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1 Introduction

Spatial autoregressive (SAR) models, introduced by Cliff and Ord (1973), can describe spatial

dependence parsimoniously even when data are irregularly-spaced or when economic (not neces-

sarily geographic) distances between units are known, and information on locations is unavailable.

They have been widely used in modelling economic and geographic data. The first-order SAR

model, which involves a single weight matrix, consisting of (inverse) distances, and a single cor-

relation parameter, has been the focus of much research. Greater flexibility, at the cost of less

parsimony, is afforded by higher-order SAR models, which incorporate two or more weight ma-

trices and corresponding parameters. These have been studied in both theoretical and applied

research. Brandsma and Ketellapper (1979) introduced a second-order model, and discussed

its estimation. Blommestein (1983, 1985), Blommestein and Koper (1992, 1997), Anselin and

Smirnov (1996), LeSage and Pace (2011), Elhorst, Lacombe and Piras (2012) and others ex-

plored various issues in the specification and estimation of higher order SAR models, the latter

two references listing a number of others. A recent purely empirical study is in Kolympiris,

Kalaitzandonakes, and Miller (2011). A book length exposition can be found in Anselin (1988).

In the present paper we investigate large sample statistical inference on higher order SAR

models, in which the number of parameters is allowed to increase slowly with sample size, denoted

n, a type of setting previously studied by Gupta and Robinson (2015). From this perspective we

find it convenient to consider four specifications that have somewhat different theoretical as well

as practical implications. For an n× 1 vector yn of observations and an integer pn ≥ 1, possibly

regarded as increasing as n increases, let Win, i = 1, . . . , pn, be n × n known weight matrices

whose elements are inverse economic distances, let λ0n = (λ01, . . . , λ0pn)
′
, the prime denoting

transposition, be a vector of unknown parameters, and let u be an n× 1 vector of independent,

zero-mean, homoscedastic unobservable random variables. The basic pnth-order SAR model,

denoted SAR(pn) , is

yn =

pn∑

i=1

λ0iWinyn + u. (1.1)

Let ln be a n× 1 vector of ones and let τ0 be an unknown scalar. The SAR(pn) with intercept is

yn =

pn∑

i=1

λ0iWinyn + τ0ln + u. (1.2)

For given integers kn ≥ 1 (possibly regarded as increasing with n) and fixed q ≥ 1 let β0n be an

unknown kn × 1 vector, let δ0 be a known or unknown q× 1 vector and let Xn (δ0) be an n× kn
matrix of functions of δ0 and of explanatory variables, with reference to the latter suppressed.

The SAR(pn) with regressors is

yn =

pn∑

i=1

λ0iWinyn +Xn (δ0)β0n + u. (1.3)
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Finally, for an n × 1 vector vn of unobservable random variables, the regression with SAR(pn)

errors is

yn = Xn (δ0)β0n + vn, vn =

pn∑

i=1

λ0iWinvn + u. (1.4)

These models correspond to versions of pnth-order autoregressive time series models, where com-

peting approaches to introducing both autocorrelation and explanatory variables are mirrored

by (1.3) and (1.4).

When τ0 is known (1.2) nests (1.1) (which is sometimes referred to as ‘pure SAR’), while

(1.2) is nested in both (1.3) and (1.4) when Xn (δ0) contains a subvector ln, although estima-

tion methods differ. Indeed (1.1) and (1.2) are not consistently estimable by least squares or

instrumental variables, unlike (1.3) and (1.4). In most spatial autoregression literature, SAR(1)

versions of these models have been studied, and previous higher-order SAR literature has almost

exclusively assumed that pn and kn are fixed. In the the bulk of the literature on (1.3) and

(1.4) the regression component is linear, formally covered by regarding δ0 as known. However,

(1.3) and (1.4) allow for nonlinear regression, which features widely in statistics (cf. eg Jennrich

(1969)) and econometrics but apparently not in the SAR literature, even though Xu and Lee

(2015) have studied a SAR model with a nonlinear transformation of the dependent variable.

For example, the elements of Xn (δ0) may be parametric Box-Cox, arcsinh or other nonlinear

transformations of basic explanatory variables. The separation of β0n from δ0 follows much of

the nonlinear regression literature in expressing the likely presence of an unknown scaling vector.

The n-subscripting in Xn (δ0) allows it to depend on spatial lags of explanatory variables, which

entail weight matrices. The model (1.4) may be included in (1.3) by replacing Xn (δ0) by a

function of both δ0 and λ0n, but (1.4) is of sufficient practical importance to warrant separate

consideration.

Interest centres on statistical inference on λ0n, β0n and, when it is unknown, δ0. Consider

what is known or anticipated from the literature that regards pn and kn as fixed. In (1.1)

and (1.2), despite the linearity in parameters, least squares estimates are well known to be

inconsistent, for typical Win, which differ from the lower triangular ones which deliver consistency

in the autoregressive time series models formally covered; however, for (1.1) Kelejian and Prucha

(1999) established consistency of a generalized method of moments estimate. For the same

reason consistency of least squares estimates of all parameters in (1.3) is problematic, though

from Lee (2002) (who assumed pn = 1 and linear regression) we may expect consistency to be

achieved under certain asymptotic conditions on the Win. Under milder such conditions, again

when the regression is linear, use of instrumental variables, when available, can produce closed

form consistent estimates in (1.3), see eg Kelejian and Prucha (1998); for nonlinear regression one

expects to be able to extend, eg, Amemiya (1974). As under many other relaxations of Gauss-

Markov conditions, least squares estimates of β0n in the first equation of (1.4) (or nonlinear

least squares estimates of β0n and δ0) are expected to be consistent, though those of λ0n based

on residuals inconsistent; see eg Kelejian and Prucha (1997). When estimates are consistent,
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one expects them to satisfy a central limit theorem under additional conditions. The models

(1.1)-(1.4) are somewhat idealised, some of the literature considering ones that are more general.

In ‘SARAR’ versions of (1.1), (1.2) or (1.3), u is replaced by vn, defined as in (1.4) but with

pn possibly replaced by some other order rn, say. However after transformation they are still

essentially covered by (1.1)-(1.3), albeit offering more parsimony, having SAR order pnrn with

coefficients depending on only pn+rn unknowns. In a SARAR version of (1.3), Lee and Liu (2010)

established asymptotic theory for generalized method of moments estimates, as did Badinger and

Egger (2011, 2013), allowing respectively for error heteroscedasticity and panel structure. Spatial

ARMA models are not covered in (1.1)-(1.4); in this setting Huang (1984) and Anselin (2001)

respectively discussed maximum likelihood estimation and developed Lagrange multiplier tests

to determine model order.

A single type of estimate which can be expected to deliver consistency, and asymptotic

normality, in (1.1)-(1.4), and without recourse to instrumental variables, is the Gaussian pseudo-

maximum likelihood estimate (PMLE). This maximizes what would be the likelihood were u

Gaussian, and as well as enjoying the classical asymptotic properties of maximum likelihood, is

consistent and asymptotically normal under more general conditions on u, though in some settings

the limiting covariance matrix can be affected. Brandsma and Ketellapper (1979) discussed

Gaussian maximum likelihood estimation in the SAR(2) version of (1.1), describing, without

rigorous proofs, asymptotic statistical properties, see also Huang (1984). These properties were

established for the PMLE by Lee (2004) in case of SAR(1) versions of (1.1)-(1.3) with linear

regression in the latter model. The PMLE is asymptotically efficient when u is Gaussian, though

otherwise more efficient estimates have been justified in fixed parameter dimension SAR models,

see Lee and Liu (2010) and Robinson (2010). Note that our allowance for nonlinear regression

does not greatly impact on methods and theory for the PMLE, which is in any case only implicitly

defined. One well-known aspect of the PMLE is the need to invert an n × n matrix in the

estimation. On the other hand, a general defence of the PMLE is its asymptotic efficiency

properties in the Gaussian case, the fact that consistency and the same limit distribution holds

under more general conditions than Gaussianity, and the relatively simple and easy-to-compute

form of the limiting covariance matrix estimate following the point estimation.

In practice the specification of pn, and of kn, may be influenced by the amount of data n

available, as is the case with other multiparameter statistical models. A larger data set affords

the possibility of achieving reasonably precise inference on a richer model, which may reflect

a degree of model uncertainty. Correspondingly, in a number of other multiparameter models,

asymptotic statistical theory has been developed with the number of parameters increasing slowly

with sample size, cf. Huber (1973), Berk (1974), Sargan (1975), Robinson (1979), Portnoy

(1984, 1985), Robinson (2003). Gupta and Robinson (2015) have argued that regarding pn

as increasing with n is natural in SAR models with some kinds of weight matrix, and have

established asymptotic theory for least squares and instrumental variables estimates of (1.3) in

the linear regression case. A popular alternative approach to models with a large number of
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parameters is to apply the LASSO, or a similar estimate based on a penalized objective function.

This method is especially useful in cases where pn + kn ≥ n.

The present paper establishes consistency and asymptotic normality for the PMLE in the

models (1.1)-(1.4) with pn and kn allowed to increase slowly with n. Asymptotic theory for

implicitly-defined extremum estimates, requiring an initial consistency proof, is unusual in the

literature on increasing parameter dimension with sample size, especially so when combined with

nonlinear regression. Our proof of consistency of the PMLE is rather delicate, in particular where

both numerator and denominator terms increase with kn (see (A.8) in the appendix), while we

also need the volume of the admissible autoregressive parameter space to remain bounded as pn

diverges. Our results lead to rules of statistical inference which are also valid when pn and kn

are regarded as fixed, and to some extent provide a novel contribution in this setting also. In

particular we know of no asymptotic theory for the PMLE in the models (1.1)-(1.4) with fixed

pn > 1 and kn. We keep the dimension q of δ0 fixed as otherwise the regression would effectively

be nonparametric.

The following section covers models (1.1) and (1.2), with (1.3) and (1.4) covered in Sections 3

and 4, respectively. Section 5 contains a Monte Carlo study of finite sample performance. Proofs

are included in two Appendices and an additional online supplementary appendix.

2 SAR with and without intercept

We can rewrite (1.1) as

Snyn = u (2.1)

where Sn = In −
∑pn
i=1 λ0iWin. The notation Sn follows a convention we adopt for evaluation of

objects at true parameters: A(α0) ≡ A for any matrix, vector or scalar A and any true parameter

α0. In the sequel we suppress reference to n for individual parameters to simplify notation. We

now introduce some basic assumptions.

Assumption 1. u = (u1, . . . , un)′ has independently distributed elements with zero mean, finite

variance σ2
0 and finite third and fourth moments µ3 and µ4 respectively.

Assumption 2. For i = 1, . . . , pn, the diagonal elements of each Win are zero and the off-

diagonal elements of Win are uniformly O
(
h−1
n

)
, where hn is a positive sequence which is bounded

away from zero and which may be bounded or divergent, with n/hn →∞ as n→∞ in the latter

case.

It is possible to employ different hin for each of the Win, some bounded and some divergent.

However we maintain Assumption 2 for notational simplicity. For any rectangular matrix A, we

define ‖A‖ =
{
ζ (A′A)

} 1
2 , where ζ̄(B) (respectively ζ(B)) is the largest (smallest) eigenvalue of

a square, symmetric matrix B.
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Definition For i = 1, . . . , pn, Win are said to have ‘single nonzero diagonal block’ structure if,

for some set of mi ×mi matrices Vin such that
∑pn
i=1mi = n, Win has Vin as the ith diagonal

block and zeros elsewhere.

Let c, C denote throughout generic positive constants, arbitrarily small and large, respectively.

Assumption 3. Sn is non-singular and

∥∥S−1
n

∥∥+ max
i=1,...,pn

‖Win‖ ≤ C, (2.2)

for all sufficiently large n.

The first part of this assumption ensures that (2.1) can be solved for yn, asymptotically. The

restriction on
∥∥S−1

n

∥∥ limits spatial correlation because the covariance matrix of yn is σ2
0S
−1
n S−1

n
′,

while the restrictions on the ‖Win‖ are satisfied if, for each i, the elements of Win decline fast

enough with n. A sufficient condition for the non-singularity of Sn is

∥∥∥∥∥

pn∑

i=1

λ0iWin

∥∥∥∥∥ < 1. (2.3)

Depending on the structure of Win more primitive sufficient conditions can be given for (2.3).

Denote by λ = (λ1, . . . , λpn)
′

and σ2 any admissible values of λ0n and σ2
0 and let ‖a‖1 =∑s

i=1 |ai| for any s-dimensional vector a. In the ‘single nonzero diagonal block’ case we have

‖∑pn
i=1 λ0iWin‖ ≤ maxi=1,...,pn (|λ0i| ‖Vin‖), in which case one could take the parameter space

Λn for λ to be such that

max
i=1,...,pn

|λi| < 1, (2.4)

and take normalized Vin such that ‖Vin‖ = 1. For more general Win we have ‖∑pn
i=1 λ0iWin‖ ≤

maxi=1,...,pn ‖Win‖
∑pn
i=1 |λ0i|, and then we may choose Λn such that

‖λ‖1 < 1, (2.5)

and normalize the Win such that ‖Win‖ ≡ 1. In any case, for the identification of the λi

some normalization of the Win is necessary, so this operation is essentially costless. A similar

discussion applies after Assumption 12 below, with row-sum norm used instead. Define the

negative Gaussian log-likelihood function as

log (2πσ2)− 2n−1 log |Sn (λ)|+ σ2n−1y′nSn (λ)Sn (λ) yn, (2.6)

for nonsingular Sn (λ) = In−
∑pn
i=1 λiWin. For given λ, (2.6) is minimised with respect to σ2 by

σ̄2
n (λ) = n−1y′nSn (λ)Sn (λ) yn. (2.7)
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Define the PMLEs of λ0n, σ2
0 as λ̂n = arg minλ∈Λn Qn (λ) , σ̂2

n ≡ σ̄2
n

(
λ̂n

)
respectively, where

Qn (λ) = log σ̄2
n (λ) + n−1 log

∣∣S−1
n (λ)S−1

n
′ (λ)

∣∣ , (2.8)

with Λn satisfying

Assumption 4. Λn is a subset of Rpn such that, for some fixed ε ∈ (0, 1), −ε ≤ λi ≤ 1− ε, for

i = 1, . . . , pn when the Win have ‘single nonzero diagonal block’ structure and ‖λ‖1 ≤ 1 − ε if

not.

Assumption 4 reflects the necessity in our proof that the volume of Λn remain bounded as

n→∞, and the likelihood that the λ0i are non-negative, but could be replaced by others. The

construction of a compact parameter space requires some care when dimension can increase. The

usual Cartesian product of closed and bounded intervals that forms a compact parameter space

in the fixed dimension setting will not, in general, yield a region with bounded volume when

dimension increases. The Associate Editor handling our paper has pointed out that by analogy

with results shown in other settings (see eg Pötscher and Prucha (1997) pp. 29-31 and references

therein, and Kuersteiner and Prucha (2015)), the compactness requirement of Assumption 4

might be relaxed and the arbitrary choice of ε avoided by, more naturally, choosing Λn as (2.4) in

the ‘single nonzero diagonal block’ case, and as (2.5) otherwise. The only drawback to optimizing

over an open set would appear to be that λ̂n might sometimes not exist. On the other hand

with compact Λn, if λ̂n falls on its boundary it is likely that shrinking ε would change λ̂n. This

may suggest that n is too small for asymptotics to be relevant, and/or the parameter space has

been chosen too small or the model is misspecified. Typically there will be no option to collect

further data, while employing an alternative method of estimation in the hope that the outcome

will lie within the boundary seems an over-reaction, especially as one can choose ε so small that

shrinking it would not affect λ̂n to any desired number of decimal places, or indeed make any

statistically significant difference. Our use of ‖λ‖1 ≤ 1−ε, or indeed (2.5), in non-‘single nonzero

diagonal block’ cases is nevertheless still unsatisfactory because, with the restriction on the Win,

it is a crude sufficient condition for (2.3), compared to the precise conditions for stationarity

of autoregressive time series in terms of the locations of zeros of the autoregressive polynomial.

Further work to relax Assumption 4 in our increasing parameter dimension setting would be

desirable.

Note that though we treat the Win as known, in reality the scaling of distances is arbitrary

and different scalings are used in the literature. Some scaling, such as ‖Win‖ = 1, is necessary

in order to identify the λ0i and correspondingly specify a suitable Λn. We could replace each

Win by cWin for c ∈ (0,∞) and Λn by c−1Λn, but for identification we must choose one scaling

and one parameter space.

Assumption 5. λ0n ∈ Λn, for all sufficiently large n.
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Denote

σ2
n (λ) = n−1σ2

0tr
(
S−1
n
′S′n (λ)Sn (λ)S−1

n

)
. (2.9)

Assumption 6. For λ ∈ Λn and all sufficiently large n, c ≤ σ2
n (λ) ≤ C.

σ2
n (λ) is nonnegative by inspection and finite by Assumptions 3 and 4. For a generic matrix A

define ‖A‖F = {tr(A′A)} 1
2 and introduce

Assumption 7. For any η > 0,

lim
n→∞

inf
λ∈N λ

n (η)

n−1 ‖Tn(λ)‖2F / |Tn(λ)|2/n > 1, (2.10)

where Tn(λ) = Sn(λ)S−1
n , N λ

n (η) = Λn \ N λ
n (η) , N λ

n (η) = {λ : ‖λ− λ0n‖ < η} ∩ Λn.

The ratio in (2.10) is guaranteed ≥ 1 due to the inequality between arithmetic and geometric

means. Assumption 7 is an identification condition related to the uniqueness of the covariance

matrix of yn, introduced in Delgado and Robinson (2015) who discussed it and compared it to

the identification condition employed by Lee (2004) in his asymptotic theory.

Theorem 2.1. Let (1.1) and Assumptions 1-7 hold, and pn be allowed to diverge as n → ∞.
Then ∥∥∥λ̂n − λ0n

∥∥∥ p−→ 0, as n→∞.

Theorem 2.2. Let (1.1) and Assumptions 1-7 hold, and pn be allowed to diverge as n → ∞
such that p2

n/nhn → 0. Then σ̂2
n − σ2

0 = op (1) , as n→∞.

Multimodality can be a potential problem with implicitly defined extremum estimates, see eg

Warnes and Ripley (1987) in a rather different spatial context. It is plausible that the likelihood

of it could increase with increasing pn or decreasing n, or perhaps with ‘increasing nonlinearity’.

However on the one hand one could get multimodality when p = 1, and on the other, normal

multiple linear regression is always unimodal if kn < n. Certainly the smaller the gap between

n and pn the flatter we might expect the objective function to be, but this a local rather than

global issue. The problem does not necessarily go away with large n, as even if the objective

function is asymptotically uniquely optimised asymptotic sub-optimal modes are not ruled out.

For p = 1 Hillier and Martellosio (2013) are able to establish unimodality if W1n has real

eigenvalues (amongst other conditions), although their approach relies on an explicit analysis of

the second derivative of the likelihood function and seems difficult to extend when p > 1. One

way to mitigate the problem is by searching over a sufficiently fine grid before any iteration,

though the larger pn is the more expensive this is.

To establish asymptotic normality, we denote by Hn

(
λ, σ2

)
the second derivative matrix of

(2.6) and define it in (A.18) in Appendix A. Writing P1n(λ), P2n(λ) for the pn × pn matrices

with (i, j)-th element given by tr (Gjn(λ)Gin(λ)), tr
(
G′jn(λ)Gin(λ)

)
, respectively, with Gin(λ) =

8



WinS
−1
n (λ) for i = 1, . . . , pn, we deduce (details in Appendix A) that

Ξn = E (Hn) = 2n−1 (P1n + P2n) . (2.11)

Write Fn for the n× pn matrix with (i, j)-th element cii,jn, where cpq,in is the (p, q)-th element

of Gin + G′in, and define Ωn =
(
µ4 − 3σ4

0

)
σ−4

0 n−1F ′nFn. The covariance matrix of the first

derivative of (2.6) is n−1 (2Ξn + Ωn). The following assumption is standard:

Assumption 8. λ0n is in the interior of Λn, for all sufficiently large n.

If hn diverges with n, we need to account for the correct normalisation that will yield a central

limit theorem as follows:

Assumption 9. hn →∞ as n→∞. lim
n→∞

ζ (hnΞn) <∞ and lim
n→∞

ζ (hnΞn) > 0.

Assumption 10. hn is bounded as n→∞. lim
n→∞

ζ
(
Ξ−1
n ΩnΞ−1

n

)
<∞,

lim
n→∞

ζ
(
2Ξ−1

n + Ξ−1
n ΩnΞ−1

n

)
> 0 and lim

n→∞
ζ (Ξn) > 0.

The rank conditions here strongly restrict the Win in higher-order SAR models, even with fixed

pn. Such problems are transparently avoided with weight matrices having ‘single nonzero di-

agonal block’ structure. Blommestein (1985) discusses the possibility of ‘circularity’ when Win

represent orders of contiguity, causing rank condition failure. By way of an illustration, W1n

could assign 1 to an element if the relevant units share a common boundary, W2n could assign 1

to an element if the relevant units do not share a boundary with each other but have a common

neighbour, and so on. In this case, there is a risk of high-order Win ‘circling’ back to W1n.

Assumption 11. For some χ > 0, E |ui|4+χ ≤ C, i = 1, . . . , n.

For any s × q matrix A = [aij ] define ‖A‖R = maxi=1,...,s

∑q
j=1 |aij |, the maximum absolute

row-sum norm.

Assumption 12. Sn is non-singular and

∥∥S−1
n

∥∥
R

+
∥∥S′−1

n

∥∥
R

+ max
i=1,...,pn

(‖Win‖R + ‖W ′in‖R) ≤ C, (2.12)

for all sufficiently large n.

This strengthens Assumption 3 due to the inequality ‖A‖2 ≤ ‖A‖R ‖A′‖R.

Denote throughout by Ψn a matrix of constants with full and fixed row rank, and columns

equal in number to the parameters for which a central limit theorem is being established. Our

next theorem covers the unbounded hn case, establishing asymptotic normality of a fixed number

of linear combinations of λ̂n − λ0n.
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Theorem 2.3. Let (1.1) and Assumptions 1, 2, 4, 6-9, 11 and 12 hold, hn →∞ as n→∞, pn

be allowed to diverge as n→∞ such that

p5
n

nhn
+
pn
hn

+
p4
nh

2
n

n
+
p

2+ 8
χ

n h
1+ 4

χ
n

n
→ 0 as n→∞. (2.13)

Then
n

1
2

h
1
2
np

1
2
n

Ψn

(
λ̂n − λ0n

)
d−→ N (0,∆1) , as n→∞,

where ∆1 = 2 limn→∞ p−1
n Ψn (hnΞn)

−1
Ψ′n.

First, note that χ > 4 implies that the last term on the LHS of (2.13) is dominated by

the third one. If GjnGin = 0 and G′jnGin = 0 for i 6= j, as with ‘single nonzero diag-

onal block’ weight matrices, then any finite-dimensional subset of estimates will be asymp-

totically distributed as independent normal random variables with mean zero and variances{
limn→∞ (hn/n) tr

(
G2
in +G′inGin

)}−1
. If pn is fixed then the restrictions on pn in (2.13)

are redundant. In this case the same proof, considering a single linear combination, implies(
n

1
2 /h

1
2
n

)(
λ̂n − λ0

)
d→ N

(
0, 2 limn→∞ (hnΞn)

−1
)

, by the Cramer-Wold device. We may derive

similar results for fixed parameter spaces from the subsequent central limit theorems in this

section. The following theorem takes hn to be bounded, complementing Theorem 2.3.

Theorem 2.4. Let (1.1) and Assumptions 1, 2, 4, 6-8, 10-12 hold, and pn be allowed to diverge

as n→∞ such that

p5
n

n
+
p

2+ 8
χ

n

n
→ 0, as n→∞. (2.14)

Then
n

1
2

p
1
2
n

Ψn

(
λ̂n − λ0n

)
d−→ N (0,∆2) , as n→∞,

where ∆2 = limn→∞ p−1
n Ψn

(
2Ξ−1

n + Ξ−1
n ΩnΞ−1

n

)
Ψ′n.

The parameter growth restrictions may be simplified if moment conditions are strengthened. For

instance when χ ≥ 8/3 in Assumption 11, (2.14) only requires p5
n/n → 0. Covariance matrix

estimation for Theorems 2.3 and 2.4 can be based on Hn

(
λ, σ2

n

)
and Ωn

(
λ, σ2

n

)
evaluated at λ̂n,

σ̂2
n and empirical moments.

We now turn from model (1.1) to the slightly more general (1.2). For any admissible λ, τ and

σ2 and nonsingular Sn(λ) the negative Gaussian pseudo log-likelihood function is log (2πσ2) −
2n−1 log |Sn (λ)|+

(
nσ2

)−1 ‖Sn (λ) yn − lnτ‖2 , which for given λ is minimised with respect to τ

and σ2 by τ̄n (λ) = n−1l′nSn (λ) yn and σ̄2
n (λ) = n−1y′nS

′
n (λ)MlnSn (λ) yn, where we write MA =

In−A(A′A)−1A′ for any n×s matrix A of rank s, with In denoting the n×n identity matrix. The

PMLE of λ0 is λ̂n = arg minλ∈Λn Qn (λ) , where Qn (λ) = log σ̄2
n (λ) +n−1 log

∣∣S−1
n (λ)S−1

n
′ (λ)

∣∣ ,
and the PMLEs of τ0 and σ2

0 are τ̂n = τ̄n

(
λ̂n

)
and σ̂2

n = σ̄2
n

(
λ̂n

)
respectively. The first and

second derivatives evaluated at
(
λ′0n, τ0, σ

2
0

)
are written ξIn andHI

n respectively. Both now include

10



derivatives with respect to τ , and explicit expressions can be obtained by taking Xn = ln in (1.3).

The covariance matrix of the first derivative of the likelihood function is n−1
(
2ΞIn + ΩIn

)
, with

ΞIn = E
(
HI
n

)
.

A feature of this model noted by Lee (2004) is potential multicollinearity. For example, if

the Win are row-normalised (with non-negative elements) then Winln = ln, so that Ginlnτ0 =

τ0ln (1−∑pn
i=1 λ0i)

−1
for each i. It follows that MlnGinlnτ0 = 0 for every i and multicollinearity

ensues. Indeed when hn diverges and pn = o (hn),
∥∥ΞIn

∥∥ = o(1), as n → ∞, implying that

ζ
(
ΞIn
)

= o(1) also (see Lee (2004) for justification when pn ≡ 1, extension to divergent pn

being obvious). While consistency as established in the following section is preserved as long as

Assumption 7 continues to hold (τ0 is identified if λ0n is identified), the central limit theorem

entails a different norming.

Theorem 2.5. Let (1.2) and Assumptions 1-7 hold, and pn be allowed to diverge as n → ∞.
Then ∥∥∥

(
λ̂′n, τ̂n

)
− (λ′0n, τ0)

∥∥∥ p−→ 0, as n→∞.

Theorem 2.6. Let (1.2) hold with hn →∞ as n→∞. Let Assumptions 1, 2, 4, 6-8, 11 and 12

hold, ζ
(
ΞIn
)
→ 0 as n → ∞, limn→∞ ζ

((
hnΞIn

)−1
hnΩIn

(
hnΞIn

)−1
)
< ∞, limn→∞ ζ

(
hnΞIn

)
>

0, limn→∞ ζ
(

2
(
hnΞIn

)−1
+
(
hnΞIn

)−1
hnΩIn

(
hnΞIn

)−1
)
> 0, and pn be allowed to diverge as

n→∞ such that

p5
n

nhn
+
p4
nh

2
n

n
+
p

2+ 8
χ

n h
1+ 4

χ
n

n
→ 0, as n→∞. (2.15)

Then
n

1
2

h
1
2
np

1
2
n

Ψn

((
λ̂′n, τ̂n

)′
− (λ′0n, τ0)

′
)

d−→ N (0,∆3) , as n→∞,

where ∆3 = limn→∞ p−1
n Ψn

(
2
(
hnΞIn

)−1
+
(
hnΞIn

)−1
hnΩIn

(
hnΞIn

)−1
)

Ψ′n.

If either multicollinearity does not arise or if hn is bounded the asymptotic distribution of the

PMLE for the parameters of (1.2) is covered under the theorems of the following section.

3 SAR with regressors

We now consider (1.3). Let Xn (δ) have i-th row x′in (δ) = (xi1n (δ) , . . . , xiknn (δ)), for known

functions xijn(δ), j = 1, . . . , kn, and unknown vector δ = (δ1, . . . , δq)
′
. When δ0 is known the

regression is linear. A nonlinear example with kn = q = 1 is the Box-Cox choice xin (δ) =(
zδin − 1

)
/δ for a positive explanatory variable zin. Generally, the vector β0n is distinguished

from δ0, playing a similar scaling role as in a linear model (and unlike δ0, β0n need not be assumed

an element of a prescribed compact set, cf Robinson (1972)). Recall also that q is assumed fixed

as n increases.

With Xn ≡ Xn (δ0) we have Snyn = Xnβ0n + u and, denoting by θ = (λ′, β′, δ′)′ any

admissible values of θ0n = (λ′0n, β
′
0n, δ

′
0)
′
, redefine the negative Gaussian pseudo log-likelihood

11



function as

log (2πσ2)− 2n−1 log |Sn (λ)|+ σ−2n−1 ‖Sn (λ) yn −Xn (δ)β‖2 , (3.1)

for nonsingular Sn(λ). For given γ = (λ′, δ′)′, (3.1) is minimised with respect to β and σ2 by

β̄n (γ) = (X ′n (δ)Xn (δ))
−1
X ′n (δ)Sn (λ) yn, (3.2)

σ̄2
n (γ) = n−1y′nS

′
n (λ)Mn(δ)Sn (λ) yn, (3.3)

with Mn(δ) = In −Xn(δ) (X ′n(δ)Xn(δ))
−1
X ′n(δ). The PMLE of γ0 is γ̂n = arg minγ∈Γn Qn (γ),

where we have redefined

Qn (γ) = log σ̄2
n (γ) + n−1 log

∣∣S−1
n (λ)S−1

n
′ (λ)

∣∣ , (3.4)

Γn = Λn×D, with D a compact subset of Rq and δ̂n ≡ δ̂. The PMLEs of β0n and σ2
0 are defined

as β̄n (γ̂n) ≡ β̂n and σ̄2
n (γ̂n) ≡ σ̂2

n respectively.

Assumption 13. δ0 ∈ D.

Assumption 14. xijn(δ) are uniformly bounded constants, i = 1, . . . , n, j = 1, . . . , kn, δ ∈ D,

and

lim
n→∞

n−1 sup
δ∈D

ζ (X ′n(δ)Xn(δ)) > 0, as n→∞. (3.5)

(3.5) is an asymptotic non-multicollinearity condition.

Assumption 15. The xijn (δ) are uniformly continuous on D: that is, for any ε > 0 and any

δ∗ ∈ D, there exists ρ > 0 such that lim
n→∞

max
1≤i≤n,1≤j≤kn

sup
‖δ−δ∗‖<ρ; δ∈D

|xijn (δ)− xijn (δ∗)| < ε.

Assumption 16. When δ0 is unknown,

‖β0n‖ ∼ k1/2
n as n→∞, (3.6)

and for any η > 0,

lim
n→∞

inf
(λ′, δ′)′∈ Λn×N δ

n (η)

n−1β′0nX
′
nT
′
n(λ)Mn (δ)Tn(λ)Xnβ0n/ ‖β0n‖2 > 0. (3.7)

We deal in this paper with the relatively challenging case when ‖β0n‖ is unbounded, and control

over this is provided by (3.6). The proof with finitely many, but at least one, nonzero β0n

elements would be simpler. We could rewrite (3.7) as

lim
n→∞

inf
(λ′, β′, δ′)′∈ Λn×Rkn×N δ

n (η)

n−1 ‖Xn (δ)β − Tn(λ)Xnβ0n‖2 / ‖β0n‖2 > 0, (3.8)

which is analogous to the identification condition for the nonlinear regression model yn =

Xn (δ)β0n + u (take λ = λ0n) with a parametric linear factor in Robinson (1972), and (3.8)

12



may be easier to comprehend than (3.7). A sufficient condition is: for any η > 0

lim
n→∞

inf
(λ′, δ′)′∈ Λn×N δ

n (η)

n−1ζ (X ′nT
′
n(λ)Mn (δ)Tn(λ)Xn) > 0. (3.9)

Theorem 3.1. Let (1.3) and Assumptions 1-7, 13-16 hold, and pn, kn be allowed to diverge as

n→∞ such that
kn
n
−→ 0, as n→∞. (3.10)

Then ∥∥∥θ̂n − θ0n

∥∥∥ p−→ 0, as n→∞.

As discussed after Theorem 2.1 the same proof holds when pn and kn remain fixed, and the

restriction on kn in (3.10) becomes redundant. The conditions of the theorem can be compared

to those in Gupta and Robinson (2015). The requirement of finite fourth moments for ui is not

imposed by them for consistency of the IV and OLS estimates, where second moments suffice.

On the other hand, the only restriction imposed on hn here is that it be bounded away from zero

uniformly in n. For ε > 0, define N δ(ε) = {δ : ‖δ − δ0‖ < ε}.

Assumption 17. For some ε > 0, ∂xijn (δ) /∂δl exist and are uniformly bounded in abso-

lute value for all δ ∈ N δ(ε) ∩ D, i = 1 . . . , n, j = 1, . . . , kn, l = 1, . . . , q. As n → ∞,

limn→∞ n−1ζ̄ (X ′nXn) <∞.

This assumption implies supδ∈N δ(ε)∩D ‖∂xijn (δ) /∂δ‖ < C.

Theorem 3.2. Let (1.3) and Assumptions 1-7, 13-17 hold, and pn, kn be allowed to diverge as

n → ∞ such that pnk
4
n (pn + kn) /n → 0 as n → ∞. Then σ̂2

n − σ2
0 = op (1) , as n → ∞. If δ0

is known (i.e. the regression is linear), the sufficient rate can be improved to p2
nk

3
n/n → 0 as

n→∞.

Assumption 18. For some ε > 0, ∂2xijn (δ) /∂δl1∂δl2 and ∂3xijn (δ) /∂δl1∂δl2∂δl3 exist and

are uniformly bounded in absolute value for all δ ∈ N δ(ε) ∩ D, i = 1, . . . , n, j = 1, . . . , kn,

l1, l2, l3 = 1, . . . , q. As n→∞,

lim
n→∞

n−1 max
l=1,,...,q

ζ̄ {(∂X ′n/∂δl) (∂Xn/∂δl)} < ∞, (3.11)

lim
n→∞

n−1 max
l1,l2=1,,...,q

ζ̄
{(
∂2X ′n/∂δl1∂δl2

) (
∂2Xn/∂δl1∂δl2

)}
< ∞. (3.12)

Together (3.11) and (3.12) imply n−
1
2

(
‖∂Xn/∂δl1‖ ,

∥∥∂2Xn/∂δl1∂δl2
∥∥) = O(1), uniformly in

l1, l2 = 1 . . . , q.

Let Πn (θ) be the n× q matrix with i-th column (∂Xn(δ)/∂δi)β, where the matrix is differ-
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entiated element-by-element. Redefine Hn to be the second derivative matrix of (3.1), so

Ξn = E (Hn) = 2σ−2
0 n−1



σ2

0 (P1n + P2n) +A′nAn A′nXn A′nΠn

∗ X ′nXn X ′nΠn

∗ ∗ Π′nΠn


 , (3.13)

where An = [a1n, . . . , apnn] with ajn = GjnXnβ0n. Assumption 14 implies aijn = O (kn),

uniformly in i = 1, . . . , n, j = 1, . . . , pn, where aijn is the (i, j)-th element of An. More details

on derivatives are in Appendix A, where their components are used in the proofs of the central

limit theorems stated below. Define Ln = n−1
(
[An, Xn,Πn]

′
[An, Xn,Πn]

)
, which equals

σ2
0

2
Ξn − σ2

0



P1n + P2n 0 0

0 0 0

0 0 0


 .

Assumption 19. lim
n→∞

ζ (Ln) > 0 and lim
n→∞

ζ (Ln) <∞.

Theorem 3.3. Let hn →∞ as n→∞, (1.3) and Assumptions 1, 2, 4, 6-8, 12, 14-19 hold, δ0

be in the interior of D, and pn, kn be allowed to diverge as n→∞ such that

p2
nk

6
n

n
(pn + kn) +

p3
nk

2
n

h2
n

−→ 0, as n→∞. (3.14)

Then
n

1
2

(pn + kn)
1
2

Ψn

(
θ̂n − θ0n

)
d−→ N (0,∆4) , as n→∞,

where ∆4 = σ2
0 limn→∞ (pn + kn)

−1
ΨnL

−1
n Ψ′n.

The matrix

n−1
[
W1nyn, . . . ,Wpnnyn, Xn

(
δ̂
)
,Πn

(
θ̂n

)]′ [
W1nyn, . . . ,Wpnnyn, Xn

(
δ̂
)
,Πn

(
θ̂n

)]

and σ̂2
n can replace Ln and σ2

0 respectively to obtain a consistent estimate of ∆4. When pn and

kn are fixed we obtain n
1
2

(
θ̂n − θ0

)
d−→ N

(
0, σ2

0 limn→∞ L−1
n

)
via the Cramér-Wold device,

as discussed after Theorem 2.3. Similar comments apply after the other central limit theorems

presented subsequently both in this section and the next one. If hn is bounded as n→∞ a more

complicated analysis is required because the information equality does not hold asymptotically.

Define

Ωn = σ−4
0 n−1




2µ3 (F ′nAn +A′nFn) +
(
µ4 − 3σ4

0

)
F ′nFn 2µ3F

′
nXn 2µ3F

′
nΠn

∗ 0 0

∗ ∗ 0


 . (3.15)

14



Again n−1 (2Ξn + Ωn) is the covariance matrix of the first derivative of (3.1). The asymptotic

distribution relies on the following non-multicollinearity and boundedness condition:

Assumption 20. lim
n→∞

ζ
(
Ξ−1
n ΩnΞ−1

n

)
<∞, lim

n→∞
ζ
(
2Ξ−1

n + Ξ−1
n ΩnΞ−1

n

)
> 0 and lim

n→∞
ζ (Ξn) >

0.

Theorem 3.4. Let hn be bounded as n→∞, (1.3) and Assumptions 1, 2, 4, 6-8, 11, 12, 14-18,

20 hold, δ0 be in the interior of D, and pn, kn be allowed to diverge as n→∞ such that

p2
nk

4
n

n

(
p3
n + k3

n + pnk
2
n

)
+

(pnkn)
2+ 8

χ

n
−→ 0, as n→∞. (3.16)

Then
n

1
2

(pn + kn)
1
2

Ψn

(
θ̂n − θ0n

)
d−→ N (0,∆5) , as n→∞,

where ∆5 = limn→∞ (pn + kn)
−1

Ψn

(
2Ξ−1

n + Ξ−1
n ΩnΞ−1

n

)
Ψ′n.

It may be shown that if χ ≥ 8/3 then p5
nk

7
n/n = o(1) suffices for (3.16) to hold while if χ ≥ 8/5

and pn is fixed then k7
n/n→ 0 is sufficient.

For linear regression, i.e. when δ0 is known, Gupta and Robinson (2015) show that the

asymptotic covariance matrix of a fixed number of linear combinations of IV estimates is given by

∆IV = σ2
0 limn→∞ (pn + kn)

−1
n−1Ψn

(
[An, Xn]

′P ([Zn, Xn]) [An, Xn]
)−1

Ψ′n, where P(A) =

A(A′A)−1A′ for a matrix A with full column rank. On the other hand, when u in (1.3) is

normally distributed, Ωn = 0 and ∆5 = 2 limn→∞ (pn + kn)
−1

ΨnΞ−1
n Ψ′n, where Ξn in (3.13)

now no longer contains the blocks with Πn. Straightforward calculations show that

limn→∞ (pn + kn)
−1

Ψn

(
2−1Ξn − [An, Xn]

′P ([Zn, Xn]) [An, Xn]
)

Ψ′n equals

σ2
0 lim
n→∞

(pn + kn)
−1
n−1Ψn

([
σ2

0 (P1n + P2n) 0

0 0

]
+ [An, Xn]

′
M[Zn,Xn] [An, Xn]

)
Ψ′n,

which is the sum of two nonnegative definite matrices, implying that ∆IV ≥ ∆5.

4 Regression with SAR errors

We can write (1.4) as

Sn (λ0) yn = Xn (γ0)β0 + u, (4.1)

where with some abuse of notation Xn (γ) = Sn (λ)Xn (δ) . Thus consider Qn (γ) defined as

before but with

σ2
n (γ) = n−1y′nS

′
n (λ)Mn (γ)Sn (λ) yn,

Mn (γ) = In −Xn (γ) (X ′n (γ)Xn (γ))
−1
X ′n (γ) .
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Write Xn = Xn (γ0) and introduce

Assumption 21. When δ0 is unknown, (3.6) holds and for any η > 0

lim
n→∞

inf
(λ′,δ′)∈Λn×N δ

n (η)

n−1β′0nX
′
nT
′
n(λ)Mn (γ)Tn(λ)Xnβ0n/ ‖β0n‖2 > 0.

Theorem 4.1. Let (1.4) and Assumptions 1-7, 13-15 and 21 hold, and pn, kn be allowed to

diverge as n→∞ such that
kn
n
−→ 0, as n→∞. (4.2)

Then ∥∥∥θ̂n − θ0n

∥∥∥ p−→ 0, as n→∞.

Under similar regularity conditions as in the previous section we may obtain the asymptotic

distribution of θ̂n =
(
λ̂′n, β̂

′
n

)′
. We provide the derivatives of the redefined (3.1) in Appendix A,

from which

Ξn = 2σ−2
0 n−1



σ2

0 (P1n + P2n) 0 0

∗ X ′nS
′
nSnXn X ′nS

′
nΠn

∗ ∗ Π′nΠn


 , (4.3)

which is block diagonal between λ and (β′, δ′)′ and, notably, the top left block can have spectral

norm going to zero when hn → ∞ because it is identical to (2.11), which entailed a different

norming in Theorems 2.3 and 2.6.

Assumption 22. For some ε > 0, ∂xijn (γ) /∂γl exist and are uniformly bounded in absolute

value for all γ ∈ N γ(ε) ∩ Γ, i = 1 . . . , n, j = 1, . . . , kn, l = 1, . . . , pn + q. As n → ∞,

limn→∞ n−1ζ̄ (X ′nXn) <∞.

Assumption 23. For some ε > 0, ∂2xijn (γ) /∂γl1∂γl2 and ∂3xijn (γ) /∂γl1∂γl2∂γl3 exist and

are uniformly bounded in absolute value for all γ ∈ N γ(ε) ∩ D, i = 1, . . . , n, j = 1, . . . , kn,

l1, l2, l3 = 1, . . . , pn + q. As n→∞,

lim
n→∞

n−1 max
l=1,,...,pn+q

ζ̄ {(∂X ′n/∂γl) (∂Xn/∂γl)} < ∞, (4.4)

lim
n→∞

n−1 max
l1,l2=1,,...,pn+q

ζ̄
{(
∂2X ′n/∂γl1∂γl2

) (
∂2Xn/∂γl1∂γl2

)}
< ∞. (4.5)

In the two central limit theorems stated below, identification conditions are taken to hold for the

changed definitions of Ξn and Ωn in this section. These definitions are described in Appendix

A, but a feature of the next theorem is the differential norming that implies a slower rate

of convergence for λ̂n as compared to
(
β̂′n, δ̂

′
n

)′
. Define Φn = diag [hnIpn , Ikn , Iq] and write

BΦ
n = Φ

1
2
nBnΦ

1
2
n for a generic matrix Bn.

Theorem 4.2. Let hn → ∞ as n → ∞, (1.4) and Assumptions 1, 2, 4, 6-8, 11, 12, 14, 15

and 21-23 hold, δ0 be in the interior of D, limn→∞ ζ
(
ΞΦ−1
n ΩΦ

nΞΦ−1
n

)
<∞, limn→∞ ζ

(
ΞΦ
n

)
> 0,
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limn→∞ ζ
(
2ΞΦ−1

n + ΞΦ−1
n ΩΦ

nΞΦ−1
n

)
> 0, and (2.13), (3.14) hold if pn, kn are allowed to diverge

as n→∞. Then

n
1
2

(pn + kn)
1
2

ΨnΦ
− 1

2
n

(
θ̂n − θ0n

)
d−→ N (0,∆6) , as n→∞,

where ∆6 = limn→∞ (pn + kn)
−1

Ψn

(
2ΞΦ−1

n + ΞΦ−1
n ΩΦ

nΞΦ−1
n

)
Ψ′n.

Theorem 4.3. Let hn be bounded as n→∞, (1.4) and Assumptions 1, 2, 4, 6-8, 11, 12, 14, 15

and 20-23 hold, δ0 be in interior of D, and (3.16) hold if pn, kn are allowed to diverge as n→∞.

Then
n

1
2

(pn + kn)
1
2

Ψn

(
θ̂n − θ0n

)
d−→ N (0,∆7) , as n→∞,

where ∆7 = limn→∞ (pn + kn)
−1

Ψn

(
2Ξ−1

n + Ξ−1
n ΩnΞ−1

n

)
Ψ′n.

5 Finite-sample performance

In this section we study the finite-sample properties of the estimates considered above in a

Monte Carlo study, in two distinct settings considered earlier eg in Gupta and Robinson (2015).

In the first setting, we consider Case (1991, 1992), where weight matrices take the ‘single nonzero

diagonal block’ specification

W f
kn = diag


0, . . . , Vm︸︷︷︸

k−th diagonal block

, . . . , 0


 , k = 1, . . . , p, (5.1)

with Vm = (m− 1)
−1

(lml
′
m − Im). In the second setting the weight matrices are

W c
kn = (‖W ∗kn‖)−1

W ∗kn, (5.2)

with W ∗kn the symmetric circulant matrix with first row elements given by

w∗1j,kn =

{
0 if j = 1 or j = k + 2, . . . , n− k;

1 if j = 2, . . . , k + 1 or j = n− k + 1, . . . , n.
(5.3)

Thus W c
kn is also a symmetric circulant matrix with first row elements given by w∗1j,kn/2k. In

both experiments we took p = 2, 4, 6. We first analyse the pure and intercept SAR cases. yn

was generated using (1.1) or (1.2) in each of the 1000 replications. We chose λ01 = 0.7, λ02 =

0.8, λ03 = 0.5, λ04 = 0.8, λ05 = 0.4 and λ06 = 0.3, when using W f
kn while the values chosen when

using W c
kn were λ01 = 0.1, λ02 = 0.2, λ03 = 0.2, λ04 = 0.1, λ05 = 0.1 and λ06 = 0.2 (because a

sufficient condition for S−1
n to exist in this case is ‖λ‖1 < 1). One set of ui was generated as

independent draws from N(0, 1) (here PMLE is MLE), and another set as independent draws
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u ∼ N(0, In)
n 108 216 432

p Bias MSE Bias MSE Bias MSE

W c
kn 2 0.0169 0.0267 0.0036 0.0138 0.0017 0.0069

4 0.0464 0.1300 0.0592 0.0861 0.0181 0.0404
6 0.0449 0.2325 0.1068 0.2298 0.0284 0.1058

s 12 24 36

W f
kn 2 0.0396 0.0132 0.0177 0.0040 0.0114 0.0023

4 0.1047 0.0710 0.0453 0.0198 0.0288 0.0105
6 0.2017 0.1982 0.0962 0.0703 0.0593 0.0352

u ∼ t6
n 108 216 432

p Bias MSE Bias MSE Bias MSE

W c
kn 2 0.0141 0.0274 0.0026 0.0135 0.0012 0.0069

4 0.0501 0.1277 0.0499 0.0880 0.0121 0.0364
6 0.0350 0.2296 0.0917 0.2189 0.0356 0.1099

s 12 24 36

W f
kn 2 0.0343 0.0114 0.0178 0.0040 0.0108 0.0023

4 0.0991 0.0685 0.0441 0.0180 0.0262 0.0093
6 0.2001 0.2014 0.0923 0.0661 0.0574 0.0336

Table 5.1: Monte Carlo (average) absolute bias and (average) MSE for PMLE, model (1.1)

from t6 (σ2
0 = 3/2), having thicker tails.

Tables 5.1 and 5.2 display Monte Carlo (absolute) bias and MSE for (1.1) and (1.2) respec-

tively, with τ0 = 1. Table 5.2 considers only W c
kn, the inclusion of an intercept not being possible

with W f
kn (cf Kelejian, Prucha, and Yuzefovich (2006)). Averages (averaging over bias and MSE

for λ0i, i = 1, . . . , p) are reported for the spatial parameter estimates to conserve space. We

report results for m = 16 (m = 8, 24 were also simulated) only when using W f
kn, and also take

the number of districts s (implying n = 16s, and more generally n = ms) to grow faster than

p. Indeed Theorems 2.3 and 2.4 indicate that when m is either bounded or divergent the PMLE

is s
1
2 /p

1
2 -consistent for the farmer-district setting, and in any case p2+ 8

χm
4
χ /s + p4m/s → 0 as

p,m, s → ∞ is necessary for (2.13) to hold asymptotically. We take s = 12, 24, 36, and this

implies the need to combine spatial weight matrices by imposing the same spatial parameter for

some blocks. When p = 2 we combine into two groups with six blocks, twelve blocks and eighteen

blocks each when s = 12, 24, 36, respectively. When p = 4 (respectively p = 6) we combine into

four groups (respectively six groups) with three, six and nine blocks each (respectively two, four

and six blocks each). When using W c
kn we take n = 108, 216, 432.

In Table 5.1, bias and MSE decline with sample size for both MLE and PMLE of (1.1), using
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u ∼ N(0, In) n 108 216 432

p Bias MSE Bias MSE Bias MSE

2 λ 0.0275 0.0277 0.0088 0.0141 0.0043 0.0069
τ 0.0386 0.0420 0.0181 0.0192 0.0079 0.0092

4 λ 0.0445 0.1327 0.0607 0.0844 0.0177 0.0404
τ 0.4455 1.7600 0.4286 1.5636 0.1772 0.6106

6 λ 0.0356 0.2187 0.0856 0.2115 0.0272 0.1030
τ 1.3373 7.0599 1.4352 5.7450 0.5206 2.0209

u ∼ t6
p Bias MSE Bias MSE Bias MSE

2 λ 0.0253 0.0286 0.0080 0.0137 0.0027 0.0069
τ 0.0384 0.0468 0.0207 0.0225 0.0093 0.0107

4 λ 0.0433 0.1270 0.0511 0.0865 0.0099 0.0350
τ 0.3932 1.5885 0.3694 1.3702 0.0952 0.3675

6 λ 0.0370 0.2233 0.0715 0.1998 0.0271 0.1044
τ 1.3176 7.3067 1.5214 6.1180 0.5600 2.1321

Table 5.2: Monte Carlo absolute bias and MSE for PMLE, model (1.2), with W c
kn only.

either W c
kn or W f

kn, although with the former the decline in bias is not necessarily monotonic.

Generally biases for W f
kn exceed those for W c

kn but MSEs and thus variances tend to be smaller.

Table 5.2 indicates a similar, non-monotonic, pattern of reduction for (1.2). However the bias

and MSE for τ̂n can be very high for large p, eg for p = 6 they are unacceptable even when

n = 432.

Tables 5.3 and 5.4 similarly display Monte Carlo size and power for (1.1) and (1.2) respectively,

with nominal size 5%. Power was computed using the false null hypothesis λi, τ = 0.5, for

each i. With W c
kn in (1.1), size approaches the nominal value non-monotonically with n, but

with (1.2) the behaviour is rather more erratic. For p = 2 the oversizing is moderate, but

dramatically worsens for p = 4, 6. However in each case it gets closer to the nominal size

as n increases, although not necessarily monotonically. On the contrary, with W f
kn there is

considerable undersizing. Larger values of s give little indication of an approach to the nominal

5%. The sizes are better for larger p, the best results arising when p = 6. The behaviour is

similar across N(0, 1) or t6 disturbances. On the other hand power increases monotonically in

each of the various settings, and would be much higher for the p = 4, 6 cases if not for λ03 = 0.5

(true under the false null), which effectively caps power at around 83%.

When generating yn using (1.3), we set kn = 2 and β01 = 1, β02 = 0.7. In Xn we took

xi1n(δ) = (zδi1 − 1)/δ and xi2n(δ) = zi2, with (zi1, zi2)
′ ∼ U(0, 5) (generated independently of

each other), i = 1, . . . , n, with 1000 replications, and δ0 = 0.7. With W f
kn equal blocks of size m

were used, while three different m were chosen for each p: 48, 96 and 144. We also simulated a

model with xi1n(δ) = e δzi1 and xi2n(δ) = zi2 and found similar results.
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u ∼ N(0, In)
n 108 216 432

p Size Power Size Power Size Power

W c
kn 2 0.0475 0.5800 0.0460 0.7935 0.0400 0.9470

4 0.0660 0.2715 0.0998 0.4047 0.0760 0.5830
6 0.0335 0.1860 0.1197 0.3043 0.1027 0.4040

s 12 24 36

W f
kn 2 0.0085 0.5835 0.0060 0.7805 0.0060 0.8855

4 0.0103 0.3520 0.0083 0.4925 0.0073 0.5867
6 0.0300 0.2035 0.0242 0.2807 0.0215 0.3422

u ∼ t6
n 108 216 432

p Size Power Size Power Size Power

W c
kn 2 0.0560 0.5695 0.0425 0.7970 0.0490 0.9480

4 0.0583 0.2745 0.0985 0.4233 0.0660 0.5775
6 0.0313 0.1818 0.1148 0.3062 0.1078 0.4085

s 12 24 36

W f
kn 2 0.0090 0.5910 0.0060 0.7755 0.0070 0.8770

4 0.0123 0.3602 0.0067 0.4080 0.0070 0.5900
6 0.0303 0.2087 0.0230 0.2855 0.0237 0.3480

Table 5.3: Monte Carlo average size and average power for PMLE, model (1.1)

We now discuss the results for θ̂n in Tables 5.5 and 5.6, which report Monte Carlo bias and

MSE for u ∼ N(0, In) and u ∼ t6 respectively. It is interesting to note that for W f
kn increasing m

mostly improves the estimates of the spatial parameters, for fixed p. However, Lee (2004) showed

that the PMLE is inconsistent if p = 1 when m alone increases, while simulations conducted by

Hillier and Martellosio (2013) also suggest convergence to a nondegenerate distribution. Similar

results will undoubtedly apply if p > 1, but fixed, and m alone increases. On the other hand,

the block-diagonality of W f
kn implies that the number of observations available to estimate the

λ0i increase one-to-one with m. Generally bias and MSE improve with n, as expected. For W c
kn

the results are as expected. Bias and MSE reduce with larger n and smaller p, and also with

larger n for fixed p, and seem acceptable.

Tables 5.7 and 5.8 report Monte Carlo size and power for u ∼ N(0, In) and u ∼ t6 respectively.

Now power is calculated using the incorrect null hypothesis θi = 0.6, for each i. Under normality,

sizes when using W f
kn are always between 4.3% and 8.2% but those for W c

kn range from 2.35% to

7.1%. When the disturbances are non-normal matters are similar, although there are instances

(p = 2, 6) of severe undersizing for λ0i with W c
kn that persists for all values of n. On the other

hand, the power tends to increase (but not always monotonically) with large n and small p for
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u ∼ N(0, In) n 108 216 432

p Size Power Size Power Size Power

2 λ 0.0275 0.5950 0.0088 0.8055 0.0043 0.9505
τ 0.0750 0.8460 0.0560 0.9920 0.0570 1.0000

4 λ 0.0445 0.2742 0.0607 0.4072 0.0177 0.5837
τ 0.2630 0.7070 0.2000 0.9320 0.1260 1.0000

6 λ 0.0356 0.1817 0.0856 0.2982 0.0272 0.4038
τ 0.4050 0.4960 0.5330 0.7830 0.2960 0.9110

u ∼ t6
p Size Power Size Power Size Power

2 λ 0.0253 0.5885 0.0080 0.8090 0.0027 0.9540
τ 0.0540 0.7950 0.0630 0.9720 0.0610 1.0000

4 λ 0.0433 0.2785 0.0511 0.4265 0.0099 0.5825
τ 0.2360 0.6210 0.1840 0.9100 0.0890 0.9920

6 λ 0.0370 0.1778 0.0715 0.2968 0.0271 0.4060
τ 0.4090 0.4820 0.5540 0.7680 0.2970 0.9920

Table 5.4: Monte Carlo size and power for PMLE, model (1.2), with W c
kn only.

W c
kn but large m, p, for W f

kn, due to the increase in n afforded by increasing p. Power for δ0

tends to be low across the board, in part because its true value is 0.7 and the postulated value

is 0.6. This factor doubtless also plays a role in the lower power for β02 generally as compared

to that for β01.

Finally, Table 5.9 compares θ̂n with the IV estimate of Gupta and Robinson (2015) (denoted

θ̌n) whenW c
kn are employed, xi1n(δ) = zi1 also (i.e. linear regressive SAR) and (zi1, zi2) ∼ U(0, 1)

to match their design. We consider u generated from both N(0, In) and t6 distributions. We

report relative average MSE (RAMSE) separately for the autoregression and regression com-

ponents, defining these as average MSE(λ̂n)/average MSE(λ̌n) and average MSE(β̂n)/average

MSE(β̌n), using the instruments {W c
jnzi1,W

c
jnzi2}, j = 1, . . . , p. The PMLE does very well in

general. The IV estimates outperform the PMLE for the regression coefficients β01 and β02 in

4 out of 6 cases when p = 6, but fare much worse for the spatial parameters in all cases. Ex-

periments in which the u were generated from a χ2
6 − 6 (this having σ2

0 = 12, and also being

non-symmetric) distribution followed the same pattern.

It is particularly interesting to note that the PMLE outperforms the IV estimate by such a

large margin even when the disturbances are non-normal. A possible explanation for this is that

the IV estimate relies on instruments derived from a power series expansion of S−1
n , and the

estimates are sensitive to the strength of these instruments.
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W c
kn n 108 216 432

p Bias MSE Bias MSE Bias MSE

2 λ 0.0036 0.0110 0.0009 0.0053 0.0003 0.0028
δ 0.0184 0.0462 0.0212 0.0220 0.0016 0.0089
β1 0.0135 0.0238 0.0150 0.0116 0.0025 0.0049
β2 0.0018 0.0038 0.0002 0.0017 0.0002 0.0010

4 λ 0.0085 0.0546 0.0029 0.0268 0.0028 0.0132
δ 0.0176 0.0470 0.0215 0.0222 0.0018 0.0090
β1 0.0172 0.0242 0.0171 0.0116 0.0037 0.0049
β2 0.0048 0.0043 0.0010 0.0020 0.0006 0.0011

6 λ 0.0073 0.1186 0.0070 0.0648 0.0070 0.0312
δ 0.0194 0.0492 0.0221 0.0227 0.0023 0.0092
β1 0.0220 0.0251 0.0196 0.0118 0.0050 0.0050
β2 0.0068 0.0046 0.0024 0.0021 0.0010 0.0012

W f
kn m 48 96 144

p Bias MSE Bias MSE Bias MSE

2 λ 0.0009 0.0002 0.0018 0.0003 0.0010 0.0002
δ 0.0038 0.0214 0.0090 0.0232 0.0090 0.0156
β1 0.0083 0.0264 0.0026 0.0129 0.0055 0.0078
β2 0.0042 0.0052 0.0066 0.0025 0.0032 0.0019

4 λ 0.0044 0.0006 0.0020 0.0003 0.0012 0.0002
δ 0.0129 0.0230 0.0070 0.0117 0.0023 0.0074
β1 0.0022 0.0129 0.0036 0.0061 0.0001 0.0040
β2 0.0109 0.0026 0.0059 0.0013 0.0022 0.0008

6 λ 0.0059 0.0010 0.0027 0.0005 0.0020 0.0003
δ 0.0142 0.0158 0.0037 0.0074 0.0046 0.0050
β1 0.0046 0.0079 0.0000 0.0040 0.0014 0.0028
β2 0.0087 0.0020 0.0039 0.0008 0.0028 0.0006

Table 5.5: Monte Carlo absolute bias and MSE for MLE (u ∼ N(0, In)), model (1.3) with
xi1n(δ) = (zδi1 − 1)/δ.
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W c
kn n 108 216 432

p Bias MSE Bias MSE Bias MSE

2 λ 0.0024 0.0134 0.0010 0.0068 0.0033 0.0031
δ 0.0263 0.0708 0.0148 0.0304 0.0076 0.0143
β1 0.0183 0.0358 0.0112 0.0170 0.0053 0.0074
β2 0.0028 0.0057 0.0010 0.0026 0.0018 0.0012

4 λ 0.0110 0.0622 0.0112 0.0319 0.0069 0.0165
δ 0.0250 0.0728 0.0165 0.0308 0.0080 0.0145
β1 0.0229 0.0366 0.0143 0.0171 0.0067 0.0074
β2 0.0059 0.0066 0.0018 0.0030 0.0013 0.0014

6 λ 0.0140 0.1371 0.0112 0.0743 0.0046 0.0390
δ 0.0261 0.0748 0.0159 0.0308 0.0083 0.0147
β1 0.0283 0.0371 0.0169 0.0173 0.0081 0.0074
β2 0.0092 0.0071 0.0035 0.0033 0.0007 0.0015

W f
kn m 48 96 144

p Bias MSE Bias MSE Bias MSE

2 λ 0.0036 0.0009 0.0030 0.0004 0.0009 0.0003
δ 0.0384 0.0881 0.0239 0.0378 0.0072 0.0238
β1 0.0132 0.0411 0.0133 0.0195 0.0041 0.0125
β2 0.0079 0.0084 0.0098 0.0041 0.0048 0.0026

4 λ 0.0070 0.0009 0.0036 0.0005 0.0018 0.0003
δ 0.0291 0.0380 0.0165 0.0180 0.0086 0.0102
β1 0.0117 0.0196 0.0077 0.0096 0.0026 0.0055
β2 0.0159 0.0042 0.0070 0.0019 0.0023 0.0013

6 λ 0.0083 0.0015 0.0041 0.0007 0.0039 0.0005
δ 0.0142 0.0237 0.0097 0.0102 0.0119 0.0082
β1 0.0024 0.0127 0.0018 0.0055 0.0037 0.0040
β2 0.0130 0.0027 0.0045 0.0013 0.0061 0.0009

Table 5.6: Monte Carlo absolute bias and MSE for PMLE (u ∼ t6), model (1.3) with xi1n(δ) =
(zδi1 − 1)/δ.
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W c
kn n 108 216 432

p Size Power Size Power Size Power

2 λ 0.0335 0.9610 0.0240 0.9985 0.0285 1.0000
δ 0.0590 0.0600 0.0440 0.0940 0.0460 0.1240
β1 0.0640 0.7250 0.0520 0.9140 0.0380 0.9980
β2 0.0490 0.3530 0.0350 0.6070 0.0460 0.8930

4 λ 0.0335 0.5093 0.0318 0.7045 0.0275 0.8790
δ 0.0660 0.0600 0.0520 0.0920 0.0460 0.1230
β1 0.0620 0.7210 0.0520 0.9120 0.0380 0.9980
β2 0.0500 0.3130 0.0430 0.5580 0.0520 0.8440

6 λ 0.0235 0.3148 0.0273 0.4598 0.0263 0.6620
δ 0.0710 0.0570 0.0480 0.1020 0.0440 0.1230
β1 0.0640 0.7170 0.0510 0.9130 0.0390 0.9980
β2 0.0510 0.2830 0.0450 0.5290 0.0550 0.8200

W f
kn m 48 96 144

p Size Power Size Power Size Power

2 λ 0.0660 1.0000 0.0565 0.9995 0.0650 1.0000
δ 0.0760 1.0000 0.0530 0.0700 0.0570 0.1100
β1 0.0810 0.8000 0.0680 0.9170 0.0470 0.9830
β2 0.0550 0.3470 0.0570 0.5790 0.0720 0.7120

4 λ 0.0548 0.9590 0.0475 0.9960 0.0550 1.0000
δ 0.0510 0.0740 0.0650 0.1270 0.0560 0.1760
β1 0.0690 0.9150 0.0610 0.9960 0.0520 1.0000
β2 0.0560 0.6090 0.0480 0.8510 0.0450 0.9470

6 λ 0.0623 0.9862 0.0542 0.9993 0.0540 1.0000
δ 0.0550 0.1180 0.0570 0.1810 0.0530 0.2830
β1 0.0480 0.9810 0.0560 1.0000 0.0560 1.0000
β2 0.0700 0.7490 0.0430 0.9530 0.0590 0.9870

Table 5.7: Monte Carlo size and power for MLE (u ∼ N(0, In)), model (1.3) with xi1n(δ) =
(zδi1 − 1)/δ.
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W c
kn n 108 216 432

p Size Power Size Power Size Power

2 λ 0.0265 0.9070 0.0260 0.9940 0.0185 1.0000
δ 0.0650 0.0660 0.0570 0.0550 0.0510 0.0950
β1 0.0650 0.5700 0.0600 0.8150 0.0400 0.9810
β2 0.0490 0.2540 0.0420 0.4620 0.0360 0.7820

4 λ 0.0238 0.4343 0.0240 0.6228 0.0245 0.8275
δ 0.0630 0.0670 0.0570 0.0550 0.0460 0.1030
β1 0.0640 0.5690 0.0530 0.8120 0.0390 0.9790
β2 0.0480 0.2360 0.0450 0.4260 0.0380 0.7330

6 λ 0.0135 0.2687 0.0215 0.3852 0.0227 0.5775
δ 0.0670 0.0680 0.0540 0.0600 0.0480 0.0970
β1 0.0620 0.5650 0.0560 0.8130 0.0400 0.9800
β2 0.0510 0.2220 0.0470 0.4010 0.0410 0.7130

W f
kn m 48 96 144

p Size Power Size Power Size Power

2 λ 0.0735 0.9115 0.0770 0.9870 0.0620 0.9985
δ 0.0660 0.0650 0.0540 0.0710 0.0610 0.0750
β1 0.0630 0.5610 0.0500 0.7750 0.0620 0.9190
β2 0.0640 0.2580 0.0640 0.4300 0.0580 0.5610

4 λ 0.0665 0.9133 0.0643 0.9838 0.0560 0.9968
δ 0.0550 0.0700 0.0540 0.1020 0.0420 0.1230
β1 0.0590 0.7730 0.0540 0.9620 0.0390 0.9990
β2 0.0810 0.4700 0.0550 0.6900 0.0540 0.8090

6 λ 0.0602 0.9585 0.0555 0.9965 0.0513 0.9995
δ 0.0590 0.0780 0.0450 0.1220 0.0600 0.2270
β1 0.0620 0.9180 0.0380 0.9990 0.0530 1.0000
β2 0.0650 0.6240 0.0550 0.8270 0.0480 0.9550

Table 5.8: Monte Carlo size and power for PMLE (u ∼ t6), model (1.3) with xi1n(δ) = (zδi1−1)/δ.

n 108 216 432 108 216 432

p u ∼ N(0, In) u ∼ t6
2 λ 0.0472 0.0488 0.0507 0.0362 0.0287 0.0284

β 0.5212 0.5554 0.6202 0.4931 0.5028 0.5649
4 λ 0.0339 0.0413 0.0399 0.0239 0.0231 0.0233

β 0.4152 0.4706 0.5404 0.4630 0.4022 0.4357
6 λ 0.0353 0.0683 0.0601 0.0300 0.0536 0.0382

β 0.8069 3.5825 1.5249 0.9315 3.4552 1.3950

Table 5.9: Monte Carlo RAMSE between PMLE and IV with W c
kn, (zi1, zi2) ∼ U(0, 1).
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Appendices

A Proofs of theorems

Proof of Theorem 2.1. This is omitted as it can be deduced from the proof of Theorem 3.1 below,

ignoring components of formulae and steps that are not relevant.

Proof of Theorem 2.2. In supplementary material.

We drop n subscripts in the appendices. The following inequalities will be useful: ‖A‖ ≤ ‖A‖F ,

‖A‖2 ≤ ‖A‖R ‖A′‖R, ‖AB‖F ≤ ‖A‖F ‖B‖. In the sequel write ν = n
1
2 /a

1
2 , where a is the

number of columns in Ψ. Thus in Section 2, a = p or p + 1, in Section 3, a = p + k + q and

in Section 4, a = p + k. Further, for any matrix, vector E
(
θ, σ2

)
, Ẽ denotes evaluation at a

generic estimate
(
θ̃′, σ̃2

)′
and ∆̃E = Ẽ − E. We can express (1.3) as y = Rλ0 + Xβ0 + u with

R = [W1y, . . . ,Wpy]. Because Assumption 3 implies

y = S−1Xβ0 + S−1u, (A.1)

we have R = A + B, with B = [G1nu, . . . , Gpnnu], and for (1.1) the reduced form (A.1) holds

with X = 0. The proofs of Theorems 3.3 and 3.4 should be read before the next two proofs,

which are in any case in the supplementary appendix. We introduce them at this point to follow

the order of the paper.

Proof of Theorem 2.3. In supplementary material.

Proof of Theorem 2.4. In supplementary material.

Proof of Theorem 2.5. This is omitted for the same reason as Theorem 2.1’s proof.

Proof of Theorem 2.6. This is similar to the proof of Theorem 2.3 and therefore omitted.

Proof of Theorem 3.1. The property
∥∥∥β̂ − β0

∥∥∥ p→ 0 follows using arguments below, the closed

form expression (see (3.2)) for β̂ as a function of γ̂, and the property ‖γ̂ − γ0‖ p→ 0, so we focus

on proving the latter. From (3.4), (A.1)

Q (γ)−Q = log σ2 (γ) /σ2 − n−1 log |T ′(λ)T (λ)|
= log σ2 (γ) /σ2 (λ)− log σ2/σ2

0 + log r(λ), (A.2)

where

σ2 (λ) = n−1σ2
0 ‖T (λ)‖2F , σ2 = σ2 (γ0) = n−1u′Mu,
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using (3.3) and writing r(λ) = n−1 ‖T (λ)‖2F / |T (λ)|2/n. From (A.1)

σ2 (γ) = n−1
{
S−1′ (Xβ0 + u)

}′
S′(λ)M (δ)S(λ)S−1 (Xβ0 + u)

= c (γ) + d (γ) + e (γ) ,

where

c (γ) = n−1β′0X
′T ′(λ)M (δ)T (λ)Xβ0,

d (γ) = n−1σ2
0tr (T ′(λ)M (δ)T (λ)) ,

e (γ) = n−1tr
(
T ′(λ)M (δ)T (λ)

(
uu′ − σ2

0I
))

+ 2n−1β′0X
′T ′(λ)M (δ)T (λ)u.

Then

log
σ2 (γ)

σ2 (λ)
= log

σ2 (γ)

(c (γ) + d (γ))
+ log

c (γ) + d (γ)

σ2 (λ)

= log

(
1 +

e (γ)

c (γ) + d (γ)

)
+ log

(
1 +

c (γ)− f (γ)

σ2 (λ)

)
,

where

f (γ) = n−1σ2
0tr (T ′(λ) (I −M (δ))T (λ)) .

Then from (A.2) and a standard kind of argument for proving consistency of implicitly defined

extremum estimates

P
(
‖γ̂ − γ0‖ ∈ N

γ
(η)
)

= P

(
inf

γ∈ N γ
(η)
Q (γ)−Q ≤ 0

)

≤ P

(
log

(
1 + sup

γ∈ N γ
(η)

∣∣∣∣
e (γ)

c (γ) + d (γ)

∣∣∣∣

)
+
∣∣log

(
σ2/σ2

0

)∣∣

≥ inf
γ∈ N γ

(η)

(
log

(
1 +

c (γ)− f (γ)

σ2 (λ)

)
+ log r(λ)

))
,

where N γ
(η) = Γ\N γ (η) , N γ (η) = {γ : ‖γ − γ0‖ < η; γ ∈ Γ} . From Assumptions 1 and 16

it follows that σ2/σ2
0

p→ 1, so using log (1 + x) = x + o (x) as x → 0 it suffices to show that as

n→∞

sup
γ∈ N γ

n (η)

∣∣∣∣
e (γ)

c (γ) + d (γ)

∣∣∣∣
p−→ 0, (A.3)

sup
γ∈ N γ

n (η)

∣∣∣∣
f (γ)

σ2 (λ)

∣∣∣∣ −→ 0, (A.4)

lim
n→∞

inf
γ∈ N γ

n (η)

{
c (γ)

σ2 (λ)
+ log r(λ)

}
> 0. (A.5)
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Now N γ
(η) ⊆

{
Λ×N δ

(η/2)
}
∪
{
N λ

(η/2)×D
}

, so

inf
γ∈ N γ

(η)

{
c (γ)

σ2 (λ)
+ log r(λ)

}
≥ min

{
inf

Λ×N δ
(η/2)

c (γ)

σ2 (λ)
, inf
N λ

(η/2)

log r(λ)

}

≥ min

{
inf

Λ×N δ
(η/2)

c (γ)

C
, inf
Nλ(η/2)

log r(λ)

}
,

from Assumption 6, whence Assumptions 7 and 16 imply (A.5). Again using Assumption 6,

uniformly in γ,
∣∣f (γ) /σ2 (λ)

∣∣ ≤ |f (γ)| /c and

|f (γ)| ≤ Ctr
(
T ′(λ)X (δ) (X ′ (δ)X (δ))

−1
X ′ (δ)T (λ)

)
/n

= O
(
tr (X ′ (δ)X (δ)) /n2

)
= O (k/n)

uniformly, by Assumption 14, to check (A.4).

Finally consider (A.3). We first prove pointwise convergence. For any fixed γ ∈ N γ
(η) and

large enough n, c (γ) ≥ c ‖β0‖2 from Assumption 16, d (γ) ≥ c because n−1σ2
0tr (T ′(λ)T (λ)) ≥ c

and tr (T ′(λ) (I −M (δ))T (λ)) = O (k/n). Thus e (γ) / (c (γ) + d (γ)) = Op (|e (γ)|) , where e (γ)

has mean 0 and variance

O

(
‖T ′(λ)M (δ)T (λ)/n‖2F +

n∑

i=1

(t′i(λ)M (δ) ti(λ)/n)
2

+ ‖β′0X ′T ′(λ)M (δ)T (λ)/n‖2
)
,

where ti(λ) is the ith column of T (λ). Since ‖M (δ)‖ = 1 and Assumptions 4 and 12 imply (we

give a bound for the general case, that the same bound holds for the ‘single nonzero diagonal

block’ case is simple to check)

‖T (λ)‖ ≤ C ‖S(λ)‖ ≤ C max
i=1,...,p

‖Wi‖ ‖λ‖1 = O(1), (A.6)

the first component is O
(
‖T (λ)/n‖2F

)
= O

(
n−1

)
. The second one is O

(
n∑
i=1

‖ti(λ)‖2 /n2

)
=

O
(
‖T (λ)/n‖2F

)
= O

(
n−1

)
likewise. The final component is O

(
‖Xβ0/n‖2

)
= O

(
‖β0‖2 /n

)
=

O (k/n) , from (3.6). Thus pointwise convergence is established.

To complete the proof of (A.3) we employ an equicontinuity argument. For arbitrary ε > 0

and finitely many γ∗ = (λ′∗, δ
′
∗)
′
, the neighbourhoods ‖λ− λ∗‖1 < ε × ‖δ − δ∗‖ < ε form a

sub-cover of the compact Γ = Λ × D in the product topology formed from the sum of ‖·‖1 and

‖·‖ distances. It remains to prove that

sup
‖λ−λ∗‖1<ε×‖δ−δ∗‖<ε

∣∣∣∣
e (γ)

c (γ) + d (γ)
− e (γ∗)
c (γ∗) + d (γ∗)

∣∣∣∣
p−→ 0.

28



Write

e (γ)

c (γ) + d (γ)
− e (γ∗)
c (γ∗) + d (γ∗)

=
e (γ)− e (γ∗)
c (γ) + d (γ)

+ e (γ∗)

(
c (γ∗)− c (γ) + d (γ∗)− d (γ)

(c (γ) + d (γ)) (c (γ∗) + d (γ∗))

)

whence, denoting the two components of e (γ) by e1 (γ) , e1 (γ) , the left side is bounded in

absolute value by

|e1 (γ)− e1 (γ∗)|
d (γ)

+
|e2 (γ)− e2 (γ∗)|

c (γ)
+
|e (γ∗)|

c (γ) c (γ∗)
|c (γ∗)− c (γ)|+ |e (γ∗)|

d (γ) d (γ∗)
|d (γ∗)− d (γ)| .

(A.7)

We prove that

sup
‖λ−λ∗‖1<ε×‖δ−δ∗‖<ε

|e2 (γ)− e2 (γ∗)|
c (γ)

p−→ 0. (A.8)

This part of the proof is relatively delicate due to both numerator and denominator increasing

with k. The proof for the first term in (A.7) does not involve this feature and uses other arguments

in the proof of (A.8). For the third term in (A.7),

|e (γ∗)|
c (γ) c (γ∗)

|c (γ∗)− c (γ)| ≤ |e (γ∗)|
c (γ∗)

(
1 +

c (γ∗)
c (γ)

)
p−→ 0

uniformly on ‖λ− λ∗‖1 < ε×‖δ − δ∗‖ < ε, from the pointwise convergence of e (γ) / (c (γ) + d (γ))

and the fact that numerator and denominator of c (γ∗) /c (γ) are uniformly of the same order

of magnitude, namely k, the result for the numerator being straightforward and that for the

denominator a consequence of Assumption 16. The fourth term in (A.7) is uniformly op (1) by

similar arguments.

To prove (A.8), note that

e2 (γ)− e2 (γ∗) = 2n−1β′0 (X ′ (δ)T ′(λ)M (δ)T (λ))−X ′ (δ∗)T ′(λ∗)M (δ∗)T (λ∗))u,

which can be written

2n−1β′0
{

(X (δ)−X (δ∗))
′
T ′(λ)M (δ)T (λ)

+X ′ (δ∗) (T ′(λ)M (δ)T (λ)− T ′(λ∗)M (δ∗)T (λ∗))}u. (A.9)

The first of the two terms in braces has spectral norm bounded by ‖X (δ)−X (δ∗)‖ ‖T (λ)‖2 ,
and by Assumption 15,

‖X (δ)−X (δ∗)‖2 ≤
n∑

i=1

k∑

j=1

(xij (δ)− xij (δ∗))
2

= O
(
knε2

)
, (A.10)

for sufficiently small ‖δ − δ∗‖.
Thus due to ‖u‖ = Op

(
n1/2

)
, it follows that 2n−1β′0 (X (δ)−X (δ∗))

′
T ′(λ)M (δ)T (λ)u is
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uniformly Op
(
‖β0‖ k1/2ε

)
. Looking at the second term in braces in (A.9), write T ′(λ)M (δ)T (λ)−

T ′(λ∗)M (δ∗)T (λ∗) as

(T (λ)− T (λ∗))
′
M (δ)T (λ) + T ′(λ∗) (M (δ∗)−M (δ))T (λ) + T ′(λ∗)M (δ∗) (T (λ)− T (λ∗)) ,

whose spectral norm is bounded by

‖T (λ)− T (λ∗)‖ (‖T (λ)‖+ ‖T (λ∗)‖) + ‖T (λ∗)‖ ‖M (δ∗)−M (δ)‖ ‖T (λ)‖
= O (‖T (λ)− T (λ∗)‖+ ‖M (δ∗)−M (δ)‖) . (A.11)

Now

‖T (λ)− T (λ∗)‖ ≤
p∑

i=1

|λi − λ∗i| ‖Wi‖
∥∥S−1

∥∥

≤ C max
i=1,...,p

‖Wi‖ ‖λ− λ∗‖1 ≤ Cε (A.12)

uniformly on ‖λ− λ∗‖1 < ε × ‖δ − δ∗‖ < ε. Representing M (δ∗) −M (δ) as a sum of terms

each with factor X (δ)−X (δ∗) , or its transpose, with bounds for these typified by

n−1 ‖X (δ)−X (δ∗)‖
∥∥∥(X ′ (δ)X (δ) /n)

−1
∥∥∥ ‖X (δ)‖ ,

where ‖X (δ)‖ ≤ Cn1/2, we deduce ‖M (δ∗)−M (δ)‖ = O
(
n−1/2 ‖X (δ)−X (δ∗)‖

)
= O

(
k1/2ε

)
,

from (A.10). Thus from (A.12), (A.11) has the same bound, so arguing much as before the contri-

bution from the second term in braces in (A.9) is O
(
‖β0‖ k1/2ε

)
. Thus (A.9)=Op

(
‖β0‖ k1/2ε

)
,

and since Assumption 16 implies that as n → ∞, c (γ) ≥ c ‖β0‖2 uniformly and ‖β0‖−1
=

O
(
k−1/2

)
, the left side of (A.8) is Op

(
‖β0‖−1

k1/2ε
)

= Op (ε) , whence (A.8) follows from arbi-

trariness of ε, and the proof is completed.

Proof of Theorem 3.2. In supplementary material.

Proof of Theorem 3.3. Let ξ
(
λ, σ2

)
denote the first derivative vector of (3.1), evaluated at(

λ, σ2
)
. Defining Ry (θ) = Rλ + X(δ)β − y, the derivative of (3.1) at any admissible

(
θ, σ2

)

is

ξ
(
θ, σ2

)
=
(
ϕ′(θ, σ2), 2σ−2n−1Ry ′ (θ)X(δ), 2σ−2n−1Ry ′ (θ) Π (θ)

)′
, (A.13)

where

ϕ
(
θ, σ2

)
= 2σ−2n−1

(
σ2trG1(λ) + y′W ′1Ry (θ) , . . . , σ2trGp(λ) + y′W ′pRy (θ)

)′
. (A.14)

Noting that Ry = −u, denoting Ci = Gi +G′i and

φ = σ−2
0 n−1

(
σ2

0trC1 − u′C1u, . . . , σ
2
0trCp − u′Cpu

)′
, (A.15)
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so

ξ = (φ′, 0, 0)
′ − 2σ−2

0 t− 2σ−2
0 `, (A.16)

with

t = n−1 [A,X, 0]
′
u, ` = n−1 [0, 0,Π]

′
u. (A.17)

Note that ϕ and φ are not identical, hence the different notations. Denote by K1 (θ) and

K2 (θ) the k × q and q × q matrices with i-th column (∂X ′(δ)/∂δi)Ry (θ) and (i, j)-th ele-

ment Ry ′ (θ)
(
∂2X(δ)/∂δi∂δj

)
β, respectively. The matrix of second derivatives of (3.1) at any

admissible point in the parameter space, denoted H
(
θ, σ2

)
, is

2σ−2n−1



σ2P1(λ) +R′R R′X (δ) R′Π (θ)

∗ X ′ (δ)X (δ) X ′(δ)Π (θ) +K1 (θ)

∗ ∗ Π′ (θ) Π (θ) +K2 (θ)


 , (A.18)

whence (2.11) and (3.13) follow.

For any non-null fixed-dimensional vector of constants α, we can use ξ̂ = 0 and the mean

value theorem to write

να′Ψ
(
θ̂ − θ0

)
= −να′ΨH̄−1ξ,

for some θ̄ such that
∥∥θ̄ − θ0

∥∥ ≤
∥∥∥θ̂ − θ0

∥∥∥, where θ̄ may be different across rows of H̄−1. The

RHS equals
∑4
i=1 Υi − να′ΨL−1 (t+ `) with

Υ1 = 2σ−2
0 να′ΨH̄−1∆̄HH−1 (t+ `) , Υ2 = 2σ−2

0 να′ΨΞ−1 (H − Ξ)H−1 (t+ `) ,

Υ3 = να′ΨL−1
(
σ2

0Ξ/2− L
) (
σ2

0Ξ/2
)−1

(t+ `) , Υ4 = −να′ΨH̄−1φ.

We will demonstrate that Υi = op(1), i = 1, 2, 3, 4. First, E ‖`‖2 = σ2
0n
−2
∑n
r=1 ‖πr‖

2
, where πr

is the r-th column of Π′. Now

‖πr‖2 =

q∑

i=1

{β′0 (∂xr (δ0) /∂δi)}2 ≤ ‖β0‖2
q∑

i=1

k∑

l=1

(∂xrl (δ0) /∂δi)
2 ≤ Ck2,

by Assumption 17. Thus

‖`‖ = Op

(
n−

1
2 k
)
, (A.19)

by Markov’s inequality. By Lemma B.1 we have

|Υ1| ≤ 2σ−2
0 ν ‖α‖ ‖Ψ‖

∥∥H̄−1
∥∥∥∥∆̄H

∥∥∥∥H−1
∥∥ (‖t‖+ ‖`‖) ,

where the second factor in norms is O
(

(p+ k)
1
2

)
, the third and fifth are bounded for sufficiently

large n by Lemma B.3 (i), the fourth is Op
(∥∥∆̄H

∥∥) = Op

(
max

{
p2k/n

1
2h, p

1
2 k

5
2 /n

1
2 , pk2/n

1
2

})

by Lemma B.1 (i) and the last is Op

(
p

1
2 k/n

1
2

)
(because ‖t‖ = O

(
p

1
2 k/n

1
2

)
by (A.13) of Gupta
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and Robinson (2015)), so Υ1 = Op

(
max

{
p

5
2 k2/n

1
2h, pk

7
2 /n

1
2 , p

3
2 k3/n

1
2

})
, which is negligible

by (3.14), noting that p
5
2 k2/n

1
2h =

(
p

3
2 k/h

)(
pk/n

1
2

)
. Similarly Υ2 = Op

(
p

3
2 k2/n

1
2

)
which

is negligible by (3.14) and Lemma B.2 (i), and Υ3 = Op

(
p

3
2 k/h

)
by Lemma B.2 (ii), which is

negligible by (3.14). Finally, E ‖φ‖2 =
∑p
i=1 var

(
n−1u′Ciu

)
= O (p/nh) , (shown like (B.23) in

the supplementary appendix) so that

‖φ‖ = Op

(
n−

1
2h−

1
2 p

1
2

)
, (A.20)

by Chebyshev’s inequality. So Υ4 has modulus bounded by ν ‖Ψ‖
wwH̄−1

ww ‖φ‖ times a constant,

where the second factor is O
(

(p+ k)
1
2

)
, the third is bounded for sufficiently large n by Lemma

B.3 (i) and the last is Op

(
p

1
2 /n

1
2h

1
2

)
. Thus Υ4 = Op

(
p

1
2 /h

1
2

)
which is negligible by (3.14).

Then we only need to find the asymptotic distribution of να′ΨL−1 (t+ `). The theorem now

follows by a standard Lindeberg central limit theorem argument. The asymptotic covariance

matrix exists, and is positive definite, by Assumption 19. The proof of the consistency of its

estimate is omitted.

Proof of Theorem 3.4. Here we redefine Ry (λ) = Rλ − y and obtain ξ = φ. Also H
(
λ, σ2

)
=

2n−1P1(λ) + 2σ−2n−1R′R, whence the formulae for H and Ξ follow. Then proceeding as in the

proof of Theorem 3.3, we can write

να′Ψ
(
θ̂ − θ0

)
= να′Ψ

(
H̄−1 − Ξ−1

)
ξ − να′ΨΞ−1ξ. (A.21)

Lemma B.3 (i) indicates that the first term on the RHS of (A.21) is bounded in modulus by a

constant times

ν ‖Ψ‖ (‖t‖+ ‖`‖+ ‖φ‖)
(∥∥∆̄H

∥∥+ ‖H − Ξ‖
)

=

Op

(
n

1
2 max

{
p

1
2 k/n

1
2 , p

1
2 /n

1
2h

1
2

}
max

{
p2k/n

1
2h, p

1
2 k

5
2 /n

1
2 , pk2/n

1
2 , pk/n

1
2

})
,

by (A.19), (A.20) and Lemma B.1 (i). This is negligible by (3.16). Thus we establish the

asymptotic distribution of the second term on the RHS of (A.21), which has zero mean and

variance a−1Ψ
(
2Ξ−1 + Ξ−1ΩΞ−1

)
Ψ′. Hence we consider the asymptotic normality of

−n 1
2α′ΨΞ−1ξ

{α′Ψ (2Ξ−1 + Ξ−1ΩΞ−1) Ψ′α} 1
2

, (A.22)

where α is any fixed-dimensional vector of constants. Write ς =
{
α′Ψ

(
2Ξ−1 + Ξ−1ΩΞ−1

)
Ψ′α

} 1
2

for the denominator of (A.22). Then

ς ≥ ‖Ψ′α‖
{
ζ
(
2Ξ−1 + Ξ−1ΩΞ−1

)} 1
2 ≥ c ‖Ψ′α‖ (A.23)

32



by Assumption 20. The numerator of (A.22) can be written as

−2σ−2
0 n−

1
2m′u− σ−2

0 n−
1
2u′Du+ n−

1
2 trD (A.24)

where D =
∑p
j=1

(
α′Ψζj

)
Cj , m =

∑p
j=1

(
α′Ψζj

)
aj +

∑p+k
j=p+1

(
α′Ψζj

)
χj−p, with ζj and χj

denoting the j-th columns of Ξ−1 and X respectively. We also denote by dij and mi the (i, j)-th

and i-th elements of D and m respectively. Using (A.24), we can write (A.22) as −∑n
i=1 wi,

with

wi = σ−2
0 n−

1
2 ς−1

(
u2
i − σ2

0

)
dii + 2σ−2

0 n−
1
2 ς−1ui

∑

j<i

ujdij + 2σ−2
0 n−

1
2 ς−1miui. (A.25)

{wi, i = 1, . . . , n, n ≥ 1} forms a martingale difference sequence by Assumption 14, so Theorem

2 of Scott (1973) implies
∑n
i=1 wi

d−→ N(0, 1) if

n∑

i=1

E
{
w2
i 1 (wi ≥ ε)

} p−→ 0, for all ε > 0, (A.26)

n∑

i=1

E
(
w2
i | uj , j < i

) p−→ 1. (A.27)

To show (A.26) we can check the sufficient Lyapunov condition

n∑

i=1

E |wi|2+χ
2

p−→ 0. (A.28)

The cr inequality, (11) and (A.23) indicate that the left side is bounded by a constant times

n∑

i=1

|dii|2+χ
2

n1+χ
4 ‖Ψ′α‖2+χ

2

+

n∑

i=1

E

∣∣∣∣∣∣
∑

j<i

ujdij

∣∣∣∣∣∣

2+χ
2

n1+χ
4 ‖Ψ′α‖2+χ

2

+

n∑

i=1

|mi|2+χ
2

n1+χ
4 ‖Ψ′α‖2+χ

2

. (A.29)

The first term in (A.29) is bounded by

max
i
|dii|2+χ

2 /n
χ
4 ‖Ψ′α‖2+χ

2 , (A.30)

while the third term is bounded by

max
i
|mi|2+χ

2 /n
χ
4 ‖Ψ′α‖2+χ

2 . (A.31)

By the Burkholder, von Bahr/Esseen and elementary `p-norm inequalities, the second term in
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(A.29) is bounded by a constant times

max
i

∣∣∣∣∣∣
∑

j<i

d2
ij

∣∣∣∣∣∣

1+χ
4

/n
χ
4 ‖Ψ′α‖2+χ

2 . (A.32)

Now, writing ei for the n-dimensional vector with unity in the i-th position and zeros elsewhere,

we can write
∑n
j=1 d

2
ij = e′iD

2ei ≤ ‖D‖2 which is bounded by

∥∥∥∥∥∥

p∑

j=1

(
α′Ψζj

)
Cj

∥∥∥∥∥∥

2

≤ Cp2

(
max
j
‖Cj‖

)2(
max
j

∥∥ζj
∥∥
)2

‖Ψ′α‖2 ≤ C
∥∥Ξ−1

∥∥2
p2 ‖Ψ′α‖2

= Cp2 ‖Ψ′α‖2
{
ζ (Ξ)

}−2 ≤ Cp2 ‖Ψ′α‖2 , (A.33)

using Assumption 20. Also, we can use (A.33) to bound

|dii| ≤




n∑

j=1

d2
ij




1
2

≤ Cp ‖Ψ′α‖ . (A.34)

(A.33) and (A.34) imply that (A.30) and (A.32) are both O
(
p2+χ

2 /n
χ
4

)
. This is negligible by

(3.16). Next

|mi| ≤
p∑

j=1

∣∣α′Ψζj
∣∣ |aij |+

p+k∑

j=p+1

∣∣α′Ψζj
∣∣ |xij | = O (k (p+ 1) ‖Ψ′α‖) , (A.35)

using Assumptions 14, 20. Then (A.31) is Op
(
p2+χ

2 k2+χ
2 /n

χ
4

)
, which is negligible by (3.16).

Hence (A.28) is proved.

We now show (A.27). Write
∑n
i=1 E

(
w2
i | uj , j < i

)
− 1 = 4 (f1 + f2 + f3) with

f1 = σ−2
0 n−1ς−2

∑
i

∑
j

∑
k (j,k<i,j 6=k) dijdikujuk, f2 = σ−2

0 n−1ς−2
∑
i

∑
j<i d

2
ij

(
u2
j − σ2

0

)
and

f3 = σ−4
0 n−1ς−2

∑
i

(
σ2

0mi + µ3dii
)∑

j<i dijuj . All sums and maxima are taken over 1 to n

unless otherwise stated. f1 has zero mean and variance bounded by n−2ς−4 times

C
∑

h,i,j,k (j,k<i,h)

|dijdikdhjdhk| ≤ C
∑

h,i,j,k

|dijdik|
(
d2
hj + d2

hk

)

≤ C

(
max
i

∑

k

|dik|
)(

max
j

∑

i

|dij |
)∑

i,j

d2
ij

= C ‖D‖2R ‖D‖
2
F ≤ C ‖Ψ′α‖

4
np4, (A.36)

by (A.33) and because, for each i = 1, . . . , n,
(∑n

j=1 d
2
ij

) 1
2 ≤ ∑n

j=1 |dij | ≤ ‖D‖R ≤ Cp ‖Ψ′α‖
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by Assumption 3. (A.23) and (A.36), together with Markov’s inequality, imply that f1 =

Op

(
p2/n

1
2

)
, which is negligible by (3.16). Next, f2 has zero mean and variance bounded by

n−2ς−4 times

C
∑

i,h

∑

j<i,h

d2
ijd

2
hj ≤ C

∑

i,h,j

d2
ijd

2
hj ≤ C

(
max
j

∑

h

d2
hj

)
‖D‖2F ≤ C ‖Ψ′α‖

4
np4, (A.37)

by (A.33). (A.23) and (A.37), together with Markov’s inequality, imply that f2 = Op

(
p2/n

1
2

)

which is negligible by (3.16). Finally f3 has zero mean and variance bounded by n−2ς−4 times

C
∑

i

(
σ2

0mi + µ3dii
)2∑

j<i

d2
ij ≤ C

(
max
i
m2
i + max

i
d2
ii

)
‖D‖2F

≤ C


max

i
m2
i + max

i

∑

j

d2
ij


 ‖D‖2F = O

(
‖Ψ′α‖4

(
k2 + 1

)
np4
)
, (A.38)

by (A.33) and (A.35). (A.23) and (A.38), together with Markov’s inequality, imply that f3 =

Op

(
p2k/n

1
2

)
, which is negligible by (3.16). The asymptotic covariance matrix exists, and is

positive definite, by Assumption 20.

Proofs of Theorems 4.1, 4.2 and 4.3 . In supplementary material.

B Technical Lemmas

All proofs are contained in the supplementary appendix.

Lemma B.1. (i) Under the conditions of Theorem 3.3 or 3.4,

www∆̂H
www = Op

(
n−

1
2 p

1
2 k
(
h−1p

3
2 + k

3
2 + p

1
2 k
))

.

(ii) Under the conditions of Theorem 2.3, 2.4 or 2.6,

h
www∆̂H

www = Op

(
n−

1
2h−

1
2 p2 + n−

1
2h

1
2 p
)
,

or, equivalently,
www∆̂H

www = Op

(
n−

1
2h−

3
2 p2 + n−

1
2h−

1
2 p
)

.

The same bounds hold if we replace
www∆̂H

www by
ww∆̄H

ww, where
wwθ̄ − θ0

ww ≤
wwwθ̂ − θ0

www.

Lemma B.2. Suppose that Assumptions 1-14 hold. Then

(i) ‖H − Ξ‖ = Op

(
p/n

1
2

)
for SAR without regressors and bounded h, ‖H − Ξ‖ = Op

(
p/n

1
2h

1
2

)

for SAR without regressors and divergent h and ‖H − Ξ‖ = Op

(
pk/n

1
2

)
for SAR with re-

gressors.
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(ii)
wwL− σ2

0Ξ/2
ww = O (p/h) .

Lemma B.3. Let Assumptions 1-19 hold.

(i) If (3.14) holds, then

wwwĤ−1
www = Op

(wwH−1
ww) = Op

(wwΞ−1
ww) = Op

({
ζ(L)

}−1
)

= Op(1),
wwwĤ

www = Op (‖H‖) = Op (‖Ξ‖) = Op
(
ζ(L)

)
= Op(1).

If h is bounded and Assumption 20 holds together with (3.16), then

wwwĤ−1
www = Op

(wwH−1
ww) = Op

({
ζ(Ξ)

}−1
)

= Op(1),
wwwĤ

www = Op (‖H‖) = Op
(
ζ(Ξ)

)
= Op(1)

.(ii) If limn→∞ ζ(hΞ) > 0 and (2.13) holds, then

wwww
(
hĤ
)−1

wwww = Op

(www(hH)
−1
www
)

= Op

({
ζ (hΞ)

}−1
)

= Op(1).

(iii) If h is bounded, lim
n→∞

ζ(Ξ) > 0 and (2.14) holds , then

wwwĤ−1
www = Op

(wwH−1
ww) = Op

({
ζ (Ξ)

}−1
)

= Op(1).

The same bounds hold if we replace
wwwĤ

www by
wwH̄

ww, where
wwθ̄ − θ0

ww ≤
wwwθ̂ − θ0

www.
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