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Abstract 

Higher paternal age at offspring conception increases de novo genetic 

mutations. Based on evolutionary genetic theory we predicted older fathers’ 

children, all else equal, would be less likely to survive and reproduce, i.e. 

have lower fitness. In sibling control studies, we find support for negative 

paternal age effects on offspring survival and reproductive success across 

four large populations with an aggregate N > 1.4 million. Three populations 

were pre-industrial (1670-1850) Western populations and showed negative 

paternal age effects on infant survival and offspring reproductive success. In 

20th-century Sweden, we found minuscule paternal age effects on survival, 

but found negative effects on reproductive success. Effects survived tests for 

key competing explanations, including maternal age and parental loss, but 

effects varied widely over different plausible model specifications and some 

competing explanations such as diminishing paternal investment and 

epigenetic mutations could not be tested. We can use our findings to aid in 

predicting the effect increasingly older parents in today’s society will have on 

their children’s survival and reproductive success. To the extent that we 

succeeded in isolating a mutation-driven effect of paternal age, our results 

can be understood to show that de novo mutations reduce offspring fitness 

across populations and time periods. 

Media summary 

Fathers’ and mothers’ average ages at birth are increasing throughout the 

developed world, though they are presently still on par with pre-industrial 

reproductive timing. We find that children of older fathers have fewer children 



themselves in four populations across four centuries: three pre-industrial 

populations from the 17-19th century, and 20th-century Sweden (total sample 

size > 1.4m). A child gets most new genetic mutations from its father, which 

increase continuously with his age. We can use the father’s age to indirectly 

learn about the effect of new mutations on the child, but some complicating 

factors could not be controlled. 

Background 

A child carries on average about 60 genetic de novo single nucleotide 

mutations (SNMs), which were not present in either of the biological parents’ 

genomes [1,2]. Of those that are not functionally neutral, most reduce 

evolutionary fitness, as random changes to well-calibrated systems usually do 

[3,4]. Importantly, de novo mutations can be dominantly lethal or sterility-

inducing early in life, unlike inherited deleterious variants. The older a father 

is, the more de novo mutations his child will tend to carry. This is dictated by 

the fundamental fact that cell replication engenders errors [5], and male 

spermatogonial, but not female oogonial stem cells, replicate frequently, 

beginning a regular schedule of one division per 16 days in puberty [6]. 

Kong et al. sequenced the genomes of parent-child triplets and quartets, 

so that they could pinpoint mutations and their parental origin [1]. They found 

that a child’s number of de novo SNMs could be predicted very well (94% 

non-stochastic variance explained) by the father’s age at the child’s birth, 

henceforth paternal age. Mothers appears to transmit only a third to half as 

many SNMs per year as fathers [4,7]. Thus, paternal age appears to be the 

main predictor of varying offspring de novo mutation load, in part because of 



its causal role and to a lesser extent because of its correlation with maternal 

age. SNMs are the most common mutational event, but copy number variants 

also increase with paternal age; other structural variants tend to come from 

the father too [8]. Aneuploidies (aberrant chromosome counts) are a well-

known exception: they occur more often when older mothers conceive [2]. 

Subsequent studies have confirmed the central role of paternal age for 

mutations [4,6]. 

In clinical research, paternal age has shown usefulness as a placeholder 

variable for de novo mutations: after initial epidemiological studies reported 

paternal age effects on autism [9], sibling comparison studies confirmed they 

were not due to inherited dispositions [10]. Then, exome-sequencing studies 

corroborated the paternal age effects by directly counting mutations that were 

not present in either parent’s exome and found a higher mutational burden in 

autistic children than in unaffected siblings [11]. These findings elucidated 

disease aetiology both from an evolutionary and a clinical standpoint, by 

explaining how an early-onset disease linked to very low reproductive success 

could linger in the face of natural selection. 

Given the links enumerated above, paternal age should, via increased 

mutations, decrease offspring fitness. By fitness, we mean each offspring’s 

average contribution to the gene pool of successive generations. We can 

approximate this contribution through the offspring’s number of descendants 

[12]. 

So far, most paternal age effect studies have focussed on medical, 

psychological and behavioural traits, such as physical and psychiatric 



disease, or intelligence [10,13–16]. Though many of these traits plausibly 

affect evolutionary fitness now, it is not always clear how they affected fitness 

before the 20th century. Moreover, there are scant records on such traits from 

this time, and they are not necessarily comparable to modern records. Births 

and deaths, or baptisms and burials, on the other hand, have been 

meticulously recorded in churches. Survival and reproductive success were 

and still are good measures of evolutionary fitness. Fitness is the most 

‘downstream’ phenotype of all, in the sense that all non-neutral mutations 

affect it by definition [17]. 

Paternal age effects on mutations should in principle be universal across 

species, but nonhuman animal studies have thus far been restricted to birds 

[18,19] and have, with one exception [19], been studied under the broader 

topic of senescence, without attempts to separate mutational or epigenetic 

effects from behavioural effects of parental senescence on breeding 

capability. Studies on humans have examined isolated fitness components 

such as infant survival, longevity, marriage or reproduction in single 

populations in one place and at one time [20–23]. Some such studies have 

focussed on longevity, which has an ambiguous relationship to evolutionary 

fitness owing to life history trade-offs, such as trading off higher early-life 

reproduction for earlier mortality [24]. Some have examined maternal age or 

birth order, but ignored paternal age [25]. Some focussed on environmental 

explanations, such as decreased parental investment [26], but these are not 

necessarily sufficient to explain paternal age effects. In wild house sparrows, 

the age of the biological parents had negative consequences even in a cross-

fostering experiment [19]. Such experiments are not possible in humans, but 



we can statistically adjust for proxy measures of parental investment. In all, 

owing to variable methodology and sample sizes across studies, we cannot 

reliably compare findings to discover theoretically meaningful moderators. 

The Present Study 

Here we investigated paternal age effects on offspring fitness, focussing 

on the offspring’s reproductive success, i.e. their number of children. To be 

able to compare all children of a father, we also included children who had no 

children themselves, even if they died young. Reproductive success is a good 

predictor of an individual’s contribution to the next generation’s gene pool [12]. 

In addition, we separately examined early survival, marriage success and 

reproductive success as successive episodes across the lifespan during 

which natural and sexual selection occur. Based on evolutionary genetic 

theory, we predicted that in aggregate we would find small, negative effects of 

paternal age on offspring fitness throughout the lifespan [27]. Some de novo 

mutations will have large negative effects early on, but many more will be 

(nearly) neutral. In aggregate, on the population level, this implies a small 

stochastically variable increase in deleterious effects with paternal age. 

Because humans do not time their reproduction randomly, paternal age 

effects may be confounded by social and genetic factors [28–30] that are 

associated with both age of reproduction and offspring reproductive success. 

Because we aimed to isolate mutation-driven effects of paternal age as 

thoroughly as possible, we analysed the paternal age effect within full 

biological sibships and adjusted for a between-family effect. This effectively 

controls for many potential confounds. Full siblings share a parental gene 



pool, so that genetic load, which accumulated over generations, is distributed 

across them randomly. Siblings also usually share much of their early 

environment, and access to resources such as wealth and land. Because 

social convention may additionally link inheritance to birth order, we also 

adjusted for other social factors, such as birth order and parental loss. 

Additionally, we examined grandpaternal age effects where possible. 

In doing so, we try to accomplish two goals: first, to isolate a potential 

biological, mutation-driven effect of paternal age on offspring fitness, and 

second, to compare different populations in different times and places, with 

high statistical power and comparable methodology.  

Methods 

Populations 

To test our hypotheses before the turn of the 20th century, we used 

genealogies drawn from church records in the Saint-Lawrence valley, Québec 

(Canada), the Krummhörn (Germany) and four historical Swedish regions. To 

compare these populations to 20th century Sweden, we used a population-

based linkage study from Swedish national health registers. To ensure 

minimal censoring we drew subsets with adequately complete records. 

We used computerized and linked registers of births (and baptisms), 

deaths (and burials) and marriages to reconstruct family pedigrees and life 

histories for individuals. We call the individuals whose father’s age we 

compared with their siblings’ "anchors" wherever it aids comprehension. 

Further descriptive statistics can be found in Table 1 and on the online 



supplementary website at https://rubenarslan.github.io/paternal_age_fitness/ 

[31]. 

The first population are inhabitants of the Krummhörn in contemporary 

Germany [32]. They were quite isolated and had a stable population size. We 

focussed on the 14,034 anchors born between 1720 and 1835. Married 

female anchors from this period had on average 3.7 children. 

The second population are the French settlers of the Saint-Lawrence 

valley in contemporary Québec, Canada [33,34]. They were an isolated 

frontier population in a harsh climate but they also had access to abundant 

resources and unsettled land. We focussed on the 79,895 anchors born 

between 1670 and 1740. Married female anchors from this period had on 

average 7.7 children. In this dataset, we had access to deep pedigrees, 

allowing us to compare not only siblings for paternal age, but also cousins for 

grandpaternal age in a within-extended-family design. 

The third population are Swedes in the Sundsvall, Northern inland 

(Karesuando to Undersåker, includes Sami people), Linköping and Skellefteå 

regions [35,36]. All individuals in Skellefteå and most individuals in Sundsvall 

were linked between church parishes. In the other regions, some individuals 

appeared in more than one parish. We focussed on the 56,947 anchors born 

between 1737 and 1850. Married female anchors from this period had on 

average 3.6 children. 

Our modern data is the whole population of Sweden. The Swedish Multi-

Generation Register includes records of individuals born after 1932 and alive 

by 1962, as well as their parents. The dataset was linked to the Cause of 



Death register that includes death dates. Information about marriages was 

derived from the population register and the Longitudinal Integration Database 

for Health Insurance and Labour Market Studies [37]. Individuals who ever 

had the civil status of married, widowed or divorced were counted as ever 

married. Because of censoring in this dataset, we focussed on the 1,419,282 

anchors born between 1947 and 1959 for reproductive outcomes and the 

3,428,225 anchors born between 1969 and 2000 for survival outcomes. Ever 

married female anchors from the earlier period had on average 2.2 children 

(never married: 1.1). Hormonal contraception was widely available to and 

used by anchors born between 1947 and 1959. 

Statistical approach 

We employed generalized mixed effect regressions with a group-level 

effect per family to compare full biological siblings within families. We used 

the R package brms [38] to fit Bayesian regression models using the 

probabilistic programming language Stan [39], and adjusted for average 

paternal age within families to isolate the effect of paternal age differences 

between siblings. We adjusted for birth cohort in five-year groupings (small 

groupings at the edge of the range were lumped) to account for secular 

changes in mortality and fertility, as well as residual censoring. We adjusted 

for parental deaths in the first 45 years of life to remove effects related to 

orphanhood and parental senescence (0-1, 2-5, 6-10, …, 45+, unknown). We 

adjusted for maternal age (up to 20, 21-34, 35+), which we binned to reduce 

multicollinearity with paternal age and to capture nonlinear effects. We also 

adjusted for number of siblings, number of older siblings (0-5, 5+), and being 

born last. We used weakly informative priors that are documented in detail in 



the online supplement. The modelling assumptions reflected herein were 

tested for robustness, as documented below. 

We analysed reproductive success for all offspring, including those who 

died in childhood or never married. We used a two-process hurdle-Poisson 

family with a log link. In such a model, zeroes in the outcome variable are 

modelled as arising from a different process, e.g. not clearing the hurdle of 

survival and marriage before attempting reproduction. In the 20th-century 

Swedish data, we fitted a simpler Poisson model because child mortality was 

very low. 

We separated effects into four successive episodes of natural and sexual 

selection. To separate the episodes, we adjusted for success in the preceding 

episode. e1 survival of the first year, e2 survival until age 15 conditional on e1 

survival of the first year, e3 marriage conditional on e2, and e4 number of 

children, conditional on e3. For e4, we included only ever-married anchors 

and adjusted for their number of spouses. In 20th-century Sweden, we also 

examined e5 divorce, conditional on e3, even though this is arguably not 

clearly an episode of selection. All models were fit using a Bernoulli 

regression with a cauchit link to decrease the influence of extreme values 

[40], except e4 which was fit using a Poisson regression with a log link. In 

20th-century Sweden, we could not fit our survival models to the whole 

available dataset for computational reasons and hence used a randomly 

drawn subset (~10% of the 3.4m available).  

We used approximate leave-one-out cross-validation [41] as implemented 

in brms to compare four models: m1 with a linear effect of paternal age, 



without the group-level effect for family, m2 without a paternal age effect, but 

with the group-level effect, m3 like m2 but with a linear paternal age effect, 

and m4, like m3, but additionally with a thin-plate spline smooth [42] on the 

paternal age effect to capture nonlinearity. Comparing m1 and m3 allows us 

to assess the usefulness of group-level effects, comparing m2 and m3 we test 

whether the inclusion of paternal age improves the model fit, comparing m3 

and m4, we test the paternal age effect for nonlinearity. 

After this, we ran several robustness checks to test the modelling 

assumptions in our main models, using m3 as the baseline model. We carried 

out the following analyses: r1 relaxed exclusion criteria (not in 20th-century 

Sweden), r2 had only birth cohort as a covariate, r3 adjusted for birth order 

continuously, r4 adjusted for number of dependent siblings (younger than 5, 

alive at anchor birth) instead of birth order, r5 interacted birth order with 

number of siblings, r6 did not adjust for birth order, r7 adjusted only for 

parental loss in the first 5 years, r8 adjusted for being the first- or last-born 

adult son, r9 adjusted for a continuous nonlinear thin-plate spline smooth [42] 

for birth year instead of 5-year bins, r10 added a group-level slope for paternal 

age, r11 included separate group-level effects for each parent instead of one 

per marriage, r12 added a moderation by anchor sex, r13 adjusted for 

paternal age at first birth, r14 compared a model with linear group fixed 

effects, r15 added a moderator by region and group-level effects by church 

parish (not in 20th-century Sweden), r16 was restricted to the region Skellefteå 

(only in historical Sweden), r17 tested whether hypothetical cases of Down’s 

syndrome could explain the effects, r18 reversed hurdle Poisson and Poisson 

distribution for the respective populations, r19 assumed a normal distribution 



for the outcome, r20 did not adjust for maternal age, r21 adjusted for maternal 

age continuously, r22 relaxed exclusion criteria and included 30 more years 

of birth cohorts, allowing for more potential censoring, r23 used different 

weakly informative priors, r24 used noninformative priors (comparable with 

maximum likelihood), r25 controlled for migration status (not in 20th-century 

Sweden), r26 separated parental age contributions (only in 20th-century 

Sweden). More detailed descriptions of all robustness analyses can be 

found in the supplement section 6.2, code and detailed results are on the 

online supplementary website [31]. 

 For the 20th-century Sweden data, we used a random subset of 80,000 

families in the robustness analyses for computational reasons. We reran 

analyses with all data if the paternal age effect deviated strongly from the m3 

estimate. 

We also ran two sensitivity analyses to test whether results could be 

explained by late-life mortality or reproductive timing of the anchors. To 

contextualize contemporary reproductive timing trends, we also compared 

reproductive timing across populations.  

Effect sizes were calculated as the median effect estimate of a 10 year 

increase in paternal age with a 95% credibility interval. 

Results 

In our main model m3, we found negative effects of paternal age on 

anchor’s number of children in all four populations: a decrease per decade of 

paternal age of -3.0% (95% credibility interval: [-6.1,0.2] in Québec, -3.4% [-



5.9,-0.9] in 20th-century Sweden, -7.3% [-13.4,-1.1] in historical Sweden, and -

8.4% [-24.8,12.0] in the Krummhörn. These effects appeared to be fairly linear 

in m4 (Figure 1), although visual inspection and approximate leave-one-out 

cross-validation [41] showed the effect tapering off after age 45 in 20th-century 

Sweden (~4% of children were born to fathers older than 45, see S.5.4.5.1) 

and after age 50 in Québec in (~8% of children, see S.3.4.5.1). In historical 

Sweden, paternal age had a slight positive effect in m1 before using sibling 

comparisons, in the other populations the effect was negative in all models. In 

the Krummhörn population, the effects of birth order, maternal and paternal 

age could not be disentangled well, as credible intervals were very wide when 

these covariates were considered together. Credible intervals (95%) for 

paternal age excluded zero for m3 in both Swedish populations and for m4 in 

Québec and 20th-century Sweden. These main models are detailed in the 

supplement sections 2-5. 

In our selective episode analyses (Figure 2), we consistently found small 

negative associations between paternal age and anchor’s survival to the first 

year of life in the pre-industrial populations (e1). Comparing children of 25- 

and 35-year-old fathers, yielded percentage decreases of -2.1 (95% credible 

interval [-0.2,-5.4]), -1.0 [-0.7,-1.5], and -1.8 [-1.1,-3.1] in the Krummhörn, 

Québec and historical Sweden respectively. In the 20th-century Swedish 

population, infant mortality was very low, and the effect size of paternal age 

on infant survival, though negative, was correspondingly small (-0.05 [-0.03,-

0.06]). Survival to age 15 years (e2) was not associated with paternal age 

(effects ranging from -0.2 to 0.1). Probability of ever marrying (e3) was 

inconsistently associated with paternal age, negatively in the Krummhörn 



population (-5.2), positively in historical Sweden (7.9), with negligible 

associations in Québec and modern Sweden (0.0 and 0.8), and the 

association in historical and 20th-century Sweden turned negative when not 

accounting for parental loss (not shown). Number of children (e4), after 

accounting for marriage success, was negatively associated with paternal age 

in 20th-century Sweden (-3.8 [-4.6;-3.0]) and historical Sweden (-5.4 [-8.9;-

1.6]), but non-robustly positively associated in the Krummhörn population 

(15.62, negatively when not adjusting for birth order, not shown) and 

negligibly associated in Québec (0.9 [-1.3; 3.2]). Paternal age did not predict 

probability of divorce in 20th-century Sweden (-0.3 [-0.78;0.17]). 

In the grandpaternal age analyses in Québec, we found negative effects of 

both the paternal and maternal grandfather’s age, that were roughly equal in 

size (paternal grandfather: -7% [-4,-9%], maternal grandfather: -5% [-2,-8%] 

fewer children). 

In our robustness analyses (Figure 3), estimated paternal age effect sizes 

varied with our modelling assumptions. The paternal age effect was negative 

throughout almost all models in the two Swedish populations, and varied more 

widely in the Québec and Krummhörn models. In the Krummhörn, only the 

simplest model r2 clearly supported a negative paternal age effect, but across 

robustness checks the estimate tended to be negative. 

In our sensitivity analyses, we found mortality could mostly account for any 

paternal age effects on reproductive success in the two non-Swedish 

populations, but not in the Swedish populations. Among those who ever 



reproduced, paternal age did not predict reproductive success after 

accounting for anchor’s age at first and last birth (confer supplement [31]). 

Further details, including effect sizes and marginal effect plots for all 

covariates, model summaries, and R code for each of the models can be 

found on the online supplementary website at 

https://rubenarslan.github.io/paternal_age_fitness/ [31]. 

Discussion 

We found robust evidence for negative paternal age effects on reproductive 

success in all four populations. Results held up after adjusting for numerous 

covariates, that capture alternative non-genetic explanations, including 

offspring sex, birth cohort, number of siblings, number of older siblings, 

maternal age and loss of either parent up to age 45, and after checking 

robustness across 26 alternative models. In historical Sweden a slight positive 

effect turned negative after we used sibling comparisons, showing that 

systematic confounding between reproductive timing and unobserved familial 

characteristics could obscure an effect. In all populations, effects were 

consistent with a roughly linear dose-response relationship between paternal 

age and number of children. Effects were largest in the Krummhörn (although 

estimates were uncertain in this smallest population), followed by historical 

Sweden, and similarly sized effects in Québec and 20th-century Sweden. 

These differences seemed to be mainly driven by differences in the first 

selective episode, survival of the first year. The 95% credibility intervals for all 

effect sizes overlapped across populations. 



Even across three generations, we found negative grandpaternal age 

effects on offspring reproductive success for both grandfathers in Québec. 

When we separately examined the selective episodes along the lifespan, 

paternal age effects on survival to the first year were negative across all 

historical populations (-1% in Québec to -2% in the Krummhörn and historical 

Sweden), but negligibly small in 20th-century Sweden (-0.05%). We found no 

robust pattern of effects on survival to age 15 and the odds of getting married. 

Some selective episode effects changed substantially depending on certain 

covariates, which may result from adjusting for a collider, mediator or highly 

collinear variable. Therefore, we advocate only cautious interpretation of the 

analyses where the estimate changed substantially upon removal of a 

covariate, especially in the Krummhörn. In the Swedish populations, the 

number of children was negatively associated with paternal age after 

adjusting for marriage success and survival to age 15. Consistent with this, 

our sensitivity analyses showed that mortality could not explain the paternal 

age effect in the Swedish populations. This may, however, reflect a mere 

difference in statistical power to detect remaining effects, as opposed to a 

substantive difference between populations. 

In 20th-century Sweden, the effect in the last selective episode, on number 

of children, was much stronger than the effect on infant mortality. Infant 

mortality in Sweden is among the lowest in the world. Because more than 

99% of children brought to term in the years 1969 to 1999 survived, there is 

little room for selection during this selective episode. Future research should 

examine whether conditions that used to cause infant mortality, such as 



preterm birth, are simply no longer harmful thanks to advances in peri- and 

postnatal care, or whether selection has been partially displaced to before 

birth or to later in life. We might expect displaced selection to take place 

before birth in some cases, as abortions end one fifth of all known 

pregnancies in Western Europe [43]. Most are elective, not therapeutic [44], 

but even women electing to have an abortion may do so selectively after 

considering their own age and paternal characteristics, including age [45]. 

Some paternal-age-linked conditions such as developmental disorders [4] 

might be detected in prenatal screening. Some diseases that would have led 

to early death in our historical populations might also put the afflicted at a 

disadvantage in later episodes of selection in 20th-century Sweden, e.g. 

people with paternal-age-associated [4] developmental disorders might be 

less likely to marry and have children. 

We tried to adjust for all non-biological explanations that could be 

modelled using our data. Still, it is possible that e.g. parental investment 

declines with paternal age in such a manner that our adjustments for parental 

loss, mother’s age, birth order and various other covariates in our robustness 

analyses could only insufficiently correct for this. Such residual confounding 

might lead to inflated estimates of any biological paternal age effect. 

Moreover, several non-genetic biological explanations for paternal age 

effects have been suggested in the literature. Eisenberg et al. [46] linked 

advanced paternal age to longer offspring telomeres, but it remains unclear 

whether this association is causal, whether it would differ between siblings 

and whether it could mediate phenotypic effects. Some authors [47,48] have 



also speculated that advanced paternal age might lead to errors in epigenetic 

regulation or might be linked to imprinting. Because preimplantation embryos 

undergo extensive demethylation and reprogramming [49,50], such 

transgenerational effects are controversial. Still, researchers [51–53] have 

searched for associations between paternal age and the methylation of 

certain genes in sperm and foetal cord blood. The use of small, clinical 

samples renders early work hard to generalise, but some associations have 

been reported.  

Maternal age is another matter: its effects on aneuploidies are well 

established in the literature [54]. Although we adjusted for maternal age 

effects, parents’ ages within families increase in lockstep. Their effects are 

thus difficult to separate in the largely pre-industrial monogamous populations. 

Even though maternal age is linked to aneuploidies, most aneuploid 

conceptions are not carried to term and even live-born children rarely get old. 

Only children with Down’s syndrome live longer, but they are rarely fertile. Our 

robustness checks suggest Down’s syndrome cannot fully explain the 

reported effects. In modern epidemiological data, specific syndromes could be 

easily excluded to test their contribution. Recent studies also estimated small 

effects of maternal age on single nucleotide de novo mutations [4,7]. Better 

understanding the mechanisms by which parental age is linked to offspring 

outcomes therefore seems to be a more worthwhile and achievable goal than 

perfectly separating each parent’s contribution. Still, in modern Sweden we 

could separate parents’ ages better, and in our robustness analyses paternal 

age still negatively predicted number of children after accounting for maternal 



age continuously, the average parental age for each parent, and a dummy 

variable for teenage mothers. 

Apart from these substantive alternative explanations, we also considered 

a number of methodological concerns. First and foremost, the highly collinear 

covariates maternal age, birth order and parental loss made it difficult to 

separate their contributions from that of paternal age. Standard errors were 

wide and different defensible operationalisations resulted in non-negligible 

effect size changes in our robustness analyses. Previous work rarely adjusted 

for parental loss to the extent that we did. This adjustment is debatable, 

because parental death can be both a cause and a consequence of offspring 

death. Still, from our robustness checks, we concluded that adjusting for 

parental loss is usually sensible and results of such adjustments should be 

reported in future work. Birth order, on the other hand, had little effect in most 

of our models, but adjusting for it often led to an increase of the paternal age 

effect size. Second, our church record data in particular have some 

shortcomings. Some children who died before baptism may have gone 

unrecorded, death records may be missing, and migration might lead to 

unobserved censoring [55]. Fortunately, judging from the consistency of our 

robustness analyses, it is at least plausible that these problems are unrelated 

to paternal age after adjusting for covariates in our models, and we assume 

that by using four different populations we limited bias.  

After all these adjustments, we still found negative paternal age effects on 

several measures of evolutionary fitness across populations. But what can 

explain these effects? The work of Kong et al. and others [1,6] has 



demonstrated a strong and likely causal effect of paternal age on de novo 

genetic mutations, but it is not clear that the paternal age effects reported 

here and in the literature are driven predominantly by de novo mutations [56]. 

One approach is to adjust for confounders, as we discuss above. Another is to 

derive expected effect size estimates from evolutionary genetic calculations. 

Gratten et al. [56] made the point that many reported paternal age effects in 

the psychiatric literature are implausibly large and calculated plausible effect 

sizes for mutational components of paternal age effects. Hayward et al. [22] 

estimated a paternal age effect on fitness components and attempted to 

compare their effect size to published estimates of the genome-wide 

deleterious mutation rate per generation (U) [3] times the mean selection 

effect against a deleterious mutation ( ̅ ), yielding the estimated mutation-

caused decrease in fitness as a percentage [27]. As paternal age does not 

perfectly predict the number of de novo mutations per generation, any 

estimate of paternal age effects on fitness would be expected to be slightly 

lower than   ̅ . Unfortunately, no mean selection effect has been estimated 

for non-coding mutations yet and many unknowns and approximately-knowns 

enter the equation for estimates of the genome-wide deleterious mutation 

rate. Thus, only a range of plausible values can be drawn from the literature. 

Hayward et al. estimated values for   ̅  based on only nonsynonymous 

mutations ranging from 0.016-0.031 [22,27,57]. Estimates including mutations 

at all functional sites are even less certain; 0.11-0.22 are high estimates 

based on assuming the same mean selection as against deleterious 

nonsynonymous mutations. If we now assume an increase of 2 mutations per 

year of paternal age [1] and estimate the per-generation decline in fitness 



from de novo mutations by comparing the child of an average father aged 30 

years, transmitting 60 mutations, with the child of a hypothetical father 

transmitting no mutations, for our models m3 in all four populations, we obtain 

0.16, 0.07, 0.20, and 0.14 in the Krummhörn, Québec, historical and 20th-

century Sweden respectively. Using the arguably better estimate from our 

robustness analysis r26 in which we could better adjust for maternal age in 

20th-century Sweden, we obtain an estimate of 0.065. Given the imperfect 

correlation between paternal age and de novo count, the variability of 

estimates in our robustness checks, sampling error and the plausibility of 

residual confounding, we think our estimates are on the high side of the real 

value, but not completely at odds with Hayward et al.’s calculations of   ̅  

and consistent with their own estimated value of 0.12. We have also explored 

the relevant parameter space from Gratten et al. [56] and found the resulting 

effect sizes broadly consistent with the results from our infant survival models. 

These plausibility checks are documented in greater detail in the online 

supplement [31]. 

Implications and conclusions 

Across four large population-based datasets, we found robust support for 

the prediction that higher paternal age linearly decreases offspring fitness. 

Although we cannot be sure that we succeeded in isolating an effect of de 

novo mutations given the multiple alternative explanations and methodological 

caveats, the effects are detectable in all four populations and hence plausibly 

caused to some extent by paternal age. Depending on their cause, but not 

only if that cause is mutational, paternal age effects could have implications 

for policy: Descriptive data show a fall from 1930 to 1970 and a steady rise in 



maternal and paternal ages since 1970 in Sweden. However, average 

parental ages in 2010 were still lower than in 1737-1880 (supplement section 

7). Although people start reproducing later, they also stop earlier. Contrary to 

common news and lay scientific accounts, contemporary parents do not 

reproduce unprecedentedly late on average [1,45,58]. While advanced 

parental ages at first birth may entail smaller families, pre-industrial 

populations had similar average ages at birth and were not overwhelmed by 

mutational stress. So we do not predict that contemporary reproductive timing 

will lead to unprecedented or unbearable de novo mutational loads and 

concomitant changes in the prevalence of genetic disorders. Contrary to oft-

repeated doomsaying [59], purifying selection against mutations, in so far as 

paternal age effects on fitness can be an appropriate index, has not been 

completely cushioned in the age of modern medicine, hormonal contraception 

and social transfers [3,60]. 

Although our design is not ideal for separating the influence of maternal 

and paternal age, many secular trends and policies will affect both. Future 

research could use genome-sequenced families with functionally annotated 

and phased mutations to better characterize the contribution of paternal age 

[4]. Future research could also isolate a biological paternal age effect on early 

mortality in nonhuman animals with large recorded pedigrees, such as 

artificially inseminated breeding cattle. This would rule out most social 

confounds by design, but the much shorter breeding lifespan might limit 

generalizability to humans. 
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Figure legends 

Fig. 1: Paternal age effects on number of surviving children.  

Marginal effect plots for paternal age effect splines estimated in m4. 

Covariates were set to their mean or reference level, respectively. The solid 

lines show the posterior median; the dashed line is a linear line fit over the 

spline and inversely weighted by standard error to examine whether the spline 

fit deviates from linearity. The shaded areas show the 95% credibility intervals 

for the reference individuals and include uncertainty related to covariate effect 

sizes.  

Fig. 2: Paternal age effects on subsequent selective episodes.  

Estimated percentage changes in the respective selective episode 

(comparing children of 25- to 35-year-old fathers) with 80% and 95% 

credibility intervals.  

Fig. 3 Robustness checks across 26 models 

Estimates of the effect of a ten-year difference in paternal age on number 

of children from model m3 and up to 26 variations on this basic model 

(described in the method section and in further detail on the supplementary 

website). The solid line and point show the estimate and 95% credibility 

interval from m3, the dashed lines show the deviation from this estimate in the 

respective robustness check model, showing how much estimates can vary 

depending on the model specification. Credibility intervals for the robustness 

models are omitted as they are almost constant in width. The intervals 



excluded zero in all models in 20th-century Sweden, but not for all models in 

the other populations. 
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