (16) (17) (18)
Linear Quadratic (bandwidth for p=1) Quadratic (bandwidth for p =2)

Elected (bias-corrected) 0.020 -0.012 -0.005 -0.026 0.033 0.018
95% confidence interval (non-clustered) [-0.017,0.058] [-0.067,0.044] [-0.059,0.048] [-0.109,0.056] [0.006, 0.060] [-0.022,0.058]
N 26221 14404 26221 14404 81696 42090
Bandwidth 0.72 0.40 0.72 0.40 2.20 1.11
Bias bandwidth 0.72 0.40 0.72 0.40 2.20 1.11
Bandwidth selection method MSE CER MSE CER MSE CER

Notes: Table shows estimated incumbency advantage usinglocal polynomial regressions within various bandwidths. All estimations use a triangular
kernel. Confidence intervals are computed using heteroskedasticity-robust standard errors. Unit of observationis a candidate i atyeart.
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Appendix F: Supplementary information to Section 4.3 (When is RDD as good
as randomly assigned?)

This appendix reports the means tests of covariate balance within small bandwidths near the cutoff as well
as a brief analysis of when RDD is as good as randomly assigned using the approach proposed by Cattaneo

et al. (2015).
Means tests of covariate balance within small bandwidths near the cutoff

The tests reported below do not control for the slopes (or curvature) of the forcing variable nearby the
cutoff. They are not tests of whether the covariates develop smoothly over the cutoff, but rather tests for
whether the treatment is as good as randomly assigned. The sample that only includes the lotteries (i.e.,
when the neighborhood is degenerate at the cutoff), the randomization assumption is satisfied in our data.
The subsample that we use to explore the plausibility of the randomization assumption excludes the

randomized candidates.

Table F1 and F2: Table F1 looks at the covariate balance of candidate characteristics. It reports the means
of the candidate characteristics for small bandwidths on both sides of the cutoff as well as a t-test for the
difference of the means. For example, when incumbency status (elected at t-1) is used, we find that
bandwidths 0.04 or smaller are as-good-as-random at the 5% significance level (923 observations). Based
on a minimum p-value criterion among all the covariates (but not correcting for multiple testing), it seems
that bandwidths 0.02 or smaller would be as-good-as random at the 5% significance level (128
observations). These numbers are obtained by starting from the zero bandwidth and widening the
bandwidth until the first statistically significant coefficient is found. This is a conservative approach in the
sense that if we started from wider bandwidths and decreased their length until no significant differences
are found, we would get somewhat larger bandwidth estimates. For example, based on Table F1, a
bandwidth of 0.05 would be as-good-as-random (but 0.10 or larger would not). Table F2 reproduces the
analysis of Table F1 for municipality-level covariates. As the table shows, they are balanced, as they should

be by construction.
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Table F1. Covariate balance within small bandwidths (candidate characteristics).
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When is RDD as good as randomly assigned?

The recent literature emphasizes that the local randomization assumption is distinct from the key RDD
assumption of no discontinuity in the conditional expectation function of potential outcome. The local
randomization assumption is more stringent and not required for RDD. Which of these assumptions is
invoked has implications on how to estimate the treatment effect of interest and how to test for the
validity of the design (see e.g. de la Cuesta and Imai 2016).

Inspired by the approach proposed by Cattaneo et al. (2015), we explore the largest bandwidth in which
the as-good-as-random assumption holds and then compare the sample means of the outcome variable
across the cutoff. To determine the largest bandwidth in which the as-good-as-random assumption holds,
we either look at the most important covariate or the minimum p-value among all the covariates.
According to Eggers et al. (2015), incumbency status (elected at t—1) is a reasonable measure of candidate
quality. If we use it, bandwidths 0.04 or smaller are as-good-as-random at the 5% significance level (923
non-experimental observations; see Table F1 above). Based on the minimum p-value among all the
covariates (but not correcting for multiple testing), it seems that bandwidths 0.02 or smaller would be as-
good-as random at the 5% significance level (128 observations; again see Table F1 above). These findings
indicate that the approach proposed by Cattaneo et al. (2015) leads to rather conservative (small) samples
in light of our other RDD findings. This is partly due to not correcting for multiple testing and partly due to
the fact that in our election data, many covariates have rather steep slopes with respect to the forcing
variable.

It seems that the approach proposed by Cattaneo et al. (2015) is able to reproduce the experimental
estimate: When we use these conservative bandwidths, there is no statistically significant difference in the
means of getting elected at t+1 elections around the cutoff: The difference is 0.010 (p-value 0.32) for the
bandwidth of 0.04 and 0.064 (p-value 0.75) for the bandwidth of 0.02. However, the smaller bandwidth of
0.02 results in a sample too small to be informative. In that case, the insignificance result arises from the
large standard error rather than from a smaller point-estimate. Note that we do not resort here to the
randomization inference method proposed by Cattaneo et al. (2015), because we have quite a lot of
observations within the two as-good-as-random bandwidths that we consider (see Cattaneo et al. 2016 for

a Stata implementation of the randomization inference method).
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