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We extend the principal component analysis (PCA) to second-
order stationary vector time series in the sense that we seek for a
contemporaneous linear transformation for a p-variate time series
such that the transformed series is segmented into several lower-
dimensional subseries, and those subseries are uncorrelated with each
other both contemporaneously and serially. Therefore those lower-
dimensional series can be analyzed separately as far as the linear
dynamic structure is concerned. Technically it boils down to an eige-
nanalysis for a positive definite matrix. When p is large, an additional
step is required to perform a permutation in terms of either maxi-
mum cross-correlations or FDR based on multiple tests. The asymp-
totic theory is established for both fixed p and diverging p when
the sample size n tends to infinity. Numerical experiments with both
simulated and real data sets indicate that the proposed method is
an effective initial step in analyzing multiple time series data, which
leads to substantial dimension reduction in modelling and forecasting
high-dimensional linear dynamical structures. Unlike PCA for inde-
pendent data, there is no guarantee that the required linear transfor-
mation exists. When it does not, the proposed method provides an
approximate segmentation which leads to the advantages in, for ex-
ample, forecasting for future values. The method can also be adapted
to segment multiple volatility processes.

1. Introduction. Modelling multiple time series, also called vector time
series, is always a challenge, even when the vector dimension p is moderately
large. While most the inference methods and the associated theory for uni-
variate autoregressive and moving average (ARMA) processes have found
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their multivariate counterparts (Lütkepohl, 2006), vector autoregressive and
moving average (VARMA) models are seldom used directly in practice when
p ≥ 3. This is partially due to the lack of identifiability for VARMA models
in general. More fundamentally, those models are overparametrized; leading
to flat likelihood functions which cause innate difficulties in statistical infer-
ence. Therefore finding an effective way to reduce the number of parameters
is particularly felicitous in modelling and forecasting multiple time series.
The urge for doing so is more pertinent in this modern information age, as
it has become commonplace to access and to analyze high dimensional time
series data with dimension p in the order of hundreds or more. Big time
series data arise from, among others, panel study for economic and natural
phenomena, social network, healthcare and public health, financial market,
supermarket transactions, information retrieval and recommender systems.

Available methods to reduce the number of parameters in modelling vec-
tor time series can be divided into two categories: regularization and di-
mension reduction. The former imposes some conditions on the structure
of a VARMA model. The latter represents a high-dimensional process in
terms of several lower-dimensional processes. Various regularization meth-
ods have been developed in literature. For example, Jakeman, Steele and
Young (1980) adopted a two stage regression strategy based on instrumen-
tal variables to avoid using moving average explicitly. Different canonical
structures are imposed on VARMA models [Chapter 3 of Reinsel (1993),
Chapter 4 of Tsay (2014), and references within]. Structural restrictions are
imposed in order to specify and to estimate some reduced forms of vector
autoregressive (VAR) models [Chapter 9 of Lütkepohl (2006), and refer-
ences within]. Davis, Zang and Zheng (2012) proposed a VAR model with
sparse coefficient matrices based on partial spectral coherence. Under dif-
ferent sparsity assumptions, VAR models have been estimated by LASSO
regularization (Shojaie and Michailidis, 2010; Song and Bickel, 2011), or by
the Dantzig selector (Han and Liu, 2013). Guo, Wang and Yao (2016) con-
sidered high-dimensional autoregression with banded coefficient matrices.
The dimension reduction methods include the canonical correlation anal-
ysis of Box and Tiao (1977), the independent component analysis (ICA)
of Back and Weigend (1997), the principal component analysis (PCA) of
Stock and Watson (2002), the scalar component analysis of Tiao and Tsay
(1989) and Huang and Tsay (2014), the dynamic orthogonal components
analysis of Matteson and Tsay (2011). Another popular approach is to rep-
resent multiple time series in terms of a few latent factors defined in various
ways. There is a large body of literature in this area published in the outlets
in statistics, econometrics and signal processing. An incomplete list of the
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publications includes Anderson (1963), Peña and Box (1987), Tong, Xu and
Kailath (1994), Belouchrani et al. (1997), Bai and Ng (2002), Theis, Meyer-
Baese and Lang (2004), Stock and Watson (2005), Forni et al. (2005), Pan
and Yao (2008), Lam, Yao and Bathia (2011), Lam and Yao (2012) and
Chang, Guo and Yao (2015).

A new dimension reduction method is proposed in this paper. We seek for
a contemporaneous linear transformation such that the transformed series is
segmented into several lower-dimensional subseries, and those subseries are
uncorrelated with each other both contemporaneously and serially. Therefore
they can be modelled or forecasted separately, as far as linear dependence is
concerned. This reduces the number of parameters involved in depicting lin-
ear dynamic structure substantially. While the basic idea is not new, which
has been explored with various methods including some aforementioned ref-
erences, the method proposed in this paper (i.e. the new PCA for time
series) is new, simple and effective. Technically the proposed method boils
down to an eigenanalysis for a positive definite matrix which is a quadratic
function of the cross correlation matrix function for the observed process.
Hence it is easy to implement and the required computation can be carried
out with, for example, an ordinary personal computer or laptop for the data
with dimension p in the order of thousands.

The method can be viewed as an extension of the standard PCA for
multiple time series, therefore, is abbreviated as TS-PCA. However the seg-
mented subseries are not guaranteed to exist as those subseries must not
correlate with each other across all times. This is a marked difference from
the standard PCA. The real data examples in Section 4 indicate that it is
often reasonable to assume that the segmentation exists. Furthermore, when
the assumption is invalid, the proposed method provides some approximate
segmentations which ignore some weak though significant correlations, and
those weak correlations are of little practical use for modelling and forecast-
ing. Thus the proposed method can be used as an initial step in analyz-
ing multiple time series, which often transforms a multi-dimensional prob-
lem into several lower-dimensional problems. Chang, Yao and Zhou (2017)
demonstrates that such an initial transformation increases the power in test-
ing for high-dimensional white noise. Furthermore the results obtained for
the transformed subseries can be easily transformed back to the original
multiple time series. Illustration with real data examples indicates clearly
the advantages in post-sample forecasting from using the proposed TS-PCA.
The R-package PCA4TS, available from CRAN project, implements the pro-
posed methodology.

The proposed TS-PCA can be viewed as a version of ICA. In fact our goal
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is the same in principle as the ICA using autocovariances presented in Sec-
tion 18.1 of Hyvärinen, Karhunen and Oja (2001). However, the nonlinear
optimization algorithms presented there are to search for a linear transfor-
mation such that all the off-diagonal elements of the autocovariance matrices
for the transformed vector time series are minimized. See also Tong, Xu and
Kailath (1994), and Belouchrani et al. (1997). To apply those algorithms to
our setting, we need to know exactly the block diagonal structure of auto-
covariances of the transformed vector process (i.e. the number of blocks and
the sizes of all the blocks), which is unknown in practice. Furthermore, our
method is simple and fast, and therefore is applicable to high-dimensional
cases. Cardoso (1998) extends the basic idea of ICA to the so called multi-
variate ICA, which requires the transformed random vector to be segmented
into several independent groups with possibly more than one component in
each group. But Cardoso (1998) does not provide a pertinent algorithm for
multivariate ICA. Furthermore it does not consider the dependence across
different time lags. TS-PCA is also different from the dynamic PCA pro-
posed in Chapter 9 of Brillinger (1981) which decomposes each component
time series as the sum of moving averages of several uncorrelated white noise
processes. In our TS-PCA, no lagged variables enter the decomposition.

The rest of the paper is organized as follows. The methodology is spelled
out in Section 2. Section 3 presents the associated asymptotic properties of
the proposed method. Numerical illustration with real data are reported in
Section 4. Section 5 extends the method to segmenting a multiple volatil-
ity process into several lower-dimensional volatility processes. Some final
remarks are given in Section 6. All technical proofs and numerical illus-
tration with simulated data are relegated to the supplementary material
[Chang, Guo and Yao (2017)]. We always use the following notation. For

any m × k matrix H = (hi,j), let ‖H‖2 = λ
1/2
max(HHT) and ‖H‖F =

(
∑m

i=1

∑k
j=1 h

2
i,j)

1/2, where λmax(HHT) denotes the largest eigenvalue of
HHT.

2. Methodology.

2.1. Setting and method. Let yt be observable p × 1 weakly stationary
time series. We assume that yt admits a latent segmentation structure:

(2.1) yt = Axt,

where xt is an unobservable p×1 weakly stationary time series consisting of
q (> 1) both contemporaneously and serially uncorrelated subseries, and A

is an unknown constant matrix. Hence all the autocovariances of xt are of
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the same block-diagonal structure with q blocks. Denote the segmentation
of xt by

(2.2) xt = (x
(1),T
t , . . . ,x

(q),T
t )T

with Cov(x
(i)
t ,x

(j)
s ) = 0 for all t, s and i 6= j. Therefore x

(1)
t , . . . ,x

(q)
t can be

modelled or forecasted separately as far as their linear dynamic structure is
concerned.

Example 1. Before we spell out how to find the segmentation trans-
formation A in general, we consider the monthly temperatures of 7 cities
(Nanjing, Dongtai, Huoshan, Hefei, Shanghai, Anqing and Hangzhou) in
Eastern China from January 1954 to December 1998. Fig 1(a) plots the cross
correlations of these 7 temperature time series. Both the autocorrelation of
each component series and the cross correlation between any two compo-
nent series are dominated by the annual temperature fluctuation; showing
the strong periodicity with the period 12. Now we apply the linear transfor-
mation xt = Byt with

B =




0.244 −0.066 0.019 −0.050 −0.313 −0.154 0.200
−0.703 0.324 −0.617 0.189 0.633 0.499 −0.323
0.375 1.544 −1.615 0.170 −2.266 0.126 1.596
3.025 −1.381 −0.787 −1.691 −0.212 1.188 −0.165

−0.197 −1.820 −1.416 3.269 0.301 −1.438 1.299
−0.584 −0.354 0.847 −1.262 −0.218 −0.151 1.831
1.869 −0.742 0.034 0.501 0.492 −2.533 0.339




.

See Section 4 below for how B is calculated. Fig 1(b) shows that the first two
transformed component series are significantly correlated both concurrently
and serially, and there are also small but significant correlations in the (3, 2)-
th panel; indicating the linear dependence between the 2nd and the 3rd
transformed component series. Apart from these, there is little significant
cross correlation among all the other pairs of component series. This visual
observation suggests to segment the 7 transformed series into 5 uncorrelated
groups: {1, 2, 3}, {4}, {5}, {6} and {7}.

This example indicates that the segmentation transformation transfers
the problem of analyzing a 7-dimensional time series into the five lower-
dimensional problems: four univariate time series and one 3-dimensional time
series. Those five time series can and should be analyzed separately as there
are no cross correlations among them at all time lags. The linear dynamic
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structure of the original series is deduced by those of the five transformed
series, as Cov(yt+k,yt) = ACov(xt+k,xt)A

T.
Now we spell out how to find the segmentation transformation under (2.1)

and (2.2). Without the loss of generality we may assume

(2.3) Var(yt) = Ip and Var(xt) = Ip,

where Ip denotes the p × p identity matrix. This first equation in (2.3)

amounts to replace yt by V̂−1/2yt as a preliminary step in practice, where
V̂ is a consistent estimator for Var(yt). As both A and xt are unobserv-
able, the second equation in (2.3) implies that we view (A{Var(xt)}1/2,
{Var(xt)}−1/2xt) as (A,xt) in (2.1). More importantly, the latter perspective
will not alter the block-diagonal structure of the autocovariance matrices of
xt. Now it follows from (2.1) and (2.3) that Ip = Var(yt) = AVar(xt)A

T =
AAT. Thus, A in (2.1) is an orthogonal matrix under (2.3).

Let pj be the length of x
(j)
t . Write A = (A1, . . . ,Aq), where Aj has pj

columns. Since xt = ATyt, it follows from (2.2) that

(2.4) x
(j)
t = AT

j yt, j = 1, . . . , q.

Let Hj be any pj × pj orthogonal matrix, and H = diag(H1, . . . ,Hq). Then
(A, xt) in (2.1) can be replaced by (AH, HTxt) while (2.2) still holds. Hence
A and xt are not uniquely identified in (2.1), even with the additional as-
sumption (2.3). In fact under (2.3), only M(A1), . . . ,M(Aq) are uniquely
defined by (2.1), where M(Aj) denotes the linear space spanned by the

columns of Aj . Consequently, ΓT
j yt can be taken as x

(j)
t for any p × pj

matrix Γj as long as ΓT
jΓj = Ipj and M(Γj) = M(Aj).

To discover the latent segmentation, we need to estimateA = (A1, . . . ,Aq),
or more precisely, to estimate linear spaces M(A1), . . . ,M(Aq). To this end,
we introduce some notation first. For any integer k, letΣy(k) = Cov(yt+k,yt)
and Σx(k) = Cov(xt+k,xt). For a prescribed positive integer k0, define

Wy =

k0∑

k=0

Σy(k)Σy(k)
T = Ip +

k0∑

k=1

Σy(k)Σy(k)
T,(2.5)

Wx =

k0∑

k=0

Σx(k)Σx(k)
T = Ip +

k0∑

k=1

Σx(k)Σx(k)
T.

Then both Σx(k) and Wx are block-diagonal, and

(2.6) Wy = AWxA
T.
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Note that both Wy and Wx are positive definite matrices. Let

(2.7) WxΓx = ΓxD,

i.e. Γx is a p×p orthogonal matrix with the columns being the orthonormal
eigenvectors of Wx, and D is a diagonal matrix with the corresponding
eigenvalues as the elements on the main diagonal. Then (2.6) implies that
WyAΓx = AΓxD. Hence the columns of Γy ≡ AΓx are the orthonormal
eigenvectors of Wy. Consequently,

(2.8) ΓT
yyt = ΓT

xA
Tyt = ΓT

xxt,

the last equality follows from (2.1). Put

(2.9) Wx = diag(Wx,1, . . . ,Wx,q).

Then Wx,j is a pj × pj positive definite matrix, and the eigenvalues of Wx,j

are also the eigenvalues of Wx. Suppose that Wx,i and Wx,j do not share
the same eigenvalues for any i 6= j. Then if we line up the eigenvalues of
Wx (i.e. the eigenvalues of Wx,1, . . . ,Wx,q combining together) in the main
diagonal ofD according to the order of the blocks inWx, Γx must be a block-
diagonal orthogonal matrix of the same shape as Wx; see Proposition 1(i).
However the order of the eigenvalues is latent, and any Γx defined by (2.7)
is nevertheless a column-permutation (i.e. a matrix consisting of the same
column vectors but arranged in a different order) of such a block-diagonal
orthogonal matrix; see Proposition 1(ii). Hence each component of ΓT

xxt is a
linear transformation of the elements in one of the q subseries only, i.e. the p
components of ΓT

yyt = ΓT
xxt can be partitioned into the q groups such that

there exist neither contemporaneous nor serial correlations across different
groups. Thus ΓT

yyt can be regarded as a permutation of xt, and Γy can be
viewed as a column-permutation of A; see the discussion below (2.4). This
leads to the following two-step estimation for A and xt:

Step 1. Let Ŝ be an estimator for Wy. Calculate a p× p orthogonal matrix
Γ̂y with the columns being the orthonormal eigenvectors of Ŝ.

Step 2. The columns of Â = (Â1, . . . , Âq) are a permutation of the columns

of Γ̂y such that x̂t = ÂTyt is segmented into q uncorrelated subseries

x̂
(j)
t = ÂT

j yt, j = 1, . . . , q.

Step 1 is the key, as it provides an estimator forA except that the columns of
the estimator are not grouped together according to the latent segmentation.
The estimator Ŝ should be consistent, and will be constructed under various
scenarios in Section 3 below. The permutation in Step 2 above can be carried

out in principle by visual observation: plot cross correlogram of ẑt ≡ Γ̂
T

yyt
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(using, for example, R-function acf); see Fig 1(b). We then put those com-
ponents of ẑt together when there exist significant cross-correlations (at any
lags) between those component series. Then Â is obtained by re-arranging
the order of the columns of Γ̂y accordingly.

Remark 1. (i) Appropriate precaution should be exercised in the visual
observation stated above. First the visual observation become impractical
when p is large. Furthermore most correlogram plots produced by statistical
packages (including R) use the confidence bounds at ±1.96/

√
n for sample

cross-correlations of two time series. Unfortunately those bounds are only
valid if at least one of the two series is white noise. In general, the confidence
bounds depend on the autocorrelations of the two series. See Theorem 7.3.1
of Brockwell and Davis (1996). In Section 2.2, we will describe how the
permutation can be performed without the benefit of visual observation for
the cross correlogram of ẑt. Ledoit and Wolf (2004) and Paparoditis and
Politis (2012) provide more modern approaches to view correlations.

(ii) Wy defined in (2.5) combines the information over different time lags
together. In practice we need to specify the integer k0. Note that all terms
on the right-hand side of (2.5) is non-negative definite. Hence there is no
information cancellation over different lags. This makes the method insen-
sitive to the choice of k0. In practice a small k0 is often sufficient, as long
as the first k0 lags carry sufficient information on the latent block diago-
nal structure even when the auto/cross-correlations beyond lag k0 are still
significant. The examples in Section 4 lend further support to this assertion.

Proposition 1. (i) The orthogonal matrix Γx in (2.7) can be taken as
a block-diagonal orthogonal matrix with the same block structure as Wx.

(ii) An orthogonal matrix Γx satisfies (2.7) if and only if its columns are a
permutation of the columns of a block-diagonal orthogonal matrix described
in (i), provided that any two different blocks Wx,i and Wx,j do not share
the same eigenvalues.

Proposition 1(ii) requires that the q blocks of Wx do not share the same
eigenvalue(s). However it does not rule out the possibility that each block
Wx,j may have multiple eigenvalues. When different blocks share the same
eigenvalue(s), Proposition 1 still holds with Wx replaced by W⋆

x which is
also a block diagonal matrix with fewer than q blocks obtained by combining
together thoseWx,j’s sharing at least one common eigenvalue into one larger
block. This means that the proposed method will not be able to separate,

for example, x
(1)
t and x

(2)
t if Wx,1 and Wx,2 share at least one common

eigenvalue.
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2.2. Permutation.

2.2.1. Permutation rule. The columns of Â is a permutation of the
columns of Γ̂y. The permutation is determined by grouping the compo-

nents of ẑt = Γ̂
T

yyt into q groups, where q and the cardinal numbers of those
groups are unknown. Write ẑt = (ẑ1,t, . . . , ẑp,t)

T. Let ρi,j(h) denote the cross
correlation between the two component series ẑi,t and ẑj,t at lag h. We say
ẑi,t and ẑj,t connected if the multiple null hypothesis

(2.10) H0 : ρi,j(h) = 0 for any h = 0,±1,±2, . . . ,±m

is rejected, where m ≥ 1 is a prescribed integer. Thus there exists significant
evidence indicating non-zero correlations between two connected component
series. Hence those components should be put in the same group. We may
take m = 20, or m sufficiently large but smaller than n/4, in the spirit of the
rule of thumb proposed by Box and Jenkins (1970, p.30), as we exclude long
memory processes in this paper. Note that the autocorrelations of stationary
(causal) VARMA processes decay exponentially fast. The permutation in
Step 2 in Section 2.1 can be performed as follows.

i. Start with the p groups with each group containing one component of
ẑt only.

ii. Combine two groups together if one connected pair are split over the
two groups.

iii. Repeat Step ii above until all connected pairs are within one group.

We introduce below two methods for identifying the connected pair compo-

nents of ẑt = Γ̂
T

yyt.

2.2.2. Maximum cross correlation method. One natural way to test hy-
pothesis H0 in (2.10) is to use the maximum cross correlation over the lags
between −m and m:

(2.11) L̂n(i, j) = max
|h|≤m

|ρ̂i,j(h)|,

where ρ̂i,j(h) is the sample cross correlation between ẑi,t and ẑj,t at lag

h. We would reject H0 for the pair (ẑi,t, ẑj,t) if L̂n(i, j) is greater than an
appropriate threshold value.

Instead of conducting multiple tests for each of the p0 ≡ p(p− 1)/2 pairs
components of ẑt, we propose a ratio-based statistic to single out those pairs
for which H0 will be rejected. To this end, we re-arrange the p0 obtained
L̂n(i, j)’s in the descending order: L̂1 ≥ · · · ≥ L̂p0 . Define

(2.12) r̂ = arg max
1≤j<c0p0

L̂j/L̂j+1,
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where c0 ∈ (0, 1) is a prescribed constant. In all the numerical examples in
Section 4 and the supplementary material [Chang, Guo and Yao (2017)] we
use c0 = 0.75. We reject H0 for the pairs corresponding to L̂1, . . . , L̂r̂.

The intuition behind this approach is as follows. Suppose among in total
p0 pairs of the components of xt there are r connected pairs only. Arrange the
true maximum cross correlations in the descending order: L1 ≥ · · · ≥ Lp0 .
Then Lr > 0 and Lr+1 = 0, and the ratio Lj/Lj+1 takes value ∞ for
j = r. This motivates the estimator r̂ defined in (2.12) in which we exclude
some minimum L̂j in the search for r̂ as c0 ∈ (0, 1). This is to avoid the
fluctuations due to the ratios of extremely small values. This causes little
loss in information as, for example, 0.75p0 connected pairs would likely group
most, if not all, component series together; see, e.g., Example 2 in Section
4. The similar idea has been used in defining the factor dimensions in Lam
and Yao (2012) and Chang, Guo and Yao (2015).

To state the asymptotic property of the above approach, we use a graph
representation. Let the graph contain p vertexes V̂ = {1, . . . , p}, representing
p component series of ẑt. Define an edge connecting vertexes i and j if H0

in (2.10) for (ẑi,t, ẑj,t) is rejected by the above ratio method. Let Ên be the
set consisting all those edges. Let V = {1, . . . , p} represent the p component
series of zt = ΓT

yyt defined in (2.8), and write zt = (z1,t, . . . , zp,t)
T. Define

E =
{
(i, j) : max

|h|≤m
|Corr(zi,t+h, zj,t)| > 0, 1 ≤ i < j ≤ p

}
.

Each (i, j) ∈ E can be reviewed as an edge. The graph (V̂ , Ên) is a consistent
estimate for the graph (V,E); see Proposition 2 below. To avoid the technical
difficulties in dealing with ‘0/0’, we modify (2.12) as follows:

(2.13) r̂ = arg max
1≤j<p0

(L̂j + δn)/(L̂j+1 + δn),

where δn > 0 is a small constant. Assume

min
(i,j)∈E

max
|h|≤m

|Corr(zi,t+h, zj,t)| ≥ ǫn

for some ǫn > 0 and nǫ2n → ∞. Write

(2.14) ̟n = min
1≤i<j≤p

min
λ∈σ(Wx,i),µ∈σ(Wx,j )

|λ− µ|,

where Wx,i is defined in (2.9), σ(Wx,i) denotes the set consisting of all the
eigenvalues of Wx,i. Here ǫn denotes the weakest signal to be identified in E,
and ̟n is the minimum difference between the eigenvalues from the different
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diagonal blocks in Wx. Arrange the true maximum cross correlations of zt
in the descending order L1 ≥ · · · ≥ Lp0 and define

χn = max
1≤j<r−1

Lj/Lj+1,

where r = |E|. Recall that Ŝ is the estimator for Wy used in Step 1 in
Section 2.1. Let

(2.15) Σ̂y(h) =
1

n

n−h∑

t=1

(yt+h − ȳ)(yt − ȳ)T and ȳ =
1

n

n∑

t=1

yt.

Now we state the consistency in Proposition 2, which requires ̟n > 0 [see
Proposition 1(ii)]. The proof of Proposition 2 is similar to that of Theorem
2.4 of Chang, Guo and Yao (2015), and is therefore omitted.

Proposition 2. Let χnδn = o(ǫn) and ̟−1
n ‖Ŝ−Wy‖2 = op(δn). Let the

singular values of Σ̂y(h) be uniformly bounded away from ∞ for all |h| ≤ m.

Then for r̂ defined in (2.13), it holds that P(Ên = E) → 1.

Remark 2. (i) The inserting of δn in the definition of r̂ in (2.13) is to
avoid the undetermined “0/0” cases. In practice, we use r̂ defined by (2.12)
instead, but with the search restricted to 1 ≤ j ≤ c0p0, as δn subscribed
in Proposition 2 is unknown. The simulation results reported in the supple-
mentary material [Chang, Guo and Yao (2017)] indicate that (2.12) works
reasonably well. See also Lam and Yao (2012) and Chang, Guo and Yao
(2015).

(ii) The uniform boundedness for the singular values of Σ̂y(h) was used to

simplify the presentation. If max|h|≤m ‖Σ̂y(h)‖2 = Op(νn) for some diverging

νn, we require the condition ̟−1
n νn‖Ŝ−Wy‖2 = op(δn).

(iii) The finite sample performance can be improved by prewhitening each
component series ẑi,t first. Then the asymptotic variance of ρ̂i,j(h) is 1/n
as long as Corr(zi,t+h, zj,t) = 0, see Corollary 7.3.1 of Brockwell and Davis
(1996). This makes the maximum cross correlations for different pairs more
comparable. Note that two weakly stationary time series are correlated if
and only if their prewhitened series are correlated.

2.2.3. FDR based on multiple tests. Alternatively we can identify the
connected pair components of ẑt by a false discovery rate (FDR) procedure
built on the multiple tests for cross correlations of each pair series.

In the same spirit of Remark 2(iii), we first prewhiten each component
series of ẑt separately, and then look into the cross correlations of the
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prewhitened series which are white noise. Thus we only need to test hy-
pothesis (2.10) for two white noise series.

To fix the idea, let ξt and ηt denote two white noise series. Let ρ(h) =
Corr(ξt+h, ηt) and ρ̂(h) be its sample analogue. By Theorem 1 of Brockwell
and Davis (1996), ρ̂(h1) and ρ̂(h2), for any h1 6= h2, are asymptotically
independent as n → ∞, provided that ρ(h) = 0 for all h, and the under-
lying processes are Gaussian. Hence the P -value for testing a simple null
hypothesis ρ(h) = 0 based on statistic ρ̂(h) is approximately equal to ph =
2Φ(−√

n|ρ̂(h)|), where Φ(·) denotes the distribution function of N(0, 1). Let
p(1) ≤ · · · ≤ p(2m+1) be the order statistics of {ph : h = 0,±1, . . . ,±m}.
As these P -values are approximately independent for large n, a multiple
test at the significant level α ∈ (0, 1) rejects H0, defined in (2.10), if p(j) ≤
jα/(2m + 1) for at least one 1 ≤ j ≤ 2m+ 1. See Simes (1986) for details.
Sarkar and Chang (1997) showed that it is still a valid test at the level α
if ρ̂(h), for different h, are positive-dependent. Hence the P -value for this

multiple test for the null hypothesis H0 is P = min1≤j≤2m+1 p(j) (2m+1)/j.
The prewhitening is necessary in conducting the multiple test above, as
otherwise ρ̂(h1) and ρ̂(h2) (h1 6= h2) are not asymptotically independent.

We can calculate the P -value for testing H0 in (2.10) for each pair of the
components of ẑt, resulting in the total p0 ≡ p(p−1)/2 P -values. Arranging
those P -values in ascending order: P(1) ≤ · · · ≤ P(p0). Let

(2.16) d = max{k : 1 ≤ k ≤ p0, P(k) ≤ kβ/p0}

for a given small β ∈ (0, 1). Then the FDR procedure with the error rate con-
trolled under β rejects the hypothesis H0 for the d pairs of the components
of ẑt corresponding to the P -values P(1), . . . , P(d), i.e. those d pairs of compo-
nents are connected. Since the P -values Pj ’s are no longer independent, the
β in (2.16) no longer admits the standard FDR interpretation. Nevertheless
the P -values P(1), . . . , P(d) give another way (in addition to the maximum
cross correlation) to rank the pairs of the components of ẑt according to the
strength of the cross correlations. In fact the ranking of the pairs in terms of
the correlation strength matters most as far as the dimension-reduction is
concerned. See, e.g., Table 2 for Example 2 in Section 4. Different segmenta-
tions resulting from using different tunning parameters are caused effectively
by how many those small (maybe still significant) correlations being used
in determining a segmentation. The impact on, for example, post-sample
forecasting is almost negligible. See Table 1 in Section 4.

3. Theoretical properties. To gain more appreciation of the new
methodology, we will show that there exists a permutation transformation



PCA FOR TIME SERIES 13

which permutes the column vectors of Γ̂y, and the resulting new orthog-

onal matrix, denoted as Â = (Â1, . . . , Âq), is an adequate estimator for

the transformation matrix A in (2.1) in the sense that M(Âj) is consis-

tent to M(Aj) for each j = 1, . . . , q. Note that the columns of Γ̂y are the

p orthonormal eigenvectors of the estimator Ŝ for Wy; see Step 1 of the
proposed method in Section 2.1. In this section, we treat this permutation
transformation as an ‘oracle’. In practice it is identified either by a visual
observation or by the methods presented in Section 2.2. Our goal here is
to show that Γ̂y is a valid estimator for A upto a column permutation. We
establish the consistency under three different asymptotic modes: (i) the
dimension p is fixed, (ii) p = o(nc), and (iii) log p = o(nc), as the sample
size n → ∞, where c > 0 is a small constant. The convergence rates derived
reflect the asymptotic orders of the estimation errors when p is in different
orders in relation to n.

To measure the errors in estimating M(Aj), we adopt a metric on the
Grassmann manifold of r-dimensional subspaces of Rp: for two p × r half
orthogonal matrices H1 and H2 satisfying the condition HT

1H1 = HT
2H2 =

Ir, the distance between M(H1) and M(H2) is defined as

D(M(H1),M(H2)) =
√

1− r−1tr(H1H
T
1H2H

T
2 ).

Then D(M(H1),M(H2)) ∈ [0, 1]. It is equal to 0 if and only if M(H1) =
M(H2), and to 1 if and only if M(H1) and M(H2) are orthogonal. See, for
example, Stewart and Sun (1990) and Pan and Yao (2008).

We always assume that the weakly stationary process yt is α-mixing, i.e.
its mixing coefficients αk,p → 0 as k → ∞, where

(3.1) αk,p = sup
i

sup
A∈F i

−∞, B∈F∞
i+k

|P(A ∩B)− P(A)P(B)|,

and F j
i is the σ-field generated by {yt : i ≤ t ≤ j}. In sequel, we denote by

σ
(k)
i,j the (i, j)-th element of Σy(k) for each i, j = 1, . . . , p and k = 1, . . . , k0.

The α-mixing is a mild condition on ‘asymptotic independence’. Many time
series including causal ARMA processes with continuously distributed inno-
vations are α-mixing with exponentially decaying mixing coefficients. See,
e.g. Section 2.6.1 of Fan and Yao (2003) and the references within. Never-
theless it rules out, for example, long memory processes.

We use the notation µ = E(yt), yt = (y1,t, . . . , yp,t)
T and µ = (µ1, . . . , µp)

T.
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3.1. Asymptotics when n → ∞ and p fixed. When the dimension p is
fixed, we estimate Wy defined in (2.5) by the plug-in estimator

(3.2) Ŝ = Ip +

k0∑

k=1

Σ̂y(k)Σ̂y(k)
T,

where Σ̂y(k) is defined in (2.15). We show that the standard
√
n convergence

rate prevails as now p is fixed. We introduce some regularity conditions first.

Condition 1. It holds that suptmax1≤i≤p E(|yi,t−µi|2γ) ≤ K1 for some
constants γ > 2 and K1 > 0.

Condition 2. The mixing coefficients αk,p defined in (3.1) satisfy the

condition
∑∞

k=1 α
1−2/γ
k,p < ∞, where γ > 2 is given in Condition 1.

Theorem 1. Let Conditions 1 and 2 hold, p be fixed, and ̟n in (2.14) be
positive. Then max1≤j≤q D(M(Âj),M(Aj)) = Op(n

−1/2), where the columns

of Â = (Â1, . . . , Âq) are a permutation of the p orthonormal eigenvectors

of Ŝ defined in (3.2).

Remark 3. This result can be extended to non-stationary case. For p-
dimensional non-stationary time series yt, we assume that yt = Axt where
xt satisfies (2.2). Let Σy(k) = (n − k)−1

∑n−k
t=1 Cov(yt+k,yt) and Σx(k) =

(n − k)−1
∑n−k

t=1 Cov(xt+k,xt), which can be viewed as the extension of the
conventional autocovariance for stationary process to non-stationary case.
Then (2.6) still holds. Following the same arguments as in Chang, Guo and
Yao (2015), it can be shown that there exists Â = (Â1, . . . , Âq) such that

Theorem 1 holds, where the columns of Â is a permutation the p orthonormal
eigenvectors of Ŝ defined in (3.2) with Σ̂y(k) specified in (2.15).

3.2. Asymptotics when n → ∞ and p = o(nc). In the contemporary
statistics dealing with large data, conventional wisdom assumes that p di-
verges together with n. Since ‖Ŝ − Wy‖F = Op(pn

−1/2) for Ŝ defined in
(3.2), it is necessary that p = o(n1/2) in order to retain the consistency (but
with a slower convergence rate than

√
n). This means that p can only be as

large as p = o(n1/2) if we do not entertain any additional assumptions on
the underlying structure. In order to deal with large p, we impose a sparsity
condition on the transformation matrix A first.

Condition 3. For A = (ai,j) in (2.1), max1≤j≤p
∑p

i=1 |ai,j|ι ≤ s1 and
max1≤i≤p

∑p
j=1 |ai,j |ι ≤ s2, for some constant ι ∈ [0, 1), where s1 and s2

may diverge together with p.
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When p is fixed, Condition 3 holds for s1 = s2 = p and any ι ∈ [0, 1), as
A is an orthogonal matrix. For large p, s1 and s2 control the degree of the
sparsity of the columns and the rows of A respectively. A small s1 entails
that each component series of xt only contributes to a small fraction of the
components of yt. A small s2 entails that each component of yt is a linear
combination of a small number of the components of xt. The sparsity of A
is also controlled by constant ι: the smaller ι is, the more sparse A is. We
will show that the stronger sparsity leads to the faster convergence for our
estimator; see Remark 4(ii) below.

If p diverges faster than n1/2, the sample autocovariance matrix Σ̂y(k) =

(σ̂
(k)
i,j ), given in (2.15), is no longer a consistent estimator for Σy(k). Inher-

iting the spirit of threshold estimator for large covariance matrix by Bickel
and Levina (2008), we employ the following threshold estimator instead:

(3.3) Tu(Σ̂y(k)) =
(
σ̂
(k)
i,j I{|σ̂

(k)
i,j | ≥ u}

)
,

where I(·) is the indicator function, u > 0 sets the threshold level. By Lemma

4 of Chang, Guo and Yao (2017), max1≤i,j≤p |σ̂(k)
i,j −σ

(k)
i,j | = Op(max{p2/ln−(l−1)/l,

(n−1 log p)1/2}). Hence we set the threshold at u = ϑn, where

(3.4) ϑn = M max{p2/ln−(l−1)/l, (n−1 log p)1/2},

and M > 0 is a constant. Consequently, we define now

(3.5) Ŝ ≡ Ŵ(thre)
y = Ip +

k0∑

k=1

Tu(Σ̂y(k))Tu(Σ̂y(k))
T.

Lemma 7 in Chang, Guo and Yao (2017) shows that Ŵ
(thre)
y is a consistent

estimator for Wy, which requires a stronger version of Conditions 1 and 2
as now p diverges together with n.

Condition 4. As x → ∞, it holds that suptmax1≤i≤p P(|yi,t − µi| >
x) = O{x−2(l+τ)} for some constants l > 2 and τ > 0.

Condition 5. The mixing coefficients αk,p given in (3.1) satisfy the
condition supp≥1 αk,p = O{k−(l−1)(l+τ)/τ } as k → ∞, where l and τ are
given in Condition 4.

Conditions 4 and 5 ensure the Fuk-Nagaev type inequalities for α-mixing
processes, see Rio (2000) and Liu, Xiao and Wu (2013). Put

(3.6) ρj = min
i 6=j

min
λ∈σ(Wx,i),µ∈σ(Wx,j )

|λ− µ|, j = 1, . . . , q.
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(3.7) δ = s1s2 max
1≤j≤q

pj and κ = max
1≤k≤k0

‖Σx(k)‖2.

Theorem 2. Let Conditions 3, 4 and 5 hold, p = o{n(l−1)/2}, and
min1≤j≤q ρj > 0 for ρj defined in (3.6). Then

max
1≤j≤q

ρjD(M(Âj),M(Aj)) = Op{κϑ1−ι
n δ + ϑ2(1−ι)

n δ2},

where the columns of Â = (Â1, . . . , Âq) are a permutation of the p orthonor-

mal eigenvectors of matrix Ŝ defined in (3.5) with the threshold u = ϑn given
in (3.4) in which constant l satisfies Conditions 4 and 5.

Remark 4. (i) Theorem 2 presents the uniform convergence rate for
ρjD(M(Âj),M(Aj)). As ρj measures the minimum difference between the
eigenvalues of Wx,j and those of the other blocks, it is intuitively clear that
the smaller this difference is, more difficult the estimation for M(Aj) is.

(ii) As Σy(k) = AΣx(k)A
T, the largest block size Smax = max1≤j≤q pj

and the sparsity of A determine the sparsity of Σy(k). Lemma 6 of Chang,
Guo and Yao (2017) shows that the sparsity of Σy(k) can be evaluated by δ
defined in (3.7). A small value of Smax represents a high degree of sparsity
for Σx(k) and, thus, also for Σy(k), while the sparsity of A is reflected by
ι, s1 and s2; see Condition 3 and the comments immediately below it. The
convergence rates specified in Theorem 2 contain factors δ or δ2. Hence the
more sparse Σy(k) is (i.e. the smaller δ is), the faster the convergence is.

(iii) With the sparsity imposed in Condition 3, the dimension of time
series can be as large as p = o{n(l−1)/2}, where l > 2 is determined by the
tail probabilities described in Condition 4.

(iv) Similar to Theorem 1, the result in Theorem 2 can also be extended
to non-stationary case. See Remark 3.

(v) Instead of Condition 3, we may impose the sparsity condition on each

Σy(k) such as max1≤j≤p
∑p

i=1 |σ
(k)
i,j |ι ≤ s3 and max1≤i≤p

∑p
j=1 |σ

(k)
i,j |ι ≤ s3

for some ι ∈ [0, 1). Then the convergence rate in Theorem 2 changes to

Op{κϑ1−ι
n s3 + ϑ

2(1−ι)
n s23}. Under the ideal case κ = O(1), min1≤j≤q ρj ≍ q−1

and s3 ≍ pζ for some ζ ∈ [0, 1), we have max1≤j≤q D(M(Âj),M(Aj)) =
Op(p

ζqϑ1−ι
n ) provided that pζϑ1−ι

n = O(1). Therefore, if pζqϑ1−ι
n = o(1), we

can estimate each subspace M(Aj) consistently.

3.3. Asymptotics when n → ∞ and log p = o(nc). To handle the ultra
high-dimensional cases where p grows at an exponential rate of n, we need
following stronger conditions (than Conditions 4 and 5) on the decays of the
tail probabilities of yt and the mixing coefficients αk,p defined in (3.1).
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Condition 6. For any x > 0 and ‖v‖2 = 1, supt P{|vT(yt−µ)| > x} ≤
K2 exp(−K3x

r1), where K2,K3 > 0, and r1 ∈ (0, 2] are constants.

Condition 7. For all k ≥ 1, supp≥1 αk,p ≤ exp(−K4k
r2), where K4 > 0

and r2 ∈ (0, 1] are some constants.

Condition 6 requires the tail probabilities of linear combinations of yt

decay exponentially fast. When r1 = 2, yt is sub-Gaussian. It is also in-
tuitively clear that the large r1 and/or r2 would only make Conditions 6
and/or 7 stronger. The restrictions r1 ≤ 2 and r2 ≤ 1 are introduced only
for the presentation convenience, as Theorem 3 below applies to the ultra
high-dimensional cases with

(3.8) log p = o{n̺/(2−̺)}, where ̺ = 1/(2r−1
1 + r−1

2 ).

We still use Ŝ = Ŵ
(thre)
y defined in (3.5) in Step 1 of our procedure. But

now the threshold value is set at u = M(n−1 log p)1/2 in (3.3), as Lemma

8 in Chang, Guo and Yao (2017) indicates that max1≤i,j≤p |σ̂(k)
i,j − σ

(k)
i,j | =

Op{(n−1 log p)1/2} when p is specified by (3.8). Recall that δ and κ are
defined in (3.7).

Theorem 3. Let Conditions 3, 6 and 7 hold, min1≤j≤q ρj > 0 for ρj
defined in (3.6), and p satisfy (3.8). Then

max
1≤j≤q

ρjD(M(Âj),M(Aj)) = Op{κ(n−1 log p)(1−ι)/2δ + (n−1 log p)1−ιδ2},

where the columns of Â = (Â1, . . . , Âq) are a permutation of the p or-

thonormal eigenvectors of Ŝ defined in (3.5) with the threshold level u ≍
(n−1 log p)1/2.

4. Numerical Properties. Two questions arise with the proposed
methodology in this paper: (i) Is the segmentation assumption (2.1) and
(2.2) of practical relevance? (ii) What would the proposed method lead to if
the assumption does not hold? To answer these questions, we report below
the illustration with four real data sets from different fields. Chang, Guo
and Yao (2017) contains the illustration with simulated data.

We always standardize the data first, i.e. to replace yt by {Σ̂y(0)}−1/2yt,

where Σ̂y(0) is the sample covariance matrix (2.15) for Examples 1–3, and
is the truncated one for Example 4 (see (3.3)). . Then the segmentation

transformation is x̂t = B̂yt, where B̂ = Γ̂
T

y{Σ̂y(0)}−1/2, and Γ̂y is the p× p
orthogonal matrix specified in Step 1 in Section 2.1 based on the new time
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series {Σ̂y(0)}−1/2yt. We always prewhiten each transformed component se-
ries of x̂t before applying the permutation methods described in Section 2.2.
The prewhitening is carried out by fitting each series an AR model with the
order between 0 and 5 determined by AIC. The resulting residual series is
taken as a prewhitened series. We set the upper bound for the AR-order at
5 to avoid over-whitening with finite samples. We always set c0 = 0.75 in
(2.12) and k0 = 5 in computing Ŝ unless stated explicitly. See Remark 1(ii).

To show the advantages of the proposed TS-PCA transformation, we also
conduct post-sample forecasting and compare the forecasts based on the
original data directly and those via TS-PCA transformation. To ensure that
the comparison is fair and objective, we adopt VAR models with the order
determined by AIC for both the original and the transformed data, involving
no fine-tuning on the form of model and the order determination, which are
inevitably less objective. Note that there is no universally accepted optimal
model for a real data set. We use the R-function VAR in the R-package vars
to fit VAR models. We also report the results from the restricted VAR model
(RVAR) obtained by setting insignificant coefficients to 0 in a fitted VAR
model, using the R-function restrict in the R-package vars.

Some useful tips from the real data analysis below are worth mentioning.
First, the segmentation assumption is reasonable for Examples 1, 3 and 4.
Secondly, when the segmentation assumption is invalid (Example 2), the TS-
PCA transformation leads to approximate segmentations which also improve
the forecasting performance. Thirdly, when p is large or moderately large it is
necessary to apply appropriate dimension-reduction techniques (such as TS-
PCA) in order to take advantage from the dependence across different series
(Examples 3 and 4). Finally, the forecasting via the TS-PCA transformation
always outperform that directly based on the original data in all the real
data examples. The reason for this is explained at the end of Section 6.

Example 1. (Continue) We continue the analysis with the monthly tem-
perature data in the 7 cities in China. The result reported in Section 2.1
was obtained with k0 = 5 in (2.5). The profile of the segmentation is un-
changed for 1 ≤ k0 ≤ 36. For p = 7, we do not need to apply the methods in
Section 2.2 for permuting the transformed series. Nevertheless exactly the
same grouping is obtained by the permutation based on the maximum cross
correlation method with 1 ≤ m ≤ 30 in (2.10), or by the permutation based
on FDR with 1 ≤ m ≤ 30 and 0.001% ≤ β ≤ 1% in (2.16).

Forecasting the original time series yt can be carried out in two steps:
First we forecast the components of x̂t using 5 models according to the seg-
mentation, i.e. one VAR for the first three components, and a univariate AR
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model for each of the last four components. Then the forecasted values for yt

are obtained via the transformation ŷt = B̂−1x̂t. For each of the last 24 ob-
servations in this data set (i.e. the monthly temperatures in 1997 and 1998),
we use the data up to the previous month to fit three forecasting models:
the model based on the segmentation (which is a collection of 5 VAR/AR
models for the 5 segmented subseries of x̂t), the VAR and RVAR models
for the original data. We difference the original data at lag 12 before fitting
them directly with VAR and RVAR models, to remove the seasonal com-
ponents. For fitting the segmented series x̂t, we only difference its first two
component series also at lag 12 since only they have seasonal components.
The one-step-ahead forecasts can be obtained directly from the fitted mod-
els. The two-step-ahead forecasts are obtained based on the plug-in method,
i.e. using the one-step-ahead forecasted values as true values.

For each component series of yt, we calculate the mean squared predictive
errors (MSPE) d−1

∑d
h=1(ŷi,n0+h − yi,n0+h)

2 for both one-step-ahead and
two-step-ahead forecasting, where ŷi,n0+h denotes the associated forecast for
yi,n0+h (for this example, d = 24 and n0 = n− 24). The mean and standard
deviations of those MSPEs over the 7 cities are listed in Table 1. Both the
mean and standard deviation of the MSPEs based on TS-PCA are much
smaller than those based on the direct VAR or RVAR models for original
data. To evaluate the sensitivity of the segmentation, we also consider an
over-segmentation case for x̂t with 6 groups ({1, 2}, {3}, {4}, {5}, {6}, {7}),
and an incomplete-segmentation case with 4 groups ({1, 2, 3}, {5, 6}, {4},
{7}). Table 1 shows that, though the predictions for over- and incomplete-
segmentation are worse than the segmentation with the 5 groups, they still
outperform both VAR and RVAR models.

Example 2. We consider the weekly notified measles cases in 7 cities in
England (i.e. London, Bristol, Liverpool, Manchester, Newcastle, Birming-
ham and Sheffield) in 1948 – 1965, before the advent of vaccination. All the
7 series show biennial cycles, which is a common feature in measles dynam-
ics in the pre-vaccination period. This biennial cycling is the major driving
force for the cross correlations among different component series displayed
in Fig 2(a). The cross correlogram of the transformed data is displayed in
Fig 2(b). Since none of the transformed component series are white noise,
the confidence bounds in Fig 2(b) could be misleading; see Remark 1(i).

We apply prewhitening to each transformed component time series by
fitting an AR model with the order determined by AIC. Although all those
7 filtered time series behave like white noise, there are still quite a few small
but significant cross correlations here and there. Fig 3(a) plots, in descending
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Table 1

One-step and two-step ahead post-sample forecasting: means and standard deviations (in
subscripted bracket) of MSPEs for Examples 1, 3 and 4 and means and standard

deviations (in subscripted bracket) of the relative MSPEs for Example 2.

Method One-step forecast Two-step forecast

VAR 2.470 (0.416) 2.559 (0.385)

Example 1 RVAR 2.530 (0.398) 2.615 (0.382)

(p=7) Segmentation with 5 groups 2.221 (0.339) 2.203 (0.323)

Segmentation with 6 groups 2.417 (0.348) 2.419 (0.326)

Segmentation with 4 groups 2.421 (0.343) 2.422 (0.325)

VAR 0.950 (0.148) 0.726 (0.328)

Example 2 RVAR 0.962 (0.138) 0.796 (0.277)

(p=7) Segmentation with 4 groups 0.884 (0.180) 0.708 (0.377)

Segmentation with 7 groups 0.919 (0.130) 0.884 (0.219)

Segmentation with 3 groups 0.873 (0.176) 0.694 (0.377)

Univariate AR 0.208 (0.551) 0.194 (0.539)

VAR 0.295 (0.806) 0.301 (0.855)

Example 3 RVAR 0.293 (0.820) 0.296 (0.863)

(p=25) Segmentation with 24 groups 0.153 (0.134) 0.163 (0.124)

Segmentation with 25 groups 0.110 (0.084) 0.132 (0.091)

Segmentation with 23 groups 0.151 (0.133) 0.159 (0.121)

Univariate AR 0.525(0.204) 0.835(0.284)
Example 4 Segmentation with 83 groups 0.485(0.185) 0.662(0.224)
(p=84) Segmentation with 84 groups 0.484(0.184) 0.662(0.224)

Segmentation with 50 groups 0.492(0.187) 0.678(0.228)
Segmentation with 70 groups 0.474(0.180) 0.664(0.225)

order, the maximum cross correlations L̂n(i, j) defined in (2.11) for those 7
transformed and prewhitened series. As 1.96/

√
n = 0.064 with n = 937

now, one may argue that the segmentation assumption does not hold for
this example. Consequently the ratio estimator r̂ defined in (2.12) does not
make any sense for this example; see also Fig 3(b).

Nevertheless Fig 3(a) ranks the pairs of transformed component series
according to the strength of the cross correlation. If we would only accept
r connected pairs, this leads to an approximate segmentation according to
the rule set in Section 2.2.1. By doing this, we effectively ignore some small,
though still statistically significant, cross correlations. Table 2 lists the dif-
ferent segmentations corresponding to the different values of r. It shows that
the group {4, 5} is always present until all the 7 series merge together. Fur-
ther it only takes 6 connected pairs, corresponding to the 6 largest points in
Fig 3(a), to merge all the series together.

The forecasting comparison is conducted in the same manner as in Ex-
amples 1. We adopt the segmentation with 4 groups: {1, 2, 3}, {4, 5}, {6}
and {7}, i.e. we regard that only the three pairs, corresponding to the 3
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Table 2

Segmentations determined by different numbers of connected pairs for the transformed
series in Example 2.

No. of connected pairs No. of groups Segmentation

1 6 {4, 5}, {1}, {2}, {3}, {6}, {7}
2 5 {1, 2}, {4, 5}, {3}, {6}, {7}
3 4 {1, 2, 3}, {4, 5}, {6}, {7}
4 3 {1, 2, 3, 7}, {4, 5}, {6}
5 2 {1, 2, 3, 6, 7}, {4, 5}
6 1 {1, . . . , 7}

maximum cross correlations in Fig 3(a), are connected. We forecast the no-
tified measles cases in the last 14 weeks of the period for all the 7 cities.
Due to the fact that the data from different cities are on different scales, we
present the results based on relative MSPEs in Table 1: a relative MSPE is
the ratio of a MSPE concerned over that obtained from fitting each original
component series with an AR model. Once again the forecasting based on
this (approximate) segmentation is much more accurate than those based
on the direct VAR and RVAR models, although we have ignored quite a
few small but significant cross correlations among the transformed series.
Table 1 also reports an over-segmentation case with each transformed series
as an individual group, and an alternative segmentation case with 3 groups
({1, 2, 3, 7},{4, 5},{6}). The over-segmentation ignores all the correlations
among different components, it has an adverse effect on forecasting, though
it still outperforms the VAR and RVAR models. The alternative segmenta-
tion with the 3 groups takes into account more correlations, leading to the
best forecasting performance in comparison with the other methods.

Example 3. Now we consider the daily log-sales of a clothing brand in
25 provinces in China in 1 January 2008 – 9 December 2012 (i.e. n = 1805
and p = 25). All those series exhibit peaks before the Spring Festival (i.e.
the Chinese New Year, typically around February). The cross correlogram
of the 8 randomly selected component series in Fig 4 indicates the strong
cross correlations over different time lags among the sales over different
provinces. The strong periodic components with the period 7 indicate a
regular sales pattern over 7 different weekdays. By applying the proposed
segmentation transformation and the permutation based on the maximum
cross correlations with m = 25 in (2.11), the transformed 25 time series
are divided into 24 group with only non-single-element group containing the
15th and the 16th transformed series. The same grouping is obtained for m
between 14 and 30. Note for this example, we should not use small m as the
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autocorrelations of the original data decay slowly; see Fig 4.
To compare the post-sample forecasting performance, we calculate one-

step-ahead and two-step-ahead forecasts for each of the daily log-sales in
the last two weeks of the period. Table 1 list the means and the standard
deviations of the MSPEs across the 25 provinces. With p = 25, the fitted
VAR(2) model, selected by AIC, contain 2 × 25 × 25 = 1250 parameters,
leading to poor post-sample forecasting. The RVAR(2) model improves the
forecasting a bit, but it is still significantly worse than the forecasting based
on the approach of fitting a univariate AR model to each of the original
series directly. Since the proposed segmentation leads to 24 subseries, it
also fits univariate AR models to 23 (out of 25) transformed series, fits
a 2-dimensional VAR model to the 15th and the 16th transformed series
together. The proposed approach leads to much more accurate forecasts as
both the mean and standard deviation are much smaller than those of the
other three methods. The above comparison shows clearly that the cross
correlations in the sales over different provinces are valuable information
which can improve the forecasting for the future sales significantly. However
the endeavor to reduce the dimension by, for example, TS-PCA, is necessary
in order to make use of this valuable information. We also consider an over-
segmentation by regarding each component of the transformed series as an
individual group, and an incomplete-segmentation with {5, 15, 16} as a group
and the other 22 components as 23 individual groups. Both of them show
good performances.

Example 4. The air pollution due to the fine particulate (PM2.5) has
aroused serious concerns in China. PM2.5 consists of airborne particles with
aerodynamic diameters smaller than 2.5µm. In this example, we consider the
logarithmic daily average PM2.5 concentration readings at 84 monitoring
stations in Beijing, Tianjin and Hebei in 1 January 2015 – 31 December
2016. Fig 5 is a map of those 84 stations. For this data set, n = 731 and
p = 84. The readings at different locations are crossly correlated; see Fig 6
for the cross-correlogram of six randomly selected stations.

Since the dimension p is large, we use (3.5) to estimate the positive defi-
nite matrix Ŝ with the threshold level u determined by the method of Bickel
and Levina (2008). The maximum cross correlation method in Section 2.2.2
divides the 84 transformed time series into 83 groups, with only one non-
single element group containing the 46th and the 83rd transformed series.
In the post-sample forecasting for the daily readings in December 2016 (i.e.
31 days in total), we also include the over-segmentation with 84 groups (i.e.
treating each transformed series as an individual group), and two incomplete
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segmentations with, respectively, 50 groups and 70 groups. The maximum
group size is 8 for the segmentation with 50 groups, and is 4 for the seg-
mentation with 70 groups. Those segmentations are obtained in the same
manner as in Example 2 (see also Table 2). With p = 84, direct VAR is
too crude to be attempted. Comparing to the univariate AR models for the
original series, all the four segmentations provide more accurate one-step
and two-step ahead predictions. It is worth pointing out that the difference
due to using different segmentations is small.

5. Segmenting multivariate volatility processes. The methodol-
ogy proposed in Section 2 can be readily extended to segment multivari-
ate volatility processes. To this end, let yt be a p × 1 volatility process.
Let Ft = σ(yt,yt−1, . . .) and Var(yt|Ft−1) = Σy(t). Without loss of gen-
erality, we assume E(yt|Ft−1) = 0 and Var(yt) = Ip. Suppose that there
exists an orthogonal matrix A for which yt = Axt and Var(xt|Ft−1) =
diag{Σ1(t), . . . ,Σq(t)} with Σ1(t), . . . ,Σq(t) being, respectively, p1×p1, . . . ,
pq×pq non-negative definite matrices. Hence the latent p-dimensional volatil-
ity process xt can be segmented into q lower-dimensional processes, and there
exist no conditional cross correlations across those q processes.

Let Wy =
∑

B∈Bt−1
[E{yty

T
t I(B)}]2 and Wx =

∑
B∈Bt−1

[E{xtx
T
t I(B)}]2,

where Bt−1 is a π-class and the σ-field generated by Bt−1 equals to Ft−1.
Since it holds for any B ∈ Bt−1 that E{xtx

T
t I(B)} = E{I(B)E(xtx

T
t |Ft−1)} =

E[I(B)diag{Σ1(t), . . . ,Σq(t)}] is a block diagonal matrix, so is Wx. Now
(2.6) still holds for the newly defined Wy and Wx. Thus A can be esti-
mated exactly in the same manner as in Section 2.1. An estimator for Wy

can be defined as Ŵy =
∑

B∈B

∑k0
k=1{(n− k)−1

∑n
t=k+1 yty

T
t I(yt−k ∈ B)}2,

where B is a set with elements {u ∈ R
p : ‖u‖2 ≤ ‖yt‖2} for t = 1, . . . , n. See

Fan, Wang and Yao (2008). We illustrate this idea by a real data example.

Example 5. We consider the daily returns of the stocks of Walt Disney
Company, Wells Fargo & Company, Honeywell International Inc., MetLife
Inc., H & R Block Inc. and Cognizant Technology Solutions Corporation in
14 July 2008 – 11 July 2014. For this data set, n = 1509 and p = 6. Denote
by yt = (y1,t, . . . , y6,t)

T the returns on the t-th day. By fitting each return
series a GARCH(1,1) model, we calculate the residuals εi,t = yi,t/σ̂i,t for
i = 1, . . . , 6, where σ̂i,t denotes the predicted volatility for the i-th return
at time t based on the fitted GARCH(1,1) model. The cross correlogram of
the residual series are plotted in Fig 7(a), which shows the strong and sig-
nificant concurrent correlations across all residual series. It indicates clearly
that Var(yt|Ft−1) is not a block diagonal matrix. We also apply the tradi-
tional PCA to the 6 returns series, the cross correlogram of pre-whitened
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series is shown in Fig 7(b). There are also strong and significant concurrent
correlations across the residual series, see Panels (1, 2), (2, 3), (3, 4), (2, 5)
and (6, 4). This indicates all the principal components should not be mod-
elled separately. Now we apply the segmentation transform stated above. We
repeat the whitening process above for the transformed series x̂t, i.e. fit an
GARCH(1,1) model for each of the component series of x̂t and calculate the
residuals. Fig 8 presents the cross correlogram of these new residual series.
There exist almost no significant cross correlations among the residual series.
This is the significant evidence to support the assertion that Var(xt|Ft−1) is
a diagonal matrix. For this example, the segmentation method leads to the
conditional uncorrelated components of Fan, Wang and Yao (2008).

6. Final remarks. This paper proposes a contemporaneous linear trans-
formation to segment a multiple time series into several both contempora-
neously and serially uncorrelated subseries. The method is simple, and can
be used as a preliminary step to reduce a high-dimensional time series mod-
elling problem into several lower-dimensional problems. The reduction of
dimensionality is often substantial and effective.

The method is abbreviated as TS-PCA, as it can be viewed as a version
of PCA for multiple time series. Like the standard PCA, TS-PCA techni-
cally also boils down to an eigenanalysis for a positive definite matrix. The
difference is that the intended segmentation is not guaranteed to exist. How-
ever one of the strengths of the proposed TS-PCA is that even when the
segmentation assumption is invalid, it provides some approximate segmen-
tations which ignore some minor (though still significant) cross correlations
and, thus, lead to parsimonious modelling strategies. Those parsimonious
strategies often bring in improvements in, for example, forecasting future
values. See, e.g., Example 2. Furthermore when the dimension of time se-
ries is large, TS-PCA is necessary in order to utilize the information across
different component series effectively. See, e.g., Examples 3 and 4.

We have conducted some post-sample forecasting comparison with several
real data sets including some not reported in the paper. The forecasting
based on the proposed TS-PCA always outperforms that for the original
data. We give one explanation as follows. It follows from (2.6) that Ω ≡
tr(Wy) − p =

∑k0
k=1

∑p
i,j=1 ρ

2
y,ij(k) = tr(Wx) − p =

∑k0
k=1

∑p
i,j=1 ρ

2
x,ij(k),

where ρy,ij(k) and ρx,ij(k) denote, respectively, the cross correlation at lag
k between the i-th and the j-th components of yt and xt. Since the future
prediction is based on the serial correlations, Ω can be taken as a measure
for the predictive strength, which is the same for yt and xt. To make use
of the full predictive strength of yt, we need to model the p-vector process
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appropriately to catch all the autocorrelations and cross-correlations (over
different time lags) among the p components of yt. In contrast, such a task
for xt is much easier as it can be divided into q lower-dimensional problems.
In the ideal situation when q = p, i.e. ρx,ij(k) = 0 for any i 6= j, we just
need to model all the component series of xt separately in order to make the
full use of the overall predictive strength.
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(a) Cross correlogram of the 7 original temperature time series.
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(b) Cross correlogram of the 7 transformed time series.

Fig 1. Cross correlograms for Example 1.
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(a) Cross correlogram of the 7 original measles series.
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(b) Cross correlogram of the 7 transformed component time series.

Fig 2. Cross correlograms for Example 2.
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Fig 3. Example 2: (a) The maximum cross correlations, plotted in descending order, among
each of the ( 7

2
) = 21 pairs component series of the transformed and prewhitened measles

series. The maximization was taken over the lags between -20 to 20. (b) The ratios of two
successive correlations in (a).
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Fig 4. Example 3: Cross correlogram of eight randomly selected the log-sales series.
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Fig 5. Example 4: locations of 84 PM2.5 monitoring stations (blue points).
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Fig 6. Example 4: Cross correlogram of logarithmic daily PM2.5 readings at six randomly
selected monitoring stations in Beijing, Tianjin and Hebei.
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(a) Cross correlogram of the residuals resulted from fitting each original component
series a GARCH(1,1) model.
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(b) Cross correlogram of the residuals resulted from fitting each series of PCA
components a GARCH(1,1) model.

Fig 7. Cross correlograms for Example 5.
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Fig 8. Cross correlogram of the residuals resulted from fitting each component series of
the transformed series x̂t with a GARCH(1,1) model in Example 5.


