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International correlation riskI

Philippe Muellera, Andreas Stathopoulosb,∗, Andrea Vedolina

aLondon School of Economics, Department of Finance, Houghton Street, WC2A 2AE London, UK
bUniversity of Washington, Foster School of Business, 4277 E Stevens Way NE, Seattle, WA 98195, USA

Abstract

We show that the cross-sectional dispersion of conditional foreign exchange (FX) correlation is countercyclical and that

currencies that perform badly (well) during periods of high dispersion yield high (low) average excess returns. We also

find a negative cross-sectional association between average FX correlations and average option-implied FX correlation

risk premiums. Our findings show that while investors in spot currency markets require a positive risk premium for

exposure to high dispersion states, FX option prices are consistent with investors being compensated for the risk of

low dispersion states. To address our empirical findings, we propose a no-arbitrage model that features unspanned FX

correlation risk.

JEL classification: F31, G15

Keywords: Correlation risk, Exchange rates, International finance

1. Introduction

Existing literature has shown that stock return correlations are counter cyclical and correlation risk is priced, arguably

due to the reduction of diversification benefits that occurs when stock return correlations increase. However, the

literature has largely ignored the foreign exchange (FX) market. In this paper, we explore the properties of FX

correlations using both spot and options market data and we propose a reduced-form no-arbitrage model that is

consistent with our empirical findings.

We begin by exploring the empirical properties of conditional FX correlations. We consider exchange rates against

the US dollar (USD) and find substantial cross-sectional heterogeneity in the average conditional correlation of FX

pairs. Furthermore, using several business cycle proxies, we find that the cross-sectional dispersion of FX correlations

is counter cyclical, as FX pairs with high (low) average correlation become more (less) correlated in adverse economic

times. We exploit the cyclical properties of conditional FX correlation by defining an FX correlation dispersion

measure, FXC, and sort currencies into portfolios based on the beta of their returns with respect to innovations in

FXC, denoted by ∆FXC. We find that currencies with low ∆FXC betas have high average excess returns and that

currencies with high ∆FXC betas yield low excess returns, suggesting that FX correlation risk has a negative price in
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spot FX markets. In our benchmark sample of currencies, HMLC , a currency portfolio with a short position in the high

∆FXC beta currencies and a long position in the low ∆FXC beta currencies, generates a highly significant average

annual excess return of 6.42% with a Sharpe ratio of 0.82.

We continue our empirical investigation by using currency option prices to extract conditional FX correlation

dynamics under the risk-neutral measure. We calculate FX correlation risk premiums (CRPs), defined as the difference

between conditional FX correlations under the risk-neutral measure and the physical measure, and we find a strongly

negative cross-sectional association between average FX correlations and average FX correlation risk premiums,

with FX pairs characterized by low (high) average correlations tending to exhibit positive (negative) correlation risk

premiums. Thus, the cross-sectional dispersion of FX correlations is on average lower under the risk-neutral measure

than under the physical measure. We also find a very strong negative time series association between FX correlations

and FX correlation risk premiums for almost all FX pairs. As regards cyclicality, FX pairs with high average correlation

risk premiums have countercyclical correlation risk premiums and pairs with low correlation risk premiums have

procyclical premiums. Thus, bad states amplify the magnitude of FX correlation risk premiums, increasing their

cross-sectional dispersion.

We rationalize our empirical findings with a no-arbitrage model of exchange rates. The main tension we address is

between the physical and the risk-neutral measure FX correlation dynamics. Under the physical measure, the negative

association between ∆FXC betas and currency returns suggests that US investors require a positive risk premium for

being exposed to states in which the cross section of FX correlations widens. However, FX options are priced in a

way that suggests that US investors worry about states in which the cross section of FX correlations tightens, as the

risk-neutral measure FX correlation dispersion is on average lower than its physical measure counterpart. To address

this apparent contradiction, we propose a model in which FX correlation risk is not spanned by exchange rates, as some

shocks that affect the pricing kernel of US investors also affect conditional FX correlations, but do not impact exchange

rate levels.

In the model, each country’s stochastic discount factor (SDF) is exposed to two global shocks, as well as a single

country-specific shock. A key assumption is that countries have heterogeneous loadings on the first global shock

and identical loadings on the second global shock. As a result, the absence of arbitrage in international financial

markets suggests that exchange rates are exposed only to the first global shock, whereas the second global shock

cancels out and does not affect exchange rates at all. The steady state cross-sectional distribution of conditional FX

correlations is determined by the cross section of exposures to the first global shock, so the USD exchange rates of

foreign countries with similar exposure to the first global shock (called similar FX pairs) are more correlated on average

than FX pairs of countries with dissimilar global risk exposure (called dissimilar FX pairs). Crucially, the cross section

of conditional FX correlations exhibits time variation due to the fact that conditional FX correlations are determined by

the relative importance of country-specific risk and global risk, which varies over time. When the relative magnitude

of country-specific SDF shocks increases, the countries’ heterogeneous exposure to the first global shock becomes

less important quantitatively, and the cross section of conditional FX correlations tightens, with high correlation FX

pairs becoming less correlated and low correlation FX pairs more correlated. Conversely, a relative increase in the

magnitude of global risk increases the correlation of similar FX pairs and decreases the correlation of dissimilar FX

pairs, widening the cross section of conditional FX correlations.

In turn, the relative magnitude of country-specific and global risk is determined by the relative magnitude of the

local pricing factor, which prices country-specific risk and is exposed to the second global shock, and the global pricing

factor, which prices global risk and is exposed to the first global shock. When the second global shock has an adverse

realization, the local pricing factor increases, tightening the cross section of conditional FX correlations. Conversely,

when the second global shock has a positive realization, the cross section of conditional FX correlation becomes

more dispersed. The reverse occurs for realizations of the first global shock, as its adverse (positive) realizations

increase (decrease) the global pricing factor, widening (tightening) the cross section of FX correlations. Thus, the

cross section of conditional FX correlations is driven by both global shocks. In the model, both shocks are priced,

but not symmetrically, as US investors price the second shock more severely than the first, so they attach a high price
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to states characterized by large relative values of the local pricing factor. Given that those are the states in which the

cross-sectional dispersion of FX correlation is tight, our model is able to match the cross sectional properties of average

correlation risk premiums implied by FX option prices.

As regards spot FX markets, exchange rate levels are unaffected by the second global shock, so exchange rate risk

does not span FX correlation risk. This lack of spanning allows our model to generate a negative relation between

∆FXC betas and currency returns. This is because investing in exchange rates draws compensation solely for exposure

to the first global shock and, due to the fact that negative realizations of that shock lead to a widening of the cross

section of FX correlations, investors require high returns for holding negative ∆FXC beta currencies, which depreciate

when the cross section of conditional FX correlations becomes more dispersed.

In sum, conditional FX correlation, which can be indirectly traded using currency options, is exposed to two global

shocks. US investors price the second global shock more severely than the first one, so FX correlation risk premiums

reflect the desire of currency option holders to primarily avoid states with negative realizations of the second shock.

Those states are characterized by a tightening of the cross-sectional dispersion of FX correlation, and currency option

prices reveal that feature. Investing in foreign currency is different, as it exposes investors only to the first global

shock. Therefore, currency risk premiums reflect solely FX investors’ desire to avoid the corresponding bad states,

characterized by a widening of the cross-sectional dispersion of FX correlation, and compensate investors for exposure

to those states. Thus, the lack of spanning of FX correlation risk by exchange rates and currency returns and, in

particular, the lack of exposure of exchange rates to the second global shock allows our model to jointly address the

empirical properties of FX correlations, currency risk premiums, and FX correlation risk premiums.

A simulated version of our model generates realized FX correlations, implied FX correlations, and FX correlation

risk premiums that match the cross-sectional and time series properties of their empirical counterparts, all the while

fitting the standard exchange rate, interest rate and inflation moments.

This paper is part of the literature addressing the salient empirical properties of FX markets. Our model builds on

the work of Lustig, Roussanov and Verdelhan (2011, 2014) and Verdelhan (2015). Their models feature global SDF

shocks, common across countries, and local SDF shocks, independent across countries, and assume that the price of

country-specific shocks is uncorrelated across countries, as local pricing factors are perfectly negatively correlated with

the corresponding country-specific shocks. We show that allowing for cross-country comovement of the local pricing

factors is crucial for explaining the joint behavior of FX correlations under the physical and the risk-neutral measure.

Our model assumes ex ante heterogeneity across countries regarding their exposure to global shocks. Recent

international finance models that address the cross section of currency risk premiums by assuming ex ante heterogeneity

across countries include those of Hassan (2013), Tran (2013), Backus, Gavazzoni, Telmer and Zin (2013), Colacito and

Croce (2013), Colacito, Croce, Gavazzoni and Ready (2015), and Ready, Roussanov and Ward (2016). In all those

models, high interest rate currencies are risky because they depreciate in bad global states, as high interest rate countries

are those with low exposure to global risk: small countries, countries with smooth non-traded output, countries with

very procyclical monetary policy, commodity producers, or countries with low exposure to global long-run endowment

shocks, depending on the model.

Finally, our paper is related to the literature on currency options. Most of that literature focuses on crash risk,

especially in the context of the FX carry trade. Examples include Jurek (2014), Farhi, Fraiberger, Gabaix, Ranciere

and Verdelhan (2015), and Chernov, Graveline and Zviadadze (2016). Our aim is different, as we use option prices to

study the properties of FX correlation risk premiums.

The rest of the paper is organized as follows. Section 2 describes the data. Section 3 reports our empirical findings

regarding the cross-sectional and time series properties of FX correlations, as well as the pricing of correlation risk

in currency markets. Our empirical findings concerning FX correlation risk premiums are presented in Section 4.

Section 5 introduces our no-arbitrage model, and Section 6 concludes. The Appendix contains details on the

construction of the realized and implied FX correlation measures, results on the price of FX correlation risk, and

model details, including those on model calibration and simulation. Additional results and robustness checks are in an

Online Appendix.
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2. Data

Our benchmark sample period is dictated by the availability of the currency options data, so it starts in January 1996

and ends in December 2013.

To calculate physical measure FX moments, we use daily spot exchange rates from WM/Reuters obtained through

Datastream. From the same source, we also collect one-month forward rates to calculate forward discounts.

Following the extant literature (see, e.g., Fama, 1984), we work with log spot and log one-month forward exchange

rates, denoted si
t = ln(S i

t) and f i
t = ln(F i

t), respectively. We use the US dollar as the base currency, and both spot

and forward rates are expressed in units of foreign currency i per USD. WM/Reuters forward rates are available from

1997 onward. For 1996, either we use forward rates from alternative sources or we construct implied forward rates

using the interest rate differential between the US and the foreign country using interest rate data from Datastream,

exploiting the fact that covered interest rate parity holds during normal conditions. We verify that our results are robust

to using only the WM/Reuters data. Monthly log excess returns from holding the foreign currency i are computed as

rxi
t+1 = f i

t − si
t+1. Our benchmark sample contains the nine G10 foreign currencies [Australian dollar (AUD), Canadian

dollar (CAD), Swiss Franc (CHF), Euro (EUR), Pound Sterling (GBP), Japanese yen (JPY), Norwegian krona (NOK),

New Zealand dollar (NZD), and Swedish krona (SEK)] from January 1996 to December 2013. For robustness checks,

we consider the longer January 1984 to December 2013 sample period. Before the introduction of the EUR in January

1999, we use the German mark (DEM) in its place.

Table 1 presents the properties of the G10 currency excess returns. In line with the literature on the FX carry trade,

currencies with high nominal interest rates, such as the NZD and the AUD, yield high average dollar excess returns,

while low interest rate currencies, such as the JPY and the CHF, have low dollar excess returns on average.

[Insert Table 1 near here.]

For robustness, we extend the cross section of currencies and consider two additional currency sets: developed and

emerging market currencies. The developed country sample, apart from the G10 currencies, contains the currencies

of Austria, Belgium, Denmark, Finland, France, Greece, Italy, Ireland, Netherlands, Portugal, and Spain. To form our

full sample, we start with the same set of currencies used in Lustig, Roussanov and Verdelhan (2011), but exclude

some currencies, such as the Hong Kong dollar, as they are pegged to the USD. We also exclude the Danish krone

after the introduction of the EUR. Therefore, the full sample includes all the developed country currencies, along

with the currencies of the Czech Republic, Hungary, India, Indonesia, Kuwait, Malaysia, Mexico, Philippines, Poland,

Singapore, South Africa, South Korea, Taiwan, and Thailand.

We use daily over-the-counter G10 currency options data from J. P. Morgan. In addition to the nine currency pairs

versus the US dollar, we have options data for all 36 cross rates. The options used in this study are plain-vanilla

European calls and puts, with five option series per currency pair. We focus on the one-month maturity and a total of

five different strikes: at-the-money (ATM), 10-delta and 25-delta calls, and 10-delta and 25-delta puts.

3. Exchange rate correlations

In this section, we first show that the cross-sectional dispersion of conditional FX correlation is countercyclical. We

then construct an FX correlation dispersion measure, FXC, and sort currencies into portfolios based on their return

exposure to FXC innovations, denoted by ∆FXC. We find a negative association between ∆FXC betas and currency

excess returns, suggesting that currency exposure to FX correlation risk is compensated with a positive risk premium.

3.1. Properties of exchange rate correlations

We proxy the conditional one-month correlation of each FX pair under the physical measure at time t with its

realized correlation over a rolling three-month window of past daily observations. Appendix A provides the details. In

4
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the remainder of the paper, we often refer to physical measure conditional FX correlation as realized FX correlation, to

distinguish it from the option-implied risk-neutral measure FX correlation (implied FX correlation). For robustness, we

also proxy the conditional one-month correlation of each FX pair at time t with its realized correlation over a rolling

one-month window of past daily observations, as well as with its realized correlation during the one-month-ahead

period, i.e., from t to t + 1. Our empirical results are robust to those alternative specifications. Our findings for

correlation risk premiums using the alternative realized correlation proxies are reported in the Online Appendix.

The first two columns of Table 2 report the time series mean and standard deviation of the conditional FX correlation

of each of the 36 G10 FX pairs. The mean conditional correlation is positive for all 36 FX pairs, indicating

that all pairs of USD exchange rates exhibit positive comovement on average. The cross-sectional average of the

conditional correlation means is 0.45, but there is substantial cross-sectional heterogeneity, as the means range from

almost zero (CAD/JPY with 0.05, indicating that fluctuations in the relative price of the CAD and the JPY against

the USD are almost disconnected) to almost one (CHF/EUR with 0.89).1 Furthermore, conditional FX correlations

exhibit considerable variability across time. The cross-sectional average of the standard deviation of conditional FX

correlations is 0.23, ranging from 0.09 (EUR/NOK pair) to 0.34 (AUD/JPY pair), suggesting nontrivial swings in the

degree of exchange rate comovement across time for all FX pairs.

[Insert Table 2 near here.]

Given the time variation in conditional FX correlations, it is worth exploring whether that time variation is cyclical

and, if so, whether there is any cross-sectional heterogeneity in its properties. To that end, we consider the comovement

of conditional FX correlations with market variables that are known to exhibit countercyclical behavior. The market

variables we consider are a global equity volatility measure (GVol), a global funding illiquidity measure (GFI), the

TED spread (T ED), and the Chicago Board Options Exchange (CBOE) Volatility Index (VIX). GVol is constructed

as in Lustig, Roussanov and Verdelhan (2011). GFI is constructed following the methodology of Hu, Pan and Wang

(2013) but calculated using an international sample of government bond securities as in Malkhozov, Mueller, Vedolin

and Venter (2016). T ED is the spread between the three-month USD London Interbank Offered Rate (LIBOR) and

the three-month Treasury bill rate and is available in the Federal Reserve Economic Data (FRED) database. VIX

is calculated from the prices of options on the Standard & Poor’s 500 stock index and is available from the CBOE.

T ED and VIX are US-specific measures, but they are often used as global market indicators. GVol and GFI are

calculated using international data in local currencies. For each FX pair and each market measure, we define the

cyclicality measure to be the unconditional correlation of the market variable with the conditional correlation of the FX

pair. Thus, we calculate four FX correlation cyclicality measures for each exchange rate pair, each corresponding to a

market variable. We present the cyclicality measures for the 36 G10 FX pairs in the first four columns of Table 3.

[Insert Table 3 near here.]

Our results indicate substantial cross-sectional heterogeneity regarding the cyclicality properties of conditional FX

correlations. To further explore the properties of that cross-sectional heterogeneity, we plot each cyclicality measure

of the 36 FX pairs against their average conditional correlation. Panels A to D in Fig. 1 present the plots for the

four cyclicality measures. We find that that FX pairs with high average correlation tend to exhibit countercyclical

correlations and that FX pairs with low average correlation are characterized by procyclical FX correlations. Each

panel also presents the line of best fit from the corresponding cross-sectional regression. We show the details of the four

cross-sectional regressions in Panel A of Table 4. For each regression, the table reports the point estimate of the slope

coefficient, its asymptotic t-statistic, the 95% bootstrapped confidence interval (2.5 and 97.5 bootstrap percentiles),

1Beginning in September 2011, the Swiss National Bank imposed a cap on the relative value of the CHF by establishing a floor of 1.2 CHF per
EUR. The average correlation between the CHF/USD exchange rate and the EUR/USD exchange rate in the period before the cap (0.887) is almost
identical to their average correlation during the cap period (0.895). Given that the cap does not seem to have changed the behavior of the CHF, we
choose to retain the CHF in our sample after September 2011. We have verified that removing the CHF during the cap period does not materially
affect our results.
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and the regression R2. The asymptotic t-statistic is calculated using White (1980) standard errors that adjust for

cross-sectional heteroskedasticity, and the bootstrapped confidence interval accounts for potential small sample effects.

All four slope coefficients are positive and statistically significant at the 5% level using either the asymptotic or the

bootstrapped distribution, suggesting a positive cross-sectional association between average conditional FX correlation

and FX correlation cyclicality.

[Insert Figure 1 and Table 4 near here.]

Our findings imply that in periods characterized by adverse economic conditions or market stress, the cross section of

conditional FX correlations widens, as high correlation FX pairs become more correlated and low correlation FX pairs

become less correlated. To further explore the time series properties of the cross-sectional dispersion in conditional

FX correlation, we construct a conditional FX correlation dispersion measure, called FXC. To do so, at each period

t we sort all FX pairs in deciles on their conditional correlation, calculate the average conditional correlation for the

top and bottom deciles (which consist of four FX pairs each), and take the difference between the top and the bottom

decile averages to be our dispersion measure at t, FXCt. Due to the time variation in conditional FX correlations, there

is turnover in both the top and bottom deciles, so the composition of the portfolios changes over time. To eliminate

composition effects, we compute an alternative dispersion measure (FXCUNC) by considering top and bottom deciles

of FX pairs formed using average conditional correlations, and use this alternative measure for robustness exercises.

We plot the time series of the level of the two FX correlation dispersion measures in Panel A of Fig. 2. The

correlation between FXC and FXCUNC is 0.86, indicating that the two measures are very similar. During the recent

financial crisis, the two measures are almost perfectly correlated, as there is little turnover in the extreme deciles of FX

conditional correlation. To evaluate the cyclicality properties of the FX correlation dispersion measures, we explore

their association with the market variables we use to measure the cyclicality of FX correlations. For reference, in Panel

B of Fig. 2, we plot the (standardized) market variables. Panel A of Table 5 reports the unconditional correlations

between our two FX correlation dispersion measures and the market variables, in the January 1996 to December 2013

sample period, along with their bootstrap standard errors. Both dispersion measures have a positive correlation with

all four market variables, with bootstrap confidence intervals (which account for non-normality in small samples and

are not reported in Table 5) indicating that the correlation is statistically significant at the 1% level in all eight cases.

Panel B repeats the same exercise for the longer January 1984 to December 2013 period. Again, all eight correlations

of interest are positive and significant at the 1% level.

[Insert Figure 2 and Table 5 near here.]

In the Online Appendix we consider alternative construction methods for FXC and we show that our portfolio results

are robust to those alternative specifications.

3.2. Correlation risk and the cross section of currency returns

We can now explore how exposure to FX correlation risk relates to currency returns. To do so, we sort currencies

into portfolios based on the exposure (beta) of currency excess returns to innovations in our dispersion measure FXC.

Innovations between t and t + 1 are denoted by ∆FXCt+1 and are defined as the average of changes (first differences)

in conditional FX correlation for the FX pairs that belong to the top decile in period t minus the corresponding average

for the bottom decile. Our currency portfolios are rebalanced monthly. To rebalance, we calculate, for each month

t, rolling ∆FXC return betas using the last 36 monthly observations. Hence, currency portfolios are formed using

information available at the time of rebalancing.

We sort the nine G10 currencies into three portfolios. The first portfolio (Pf1C) contains the currencies with the

lowest ∆FXC betas, and the last portfolio (Pf3C) contains the highest ∆FXC beta currencies. Of particular interest

is the HMLC portfolio, which takes a long position in Pf3C and a short position in Pf1C. Panel A of Table 6 reports

the summary statistics for the three ∆FXC beta-sorted currency portfolios and the HMLC portfolio. Average portfolio

returns are monotonically decreasing in the ∆FXC beta, suggesting that ∆FXC is a priced currency risk factor. As a
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result, the average return to HMLC is negative and highly statistically significant. Shorting the HMLC portfolio yields

an annualized average excess return of 6.42%, with a t-statistic of 3.47 and an associated Sharpe ratio of 0.82.

[Insert Table 6 near here.]

Our finding of a strongly negative return for HMLC is robust to different sample periods. We consider the following

periods, two of which do not include the recent financial crisis: January 1996 to July 2007, January 1984 to December

2013, and January 1984 to July 2007. Our findings are reported in Panels B to D of Table 6. Consistent with our

results for the benchmark period, we find an inverse relation between exposure to the FX correlation factor ∆FXC

and average currency portfolio excess returns in each of the three periods. Excluding the financial crisis increases the

average excess return of shorting the HMLC portfolio to 7.35%, with an associated Sharpe ratio of 1.10 (Panel B).

Return differences across portfolios somewhat attenuate when the sample period is extended back to January 1984

(Panels C and D), but shorting the HMLC portfolio still yields highly significant annualized average excess returns

(3.72% and 3.45%, respectively). Overall, our results are very robust to different sample periods and do not appear to

be driven by the recent financial crisis.

For further robustness, we explore extended cross sections of currencies. We consider a sample that includes other

developed country currencies and a sample that includes the entirety of the developed sample and also some emerging

currencies. The composition of those extended samples is discussed in detail in Section 2. For each of the two

extended samples, we construct four ∆FXC beta-sorted portfolios. Fig. 3 presents the average excess returns of ∆FXC

beta-sorted currency portfolios for each of three sets of currencies (G10, all countries, and developed countries) and

each of the four periods. We find a consistently negative association between average portfolio excess returns and

exposure to correlation risk, with negative average HMLC returns across the board. Furthermore, average HMLC

returns are significant at the 5% level for all currency and period samples, with the sole exception of the samples

starting in 1984 for the full set of currencies. For the benchmark period from January 1996 to December 2013, the

average annualized return of shorting HMLC in the developed country sample is 5.46% (with a t-statistic of 2.42) and

the associated Sharpe ratio is 0.57. For the full cross section of currencies, shorting HMLC yields 4.04% on average

(with a t-statistic of 1.97) and a Sharpe ratio of 0.46.

[Insert Figure 3 near here.]

Finally, given the significant excess returns to the HMLC portfolio, we attempt to determine the market price of FX

correlation risk. We follow the extant literature and consider a linear pricing model with two traded factors. The first

factor is the dollar factor DOL, defined as the simple average of all available FX excess returns and shown by Lustig,

Roussanov and Verdelhan (2011) to act as a level factor for currency returns, and the second factor is HMLC , the return

difference between the high and low ∆FXC beta portfolios for the sample of G10 currencies. Our estimates for the

market price of HMLC range from −51 to −67 basis points per month, depending on the set of test assets, so HMLC

acts as a slope factor for pricing currency risk. The results are presented in detail in Appendix B.

4. Exchange rate correlation risk premiums

In this section, we present the cross-sectional and time series properties of FX correlation risk premiums and explore

the relation between FX correlation risk premiums and FX correlations.

4.1. The cross-sectional properties of correlation risk premiums

Consistent with the literature on variance and correlation risk premiums in other asset classes, we define FX

correlation risk premiums as the difference between expected conditional FX correlations under the risk-neutral (Q)

and the physical (P) measure:

CRPi, j
t,T ≡ EQ

t

(∫ T

t
ρ

i, j
u du

)
− EP

t

(∫ T

t
ρ

i, j
u du

)
. (1)
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We consider only one-month premiums, i.e., T = t + 1, as the maturity of the FX options we use to derive risk-neutral

measure moments is one month. Variance risk premiums are defined analogously as the difference in expected

conditional FX variance between the risk-neutral and the physical measure. The Online Appendix contains a discussion

of the properties of variance risk premiums, as well as of physical measure and risk-neutral measure FX variance.

To calculate the risk-neutral (implied) conditional FX correlation, we follow the literature on model-free measures

of implied volatility and covariance using daily FX option prices. The details of the calculations are presented in

Appendix C. Given the availability of FX options, we calculate correlation risk premiums for each of the 36 FX pairs

formed using the nine G10 exchange rates against the USD. For each FX pair not involving the EUR, our sample period

starts in January 1996 and ends in December 2013, for a total of 216 monthly observations. For the EUR, the options

data start in January 1999.

The time series mean and standard deviation of the implied FX correlations of each of the 36 G10 FX pairs

are reported in Table 2. The cross-sectional average of implied FX correlation means is 0.48, slightly higher than

its physical measure counterpart (0.45). Furthermore, implied FX correlation means exhibit less cross-sectional

heterogeneity than physical measure ones, with the lowest implied FX correlation mean being 0.14 (CAD/JPY pair)

and the highest being 0.88 (CHF/EUR pair). In contrast, realized correlation means range from 0.05 to 0.89. The

volatility of implied FX correlations is of the same order of magnitude as the volatility of realized FX correlations,

with standard deviations ranging from 0.07 to 0.34 and their cross-sectional average being 0.19.

Finally, the last five columns of Table 2 present the descriptive statistics for FX correlation risk premiums. From

left to right, we report the time series mean and standard deviation of the correlation risk premium of each FX pair,

followed by the asymptotic t-statistic and the bootstrapped 95% confidence interval of the CRP mean. We find that

CRP means exhibit considerable cross-sectional heterogeneity, with their size and sign varying greatly across FX

pairs, ranging from −0.069 (CAD/SEK) to 0.099 (JPY/NOK). Roughly two-thirds of CRP means are positive and

one third are negative, with their cross-sectional average being 0.016. Furthermore, three-quarters of the means are

statistically significant at the 5% level according to either the asymptotic or the bootstrapped distribution. Compared

with equity correlation risk premia, FX correlation risk premia are small, with the maximum FX correlation risk

premium we find being about half of the equity correlation risk premium reported by Driessen, Maenhout and Vilkov

(2009). Furthermore, correlation risk premiums are very volatile. Despite the fact that premiums are much smaller

than either realized or implied FX correlations, CRP standard deviations are of the same order of magnitude as those

of realized or implied correlations (ranging from 0.06 to 0.22, with a cross-sectional average of 0.14), suggesting

substantial time variation in the disparity between physical measure and risk-neutral measure FX correlations.

To explore whether average FX correlation risk premiums exhibit a cross-sectional pattern, we plot the average

CRP of all G10 exchange rate pairs against their average realized correlations. Fig. 4 presents the scatterplot, along

with the line of best fit. The cross-sectional correlation between average FX correlation risk premiums and average

FX realized correlations is −0.55. For example, the AUD/JPY pair, characterized by a very low average realized

FX correlation (0.16), has a positive and highly significant average CRP of 0.083. In contrast, the AUD/NZD pair

has a very high average realized correlation (0.76) and a negative and significant average premium (−0.016). A

cross-sectional regression of average correlation risk premiums on average realized correlations yields a statistically

significant slope coefficient of −0.144. Its asymptotic t-statistic, calculated using White (1980) standard errors, is −5.80

and the bootstrapped 95% confidence interval is [−0.154,−0.076]. The strongly negative cross-sectional association

between average realized FX correlations and average FX correlation risk premiums is what generates the tighter

cross-sectional distribution of average implied FX correlations versus that of realized FX correlations.

[Insert Figure 4 near here.]

The relative tightness of the cross-sectional distribution of conditional FX correlation under the risk-neutral measure

implies a potential tension regarding the pricing of FX correlation risk. This is because the negative association between

∆FXC betas and currency excess returns suggests that US investors require a risk premium for being exposed to states

in which FXC increases, i.e., in which the cross section of FX correlations widens. However, FX options are priced in

a way that indicates that US investors price states in which the cross section of FX correlations tightens.
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4.2. The time series properties of correlation risk premiums

We now turn to the time series properties of implied FX correlations and FX correlation risk premiums. The first

four columns of Table 7 provide summary statistics on the time series association between realized and implied FX

correlations. For each FX pair, we report the unconditional correlation coefficient between the two time series and its

asymptotic t-statistic and 95% bootstrapped confidence interval. Realized and implied correlations exhibit substantial

comovement across time for all FX pairs, with the unconditional correlations between the two ranging from 0.28 to

0.92, all being statistically significant, and the cross-sectional mean being 0.79.

[Insert Table 7 near here.]

The last four columns of Table 7 report descriptive statistics on the unconditional correlation between realized

FX correlations and FX correlation risk premiums. The cross-sectional average of those unconditional correlation

coefficients is −0.52 across the 36 G10 FX pairs, suggesting that elevated FX correlation is typically associated with

lower than usual CRP, i.e., with a lower than usual disparity between the physical measure and the risk-neutral measure

FX correlation. This association is pervasive and robust. Thirty-five of the 36 unconditional correlation coefficients are

negative, with all but one of them being statistically significant.

Finally, to assess the cyclicality of correlation risk premiums, we construct CRP cyclicality measures. As we did for

FX correlations, we define our CRP cyclicality measures to be the unconditional correlations between FX correlation

risk premiums and four market variables (GVol, GFI, T ED, and VIX). The last four columns of Table 3 report the

four CRP cyclicality measures for each of the 36 G10 FX pairs, and Panels A to D of Fig. 5 plot those cyclicality

measures against average FX correlation risk premiums. We find a positive cross-sectional association, with FX pairs

with high average CRP having countercyclical correlation risk premiums, and pairs with low average CRP having

procyclical premiums. The regression results in Panel B of Table 4 suggest that this positive cross-sectional association

is statistically significant for all four cyclicality measures. Thus, the cross-sectional dispersion in FX correlation risk

premiums is countercyclical. In bad times, the premiums of FX pairs with high average CRP increase and the premiums

of FX pairs with low average CRP decline, widening the cross-sectional distribution of FX correlation risk premiums.

[Insert Figure 5 near here.]

5. A no-arbitrage model of exchange rates

In this section, we introduce a reduced-form, no-arbitrage model of exchange rates that is consistent with our

empirical findings. Our model builds on the reduced-form models in Lustig, Roussanov and Verdelhan (2011, 2014)

and Verdelhan (2015). In contrast to those models, which assume that innovations in the price of country-specific

shocks are uncorrelated across countries, we assume that local risk is priced identically across countries. This

assumption implies a lack of spanning of FX correlation risk by exchange rates, a feature that is crucial in jointly

explaining the behavior of FX correlations and FX correlation risk premiums.

5.1. Model setup

There are I + 1 countries (i = 0, 1, . . . , I) in the global economy, with each country having its own currency. Without

loss of generality, we call country i = 0 the domestic country and countries i = 1, ..., I the foreign countries. We assume

that financial markets are frictionless and complete, but there are frictions in the international market for goods. As a

result, each country has a unique stochastic discount factor (SDF), but SDFs are not identical across countries. The log

SDF of country i, denoted by mi, is exposed to two global shocks, uw and ug, and a country-specific (local) shock ui,

and satisfies

− mi
t+1 = α + χzt + ϕzw

t +
√
κztu

i
t+1 +

√
γizw

t uw
t+1 +

√
δztu

g
t+1, (2)

where z and zw are the local and the global pricing factor, respectively. Both pricing factors are common to all countries.

Countries are ex ante heterogeneous only with regard to their exposure γ to the first global shock uw, with all other

SDF parameters being identical across countries. In our model, global risk exposure γ is exogenous. Richer models
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that endogenize unconditional cross-sectional differences in global risk exposure include Hassan (2013), Tran (2013),

Backus, Gavazzoni, Telmer and Zin (2013), Colacito, Croce, Gavazzoni and Ready (2015), and Ready, Roussanov and

Ward (2016).

The local pricing factor z prices both the local shock ui and the second global shock ug. In all countries, the price of

the local shock is
√
κzt and the price of the second global shock is

√
δzt. Due to differences in γ, the first global shock

uw is differentially priced across countries, with its price in country i being
√
γizw

t .

The two pricing factors are stationary processes. The local pricing factor z is driven by the second global shock ug,

and has law of motion

∆zt+1 = λ(z̄ − zt) − ξ√ztu
g
t+1. (3)

Thus, the local pricing factor is a square root process, reverting to its unconditional mean of z̄ at speed λ. Importantly,

the local pricing factor is countercyclical, as adverse ug shocks increase its value.

The global pricing factor zw is driven by the global shock uw. It is also a square root process, with law of motion

∆zw
t+1 = λw(z̄w − zw

t ) − ξw
√

zw
t uw

t+1, (4)

which also implies countercyclical pricing of risk. To ensure that both pricing factors are strictly positive, we impose

the Feller conditions 2λz̄ > ξ2 and 2λwz̄w > (ξw)2. All parameters except α, χ, and ϕ are strictly positive and all shocks

are independently and identically distributed (i.i.d.) standard normal.

Finally, the inflation process for country i is given by

πi
t+1 = π̄ + ζzw

t +
√
σηi

t+1. (5)

Expected inflation rates are time varying and identical across countries. However, realized inflation rates differ across

countries, as inflation shocks ηi are i.i.d. standard normal. Conditional inflation variance is constant and equal to σ

and inflation shocks are unpriced, so the model does not feature any inflation risk premiums. As a result, all the salient

economic mechanisms in the model arise from real variables, as nominal variables inherit all the conditional properties

of their nominal counterparts. For that reason, we discuss the model intuition using real variables and consider nominal

variables only in the simulation part (Subsection 5.5).

5.2. The properties of conditional FX moments

We denote the real log exchange rate between foreign currency i and the domestic currency by qi (units of foreign

currency per unit of domestic currency, in real terms). As a result of financial market completeness, real exchange rate

changes equal the SDF differential between the two countries,

∆qi
t+1 = m0

t+1 − mi
t+1, (6)

which implies that real exchange rate changes can be decomposed into a part driven by country-specific shocks and a

part that reflects exposure to global risk:

∆qi
t+1 =

√
κztu

i
t+1 −

√
κztu

0
t+1 +

(√
γi −

√
γ0

) √
zw

t uw
t+1. (7)

Differences in γ capture an exchange rate fixed effect. If the foreign country has a higher (lower) exposure γ to

global shock uw than the domestic country, its currency appreciates (depreciates) against the domestic currency when a

negative uw realization occurs. Exposure to the second global shock ug drops out of exchange rate changes because all

countries have the same loading on ug, so the only global shock that affects exchange rate changes directly is uw. Thus,

in the remainder of the paper, global FX risk always refers to the first global shock uw.

We now turn to conditional FX moments. The conditional variance of changes in the log real exchange rate i is
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increasing in both the local pricing factor z and the global pricing factor zw:

vart

(
∆qi

t+1

)
= 2κzt +

(√
γi −

√
γ0

)2

zw
t . (8)

The first effect arises from the country-specific component of stochastic discount factors. Given the independence of

local shocks across countries, the higher the impact of local shocks on the SDF, the more the two SDFs diverge and,

hence, the more volatile the exchange rate is. The second effect arises from the global component of SDFs. The higher

the difference in global risk exposure between country i and the domestic country, and the more severely global risk

exposure is priced, the more volatile the real exchange rate is.

The conditional covariance of changes in log real exchange rates i and j is

covt

(
∆qi

t+1,∆q j
t+1

)
= κzt + Di, jzw

t , (9)

where the constant Di, j is defined as

Di, j ≡
(√

γi −
√
γ0

) (√
γ j −

√
γ0

)
. (10)

We call exchange rate pairs (i, j) that satisfy Di, j > 0 similar and exchange rate pairs that satisfy Di, j < 0 dissimilar.

Thus, similar exchange rates correspond to foreign countries both of which have either more or less exposure to global

risk than the domestic country. Dissimilar exchange rates correspond to pairs of foreign countries in which one country

has higher, and the other country lower, exposure to global risk compared with the domestic country.

The first component of conditional FX covariance is due to the common exposure of the two exchange rates to the

domestic local shock, as the two exchange rates are mechanically positively correlated through their relation to the

domestic SDF. When z increases, this domestic currency effect becomes more prevalent, increasing the covariance

between the two exchange rates, as both foreign currencies appreciate or depreciate together against the domestic

currency.

The second component captures FX comovement that arises from exposure to global FX risk. Foreign countries with

similar exposure to the global shock uw (i.e., countries that satisfy Di, j > 0) have exchange rates that comove more than

the exchange rates of countries that have dissimilar exposure to global FX risk. Furthermore, fluctuations in zw have

different effects on conditional FX covariance, depending on the type of the FX pair. An increase in the global pricing

factor amplifies the importance of exposure to global risk and, thus, increases the conditional covariance of similar

exchange rates and reduces the covariance of dissimilar exchange rates.

We can now turn to conditional FX correlations. As happens for FX covariances, country heterogeneity in exposure

to the global shock uw generates cross-sectional heterogeneity in average conditional FX correlations, with similar FX

pairs having higher correlations on average than dissimilar ones. Furthermore, the time variation in the pricing factors

zw and z introduces time variation in the conditional correlation of both similar and dissimilar FX pairs and, thus, in the

cross-sectional distribution of conditional FX correlation.

To illustrate the effects of the two pricing factors on conditional FX correlations, we consider a world of I = 3 foreign

countries. Country 1 and Country 2 are less exposed to global FX risk than the domestic country, and Country 3 is more

exposed than the domestic country. This implies that the FX pair (1,2) is similar and the FX pair (1,3) is dissimilar. To

ensure symmetry, we set the values of the country exposures to global risk such that the condition D1,2 = −D1,3 > 0 is

satisfied.

We first consider the impact of the global pricing factor zw. Panels A, C, and E of Fig. 6 plot conditional FX

correlations as a function of zw for different values of the local pricing factor (z = 0.2z̄, z̄, and 5z̄, depicted with circles,

solid lines, and squares, respectively). Panel A refers to the similar exchange rate pair (1,2), Panel C considers the

dissimilar exchange rate pair (1,3), and Panel E plots the difference in the conditional FX correlations of the two FX

pairs. An increase in the global pricing factor zw raises the relative importance of exposure to the global shock uw,

amplifying similarities and dissimilarities, with similar FX pairs (Panel A) becoming more correlated, and dissimilar
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FX pairs (Panel C) becoming less correlated. When zw → ∞, similar exchange rates become perfectly positively

correlated and dissimilar exchange rates become perfectly negatively correlated. Taken together, these results imply

that the disparity in conditional FX correlation across exchange rate pairs is increasing in zw (Panel E).

[Insert Figure 6 near here.]

We now turn to the effects of the local pricing factor z. Panels B, D, and F of Fig. 6 plot the sensitivity of conditional

FX correlations to the value of the local pricing factor z for different values of the global pricing factor (zw = 0.2z̄, z̄,

and 5z̄), with Panel B referring to the similar FX pair, Panel D to the dissimilar FX pair, and Panel F to the difference

in the two pairs’ conditional FX correlations. An increase in the local pricing factor z increases both the variance of all

exchange rates and the covariance of all exchange rate pairs, due to the domestic currency effect. However, the impact

of that effect on FX correlation depends on the type of FX pair. When z→ ∞, the correlation of all FX pairs converges

to 0.5. This happens because all cross-sectional differences in global risk exposure become second-order and what

ultimately drives FX comovement is the domestic currency effect. Consider the limit behavior of log exchange rate

changes, described by

∆qi
t+1 →

√
κztu

i
t+1 −

√
κztu

0
t+1. (11)

Exposure to the domestic local shock, which accounts for half of the conditional FX variance and generates all the FX

comovement, pushes all FX correlations toward 0.5. Due to the domestic currency effect, when the local pricing factor

increases, the importance of similar or dissimilar exposure to global risk is attenuated. As a result, the conditional

correlation of similar exchange rates declines (Panel B), and the conditional correlation of dissimilar exchange rates

increases (Panel D), leading to a tightening of the cross section of conditional FX correlations (Panel F).

In sum, the cross-sectional dispersion of conditional FX correlations is increasing in the global pricing factor zw and

decreasing in the local pricing factor z. Given that zw increases after negative uw shocks and z increases after negative ug

shocks, changes in FXC reflect both uw shocks (with a positive sign) and ug shocks (with a negative sign). Empirically,

FXC is strongly positively correlated with four market variables that reflect credit risk, illiquidity, and stock market

volatility, suggesting that those variables identify exposure to the first global shock uw, and not to the second global

shock ug. Therefore, those business cycle variables can be proxied in our model by zw.

5.3. Correlation risk and the cross section of FX returns

The USD excess return for investing in the currency of country i satisfies

rxi
t+1 − Et(rxi

t+1) = −∆qi
t+1 + Et(∆qi

t+1) = −√κztu
i
t+1 +

√
κztu

0
t+1 −

(√
γi −

√
γ0

) √
zw

t uw
t+1, (12)

so FX excess returns are not exposed to ug risk. As a result, the conditional risk premium that the domestic investor

receives for investing in foreign currency i (including the Jensen term) is

rpi
t ≡ Et

(
rxi

t+1

)
+

1
2

vart(rxi
t+1) = −covt(m

0
t+1,−∆qi

t+1) = κzt +

(√
γ0 −

√
γi

) √
γ0zw

t . (13)

FX risk premiums have two components: a part that compensates domestic investors for the fact that investing in

a foreign currency essentially entails shorting the country-specific component of the domestic SDF, and a part that

reflects compensation for exposure to the global shock uw. The first component is identical across currencies, so all

cross-sectional variation in FX risk premiums is solely due to heterogeneity in exposure to uw, i.e., heterogeneity in

γ. The compensation provided by currency i for exposure to uw shocks is decreasing in the country loading γi. For

example, if γi < γ0, then currency i depreciates against the domestic currency when a bad realization of the global

shock uw occurs. Given that γ0 > 0, i.e., that a bad realization of uw increases domestic marginal utility, domestic

investors require a positive risk premium to hold currency i. Conversely, currencies of countries with high exposure to

uw (γi > γ0) have a negative premium for global FX risk, as they provide a hedge to domestic investors.
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We can now turn to the determinants of the ∆FXC loadings of FX returns. Fluctuations in FXC, the cross-sectional

dispersion in conditional FX correlation, reflect innovations in both the global pricing factor zw (which are scaled

multiples of the global shock uw) and the local pricing factor zw (scaled multiples of the global shock ug). Both kinds of

innovations are priced and have opposite effects on ∆FXC, so it is not trivial to establish whether a positive loading of

an asset return on ∆FXC should be associated with a positive or a negative risk premium. Assets should earn a negative

premium for a positive loading on ∆FXC that arises from exposure to uw, and a positive premium for a positive loading

that arises from exposure to ug. However, no ambiguity exists in the case of FX returns, as the only global innovations

to which they are exposed are uw shocks. As a result, the conditional loading of FX returns on ∆FXC has the same

sign as their conditional loading on ∆zw, so in the interests of tractability we can consider the latter. We have

covt(rxi
t+1,∆zw

t+1)

vart(∆zw
t+1)

=
covt(

( √
γ0 −

√
γi

) √
zw

t uw
t+1,−ξw

√
zw

t uw
t+1)

vart(−ξw
√

zw
t uw

t+1)
=

√
γi −

√
γ0

ξw
. (14)

Thus, countries i with a higher SDF exposure γi to global risk uw than the domestic country have FX excess returns with

a positive conditional loading on ∆FXC. Conversely, the FX returns of countries with γi < γ0 have a negative loading

on ∆FXC. Given the negative cross-sectional association between γ and currency risk premiums, those loadings imply

a negative risk premium for high ∆FXC beta exchange rates and a positive premium for low ∆FXC beta exchange

rates, in line with our empirical findings.

We finish with a note on the cross-sectional relation between interest rates and currency risk premiums. In the model,

the real interest rate of country i is given by

ri
t = α +

(
χ − 1

2
κ − 1

2
δ

)
zt +

(
ϕ − 1

2
γi

)
zw

t , (15)

so all cross-sectional heterogeneity in interest rates is due to cross-sectional differences in global risk exposure γ. In all

periods, countries with high (low) exposure to global FX risk have a relatively low (high) interest rate, due to a stronger

(weaker) precautionary savings motive. As a result, high interest rate currencies are associated with low γs and, thus,

high risk premiums.

5.4. The properties of correlation risk premiums

To explore the properties of FX correlation risk premiums, we first need to characterize the law of motion of the

pricing factors under the risk-neutral measure. From the perspective of the domestic investor, the risk-neutral measure

law of motion for the global pricing factor zw is

∆zw
t+1 = λw(z̄w − zw

t ) + ξw
√
γ0zw

t − ξw
√

zw
t uw,Q

t+1 , (16)

so the drift adjustment is positive and equal to ξw
√
γ0zw

t . We can rewrite Eq. (16) as a square root process,

∆zw
t+1 = λw,Q(z̄w,Q − zw

t ) − ξw
√

zw
t uw,Q

t+1 , (17)

where λw,Q ≡ λw − ξw
√
γ0 and z̄w,Q ≡ λw

λw,Q z̄w. Thus, under the risk-neutral measure, the global pricing factor zw has a

higher unconditional mean (z̄w,Q > z̄w) and is more persistent (λw,Q < λw) than under the physical measure. Similarly,

the risk-neutral measure law of motion for the local pricing factor z is given by

∆zt+1 = λQ(z̄Q − zt) − ξ√ztu
g,Q
t+1 , (18)

where λQ ≡ λ − ξ√δ and z̄Q ≡ λ
λQ z̄, so the local pricing factor also has a higher unconditional mean and is more

persistent under the risk-neutral measure than under the physical measure. The drift adjustment of the two factors

depends crucially on the volatility parameters ξw and ξ, which determine the sensitivity of the pricing factors to shocks
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uw and ug, respectively, and on the exposure parameters γ0 and δ, which regulate the pricing of shocks uw and ug,

respectively, for the domestic agent. The higher ξ is relative to ξw, and the higher δ is relative to γ0, the higher the

drift adjustment of the local pricing factor is relative to the adjustment of the global pricing factor, as the shocks to the

former are more highly priced compared with the shocks to the latter.

The conditional expectation of the global pricing factor is

EQ
t (zw

t+s) =
(
1 − (1 − λw,Q)s

)
z̄w,Q + (1 − λw,Q)szw

t (19)

under the risk-neutral measure, compared with

EP
t (zw

t+s) = (1 − (1 − λw)s) z̄w + (1 − λw)szw
t (20)

under the physical measure, for s > 0. Given the higher steady state value and higher persistence of the global pricing

factor under the risk-neutral measure, the wedge EQ
t (zw

t+s) − EP
t (zw

t+s) is always positive and increasing in zw
t .2 Exactly

the same is true for the local pricing factor z. Thus, the implied conditional FX correlations are calculated using higher

expected values for both z and zw than their physical counterparts. This is because states characterized by high values of

z and zw are bad states and, thus, receive an elevated probability weight under the risk-neutral measure. The expression

for FX correlation risk premiums is derived in Appendix D. Intuitively, the wedge between implied and physical FX

correlations is determined by the wedge in the expected values of z and zw between the two measures, i.e., by the wedge

between the risk-neutral and physical measure conditional distributions of z and zw.

Of particular relevance is the case in which the domestic agent prices fluctuations in the local pricing factor z more

heavily than fluctuations in the global pricing factor zw, i.e., when ξ
√
δ >> ξw

√
γ0. In that case, the domestic investor

risk-adjusts by assigning higher probabilities to states in which z has elevated values. States in which zw is high also

receive elevated importance under the risk-neutral measure, but risk adjustment mainly involves paying attention to

high z states. This risk adjustment has implications both for the cross section and the time series of FX correlation risk

premiums.

We start with the cross-sectional implications. When investors price z shocks more heavily than zw shocks, risk

adjustment involves paying more attention to states in which the cross-sectional dispersion of FX correlation tightens.

High z states are associated with lower than usual FX correlations for similar FX pairs and higher than usual FX

correlations for dissimilar pairs (consider Fig. 6), so focusing attention on high z states generates implied FX

correlations that are on average lower than physical FX correlations for similar FX pairs. As a result, similar FX

pairs (which have high average FX correlations) have negative average FX correlation risk premiums. Conversely,

dissimilar FX pairs (which have low average FX correlations) have higher implied FX correlations than physical FX

correlations on average and, thus, positive average FX correlation risk premiums. Our model therefore generates a

negative cross-sectional association between average FX correlations and average FX correlation risk premiums, in

line with the empirical findings presented in Fig. 4.

We now turn to the time series properties of FX correlation risk premiums. We begin by considering similar FX

pairs. As discussed in Subsection 5.2, the correlation of similar FX pairs is increasing in the global pricing factor zw.

Although this is true for both implied and physical FX correlations, implied FX correlations are less sensitive to zw than

their physical counterparts. Panel A of Fig. 6 provides a useful visualization. Circles plot FX correlation as a function

of zw conditional on a low z value (z = 0.2z̄), and squares plot FX correlation as a function of zw conditional on a high

z value (z = 5z̄), with the high z curve (squares) being much flatter than the low z one (circles) in the region of the

state space in which the economy spends most of the time (values of zw between 0 and 2z̄w). Because risk adjustment

puts more weight on high z states, implied FX correlations are less sensitive to zw than physical correlations for similar

FX pairs. This sensitivity differential means that implied FX correlations increase less than physical correlations in

2The wedge is an affine function of zw
t , with both the constant and the slope coefficient being positive. The constant is positive due to the fact that

the function f (x) =
1−(1−x)s

x for s > 1 is decreasing in x for x ∈ (0, 1).
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high zw states (empirically mapped to recessions), reducing the correlation risk premiums of similar FX pairs in those

states. Conversely, implied FX correlations drop less than physical FX correlations in low zw states (booms), increasing

the correlation risk premiums of similar FX pairs. In short, the model implies that similar FX pairs have procyclical

FX correlation risk premiums and, because they also have countercyclical conditional correlations, the time series

correlation between FX correlations and FX correlation risk premiums is negative for similar FX pairs. Similarly, we

can use Panel C of Fig. 6 to show that dissimilar FX pairs have countercyclical FX correlation risk premiums, which

also implies a negative time series correlation between FX correlations and FX correlation risk premiums for those FX

pairs. In short, our model is able to address the key empirical time series properties of FX correlation risk premiums

presented in Table 7 and Fig. 5.

In short, conditional FX correlation, which can be indirectly traded using currency options, is exposed to both uw

and ug innovations. If the domestic agent is pricing z shocks (i.e., ug innovations) more severely than zw shocks (uw

innovations), then FX correlation risk premiums largely reflect the desire of currency option holders to avoid high z

states, which feature a tightening of the cross-sectional dispersion of FX correlation. In contrast, investing in foreign

currency exposes investors only to uw innovations, so currency risk premiums reflect solely the desire to avoid high

zw states, which are characterized by a widening of the cross-sectional dispersion of FX correlation. Thus, the lack

of spanning of FX correlation risk by currency returns, and in particular the lack of exposure of exchange rates to

ug innovations, allows the model to jointly address the empirical properties of FX correlations, FX correlation risk

premiums, and currency risk premiums.

5.5. Model simulation

Finally, we assess the quantitative performance of our model and show that it can match key FX correlation moments,

as well as the standard interest rate and exchange rate moments.

To illustrate the importance of unspanned FX correlation risk, we consider a nesting model that includes our model

and the Lustig, Roussanov and Verdelhan (2014) model as special cases. The law of motion of the local pricing factor

of country i, zi, in the nesting model is

∆zi
t+1 = λ(z̄ − zi

t) − ξ
√

zi
t

(√
ρug

t+1 +
√

1 − ρui
t+1

)
, (21)

where 0 ≤ ρ ≤ 1, so zi is driven by both the global shock ug and the local shock ui. The nesting model allows for

imperfect comovement of (and, thus, for heterogeneity in) local pricing factors across countries. As a result, countries

can have different conditional loadings on the global innovation ug and the exposure to ug now enters the expression

for real exchange rate changes:

∆qi
t+1 = Et(∆qi

t+1) +

√
κzi

tu
i
t+1 −

√
κz0

t u0
t+1 +

(√
γi −

√
γ0

) √
zw

t uw
t+1 +

√
δ

(√
zi

t −
√

z0
t

)
ug

t+1. (22)

If ρ = 1 and all local pricing factors have the same initial value, then all local pricing factors are identical and we

retrieve our model, which features unspanned risk. If ρ = 0, we retrieve the model in Lustig, Roussanov and Verdelhan

(2014), which features independent local pricing factors and in which FX correlation is fully spanned by exchange

rates.3

Given that our empirical results focus on G10 exchange rates, we simulate our model assuming a global economy

with ten countries, the United States and I = 9 foreign countries. We simulate the model for different values of ρ, and we

run two types of simulations: small sample and large sample. For a given value of ρ, a small sample simulation consists

of one thousand simulation paths of 216 monthly observations each, matching the size of our empirical sample. For

each simulated moment, the point estimate and the standard error of the moment is, respectively, the moment average

across the one thousand simulations and the moment standard deviation across those simulations. We also calculate

3The empirical spanning properties of FX correlation are explored in the Online Appendix.
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the 95% confidence interval for each moment using the 2.5 and 97.5 percentiles of the moment in the cross section of

the one thousand simulation paths. For a given value of ρ, a large sample simulation consists of a single path of 50

thousand monthly observations. The calibration and simulation details are discussed in Appendix E, and the values of

our model parameters can be found in Table 8. The output of our small sample simulations is reported in Tables 9 and

10 and Fig. 11, with all other simulation results referring to large sample simulations.

[Insert Table 8 near here.]

Our quantitative analysis starts with the benchmark model, which features perfectly correlated local pricing factors

(ρ = 1). Table 9 reports empirical and simulated moments for inflation rates, interest rates, and exchange rates. For

each empirical moment, we report the value of the moment in our sample, and its bootstrap standard error. The latter

equals the standard deviation of the moment across one thousand block bootstrap samples of 216 monthly observations

each, with a block length of three monthly observations. We find that our model matches all moments reasonably well.

[Insert Table 9 near here.]

We can now consider FX correlation moments. The first two columns of Table 10 contrast the empirical moments

with the benchmark model moments. Our model generates a non trivial cross-sectional spread in average physical and

implied FX correlations, in line with the empirical evidence, and is able to closely match their cross-sectional mean.

One weakness of the model is that the model-implied premiums are lower (in absolute terms) than their empirical

counterparts. As a result, the cross-sectional mean of average premiums in the model, while positive, is lower than

the empirical mean (0.71% in the model, compared with 1.58% in the data) and the model is unable to match the

wide cross-sectional dispersion in average correlation risk premiums that is observed empirically. Notably, though,

the model is able to successfully generate both positive and negative FX correlation risk premiums, as in the data.

The model is also able to match the almost perfect positive cross-sectional association between average realized and

average implied FX correlations (0.98 in the data, 1.00 in the model) and, crucially, the strongly negative cross-sectional

association between average realized correlations and average CRP. In the simulated data, FX pairs with high average

FX correlation have negative average CRP and FX pairs with low average FX correlation have positive average CRP,

which is consistent with the empirical evidence. Fig. 7 provides an illustration of that feature by plotting the average

model-implied CRP against the average model-implied FX correlation for all 36 FX pairs. As regards time series

properties, the model generates a perfect time series correlation between realized and implied correlation for all FX

pairs, replicating the very high average correlation (0.79) observed in the data, and a negative time series correlation

between realized correlation and CRP (−0.77), also in line with the empirical evidence (−0.52).

[Insert Table 10 and Fig. 7 near here.]

In our model, exchange rates are exposed only to the first global shock uw, so bad states for investors in foreign

currencies are those characterized by high values of the global pricing factor zw. Thus, we explore the cyclicality of FX

correlations and FX correlation risk premiums in the model by mapping the countercyclical market variables we use in

the empirical part of our paper to zw. Our aim is to match the empirical cyclicality findings in Figs. 1 and 5. To do so, we

follow the same two-step approach we use for our empirical data. First, we calculate the correlation cyclicality measure

of each exchange rate pair, equal to the time series correlation of its conditional FX correlation with zw. Second, we

calculate the cross-sectional correlation of the FX correlation cyclicality measures with average FX correlations (36

observations, one for each FX pair). We find that the FX correlation cyclicality measures range from −0.73 to 0.73

across FX pairs and that their cross-sectional correlation with average FX correlations is strongly positive (0.75),

suggesting that high correlation FX pairs have countercyclical correlations and low correlation pairs have procyclical

correlations, in line with empirical evidence. We repeat the same exercise for correlation risk premiums, and find that

the FX CRP cyclicality measures range from −0.78 to 0.79 and that their cross-sectional correlation with average CRP

is positive (0.81), again in line with the data.
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Our model assumes only one dimension of ex ante heterogeneity across countries, their exposure γ to the global

shock uw. That heterogeneity generates cross-sectional differences in average FX correlations, average interest rates,

and average currency excess returns and, thus, engenders cross-sectional linkages among those three measures.

Those linkages imply that average correlations across FX pairs are positively associated with both the product of

the corresponding foreign currencies’ average interest rate differentials E(ri − r0)E
(
r j − r0

)
and the product of their

average currency excess returns E(rxi)E(rx j). Those cross-sectional associations in simulated data are presented in

Fig. 8. Panel A illustrates the relation between average FX correlations and the product of average nominal interest

rate differentials, and Panel B shows the relation between average FX correlations and the product of average currency

excess returns. In support of our model, both those model-implied positive cross-sectional associations are present in

the data. In the sample of G10 exchange rates, the cross-sectional correlation of average nominal FX correlations with

the product of corresponding nominal interest rate differentials is 0.35 and the correlation with the product of average

currency excess returns is 0.42.

[Insert Fig. 8 near here.]

Finally, we consider the asset pricing implications of the model. First, we sort the nine currencies into three portfolios

according to their nominal interest rate, and report the annualized average excess return of each portfolio in Panel A of

Fig. 9. The model generates a strong carry trade effect, with the return on the FX carry portfolio having an annualized

average excess return of 2.79%. In congruence with the extant literature, the Lustig, Roussanov and Verdelhan (2011)

HMLFX factor is priced in the cross section of simulated interest rate-sorted portfolios. Our low, medium, and high

interest rate currency portfolios have HMLFX betas of −0.41, 0.06, and 0.59, respectively.

[Insert Fig. 9 here.]

Next, we consider currency portfolios sorted on their ∆FXC beta. Their annualized average excess returns are

presented in Panel B of Fig. 9. We find that the annualized average excess return for the currency portfolio that is long

currencies with low ∆FXC beta and short currencies with a high ∆FXC beta is 1.27%, suggesting a negative price for

exposure to FX correlation risk, consistent with our empirical findings. The Lustig, Roussanov and Verdelhan (2011)

HMLFX factor is priced in the cross section of ∆FXC beta-sorted currency portfolio returns, with the low, medium,

and high ∆FXC beta portfolios having an HMLFX beta of 0.32, 0.06, and −0.15, respectively. Furthermore, we find

a negative cross-sectional association between nominal interest rates and ∆FXC betas. The low, medium, and high

∆FXC beta portfolios have an average interest rate differential (against the domestic country) of 0.81%, 0.16%, and

−0.43%, respectively.

For comparison, we turn to the case of non identical local pricing factors across countries (0 ≤ ρ < 1). Conditional

FX variance is given by

vart

(
∆qi

t+1

)
= κzi

t + κz0
t +

(√
γi −

√
γ0

)2

zw
t + δ

(√
zi

t −
√

z0
t

)2

, (23)

and conditional FX covariance is

covt

(
∆qi

t+1,∆q j
t+1

)
= κz0

t + Di, jzw
t + δ

(√
zi

t −
√

z0
t

) (√
z j

t −
√

z0
t

)
. (24)

When the local pricing factors differ across countries, exchange rates are more volatile than in the benchmark model, as

differential exposure to ug increases SDF disparity. As regards FX covariance, exposure to ug risk has one key difference

compared with exposure to uw. Country exposure to uw is regulated by the fixed parameter γ and thus is constant over

time, so FX pairs are either always similar or always dissimilar regarding their uw exposure. In contrast, the exposure of

each country i to ug is determined by
√
δzi, so it is unconditionally equal across countries, but time-varying, implying

that each FX pair can switch between being similar and being dissimilar with respect to ug exposure.
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To understand the behavior of the cross section of conditional FX correlations, we study the properties of the

conditional correlations of similar and dissimilar FX pairs in the special case of independent local pricing factors

(ρ = 0). The intuition is similar for other values of ρ less than one. Similar to Fig. 6, Fig. 10 illustrates the effect of zw

and z0 on conditional FX correlations in a world of three foreign countries: Country 1 and Country 2 are less exposed

to the first global shock uw than the domestic country, and Country 3 is more exposed.

[Insert Figure 10 near here.]

Panels A, C, and E of Fig. 10 depict conditional FX correlations as a function of the global pricing factor zw holding

all local pricing factors (domestic and foreign) constant at their common steady state value z̄. Not surprisingly, the

impact of changes in the global pricing factor zw is the same as in the model with identical local pricing factors. As zw

increases, similarities and dissimilarities in exposure to global risk get amplified, so the cross-sectional dispersion in

FX correlation is increasing in zw (Panel E).

Panels B, D, and F of Fig. 10 present conditional FX correlations as a function of the domestic local pricing factor z0,

assuming that the global pricing factor zw and all foreign local pricing factors are equal to their steady state values. We

find that the relation between z0 and conditional FX correlation is not monotonic. For small values of z0, conditional

FX correlation is high for both similar and dissimilar FX pairs (Panel B and Panel D, respectively). In those states, all

FX pairs are similar regarding their exposure to ug, as the loading of all foreign countries is higher than the domestic

loading. As the value of z0 increases, conditional FX correlation decreases, because the component of FX correlation

arising from exposure to ug is attenuated. When z0 reaches z̄, all local factors have identical values, so exposure to ug

does not affect FX moments, as it drops out of exchange rates. Finally, for large values of z0, all FX pairs are again

similar regarding their exposure to ug, this time because the domestic loading is higher than all foreign loadings, so

all FX pairs are highly correlated. As z0 → ∞, all FX pairs become conditionally perfectly correlated. Thus, the

cross-sectional dispersion of FX correlation is not monotonic in z0 (Panel F).

The business cycle behavior of FXC, the cross-sectional dispersion of conditional FX correlation, depends on the

relative importance of zw and z0 for FX correlation determination. The higher the correlation among the local pricing

factors, the lower the importance of ug exposure (and thus z0) for conditional FX correlation, so high (low) values of

ρ are associated with high (low) comovement between FXC and zw. Panel A of Fig. 11 presents the correlation of

FXC with zw against different values of ρ, showing both the point estimate (solid line) and the 95% confidence interval

(shaded area). We find that the correlation between FXC and zw hovers around zero for almost the entirety of the ρ state

space. Even for ρ = 0.95, the correlation between the two measures is only 0.02. That correlation jumps to 0.60 for

ρ = 1, with an associated 95% confidence interval of [0.27,0.83], underscoring the importance of extremely high local

pricing factor comovement. In sum, only very high values of ρ lead to empirically plausible and statistically significant

correlation between FXC and zw.

[Insert Fig. 11 near here.]

We now turn to correlation risk premiums, the details for which are discussed in Appendix D. In the special case

of independent local pricing factors (ρ = 0), the domestic investor only prices z0 and zw shocks, and innovations in the

foreign local pricing factors are foreign-specific shocks that do not enter the domestic investor’s SDF and, thus, are

unpriced. In that case, the risk-neutral measure overweighs states in which zw and z0 have elevated values. Assuming,

as we did for our benchmark model, that the domestic agent prices local shocks more harshly than global shocks, risk

adjustment mainly entails paying attention to high z0 states. As seen in Panels B and D of Fig. 10, those states are

characterized by high conditional FX correlations for both similar and dissimilar FX pairs. Thus, pricing states in

which the domestic pricing factor z0 has a high value tends to generate higher implied than physical FX correlations,

and thus positive correlation risk premiums, for all FX pairs.

The simulated FX moments of the model with independent local pricing factors (ρ = 0) are reported in the third

column of Table 10. The cross section of average physical FX correlations is much tighter now than in the benchmark

model, as exchange rate exposure to ug ameliorates the importance of differences in uw exposure across countries.
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The same is true for implied FX correlations. Average FX correlation risk premiums are small for all FX pairs, and,

consistent with the discussion above, are positive. The left tail (i.e., the 2.5 percentile) of average CRP is 0.00%,

and the right tail (i.e., the 97.5 percentile) is 0.08% and statistically significant. Furthermore, the model generates no

cross-sectional association between average FX correlations and average FX correlation risk premiums, at odds with

the empirical evidence. This is because the exposure to ug (which tends to increase the correlation of all FX pairs as

z0 increases and thus generates positive CRP for all FX pairs) offsets the effects of the exposure to uw, which tends to

decrease the correlation of similar FX pairs and increase the correlation of dissimilar FX pairs as z0 increases and thus

generates negative CRP for similar FX pairs and positive CRP for dissimilar FX pairs. Lastly, the model with ρ = 0

fails to match the empirical time series properties of FX correlation risk premiums. On average, the time series of

simulated physical FX correlations and FX CRP are almost uncorrelated, at odds with the strongly negative correlation

that characterizes their empirical counterparts.

To explore the behavior of FX correlation risk premiums for intermediate values of ρ, Panel B of Fig. 11 plots the

correlation coefficient of average FX correlations and average CRP for ρ = {0, 0.05, ..., 0.95, 1}. As the value of ρ

increases, and thus the local pricing factors become more correlated across countries, the cross-sectional correlation

between average FX correlations and average FX correlation risk premiums tends to decline. We find that high values

of ρ are needed for this correlation to become statistically significant, as the cross-sectional correlation is negative and

significant at the 5% level only for ρ values of 0.65 and higher. Taken together, Panels A and B of Fig. 11 show that

only very high values of ρ can jointly satisfy the physical and the risk-neutral measure properties of FX correlations.

A weakness of our benchmark model, which imposes the polar condition of ρ = 1, is that the cross-sectional rank

of interest rates (nominal and real) is fixed across time, as cross-sectional interest rate disparity is generated only by

the fixed parameter γ. In reality, the cross-sectional ranking of interest rates is time-varying, so this feature of the

model is not realistic and precludes matching salient empirical findings, such as the dollar carry trade discussed in

Lustig, Roussanov and Verdelhan (2014). However, we can show that a very small relaxation of the assumption of

identical local pricing factors allows the model to generate realistic cross-sectional properties of interest rates without

compromising the desirable features of the benchmark model for FX correlations.

Consider the average interest rate differential between the foreign countries and the domestic country (AFD, average

forward discount):

AFDt =
1
I

I∑

i=1

ri
t − r0

t =

(
χ − 1

2
κ − 1

2
δ

) 
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I

I∑
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1
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I∑
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γi

 zw
t . (25)

Eq. (25) is valid for both nominal and real interest rate differentials. If the local pricing factor is identical across

countries (ρ = 1), then the first term drops out and the AFD solely reflects fluctuations in the global pricing factor

zw, never changing sign. However, if the local pricing factors differ across countries (0 ≤ ρ < 1), then the AFD can

change sign across time, as it reflects fluctuations in both zw and the local pricing factors. In the special, and empirically

plausible (if the domestic country is the United States) case that the domestic SDF loading on global risk uw is close

to the average foreign loading (γ0 ' 1
I

∑I
i=1 γ

i), the sign of the AFD each period is determined by the sign of the local

pricing factor differential. Assuming that the precautionary savings motive dominates the intertemporal smoothing

motive (χ < 1
2κ + 1

2δ) and that the number of foreign countries I is large enough so that the average of the foreign local

pricing factors is always close to their common steady state value z̄,

1
I

I∑

i=1

zi
t → z̄, (26)

then the AFD is positive (negative) when the domestic local pricing factor z0 is higher (lower) than its steady state

value. In that case, a domestic investor engaging in the dollar carry trade, i.e., investing in foreign currencies when

AFD > 0 and shorting them when AFD < 0, takes (insures) FX risk when the domestic pricing factor z0 is transitorily

high (low).
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To show that our model can address the salient cross-sectional properties of interest rates, we simulate the model

setting ρ = 0.999, keeping all other parameters at their Table 8 values. In simulated data, this ρ value implies an

average cross-sectional correlation of 0.999 for the local pricing factors. The simulated moments are presented in the

last column of Table 10. Overall, we find that the model with ρ = 0.999 preserves the key FX correlation features

of the benchmark model. As regards the dollar carry trade, its empirical annualized return for the G10 currencies

from January 1996 to December 2013 is 5.26% using the nominal AFD and 3.48% using the real AFD. In the model,

the two strategies are identical, yielding an annualized return of 1.82%, so the model undershoots both empirical

returns. However, the model is able to almost perfectly match the turnover of interest rate-sorted currency portfolios,

as it generates a monthly turnover of 0.049, virtually identical to the empirical turnover of 0.047 observed in the G10

sample from January 1996 to December 2013.

6. Conclusion

We show that FX correlations become more cross-sectionally dispersed in adverse economic states, and we construct

an FX correlation dispersion measure, denoted by FXC and defined as the difference between the conditional

correlation of the most and least conditionally correlated FX pairs. We then sort currencies into portfolios based

on their exposure to FXC innovations and show that the spread between high and low ∆FXC beta currency portfolios

is economically and statistically significant (6.42% annually), suggesting that investors want to be compensated for

investing in currencies that perform badly during periods of increased cross-sectional dispersion in conditional FX

correlations. Then, defining the FX correlation risk premium as the difference between the FX correlation under the

risk-neutral and the physical probability measures, we find a strongly negative cross-sectional association between

average FX correlations and average FX correlation risk premiums. FX pairs with high average correlation exhibit low

(or negative) average correlation risk premiums, and the opposite is true for FX pairs with low average correlations.

We rationalize our empirical findings with a no-arbitrage model of exchange rates that is able to jointly match

the salient properties of FX correlations under both the physical and the risk-neutral measure. Our findings suggest

that a possible avenue for richer no-arbitrage models that feature endogenously determined stochastic discount factors

and aim to explain the dynamics of FX correlation is the incorporation of unspanned risk. In that class of models, any

shock that affects countries’ SDF identically (and thus does not enter exchange rates) and causes the cross section of FX

correlation to tighten, has the potential to address the apparent inconsistency between the behavior of FX correlations

under the physical measure and under the risk-neutral measure. That said, we stress that unspanned risk is not the only

possible avenue to be considered. It is possible that alternative economic mechanisms, including market segmentation

or other frictions in financial markets, can also play a role in addressing our empirical findings.

20



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Appendix A. Realized FX moments

We use daily spot exchange rates to calculate measures of realized FX moments. ∆si
t = ln

(
S i

t

)
− ln(S i

t−1) denotes the

daily log change for exchange rate i. The annualized realized FX variance observed at t is then calculated as

RVt =
252
K

K−1∑

k=0

∆s2
t−k, (A.1)

where K refers to a three-month window to estimate the rolling realized variances. Following Bollerslev, Tauchen and

Zhou (2009), we use this rolling estimate to proxy for the expected variance over the next month.

In a similar spirit, we derive the annualized realized covariance between exchange rates i and j:

RCovi, j
t =

252
K

K−1∑

k=0

∆si
t−k∆s j

t−k. (A.2)

Finally, the realized FX correlation is defined as the ratio of corresponding realized FX covariance and the product of

the respective FX standard deviations:

RCi, j
t = RCovi, j

t /

√
RVi

t

√
RV j

t . (A.3)

Appendix B. Price of FX correlation risk

We consider the two-factor model,

E[rxi] = βDOL
i λDOL + βHMLC

i λHMLC
, (B.1)

where rxi denotes the excess return in levels (i.e., corrected for the Jensen term). To estimate the factor prices λDOL

and λHMLC
, we follow the two-stage procedure of Fama and MacBeth (1973). First, we run a time series regression of

excess returns on the factors. Second, we run a cross-sectional regression of average excess returns on factor betas. We

do not include a constant in the cross-sectional regression of the second stage, as the dollar factor DOL essentially acts

a constant, as discussed in Lustig, Roussanov and Verdelhan (2011).

The first part of Table B1 reports the first-stage regression results. We consider 15 test assets: three currency

portfolios sorted on exposure to ∆FXC (Pf1C, Pf2C, and Pf3C), three currency portfolios sorted on forward discounts

(called carry portfolios and denoted by Pf1F, Pf2F, and Pf3F) and nine individual G10 exchange rates. As expected, the

HMLC betas of the ∆FXC beta-sorted portfolios are monotonically increasing. Notably, the HMLC betas of the carry

portfolios are monotonically decreasing, with low (high) interest rate currencies having a positive (negative) HMLC

beta. Finally, the HMLC betas for the individual G10 currencies are highly negatively correlated with their average

excess returns over the sample period, with the correlation coefficient being −0.92.

[Insert Table B1 near here.]
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The second part of Table B1 presents the second-stage results for various sets of test assets. Set (1) contains only

the three ∆FXC beta-sorted portfolios (Pf1C to Pf3C) and the three carry portfolios (Pf1F to Pf3F), and Set (2) contains

the test assets of Set (1) along with the nine individual G10 currencies. For both sets, we report the point estimates of

the prices of risk, along with their standard errors (in parentheses) and Shanken (1992)–corrected standard errors (in

brackets). We also report the R2 of each second-stage regression. Correlation risk has a significantly negative price,

with λHMLC
being −0.58% (−0.54%) per month for Set (1) [Set (2)]. Those estimates are not significantly different

from the average HMLC return of −0.54% per month. The second-stage R2 is very high for both regressions (0.99 and

0.93, respectively).

For robustness, we consider additional developed and emerging country currencies. Set (3) of test assets contains four

∆FXC beta-sorted and four forward discount-sorted portfolios, using all developed country currencies. Set (4) contains

four ∆FXC beta-sorted and four forward discount-sorted portfolios, using the full set of currencies. To conserve space,

we discuss the first-stage regression results for the test assets in Sets (3) and (4) in the Online Appendix, and provide

only the second-stage results in Table B1. We find that the λHMLC
estimates are in line with our benchmark results.

The price of correlation risk is estimated at −0.51% and −0.67% per month in Sets (3) and (4), respectively, with both

estimates being statistically significant at the 5% level. The regression R2 is 0.90 for Set (3) and 0.81 for Set (4). For

robustness, the Online Appendix contains price of risk estimates using FXC innovations, a non-traded factor, in lieu of

HMLC returns, a traded factor. We find that FXC innovations also have a negative price in the cross section of currency

returns.

Our traded correlation risk factor HMLC acts as a slope factor regarding the pricing of currency risk, so a natural

question that arises regards the relation between HMLC and the Lustig, Roussanov and Verdelhan (2011) carry trade

factor HMLFX . The carry trade factor reflects the returns to a portfolio that invests in high interest rate currencies and

shorts low interest rate currencies, and has also been shown to act as a slope factor. Using monthly data from January

1996 to December 2013, we find that the two factors are strongly negatively correlated, with the correlation coefficient

between the two time series being −0.66. This result suggests that the two factors capture similar sources of risk.

The highly negative association between HMLFX and HMLC is fully consistent with our proposed no-arbitrage

model. In the model, the excess return to the carry trade portfolio is defined as

HMLFX
t+1 =

1
N

∑

i∈HF

rxi
t+1 −

1
N

∑

i∈LF

rxi
t+1, (B.2)

with high interest rate (low γ, according to the model) currencies in set HF and low interest rate (high γ) currencies

in set LF. Provided that currency portfolios contain enough currencies so that the local shocks average zero, HMLFX

innovations are perfectly positively correlated with the global shock uw:

HMLFX
t+1 − Et

(
HMLFX

t+1

)
=

1
N


∑

i∈LF

√
γi −

∑

i∈HF

√
γi


√

zw
t uw

t+1. (B.3)
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Thus, HMLFX returns capture exposure to the global shock uw, which is the only global shock priced in currency

markets.

In contrast, FXC innovations capture both kinds of global shocks, uw and ug, so they provide a very noisy measure

of the part of FX correlation risk that is priced in foreign exchange markets. It follows that HMLFX always has better

pricing ability than ∆FXC in the cross section of currency returns. To get a cleaner measure of uw innovations, we can

consider FX return differentials, which are exposed only to uw shocks. In particular, consider portfolio HMLC , which

is long currencies with high ∆FXC loading and short currencies with low ∆FXC loading. Its return is

HMLC
t+1 =

1
N

∑

i∈HC

rxi
t+1 −

1
N

∑

i∈LC

rxi
t+1, (B.4)

with high-∆FXC-loading (i.e., high γ) currencies in set HC and low-∆FXC-loading (low γ) currencies in set LC.

Provided that the long and the short positions of the portfolio contain enough currencies so that the local shocks cancel

out, the return innovations of the HMLC portfolio are perfectly negatively correlated with the global shock uw:

HMLC
t+1 − Et

(
HMLC

t+1

)
=

1
N


∑

i∈LC

√
γi −

∑

i∈HC

√
γi


√

zw
t uw

t+1. (B.5)

Therefore, HMLC return innovations are perfectly negatively correlated with HMLFX return innovations, as they both

reflect uw shocks and, thus, should have the same explanatory power for the cross section of FX returns. In short, high γ

currencies, which hedge uw risk, have low interest rates, high HMLC betas, low HMLFX betas and low risk premiums.

Conversely, low γ (i.e. high interest rate, low HMLC beta, high HMLFX beta) currencies have high risk premiums.

In the Online Appendix, we discuss the relation between our FX correlation risk factor and another known FX risk

factor, the FX volatility factor of Menkhoff, Sarno, Schmeling and Schrimpf (2012).

Appendix C. Implied FX moments

We follow Demeterfi, Derman, Kamal and Zou (1999) and Britten-Jones and Neuberger (2000) to obtain a

model-free measure of implied volatility. They show that if the underlying asset price is continuous, then the

risk-neutral expectation over a horizon T − t of total return variance is defined as an integral of option prices over

an infinite range of strike prices:

EQ
t

(∫ T

t

(
σi

u

)2
du

)
= 2er(T−t)

(∫ S t

0

1
K2

P(K,T ) dK +

∫ ∞

S t

1
K2

C(K,T ) dK

)
, (C.1)

where S t is the underlying spot exchange rate, P(K,T ) and C(K,T ) are the respective put and call option prices with

maturity date T and strike price K, and r is the continuously compounded interest rate of the quote currency. In practice,

the number of traded options for any underlying asset is finite, so the available strike price series is a finite sequence.

Calculating the model-free implied variance involves the entire cross section of option prices, so, for each maturity T ,
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all five strikes are taken into account. These are quoted in terms of the option delta. In addition, we use daily spot

rates and one-month LIBOR rates from Datastream. Following the conventions in the FX market, we use the Garman

and Kohlhagen (1983) valuation formula to extract the relevant strike prices and to calculate the corresponding option

prices. See, e.g., Wystup (2006) for the specifics of FX options conventions.

To approximate the integral in Eq. (C.1), we adopt a trapezoidal integration scheme over the range of strike prices in

our data set. Jiang and Tian (2005) report two types of implementation errors: truncation errors due to the unavailability

of an infinite range of strike prices, and discretization errors that arise due to the lack of availability of a continuum of

available options. We find that both errors are extremely small when currency options are used. For example, the size

of the errors totals only half a percentage point in terms of volatility.

Model-free implied correlations are constructed from the available model-free implied volatilities. Brandt and

Diebold (2006) use the same approach to construct realized covariances of exchange rates from range-based volatility

estimators. Our construction methodology relies on state prices being sufficiently similar for the different agents

(countries). For the construction, we require all cross rates for three currencies, S i
t, S j

t , and S i j
t , i.e., the two exchange

rates against the domestic (base) currency and the exchange rate between the two foreign currencies. The absence of

triangular arbitrage then implies that S i j
t = S i

t/S
j
t . Taking logs, we derive the equation

ln


S i j

T

S i j
t

 = ln

(
S i

T

S i
t

)
− ln


S j

T

S j
t

 . (C.2)

Finally, taking variances yields

∫ T

t

(
σ

i j
u

)2
du =

∫ T

t

(
σi

u

)2
du +

∫ T

t

(
σ

j
u

)2
du − 2

∫ T

t
γ

i, j
u du, (C.3)

where γi, j
t denotes the covariance of returns between domestic currency FX pairs i and j. Solving for the covariance

term, we obtain ∫ T

t
γ

i, j
u du =

1
2

∫ T

t

(
σi

u

)2
du +

1
2

∫ T

t

(
σ

j
u

)2
ds − 1

2

∫ T

t

(
σ

i j
u

)2
du. (C.4)

Using the standard replication arguments, we find that

EQ
t

(∫ T

t
γ

i, j
u du

)
= er(T−t)

( ∫ S i
t

t

1
K2

Pi(K,T ) dK +

∫ ∞

S i
t

1
K2

Ci(K,T ) dK (C.5)

+

∫ S j
t

t

1
K2

P j(K,T ) dK +

∫ ∞

S j
t

1
K2

C j(K,T ) dK

−
∫ S i j

t

t

1
K2

Pi j(K,T ) dK −
∫ ∞

S i j
t

1
K2

Ci j(K,T ) dK
)
.

The model-free implied correlation can then be calculated using expression (C.5) and the model-free implied variance
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expression (C.1):

EQ
t

(∫ T

t
ρ

i, j
u du

)
≡

EQ
t

(∫ T

t
γ

i, j
u ds

)

√
EQ

t

(∫ T

t

(
σi

u

)2
du

)√
EQ

t

(∫ T

t

(
σ

j
u

)2
du

) . (C.6)

Our methodology relies on the absence of triangular arbitrage in currency markets. Recent studies report that the

average violation of triangular arbitrage is about 1.5 basis points with an average duration of 1.5 seconds (Kozhan and

Tham, 2012). However, most papers examining violations of triangular arbitrage use indicative quotes, which give

only an approximate price at which a trade can be executed. Executable prices can differ from indicative prices by

several basis points. Using executable FX quotes, Fenn, Howison, McDonald, Williams and Johnson (2009) report

that triangular arbitrage is less than 1 basis point and the duration less than 1 second. Our data also indicate that

triangular arbitrage is less than 1 basis point. We therefore conclude that these violations have a negligible effect on

our calculations.

There is recent empirical evidence suggesting that jump risk could be present in the FX market, see, e.g., Chernov,

Graveline and Zviadadze (2016), Jurek (2014), and Farhi, Fraiberger, Gabaix, Ranciere and Verdelhan (2015).

Britten-Jones and Neuberger (2000) show that the risk-neutral expected integrated return variance is fully specified

by a continuum of call and put options, provided that the price of the underlying asset is a diffusion process. However,

in the Online Appendix, we show that our analysis is robust to the presence of jumps.

Appendix D. FX correlation risk premiums in the model

For period [t,T ], the expected variance of the changes in the log exchange rate i is given by

EQ
t


T−t−1∑

s=0

vart+s

(
∆qi

t+s+1

)
 =

T−t−1∑

s=0

EQ
t

[
2κzt+s +

( √
γi −

√
γ0

)2
zw

t+s

]
, (D.1)

and the expected covariance of the changes in log exchange rates i and j is

EQ
t


T−t−1∑

s=0

covt

(
∆qi

t+1,∆q j
t+1

)
 =

T−t−1∑

s=0

EQ
t

[
κzt+s +

(√
γi −

√
γ0

) (√
γ j −

√
γ0

)
zw

t+s

]
. (D.2)

For the local pricing factor, we have

EQ
t (zt+s) =

(
1 − (1 − λQ)s

)
z̄Q + (1 − λQ)szt ≡ AQ

s + BQ
s zt (D.3)

under the risk-neutral measure and

Et(zt+s) = (1 − (1 − λ)s) z̄ + (1 − λ)szt ≡ As + Bszt (D.4)
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under the physical measure, with AQ
s > As and BQ

s > Bs for all s > 0. A similar notation can be used for the global

pricing factor zw. For Xs = {As, Bs, A
Q
s , B

Q
s , Aw

s , B
w
s , A

w,Q
s , Bw,Q

s }, we respectively define X = {A, B, AQ, BQ, Aw, Bw, Aw,Q,

Bw,Q} as X ≡ ∑T−t−1
s=0 Xs.

The expected FX correlation is defined as the ratio of the corresponding expected FX covariance over the product of
the square root of the two FX variances, as in Section 3. Thus, the FX correlation risk premium can be written as

CRPi, j
t =

κ
(
AQ + BQzt

)
+ Di, j

(
Aw,Q + Bw,Qzw

t

)

√
2κ

(
AQ + BQzt

)
+

( √
γi −

√
γ0

)2 (
Aw,Q + Bw,Qzw

t
)√

2κ
(
AQ + BQzt

)
+

( √
γ j −

√
γ0

)2 (
Aw,Q + Bw,Qzw

t
) (D.5)

− κ (A + Bzt) + Di, j (Aw + Bwzw
t
)

√
2κ (A + Bzt) +

( √
γi −

√
γ0

)2 (
Aw + Bwzw

t
)√

2κ
(
AQ + BQzt

)
+

( √
γ j −

√
γ0

)2 (
Aw + Bwzw

t
) . (D.6)

The magnitude of the correlation risk premium depends on the difference between the risk-neutral measure parameters

AQ, BQ, Aw,Q, and Bw,Q and the physical measure parameters A, B, Aw, and Bw. When the domestic agent prices

fluctuations in the local pricing factor more heavily than fluctuations in the global pricing factor, i.e., when ξ
√
δ >>

ξw
√
γ0, then

(
AQ + BQzt

)
− (A + Bzt) >>

(
Aw,Q + Bw,Qzw

t

)
− (

Aw + Bwzw
t
)
, (D.7)

implying that the risk adjustment for the local pricing factor z is quantitatively larger than the risk adjustment for the

global pricing factor zw as regards FX correlation. The implications of such risk adjustment for the cross-sectional and

time series properties of FX correlation risk premiums are discussed in Section 4.

As regards the nesting model, the law of motion for the global pricing factor zw under the risk-neutral measure is

identical to its risk-neutral measure law of motion in the model with identical pricing factors, given in Eq. (17), and

the law of motion of the domestic local pricing factor z0 is

∆z0
t+1 = λ0,Q(z̄0,Q − z0

t ) − ξ
√

z0
t

(√
ρug,Q

t+1 +
√

1 − ρu0,Q
t+1

)
, (D.8)

where z̄0,Q ≡ λ
λ0,Q z̄ and λ0,Q = λ − ξ

(√
ρ
√
δ +

√
1 − ρ√κ

)
, as both components of the innovations in z0 are priced by

the domestic investor. For the foreign local pricing factors zi with i = 1, ..., I, the risk-neutral measure law of motion is

∆zi
t+1 = λ(z̄ − zi

t) + ξ
√
ρ
√
δ

√
zi

t

√
z0

t − ξ
√

zi
t

(√
ρug,Q

t+1 +
√

1 − ρui,Q
t+1

)
, (D.9)

as the domestic investor prices only the global component
√
ρug of the foreign local pricing factor innovations, but not

their local component
√

1 − ρui.

Appendix E. Model calibration and simulation

Excluding ρ, the nesting model has 14 + (I + 1) parameters in total: five common SDF parameters (α, χ, φ, κ, and

δ), I + 1 heterogeneous parameters (the loading γi for each country), six common pricing factor parameters [three for

the local pricing factor (λ, z̄ and ξ) and three for the global pricing factor (λw, z̄w and ξw] and three common inflation
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parameters (π̄, ζ, and σ).

To calibrate our benchmark model, we impose ρ = 1 and then largely follow Lustig, Roussanov, and Verdelhan

(2011, 2014). We reduce the set of parameters by imposing the constraint that the loadings γi are equally spaced across

the foreign countries. We assume that the first foreign country has loading γmin, the last foreign country has loading

γmax, and each intermediate foreign country i = 2, ..., I − 1 has loading γi = γmin + i−1
I−1 (γmax − γmin). To generate a

large effect of the local pricing factor, in line with our model, we set δ = 40 and λ = 0.25. The latter value ensures

that the local pricing factor z is stationary under both the physical and the risk-neutral measure. Furthermore, we

set γmin to 0.20 [instead of 0.18, as in the Lustig, Roussanov and Verdelhan (2014) calibration ], to achieve a more

realistic cross-sectional dispersion in interest rates and FX correlations. In unreported results, using γmin = 0.18 does

not affect our results substantially. All the other parameters, with the exception of χ, ξ, ξw, and π̄, are set equal to

the corresponding values in Lustig, Roussanov and Verdelhan (2014), which are set to target specific interest rate,

inflation, and exchange rate moments, but no moments related to FX correlations or FX correlation risk premiums.

Finally, we set χ, ξ, ξw, and π̄ using a Generalized Method of Moments approach as follows. We target three moments:

the cross-sectional average of the time series mean and variance of the real interest rates of the ten countries, and

the cross-sectional average of the time series mean of the inflation rates of the ten countries. In the estimation, we

leave π̄ unconstrained but constrain the ratio of ξ
ξw to equal 2.43, which is the parameter ratio in the Lustig, Roussanov

and Verdelhan (2014) calibration. The values of our calibrated parameters are reported in Table 8. Regarding the

calibration data, we proxy interest rate differentials against the USD by the corresponding forward discounts, and the

nominal USD interest rate by the Fama-French one-month Treasury bill rate. Inflation in each country is calculated

using the corresponding Consumer Price Index, and real interest rates are calculated as the difference between nominal

interest rates and inflation rates.

Finally, we simulate the model for different values of ρ. We consider two types of simulations: small sample and

large sample. For a given value of ρ, a small sample simulation consists of one thousand simulation paths of 5,216

monthly observations each, initialized at the steady state values z̄ and z̄w. To reduce the effect of initial conditions, we

discard the first five thousand observations, so we are left with 216 observations for each path, allowing us to study

the small-sample properties of the moments of interest. For a given value of ρ, a large-sample simulation consists of

a single path of 55 thousand monthly observations, initialized at the steady state values z̄ and z̄w. Again, we discard

the first five thousand observations and calculate moments using the last 50 thousand observations. For both kinds of

simulations, conditional FX moments (realized and implied) are calculated using conditional expectations over a period

of 21 days (i.e., one month) into the future, with the model parameters appropriately adjusted to the daily frequency. At

each period, conditional expectations are calculated using averages across one hundred simulations, with the exception

of the benchmark model (ρ = 1), in which case we use closed-form expressions for the conditional expectations.
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Table 1
Summary statistics: individual currencies.
The table reports summary statistics for individual currencies. For each foreign currency i we report the mean, standard deviation, Sharpe ratio,
skewness, and kurtosis of US dollar excess returns f i

t − si
t+1 and the mean forward discount f i

t − si
t . Excess returns are annualized and expressed

in percentage points. Panel A reports monthly data from January 1996 through December 2013; Panel B, monthly data from January 1984 through
December 2013. In both panels, before January 1999, we use the German mark (DEM) in the place of the euro. AUD = Australian dollar; CAD =

Canadian dollar; CHF = Swiss franc; GBP = Pound sterling; JPY = Japanese yen; NOK = Norwegian krone; NZD = New Zealand dollar; SEK =

Swedish krona.

AUD CAD CHF EUR GBP JPY NOK NZD SEK

Panel A: January 1996–December 2013

Mean 3.01 1.12 -0.39 -0.46 1.37 -2.74 1.17 3.73 0.22
Standard deviation 12.78 8.50 10.91 10.25 8.50 10.78 11.15 13.09 11.22
Sharpe ratio 0.24 0.13 -0.04 -0.05 0.16 -0.25 0.11 0.29 0.02
Skewness -0.60 -0.60 0.13 -0.15 -0.50 0.48 -0.36 -0.37 -0.08
Kurtosis 5.29 7.26 4.40 3.80 4.73 5.22 4.10 4.85 3.61
ft − st 2.12 -0.04 -2.00 -0.60 0.91 -3.01 0.98 2.70 -0.10

Panel B: January 1984–December 2013

Mean 2.96 1.15 1.21 1.60 2.43 0.14 2.99 4.88 2.34
Standard deviation 12.08 7.15 11.93 11.14 10.37 11.38 11.05 13.25 11.36
Sharpe ratio 0.24 0.16 0.10 0.14 0.23 0.01 0.27 0.37 0.21
Skewness -0.72 -0.65 0.00 -0.21 -0.23 0.32 -0.48 -1.01 -0.46
Kurtosis 5.62 8.90 3.56 3.43 5.36 4.26 4.20 9.41 4.44
ft − st 3.12 0.77 -1.83 -0.61 1.89 -2.64 2.23 4.15 1.60
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Table 2

Summary statistics: foreign exchange (FX) correlations and FX correlation risk premiums.

The table reports means and standard deviations for realized and implied FX correlations (RC and IC, respectively), as well as FX correlation risk

premiums (CRPs), for all FX pairs. Correlation risk premiums are defined as the difference between the implied and realized correlations. Realized

correlations are calculated using past daily log exchange rate changes over a three month window. Implied correlations are calculated from daily

option prices on the underlying exchange rates. The last two columns report the bootstrapped 95% confidence interval (using the 2.5 and 97.5

percentiles). We use monthly data from January 1996 to December 2013 [options data for the euro (EUR) start in January 1999]. AUD = Australian

dollar; CAD = Canadian dollar; CHF = Swiss franc; GBP = Pound sterling; JPY = Japanese yen; NOK = Norwegian krone; NZD = New Zealand

dollar; SEK = Swedish krona.

RC IC CRP

Standard Standard Standard
FX pair Mean deviation Mean deviation Mean deviation t-statistic 2.5% 97.5%

AUDCAD 0.471 0.25 0.430 0.27 -0.041 0.15 -4.07 -0.060 -0.023
AUDCHF 0.357 0.27 0.405 0.20 0.048 0.15 4.73 0.028 0.068
AUDEUR 0.450 0.28 0.544 0.16 0.019 0.09 2.81 0.006 0.031
AUDGBP 0.422 0.24 0.453 0.19 0.031 0.12 3.86 0.014 0.046
AUDJPY 0.155 0.34 0.238 0.26 0.083 0.16 7.58 0.062 0.103
AUDNOK 0.467 0.26 0.431 0.29 -0.036 0.20 -2.64 -0.064 -0.010
AUDNZD 0.755 0.16 0.739 0.15 -0.016 0.08 -2.97 -0.026 -0.005
AUDSEK 0.474 0.25 0.480 0.20 0.005 0.13 0.61 -0.012 0.022
CADCHF 0.233 0.28 0.283 0.21 0.050 0.15 4.94 0.031 0.070
CADEUR 0.307 0.30 0.405 0.19 0.024 0.13 2.45 0.005 0.044
CADGBP 0.281 0.27 0.307 0.23 0.025 0.15 2.34 0.004 0.044
CADJPY 0.054 0.26 0.136 0.19 0.082 0.16 7.33 0.060 0.104
CADNOK 0.340 0.28 0.341 0.28 -0.002 0.18 -0.17 -0.028 0.022
CADNZD 0.413 0.23 0.352 0.34 -0.061 0.22 -4.19 -0.092 -0.035
CADSEK 0.352 0.26 0.287 0.29 -0.069 0.17 -5.96 -0.094 -0.047
CHFEUR 0.888 0.13 0.875 0.12 -0.010 0.08 -1.69 -0.020 0.002
CHFGBP 0.580 0.19 0.605 0.15 0.025 0.11 3.32 0.010 0.039
CHFJPY 0.405 0.26 0.456 0.18 0.051 0.14 5.15 0.032 0.070
CHFNOK 0.726 0.16 0.731 0.12 0.006 0.11 0.73 -0.009 0.021
CHFNZD 0.358 0.23 0.370 0.20 0.012 0.16 1.06 -0.010 0.033
CHFSEK 0.707 0.16 0.712 0.13 0.004 0.10 0.58 -0.010 0.017
EURGBP 0.644 0.15 0.683 0.10 0.003 0.08 0.54 -0.009 0.015
EURJPY 0.324 0.27 0.364 0.20 0.067 0.15 5.84 0.046 0.089
EURNOK 0.825 0.09 0.798 0.07 -0.025 0.06 -5.20 -0.035 -0.016
EURNZD 0.440 0.23 0.501 0.17 0.005 0.12 0.55 -0.013 0.022
EURSEK 0.816 0.11 0.817 0.08 -0.022 0.06 -4.64 -0.031 -0.012
GBPJPY 0.217 0.26 0.293 0.19 0.076 0.15 7.29 0.056 0.095
GBPNOK 0.577 0.16 0.638 0.12 0.059 0.16 5.39 0.038 0.080
GBPNZD 0.415 0.23 0.404 0.22 -0.011 0.14 -1.15 -0.029 0.006
GBPSEK 0.560 0.16 0.598 0.13 0.037 0.13 4.26 0.021 0.053
JPYNOK 0.248 0.26 0.347 0.21 0.099 0.16 9.22 0.079 0.119
JPYNZD 0.146 0.32 0.233 0.24 0.087 0.18 7.09 0.063 0.111
JPYSEK 0.241 0.27 0.294 0.20 0.052 0.16 4.95 0.033 0.072
NOKNZD 0.449 0.22 0.413 0.27 -0.036 0.20 -2.65 -0.064 -0.011
NOKSEK 0.796 0.10 0.780 0.11 -0.016 0.08 -2.93 -0.026 -0.006
NZDSEK 0.439 0.23 0.403 0.27 -0.036 0.18 -2.89 -0.060 -0.013
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Table 3
Cyclicality of realized foreign exchange (FX) correlations and FX correlation risk premiums (CRPs).
The table reports the unconditional correlation of realized correlations (RC cyclicality) and correlation risk premiums (CRP cyclicality) with four
market variables: the global equity volatility measure used in Lustig, Roussanov and Verdelhan (2011) (GVol), the global funding illiquidity measure
of Malkhozov, Mueller, Vedolin and Venter (2016) (GFI), the TED spread (T ED), and the Chicago Board Options Exchange Volatility Index (VIX).
Unconditional correlations are calculated using monthly data from January 1996 through December 2013 [options data for the euro (EUR) start
in January 1999]. AUD = Australian dollar; CAD = Canadian dollar; CHF = Swiss franc; GBP = Pound sterling; JPY = Japanese yen; NOK =

Norwegian krone; NZD = New Zealand dollar; SEK = Swedish krona.

RC cyclicality CRP cyclicality

FX pair GVol GFI T ED VIX GVol GFI T ED VIX

AUDCAD 0.174 -0.016 -0.081 0.168 -0.090 -0.203 -0.029 -0.180
AUDCHF -0.110 -0.342 -0.241 -0.180 0.068 0.116 0.024 0.062
AUDEUR 0.100 -0.217 -0.079 0.008 0.040 0.007 -0.076 0.060
AUDGBP 0.016 -0.207 -0.047 -0.102 0.004 0.062 -0.070 0.053
AUDJPY -0.328 -0.488 -0.365 -0.395 0.077 0.162 0.110 0.082
AUDNOK 0.143 -0.145 -0.037 0.089 -0.096 -0.113 -0.328 -0.116
AUDNZD 0.298 -0.125 0.014 0.287 -0.107 0.036 -0.016 -0.138
AUDSEK 0.121 -0.161 -0.084 0.050 -0.141 -0.017 -0.115 -0.125
CADCHF -0.099 -0.251 -0.223 -0.164 0.120 0.099 0.167 0.103
CADEUR 0.070 -0.133 -0.106 -0.009 -0.056 -0.014 0.076 -0.031
CADGBP 0.042 -0.060 -0.021 -0.041 0.090 -0.156 -0.150 0.066
CADJPY -0.284 -0.405 -0.322 -0.383 0.050 0.097 0.065 0.063
CADNOK 0.102 -0.065 -0.063 0.053 -0.038 -0.151 -0.132 -0.043
CADNZD 0.166 -0.005 -0.060 0.174 0.084 -0.321 -0.182 -0.018
CADSEK 0.134 -0.025 -0.066 0.069 -0.078 -0.091 -0.187 -0.028
CHFEUR -0.221 -0.107 -0.030 -0.250 0.330 0.122 0.178 0.308
CHFGBP -0.159 -0.323 -0.256 -0.265 0.069 0.114 0.113 0.087
CHFJPY -0.146 -0.063 -0.028 -0.223 0.069 0.114 0.002 0.133
CHFNOK -0.269 -0.045 -0.130 -0.276 0.103 -0.019 0.098 0.130
CHFNZD -0.106 -0.241 -0.256 -0.114 0.142 -0.026 -0.031 0.084
CHFSEK -0.186 -0.221 -0.013 -0.265 0.037 -0.050 0.059 0.025
EURGBP 0.105 -0.155 -0.137 -0.018 -0.216 -0.137 -0.043 -0.184
EURJPY -0.281 -0.178 -0.215 -0.301 0.173 0.228 0.190 0.208
EURNOK -0.064 0.137 0.026 -0.056 -0.063 -0.062 0.032 -0.042
EURNZD 0.135 -0.106 -0.057 0.104 -0.002 -0.111 -0.205 -0.022
EURSEK 0.077 -0.169 0.077 -0.025 -0.177 -0.107 0.058 -0.186
GBPJPY -0.353 -0.412 -0.368 -0.433 0.158 0.213 0.149 0.166
GBPNOK 0.026 -0.041 -0.118 -0.041 -0.038 -0.010 0.058 0.017
GBPNZD 0.059 -0.099 0.000 -0.007 0.001 -0.196 -0.227 0.006
GBPSEK 0.097 -0.163 -0.065 0.006 -0.211 0.013 -0.028 -0.128
JPYNOK -0.340 -0.219 -0.303 -0.354 0.199 0.212 0.262 0.226
JPYNZD -0.327 -0.361 -0.352 -0.317 0.064 0.077 0.129 0.008
JPYSEK -0.343 -0.314 -0.224 -0.399 0.224 0.256 0.121 0.253
NOKNZD 0.163 -0.059 -0.028 0.161 -0.062 -0.179 -0.301 -0.101
NOKSEK 0.156 0.030 0.141 0.144 -0.086 -0.022 -0.105 -0.047
NZDSEK 0.171 -0.065 -0.054 0.144 -0.118 -0.154 -0.284 -0.154
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Table 4
Cross-sectional foreign exchange (FX) cyclicality regressions.
Panel A presents the output of cross-sectional regressions of average realized FX correlations on each of the four FX correlation cyclicality measures.
Panel B presents the output of cross-sectional regressions of average FX correlation risk premiums (CRPs) on each of the four FX CRP cyclicality
measures. Each panel reports the regression slope coefficients, their t-statistics, their bootstrapped 95% confidence intervals, and the regression R2s.
For Panel A (Panel B) results, each FX correlation cyclicality measure (FX CRP cyclicality measure) is defined as the unconditional correlation
of realized FX correlation (FX CRP) with a given market variable. The market variables are the global equity volatility measure used in Lustig,
Roussanov and Verdelhan (2011) (GVol), the global funding illiquidity measure of Malkhozov, Mueller, Vedolin and Venter (2016) (GFI), the TED
spread (T ED), and the Chicago Board Options Exchange Volatility Index (VIX). The cyclicality measures are calculated using monthly data from
January 1996 through December 2013 (options data for the euro start in January 1999) and are reported in Table 3. The t-statistics (in parentheses)
are calculated using White (1980) standard errors.

Measure Slope t-statistic 2.5% 97.5% R2

Panel A: Average RC and RC cyclicality

GVol 0.404 (2.45) 0.064 1.000 0.14
GFI 0.867 (5.14) 0.176 1.054 0.32
T ED 1.151 (7.31) 0.348 1.638 0.50
VIX 0.409 (2.66) 0.148 0.892 0.15

Panel B: Average CRP and CRP cyclicality

GVol 0.166 (2.66) 0.007 0.199 0.22
GFI 0.249 (9.00) 0.108 0.284 0.63
T ED 0.203 (6.61) 0.073 0.263 0.48
VIX 0.201 (3.80) 0.065 0.233 0.34
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Unconditional correlation of foreign exchange (FX) correlation dispersion measures and market variables.
The table reports the correlation coefficients between the FX correlation dispersion measures FXC and FXCUNC and four market variables: the
global equity volatility measure used in Lustig, Roussanov and Verdelhan (2011) (GVol), the global funding illiquidity measure of Malkhozov,
Mueller, Vedolin and Venter (2016) (GFI), the TED spread (T ED), and the Chicago Board Options Exchange Volatility Index (VIX). Panel A refers
to monthly data from January 1996 through December 2013; Panel B, to monthly data from January 1984 through December 2013. In both panels,
bootstrap standard errors are in parentheses.

Measure FXCUNC GVol GFI T ED VIX

Panel A: January 1996–December 2013

FXC 0.86 0.35 0.48 0.42 0.45
(0.02) (0.08) (0.06) (0.07) (0.07)

FXCUNC 0.26 0.44 0.41 0.39
(0.10) (0.07) (0.07) (0.08)

GVol 0.53 0.59 0.81
(0.08) (0.08) (0.04)

GFI 0.57 0.61
(0.07) (0.07)

T ED 0.43
(0.09)

Panel B: January 1984–December 2013

FXC 0.89 0.22 0.32 0.26 0.21
(0.01) (0.06) (0.05) (0.05) (0.07)

FXCUNC 0.21 0.33 0.28 0.19
(0.06) (0.05) (0.05) (0.07)

GVol 0.12 0.41 0.79
(0.07) (0.08) (0.03)

GFI 0.61 0.18
(0.04) (0.08)

T ED 0.41
(0.09)
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Table 6
∆FXC beta-sorted currency portfolios.
The table reports summary statistics for the excess returns of three currency portfolios sorted on exposure to ∆FXC, the innovations to the foreign
exchange (FX) correlation dispersion measure FXC. Portfolio 1 (Pf1C) contains the three currencies with the lowest pre-sort ∆FXC betas, and
Portfolio 3 (Pf3C) contains the three currencies with the highest pre-sort ∆FXC betas. HMLC denotes the portfolio that has along position in the
high correlation beta currencies (Pf3C) and a short position in the low correlation beta currencies (Pf1C). Panel A refers to monthly data from January
1996 through December 2013; Panel B, from January 1996 through July 2007; Panel C, from January 1984 through December 2013; Panel D, from
January 1984 through July 2007.

Moment Pf1C Pf2C Pf3C HMLC

Panel A: January 1996–December 2013

Mean 4.04 0.99 -2.38 -6.42
Standard deviation 10.26 9.11 7.86 7.83
t-statistic 1.67 0.46 -1.28 -3.47
Skewness -0.66 0.06 0.01 0.44
Kurtosis 6.57 3.53 3.09 4.75
Sharpe Ratio 0.39 0.11 -0.30 -0.82

Panel B: January 1996–July 2007

Mean 3.84 0.74 -3.51 -7.35
Standard deviation 7.34 8.07 7.56 6.68
t-statistic 1.78 0.31 -1.58 -3.74
Skewness 0.17 0.49 0.11 -0.01
Kurtosis 3.35 3.10 2.76 2.92
Sharpe ratio 0.52 0.09 -0.46 -1.10

Panel C: January 1984–December 2013

Mean 4.37 1.58 0.65 -3.72
Standard deviation 9.62 9.44 8.87 8.37
t-statistic 2.48 0.92 0.40 -2.43
Skewness -0.43 -0.24 -0.26 0.06
Kurtosis 6.09 3.73 3.96 3.71
Sharpe ratio 0.45 0.17 0.07 -0.44

Panel D: January 1984–July 2007

Mean 4.36 1.61 0.91 -3.45
Standard deviation 8.00 9.05 9.00 8.02
t-statistic 2.64 0.87 0.49 -2.09
Skewness 0.18 -0.22 -0.28 -0.19
Kurtosis 3.81 3.79 4.04 3.13
Sharpe ratio 0.54 0.18 0.10 -0.43
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Table 7
Time series correlations of foreign exchange (FX) correlations and FX correlation risk premiums (CRPs).
The table reports the time series correlations between realized FX correlations (RC) and implied FX correlations (IC) and between realized FX
correlations and FX correlation risk premiums (CRPs), for all FX pairs. In addition to the correlation estimates, we report their t-statistics and 95%
bootstrapped confidence intervals. FX correlation risk premiums are defined as the difference between the implied and realized FX correlations.
Realized FX correlations are calculated using past daily log exchange rate changes over a three month window. Implied FX correlations are
calculated from daily option prices on the underlying exchange rates. We use monthly data from January 1996 to December 2013 [options data
for the euro (EUR) start in January 1999]. AUD = Australian dollar; CAD = Canadian dollar; CHF = Swiss franc; GBP = Pound sterling; JPY =

Japanese yen; NOK = Norwegian krone; NZD = New Zealand dollar; SEK = Swedish krona.

Correlation RC/IC Correlation RC/CRP

FX pair Mean t-statistic 2.5% 97.5% Mean t-statistic 2.5% 97.5%

AUDCAD 0.843 22.88 0.800 0.875 -0.102 -1.49 -0.243 0.046
AUDCHF 0.844 22.97 0.805 0.877 -0.695 -14.15 -0.756 -0.627
AUDEUR 0.923 32.09 0.901 0.941 -0.714 -13.63 -0.782 -0.638
AUDGBP 0.876 26.54 0.844 0.905 -0.656 -12.71 -0.732 -0.566
AUDJPY 0.892 28.89 0.855 0.922 -0.695 -14.13 -0.764 -0.610
AUDNOK 0.744 16.09 0.679 0.807 -0.213 -3.15 -0.317 -0.091
AUDNZD 0.872 26.01 0.833 0.906 -0.457 -7.52 -0.646 -0.212
AUDSEK 0.870 25.82 0.840 0.902 -0.618 -11.49 -0.723 -0.490
CADCHF 0.856 24.22 0.827 0.885 -0.684 -13.73 -0.756 -0.594
CADEUR 0.864 22.93 0.822 0.899 -0.702 -13.21 -0.785 -0.602
CADGBP 0.825 21.24 0.776 0.869 -0.518 -8.82 -0.640 -0.371
CADJPY 0.777 18.03 0.708 0.829 -0.680 -13.57 -0.737 -0.622
CADNOK 0.780 18.18 0.723 0.838 -0.316 -4.85 -0.465 -0.168
CADNZD 0.784 18.48 0.730 0.838 0.161 2.39 0.011 0.308
CADSEK 0.813 20.34 0.766 0.856 -0.137 -2.01 -0.241 -0.024
CHFEUR 0.846 21.27 0.717 0.946 -0.603 -10.12 -0.743 -0.278
CHFGBP 0.816 20.63 0.757 0.862 -0.640 -12.17 -0.715 -0.554
CHFJPY 0.835 22.19 0.788 0.874 -0.733 -15.76 -0.785 -0.665
CHFNOK 0.725 15.42 0.632 0.816 -0.671 -13.23 -0.763 -0.525
CHFNZD 0.724 15.35 0.661 0.783 -0.532 -9.19 -0.619 -0.428
CHFSEK 0.757 16.94 0.668 0.832 -0.560 -9.88 -0.683 -0.386
EURGBP 0.774 16.38 0.707 0.837 -0.592 -9.82 -0.697 -0.463
EURJPY 0.858 22.35 0.811 0.898 -0.760 -15.65 -0.813 -0.704
EURNOK 0.704 13.27 0.628 0.776 -0.632 -10.90 -0.773 -0.379
EURNZD 0.770 16.17 0.703 0.830 -0.467 -7.06 -0.597 -0.329
EURSEK 0.721 13.93 0.659 0.786 -0.549 -8.78 -0.697 -0.326
GBPJPY 0.824 21.30 0.770 0.867 -0.713 -14.87 -0.778 -0.634
GBPNOK 0.282 4.30 0.077 0.448 -0.711 -14.79 -0.767 -0.647
GBPNZD 0.812 20.32 0.773 0.852 -0.350 -5.47 -0.498 -0.199
GBPSEK 0.644 12.31 0.575 0.717 -0.615 -11.41 -0.747 -0.462
JPYNOK 0.795 19.15 0.743 0.837 -0.572 -10.21 -0.657 -0.473
JPYNZD 0.831 21.83 0.777 0.875 -0.680 -13.55 -0.746 -0.603
JPYSEK 0.825 21.34 0.775 0.865 -0.699 -14.29 -0.762 -0.627
NOKNZD 0.699 14.29 0.630 0.764 -0.157 -2.32 -0.267 -0.051
NOKSEK 0.701 14.36 0.643 0.761 -0.347 -5.42 -0.521 -0.148
NZDSEK 0.750 16.58 0.684 0.805 -0.158 -2.34 -0.253 -0.053
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Table 8
Parameter values.
The table reports the calibrated parameter values used for the model simulations. All countries share the same parameter values except for γ. As
regards γ, γ0 is the parameter for the domestic country, and the values for the foreign γi, i = 1, ..., 9, are equally spaced on the interval [γmin, γmax].

Parameter symbol Parameter value

Panel A: Stochastic discount factor parameters

α 0.0076
χ 19.4551
φ 0.06
κ 0.04
δ 40
γ0 0.36
γmin 0.20
γmax 0.49

Panel B: Pricing factor parameters

λ 0.25
z̄ 0.0077
ξ 0.0393
λw 0.01
z̄w 0.0209
ξw 0.0162

Panel C: Inflation parameters

π̄ -0.0039
ζ 0.25
σ 0.00372
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Table 9
Simulated moments (benchmark model): interest rates, inflation, and exchange rates.
The table reports empirical moments and simulated moments for the model with identical local pricing factors (benchmark model). For each
empirical moment, the table reports the value of the moment in the sample and the moment bootstrap standard error (in parentheses). Bootstrapping
involves one thousand block bootstrap samples of 216 monthly observations each, with a block length of three observations. For each simulated
moment, the table reports the point estimate and the standard error (in parentheses). The former is the moment average across one thousand
simulations, and the latter is the moment standard deviation across those simulations. Panel A reports the annualized mean and standard deviation
of the US real interest rate and the cross-sectional average of the mean and standard deviation of foreign real interest rates. Panel B reports the
cross-sectional average of real exchange rate volatility and autocorrelation. Panel C reports the annualized mean and standard deviation of US
inflation and the cross-sectional average of the mean and standard deviation of foreign inflation. Panel D reports the annualized mean and standard
deviation of the US nominal interest rate and the cross-sectional average of the mean and standard deviation of foreign nominal interest rates. Panel
E reports the cross-sectional average of nominal exchange rate volatility and autocorrelation.

Moment Data Benchmark model

Panel A: Real interest rates

E
(
rUS

)
0.28% 0.74%

(0.46%) (1.96%)
S td

(
rUS

)
1.35% 1.08%

(0.13%) (0.17%)
Ecross

(
E

(
rFGN

))
1.15% 0.94%

(0.19%) (1.85%)
Ecross

(
S td

(
rFGN

))
1.19% 1.08%

(0.03%) (0.17%)

Panel B: Exchange rates

Ecross (S td (∆qt+1)) 10.82% 9.52%
(0.59%) (0.73%)

Ecross (AC (∆qt+1)) -0.01 0.00
(0.05) (0.04)

Panel C: Inflation

E
(
πUS

)
2.32% 1.83%

(0.33%) (3.86%)
S td

(
πUS

)
1.27% 1.59%

(0.14%) (0.29%)
Ecross

(
E

(
πFGN

))
1.56% 1.85%

(0.17%) (3.84%)
Ecross

(
S td

(
πFGN

))
1.12% 1.59%

(0.04%) (0.28%)

Panel D: Nominal interest rates

E
(
rNOM,US

)
2.60% 2.58%

(0.25%) (2.09%)
S td

(
rNOM,US

)
0.62% 1.11%

(0.02%) (0.20%)
Ecross

(
E

(
rNOM,FGN

))
2.70% 2.77%

(0.15%) (2.20%)
Ecross

(
S td

(
rNOM,FGN

))
0.44% 1.13%

(0.02%) (0.21%)

Panel E: Exchange rates

Ecross (S td (∆st+1)) 10.76% 9.69%
(0.62%) (0.72%)

Ecross (AC (∆st+1)) 0.01 0.00
(0.06) (0.04)
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Table 10
Simulated moments: foreign exchange (FX) correlations and FX correlation risk premiums (CRPs).
The table reports empirical moments and simulated moments for the model with ρ = 1, ρ = 0, and ρ = 0.999. All moments refer to nominal
exchange rates. For each empirical moment, the table reports the value of the moment in the sample and the moment bootstrap standard error
(in parentheses). Bootstrapping involves one thousand block bootstrap samples of 216 monthly observations each, with a block length of three
observations. For each simulated moment, the table reports the point estimate and the standard error (in parentheses). The former is the moment
average across one thousand simulations, and the latter is the moment standard deviation across those simulations. Panel A reports the cross-sectional
mean and the 2.5 and 97.5 percentiles of average realized FX correlations. Panel B reports the cross-sectional mean and the 2.5 and 97.5 percentiles
of average implied FX correlations. Panel C reports the cross-sectional mean and the 2.5 and 97.5 percentiles of average FX CRP. Panel D reports the
cross-sectional correlation between average realized and average implied FX correlation and the cross-sectional correlation between average realized
FX correlation and average FX CRP. Panel E reports the cross-sectional average of the correlation between realized and implied FX correlation and
the cross-sectional average of the correlation between realized FX correlation and FX CRP.

Model

Moment Data ρ = 1 ρ = 0 ρ = 0.999

Panel A: Realized correlation

2.5%cross (E(RC)) 0.09 0.01 0.30 0.06
(0.03) (0.17) (0.04) (0.15)

Ecross (E(RC)) 0.45 0.39 0.40 0.40
(0.02) (0.04) (0.03) (0.04)

97.5%cross (E(RC)) 0.86 0.66 0.49 0.64
(0.01) (0.06) (0.03) (0.05)

Panel B: Implied correlation

2.5%cross (E(IC)) 0.17 0.03 0.30 0.09
(0.02) (0.16) (0.04) (0.15)

Ecross (E(IC)) 0.48 0.40 0.40 0.41
(0.01) (0.04) (0.03) (0.04)

97.5%cross (E(IC)) 0.85 0.65 0.49 0.63
(0.01) (0.05) (0.03) (0.05)

Panel C: Correlation risk premiums

2.5%cross (CRP) -6.62% -0.89% 0.00% -0.71%
(1.41%) (0.18%) (0.03%) (0.16%)

Ecross (CRP) 1.58% 0.71% 0.04% 0.56%
(0.57%) (0.20%) (0.02%) (0.16%)

97.5%cross (CRP) 9.43% 2.75% 0.08% 2.23%
(1.20%) (0.55%) (0.03%) (0.48%)

Panel D: Cross-sectional correlations

corrcross (E(RC), E(IC)) 0.98 1.00 1.00 1.00
(0.01) (0.00) (0.00) (0.00)

corrcross (E(RC), E(CRP)) -0.55 -0.99 0.00 -0.99
(0.10) (0.01) (0.22) (0.00)

Panel E: Cross-sectional averages

Ecross (corr(RC, IC)) 0.79 1.00 1.00 1.00
(0.02) (0.00) (0.00) (0.00)

Ecross (corr(RC,CRP)) -0.52 -0.77 -0.02 -0.80
(0.03) (0.13) (0.03) (0.10)
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Table B1
Estimates of the price of correlation risk.
The table reports the results for the estimation of the market price of correlation risk. The first part of the table reports factor betas and Newey and
West (1987) standard errors (in parentheses) for the first stage regressions for various test assets. The test assets are three currency portfolios (PfC)
sorted on exposure to the correlation risk factor ∆FXC, three currency portfolios (PfF) sorted on interest rate differentials, and nine individual
currencies. The second part of the table reports the Fama and MacBeth (1973) factor prices and standard errors (in parentheses). Shanken
(1992)–corrected standard errors are reported in brackets. We consider four sets of test assets. Set (1) contains only the three ∆FXC beta-sorted
and the three interest rate-sorted portfolios from Panel A, and Set (2) also includes the nine individual G10 currencies. Set (3) contains four ∆FXC
beta-sorted and four interest rate-sorted currency portfolios, using all developed country currencies. Set (4) contains four ∆FXC beta-sorted and four
interest rate-sorted currency portfolios, using the full set of currencies. The first-stage beta estimates for Sets (3) and (4) are provided in the Online
Appendix. We use monthly data from January 1996 through December 2013. Regression R2s are also provided. AUD = Australian dollar; CAD =

Canadian dollar; CHF = Swiss franc; GBP = Pound sterling; JPY = Japanese yen; NOK = Norwegian krone; NZD = New Zealand dollar; SEK =

Swedish krona.

Factor betas

Asset α DOL HMLC R2

Pf1C -0.01 1.03 -0.52 0.40
(0.07) (0.05) (0.03)

Pf2C -0.02 1.11 0.00 0.10
(0.09) (0.06) (0.04)

Pf3C -0.03 1.03 0.48 -0.20
(0.07) (0.05) (0.03)

Pf1F -0.06 0.98 0.33 -0.12
(0.10) (0.06) (0.06)

Pf2F -0.03 1.03 -0.05 0.12
(0.08) (0.04) (0.04)

Pf3F 0.03 1.16 -0.32 0.30
(0.09) (0.07) (0.06)

AUD -0.09 1.20 -0.52 0.39
(0.13) (0.08) (0.08)

CAD -0.04 0.66 -0.19 0.17
(0.11) (0.07) (0.07)

CHF 0.04 1.24 0.31 -0.05
(0.14) (0.08) (0.07)

EUR -0.09 1.22 0.07 0.08
(0.11) (0.07) (0.05)

GBP 0.10 0.75 0.08 0.03
(0.13) (0.09) (0.06)

JPY 0.04 0.63 0.57 -0.25
(0.22) (0.12) (0.10)

NOK 0.03 1.24 0.02 0.11
(0.13) (0.09) (0.08)

NZD 0.06 1.27 -0.39 0.32
(0.15) (0.08) (0.11)

SEK -0.10 1.29 -0.05 0.14
(0.11) (0.07) (0.06)

Factor prices

Set λDOL λHMLC
R2

Set (1) 0.09 -0.58 0.99
(0.15) (0.15)
[0.15] [0.15]

Set (2) 0.09 -0.54 0.93
(0.15) (0.20)
[0.15] [0.20]

Set (3) 0.13 -0.51 0.90
(0.15) (0.17)
[0.15] [0.18]

Set (4) 0.15 -0.67 0.81
(0.14) (0.22)
[0.14] [0.23]
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Fig. 1. Average realized foreign exchange (FX) correlations and FX correlation cyclicality. The figure illustrates the association between average

realized FX correlations and measures FX correlation cyclicality. For each FX pair, FX correlation cyclicality is measured by the unconditional

correlation between the realized FX correlation of the pair and a market variable that acts as a business cycle proxy. The market variables considered

are the global equity volatility measure from Lustig, Roussanov and Verdelhan (2011) (GVol, Panel A), the global funding illiquidity measure (GFI,

Panel B) from Malkhozov, Mueller, Vedolin and Venter (2016), the TED spread (T ED, Panel C), and the Chicago Board Options Exchange Volatility

Index (VIX, Panel D). We use monthly data from January 1996 to December 2013. In each panel, the line of best fit is also shown. RC = realized

correlation.

40



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Panel A: FX correlation dispersion

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0

0.5

1

1.5

D
is

pe
rs

io
n

 FXC

 FXC
UNC

Panel B: Measures of cyclicality  

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

0

2

4

6

S
ta

nd
ar

di
ze

d 
m

ea
su

re

 GVol

 GFI

 TED

 VIX

Fig. 2. Foreign exchange (FX) correlation dispersion measures and market variables. Panel A plots the time series of the two FX correlation

dispersion measures, FXC and FXCUNC , from January 1996 to December 2013. FXC (solid line) is calculated as the difference between the

average FX correlation of high- and low-correlation FX pairs. The two groups of FX pairs consist of the highest and lowest deciles of realized

FX correlations across all 36 FX pairs in our sample, with the deciles being rebalanced every month. FXCUNC (dashed line) is calculated as the

difference in average correlations between the decile of high average correlation FX pairs and the decile of low average correlation FX pairs. Panel

B plots the time series of the global equity volatility measure used in Lustig, Roussanov and Verdelhan (2011) (GVol), the global funding illiquidity

measure of Malkhozov, Mueller, Vedolin and Venter (2016) (GFI), the TED spread (T ED), and the Chicago Board Options Exchange Volatility

Index (VIX), from January 1996 to December 2013. All series in Panel B are standardized to have zero mean and a standard deviation of one. In

both panels, the shaded areas correspond to National Bureau of Economic Research recessions.
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Panel C: Developed countries
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Fig. 3. Currency portfolios sorted on exposure to the foreign exchange (FX) correlation factor ∆FXC. The figure displays annualized average excess

returns of currency portfolios, for different currency and period samples. Currencies are sorted into portfolios at time t based on their exposure to

∆FXC at the end of period t − 1. Exposure is measured by regressing currency excess returns on the FX correlation risk factor ∆FXC over the

preceding 36 months. Panel A presents the portfolio excess returns for the Group of Ten (G10) set of currencies (three ∆FXC beta-sorted currency

portfolios). Panels B and C present the portfolio excess returns for the currencies in the developed country set and in the full country set, respectively

(four ∆FXC beta-sorted currency portfolios for each set). In each panel, Portfolio 1 (Pf1) contains the currencies with the lowest pre-sort ∆FXC

betas, and Portfolio 3 or 4 (Pf3 or Pf4), depending on the set of currencies, contains the currencies with the highest pre-sort ∆FXC betas. In each

panel, average annualized portfolio excess returns are reported for four sample periods: January 1996–December 2013, January 1996–July 2007,

January 1984–December 2013, and January 1984–July 2007.
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Average realized correlation

Fig. 4. Average realized foreign exchange (FX) correlations and average FX correlation risk premiums (CRPs). The figure plots the average FX

correlation risk premiums for all 36 exchange rate pairs in our sample against the corresponding average realized FX correlations. Average FX

correlation risk premiums and average realized FX correlations are expressed in percentage points. We use monthly data from January 1996 to

December 2013 (options data for the euro start in January 1999). The line of best fit is also shown.
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Fig. 5. Average foreign exchange (FX) correlation risk premiums (CRPs) and FX CRP cyclicality. The figure illustrates the association between

average FX correlation risk premiums and measures FX correlation risk premium cyclicality. For each FX pair, FX correlation risk premium

cyclicality is measured by the unconditional correlation between the FX correlation risk premium of the pair and a market variable that acts as a

business cycle proxy. The market variables considered are the global equity volatility measure from Lustig, Roussanov and Verdelhan (2011) (GVol,

Panel A), the global funding illiquidity measure (GFI, Panel B) from Malkhozov, Mueller, Vedolin and Venter (2016), the TED spread (T ED, Panel

C), and the Chicago Board Options Exchange Volatility Index (VIX, Panel D). We use monthly data from January 1996 to December 2013 (options

data for the euro start in January 1999). In each panel, the line of best fit is also shown.
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Fig. 6. Model-implied foreign exchange (FX) correlations. The figure displays the properties of conditional real FX correlation in the model with

identical local pricing factors. Panels A, C, and E plot the conditional FX correlation as a function of the global pricing factor zw, holding the local

pricing factor z constant. Panel A refers to the conditional FX correlation of the similar FX pair (1,2), Panel C refers to the conditional FX correlation

of the dissimilar FX pair (1,3), and Panel E refers to the difference in conditional FX correlation between the two pairs. In each panel, the circles,

solid line, and squares plot the conditional FX correlation, assuming that the local pricing factor z is equal to 0.2, 1, and 5 times its steady state value

z̄, respectively. Panels B, D, and F plot the conditional FX correlation as a function of the local pricing factor z, holding the global pricing factor

zw constant. Panel B refers to the conditional FX correlation of the similar FX pair (1,2), Panel D refers to the conditional FX correlation of the

dissimilar FX pair (1,3), and Panel F refers to the difference in conditional FX correlation between the two pairs. In each panel, the circles, solid

line, and squares plot the conditional FX correlation assuming that the global pricing factor zw is equal to 0.2, 1, and 5 times its steady state value z̄w,

respectively. To plot the figures, we set the model parameters equal to their calibrated values in Table 8. To ensure symmetry, we set the values of

the country exposures to global FX risk such that the condition D1,2 = −D1,3 > 0 is satisfied. We achieve that by imposing γ1 = γmin and γ3 = γmax,

and setting γ2 so that the symmetry condition holds.

45



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
−10 0 10 20 30 40 50 60 70

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Average realized correlation

A
ve

ra
ge

 C
R

P

Fig. 7. Model-implied average realized foreign exchange (FX) correlations and average FX correlation risk premiums (CRPs). The figure plots the

average FX correlation risk premiums for all 36 exchange rate pairs against the corresponding average realized FX correlations using simulated data

for the model with identical local pricing factors (ρ = 1). The parameter values are reported in Table 8, and the simulation details can be found in

Appendix E. Average FX correlation risk premiums and average realized FX correlations are expressed in percentage points.
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Panel A: Average realized correlation and product of average nominal interest rate differentials
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Fig. 8. Model-implied average realized foreign exchange (FX) correlations and products of average nominal interest rate differentials and average

currency excess returns. The figure plots the average realized FX correlations for all 36 exchange rate pairs against the corresponding product of

average nominal interest rate differentials (Panel A) or the product of average currency excess returns (Panel B) for the model with identical local

pricing factors (ρ = 1). The parameter values are reported in Table 8, and the simulation details can be found in Appendix E. Average realized FX

correlations are expressed in percentage points. Products of nominal interest rate differentials and currency excess returns are expressed in squared

percentage points. Nominal interest rate differentials and currency excess returns are annualized.
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Fig. 9. Model-implied currency portfolio excess returns. The figure displays average annualized portfolio excess returns for interest rate-sorted

(Panel A) and ∆FXC beta-sorted (Panel B) currency portfolios using simulated data for the model with identical local pricing factors (ρ = 1).

For Panel A, currencies are sorted into portfolios according to their nominal interest rate, with monthly rebalancing. Portfolio 1 (Pf1) contains low

interest rate currencies, and Portfolio 3(Pf3) contains high interest rate currencies. For Panel B, currencies are sorted into portfolios on their exposure

to ∆FXC at the end of period t − 1, with monthly rebalancing. Exposure is measured by regressing currency excess returns on the correlation risk

factor ∆FXC over the preceding 36 months. Portfolio 1 (Pf1) contains the currencies with the lowest pre-sort ∆FXC betas, and Portfolio 3 (Pf3)

contains the currencies with the highest pre-sort ∆FXC betas. The parameter values are reported in Table 8, and the simulation details can be found

in Appendix E.
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Fig. 10. Model-implied foreign exchange (FX) correlations: independent local pricing factors. The figure displays the properties of conditional real

FX correlation in the model with independent local pricing factors (ρ = 0). Panels A, C, and E plot the conditional FX correlation as a function of

the global pricing factor zw, holding all the local pricing factors constant at their common steady state level z̄. Panel A refers to the conditional FX

correlation of the similar FX pair (1,2), Panel C refers to the conditional FX correlation of the dissimilar FX pair (1,3), and Panel E refers to the

difference in conditional FX correlation between the two pairs. Panels B, D, and F plot the conditional FX correlation as a function of the domestic

pricing factor z0, holding the global pricing factor zw constant at its steady state level z̄w and all the foreign local pricing factors constant at their

common steady state value z̄. Panel B refers to the conditional FX correlation of the similar FX pair (1,2), Panel D refers to the conditional FX

correlation of the dissimilar FX pair (1,3), and Panel F refers to the difference in conditional FX correlation between the two pairs. To plot the

figures, we set the model parameters equal to their calibrated values in Table 8. To ensure symmetry, we set the values of the country exposures to

global FX risk such that the condition D1,2 = −D1,3 > 0 is satisfied. We achieve that by imposing γ1 = γmin and γ3 = γmax, and setting γ2 so that

the symmetry condition holds.
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Fig. 11. Model-implied correlations as function of parameter ρ. The figure presents the point estimates (solid line) and the 95% confidence intervals

(shaded area) of correlations of interest in simulated data for different values of the correlation parameter ρ. A value of ρ = 0 corresponds to the

model with independent local pricing factors, and a value of ρ = 1 corresponds to the benchmark model with identical local pricing factors. We

consider 21 values of ρ, ranging from ρ = 0 to ρ = 1, in increments of 0.05. Panel A presents the correlation between FXC, the measure of

cross-sectional dispersion in conditional FX correlation, and zw, the global pricing factor. Panel B presents the cross-sectional correlation between

average FX correlations and average FX correlation risk premiums (CRPs) across FX pairs. With the exception of parameter ρ, the parameter values

are reported in Table 8. The simulation details can be found in Appendix E. RC = realized correlation.
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