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Abstract

Consider a nonparametric regression model Y = m(X)+✏, wherem is an unknown regression function,

Y is a real-valued response variable, X is a real co-variate, and ✏ is the error term. In this article, we

extend the usual tests for homoscedasticity by developing consistent tests for independence between

X and ✏. Further, we investigate the local power of the proposed tests using Le Cam’s contiguous

alternatives. An asymptotic power study under local alternatives along with extensive finite sample

simulation study shows the performance of the new tests is competitive with existing ones. Furthermore,

the practicality of the new tests is shown using two real data sets.

Kewwords: asymptotic power, contiguous alternatives, distance covariance, kendall’s tau, nonparamet-

ric regression model, measure of association.

Running headline: Test of independence.

1 Introduction

Let (X1, Y1), . . . , (Xn, Yn) be n independent replications of (X,Y ), where Y is the response variable, and

X is the covariate. We consider a nonparametric regression model Y = m(X) + ✏, where m is an unknown

regression function, ✏ is the error random variable, and for simplicity, we assume that E(✏|X) = 0. We

would like to mention that the results of this article also hold for other identification restriction such as

median (✏|X) = 0 (see, e.g., Einmahl and Van Keilegom (2008a)). In this article, we develop tests to check

whether the random variables ✏ and X are independent or not.

There has been an enormous amount of research done on tests for homoscedasticity in the last fifty years

(e.g., see Goldfeld and Quandt (1965), Glejser (1969), Cook andWeisberg (1983) etc.). Due to the assumption

of homoscedasticity, i.e., when the variance of the error random variable does not depend on the covariate,

the variance of the response variable does not depend on the covariate. However, even for the homoscedastic

model, the statistical inference about the unknown regression function may be misleading sometimes. For

instance, in case of isotonic regression model, the confidence interval for the unknown regression function at

a given point will be wrong even if the homoscedasticity assumption holds. In this example, in order to have
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trimmed mean isotonic regression estimator based correct confidence interval for the regression function at

a given point, one needs to assume that the error and the covariate random variables are independent (see

Remark 4 in Dhar (2016)).

In the last few years, several articles on testing independence of covariates and errors in di↵erent types of

non-parametric regression models have appeared. Among these articles, Einmahl and Van Keilegom (2008a)

proposed three tests based on Kolmogorov-Smirnov, Cramer-von-Mises and Anderson-Darling distances be-

tween the estimated joint distribution of (X,Y ⇤) and the product of the estimated marginal distributions

of X and Y ⇤, where Y ⇤ is the second order di↵erence of Y . In another article, Einmahl and Van Keile-

gom (2008b) formulated the test statistics based on the same set of distances between the estimated joint

distribution of (X, ✏) and the product of the estimated marginal distributions of X and ✏. The asymptotic

distributions of the test statistics considered in Einmahl and Van Keilegom (2008a, 2008b) are developed

using the empirical process theory. Within the same spirit of the distance based approach, Neumeyer (2009)

considered a test based on a kernel estimator for the L2-distance between the conditional distribution and

the unconditional distribution of the covariates. A recently proposed test described in Hlavka, Huskova

and Meintanis (2011) was based on the di↵erence between the empirical characteristic function of the joint

distribution of (✏, X) and the product of the empirical characteristic functions of the marginal distributions

of ✏ and X.

Unlike the distance based tests described in the last paragraph, the tests we propose are based on

association measures, namely, Kendall’s ⌧ (see Kendall (1938)), ⌧⇤, which is a modification of Kendall’s ⌧

(see Bergsma and Dassios (2014)) and distance covariance (see Szekely, Rizzo and Bakirov (2007)). In fact,

the methodology can be applied to more general association measure also. The construction of the test

statistics are based on the second order di↵erences of neighbouring triplets of responses, which is analogous

to the approach of Einmahl and Van Keilegom (2008a). In other words, the test statistics essentially

measure local association. In this article, we derive the asymptotic distribution of the test statistics based

on U -statistic theory, and this approach allows us to investigate the power of our proposed tests under local

alternatives, which has not been done before. In fact, since the kernel of the test statistics involved dependent

observations, one needs to use the theory of degenerate U -statistic based on dependent random variables

(see, e.g., Lee (1990)). The formulation of the test statistics and their asymptotic properties, which involved

aforementioned issues, are thoroughly studied in the subsequent sections.

In connection with the discussion in the last paragraph, note here that one cannot observe the errors

✏i, i = 1, . . . , n since the data (x1, y1), . . . , (xn, yn) are based on the observations obtained from the joint

distribution associated with (X,Y ). In order to deal with this situation, one needs to use the Y values in
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such a way that the e↵ect of m will be cancelled out under the smoothness assumption on m. Here based on

the data on (X,Y ), as it is mentioned earlier, the tests based on Kendall’s ⌧ , ⌧⇤ and distance covariance are

considered. We investigate the asymptotic theory of the test statistics under null and contiguous alternatives,

and also compare their performances for large samples as well as for small samples. We would here like to

mention that as a tool to study the quality of a test, investigating the power property of a test under

contiguous alternatives (see, e.g., Van Der Vaart (1998), Chapter 6) is well-established in the literature

(see, e.g., Lehmann and Romano (2005)). Roughly speaking, contiguous alternatives are local alternatives

asymptotically converging to the null hypothesis of interest. A precise definition of contiguity is given at the

beginning of Section 3.

The rest of the article is organized as follows. In Section 2, we discuss the formulation of the test statistics

and related issues. Section 3 investigates the asymptotic distribution of the test statistics under contiguous

alternatives and compare the asymptotic power of the tests under those contiguous alternatives. Section 4

compares the performances of the tests for finite samples using simulations, and those tests are implemented

on real data. Some concluding remarks are discussed in Section 5, and the more technical proofs are given

in Appendix A. Appendix B reports the result of the asymptotic and the finite sample power studies in the

tabular form.

2 Test statistics

We first recall the hypotheses again and formulate the hypothesis problem formally. For the nonparametric

regression model Y = m(X) + ✏, we want to test H0 : ✏ ?? X(, F✏,X = G✏HX) against the alternative

H1 : ✏ 6?? X(, F✏,X 6= G✏HX), where F✏,X is the joint distribution function of ✏ and X, and G✏ and

HX are the marginal distribution functions of ✏ and X, respectively. However, since one doesn’t have the

observations on the error ✏ as mentioned in the Introduction, one needs to construct the test statistics based

on the data (x1, y1), . . . , (xn, yn) obtained from the joint distribution of (X,Y ). Let x(1)  x(2) . . .  x(n)

be the order statistics of the observations x1, . . . , xn, and y(1), . . . , y(n) are the Y -values corresponding to

the ordered X-values, and we now propose the test statistics Tn,1, Tn,2 and Tn,3 based on the observations

x(i) and y⇤(i) := y(i�1) � 2y(i) + y(i+1), i = 1, . . . , n; which are the following. In order to define all the

quantities properly, we assume that y(0) = y(1) and y(n+1) = y(n), which results y⇤(1) = �y(1) + y(2) and

y⇤(n) = y(n�1) � y(n). We then define

Tn,1 =
1�
n
2

�
X

1i<jn

sign{(x(i) � x(j))(y
⇤
(i) � y⇤(j))}, (1)
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Tn,2 =
1�
n
4

�
X

1i<j<k<ln

a(x(i), x(j), x(k), x(l))a(y
⇤
(i), y

⇤
(j), y

⇤
(k), y

⇤
(l)) (2)

and

Tn,3 =
1�
n
4

�
X

1i<j<k<ln

1

4
h(x(i), x(j), x(k), x(l))h(y

⇤
(i), y

⇤
(j), y

⇤
(k), y

⇤
(l)), (3)

where sign(x) = x/|x| when x 6= 0 and = 0 otherwise, a(z1, z2, z3, z4) = sign(|z1�z2|+|z3�z4|�|z1�z3|�|z2�

z4|), and h(z1, z2, z3, z4) = (|z1�z2|+|z3�z4|�|z1�z3|�|z2�z4|). Note that formulas (1), (2) and (3) apply to

data with and without ties on the x variable (see, e.g., Bergsma and Dassios (2014), Weihs, Drton and Leung

(2016), Nandy, Weihs and Drton (2016)). Note further that Tn,1, Tn,2 and Tn,3 are measures of independence,

namely, Kendall’s ⌧ , a modified version of Kendall’s ⌧ (see Bergsma and Dassios (2014)) and the distance

covariance (see Szekely et al. (2007)) based on the ordered X-values and the corresponding Y ⇤-values. For

the unordered (X,Y ), the population versions of Tn,1, Tn,2 and Tn,3 are T1 = E sign{(X1 �X2)(Y1 � Y3)},

T2 = Ea(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4) and T3 = 1
4Eh(X1, X2, X3, X4)h(Y1, Y2, Y3, Y4), respectively, where

(X1, Y1), (X2, Y2), (X3, Y3) and (X4, Y4) are independent replications of (X,Y ). The formulations of the

Tis, i = 1, 2, 3 imply that Ti(X,Y ) = 0 for i = 1, 2, 3 if X ?? Y . In fact, we should mention that

T2(X,Y ) = T3(X,Y ) = 0 if and only if X ?? Y (see Bergsma and Dassios (2014)). Moreover, it is

established that Tn,i
p! 0 for i = 1, 2, 3 as n ! 1 when X ?? ✏ (see Proposition 1).

We should also have an explanation regarding the construction of y⇤, i.e., the second order di↵erences of

y’s. In view of the fact X ?? ✏ ) X ?? g(✏) for a proper function g, we consider the appropriate di↵erences

of y(i)’s, which enables us to cancel out the e↵ect of m’s when m is a su�ciently smooth function. As a

consequence of the smoothness of m, one can approximate Tn,i(X(j), Y
⇤
(j)) by Tn,i(X(j), ✏

⇤
j ) for su�ciently

large n, where ✏⇤j = ✏j�1 � 2✏j + ✏j+1 := g(✏j), i = 1, 2, 3 and j = 1, . . . , n. Instead of looking at y⇤(i),

one may also consider the usual di↵erence y(i) � y(i�1) (or the slope {y(i) � y(i�1)}/{x(i) � x(i�1)}), which

will be eventually an approximation of ✏(i) � ✏(i�1) (or the ratio between ✏(i) � ✏(i�1) and x(i) � x(i�1))

having negligible third moment. It follows from the fact that the first order di↵erences are symmetrically

distributed, and consequently, the third moment of the di↵erence between two nearly identical ✏is is close

to zero. In other words, this test based on the first order di↵erences will be essentially a similar test as the

nonparametric test of homoscedasticity (see also the discussion in Einmahl and Van Keilegom (2008a)). For

sake of completeness, we should provide an explanation why our proposed tests are more general over test

of homoscedasticity. In literature, the test of homoscedasticity states that H⇤
0 : E(✏2i |X = x) = �2 for all x

against H⇤
1 : all possible alternatives. The construction of the hypothesis problem H⇤

0 against H⇤
1 indicates

that it cannot detect the nature of the third moment of the conditional distribution of ✏ conditioning on

X = x. As we mentioned earlier, the third moment of the di↵erence between two nearly identical ✏is is close
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to zero, and for that reason, the tests based on y(i) � y(i�1) have also not been considered. Now, in order to

detect the ✏is varying third moment, we next consider a linear combination ay(i�1) + by(i) + cy(i+1), where

a+ b+ c = 0 for which the absolute value of the third moment of the corresponding linear combinations of

✏’s is maximal when the second moment of the conditional distribution of ✏ is fixed. This fact leads to the

construction of y⇤(i) since ✏(i�1) � 2✏(i) + ✏(i+1) has the maximum third moment among all possible choices of

a✏(i�1) + b✏(i) + c✏(i+1), a, b, c 2 R when a+ b+ c = 0, and a2 + b2 + c2 is a constant. With the same spirit,

as we mentioned in the Introduction with an example related to skew normal distribution, our proposed

test can detect dependence between the covariate X and the error random variable ✏ in the skewness of the

conditional distribution even though when the conditional variance of ✏ conditioning on X is constant.

3 Asymptotic power study: contiguous alternatives

Recall from the discussion in the Introduction that as a toolkit of comparing di↵erent tests, one can investigate

the power of the tests under contiguous alternatives. In Section 3.1, we study the asymptotic distributions

Tn,1, Tn,2 and Tn,3 under contiguous alternatives, which help us to derive the asymptotic local power of the

tests based on Tn,1, Tn,2 and Tn,3. The implementation of those tests is also briefly described there. Further,

in Section 3.2, the asymptotic power under contiguous alternatives of the proposed tests are investigated for

various examples.

3.1 Main results

As we mentioned in Section 2 that Tn,i
p! 0 for i = 1, 2, 3 as n ! 1 under H0, and since the tests based

on Tn,2 and Tn,3 are consistent against any alternatives, it is of interest to see the asymptotic power of the

tests based on Tn,i’s, i = 1, 2, 3 under contiguous or local alternatives (e.g., see Hajek, Sidak and Sen (1999),

p. 249). Precisely, the sequence of probability measures Qn is contiguous with respect to the sequence of

probability measures Pn if Pn(An) ! 0 implies that Qn(An) ! 0 for every sequence of measurable sets An,

where (⌦n,An) is the sequence of measurable spaces, and Pn and Qn are two probability measures defined

on (⌦n,An). In order to characterise the contiguity in terms of the asymptotic behaviour of the likelihood

ratios between Pn and Qn, Le Cam proposed some results, which are popularly known as Le Cam’s Lemmas

(e.g., see Hajek, Sidak and Sen (1999)). A consequence of Le Cam’s first lemma is that the sequence Qn

will be contiguous with respect to the sequence Pn if log Q
n

P
n

asymptotically follows the Gaussian distribution

with mean = ��2

2 and variance = �2 under Pn (e.g., see Hajek, Sidak and Sen (1999, p. 253, Corollary to

Le Cam’s first lemma)), where � > 0 is a constant, and we use this fact to establish the contiguity in this
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article (see the proof of Theorem 1). Now, H0 : ✏ ?? X(, F✏,X = G✏HX) for the model Y = m(X) + ✏,

where F✏,X is the joint distribution of (✏, X), and G✏ and HX are the marginal distributions of ✏ and X,

respectively. We then consider a sequence of alternatives

Hn : Fn;✏,X =

✓
1� �p

n

◆
G✏HX +

�p
n
K, (4)

where � > 0, n = 1, 2, . . ., and K is a proper distribution function. Here we should point out that An is a

sequence of sets, which is changing over n along with its �-field An, and for that reason, it does not follow

directly from the definition of contiguity that Fn;✏,X is contiguous with respect to F✏,X . In Theorem 1, based

on Le Cam’s first lemma, we establish that the alternatives Hn will be contiguous alternatives under some

conditions. For sake of concise presentation, we assume the following conditions before stating Theorem 1.

Assumptions:

(A1) f✏,X(e, x) > 0 for all e and x, where f✏,X is the joint probability density function of (✏, X).

(A2) EY⇠F
✏,X

⇣
k(Y )

f
✏,X

(Y ) � 1
⌘2

< 1.

Theorem 1: Under (A1) and (A2), the sequence of alternatives Hn defined by (4) forms a contiguous

sequence.

Here we would like to discuss a few issues related to the condition assumed in (A2), and for simplicity of

writing, we drop the random variable Y from the expression of the condition in subsequent places. Note that

Ef
✏,X

⇣
log k

f
✏,X

⌘
= Ef

✏,X

⇣
1� (1� log k

f
✏,X

)
⌘
⇡ � 1

2Ef
✏,X

⇣
1� k

f
✏,X

⌘2
since Ef

✏,X

⇣
1� k

f
✏,X

⌘
= 0, and hence,

Ef
✏,X

⇣
k

f
✏,X

� 1
⌘2

can be expressed as the first order approximation of an entropy Ef
✏,X

⇣
log k

f
✏,X

⌘
, which

measures dissimilarity between two densities f✏,X and k. In other words, Ef
✏,X

⇣
k

f
✏,X

� 1
⌘2

is also called the

mean square contingency (see Renyi (1959, p. 446)) of f✏,X and k. Further, note that if k = f✏,X , we have
⇣

k
f
✏,X

� 1
⌘
= 0, i.e., k and f✏,X are similar. At the same time, the larger values of

⇣
k

f
✏,X

� 1
⌘
indicate that

k and f✏,X are more dissimilar, i.e., in other words, ✏ and X are more statistically dependent through k. To

summarize, Theorem 1 asserts that the sequence of alternatives Hn will be contiguous with respect to H0

when the mean square contingency of f✏,X and k is finite.

We establish the asymptotic behaviour of Tn,1, Tn,2 and Tn,3 (given in (1), (2) and (3), respectively)

under H0 in Proposition 1. We assume the following conditions to establish Proposition 1.

Assumptions

(B1) X1, . . ., Xn are i. i. d. random variables with common distribution function HX .
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(B2) Y1, . . ., Yn satisfy the model Yi = m(Xi) + ✏i, i = 1, . . . , n, where the unknown function m possesses

a bounded derivative, the random error ✏is are i. i. d. with bounded probability density function, and

E(✏i|Xi) = 0 for all i = 1, . . . , n.

Proposition 1: Under (B1) and (B2), we have Tn,i
p! 0 for i = 1, 2, 3 as n ! 1 when H0 is true.

Note that the conditions assumed in (B1) and (B2) are realistic in nature. Assumption (B1) allows us to

consider i. i. d. covariates following any type of distribution. The condition E(✏i|Xi) = 0 for all i = 1, . . . , n

assumed in (B2) is used to avoid the problem of identifiability. Further, condition assumed on m(.) holds

when m(.) is di↵erentiable function and has uniformly bounded first derivative (see, e.g., Rudin (1976)).

The main implication of Proposition 1 is that one can use Tn,i, i = 1, 2, 3 to check whether the evidence

obtained from the data favoursH0 or not. In addition, in order to carry out the tests based on Tn,i, i = 1, 2, 3,

one needs to know the distributions (or an approximation of the distributions) of Tn,i’s. In this context,

note that Tn,1, Tn,2 and Tn,3 are 2-dependent U -statistics (e.g., see Lee (1990)) and to derive the asymptotic

distributions of Tn,1, Tn,2 and Tn,3, one needs to know the order of degeneracy of each Tn,1, Tn,2 and Tn,3. For

sake of completeness, the definition of U -statistic and its order of degeneracy are mentioned in the following.

For a given data set X = {x1, . . . , xn}, Un = 1

(n

m

)
P

1i1<...<i
m

k(xi1 , . . . , xi
m

) is said to be a U -statistic of

order m with kernel k(.) having the order of degeneracy = l if EX
l+1,...,Xm

k(x1, . . . , xl, Xl+1, . . . , Xm) = 0

for all x1, . . . , xl. Moreover, the collection of the random variables X ⇤ = {X1, . . . , Xn} will be called m-

dependent random variables if Xb and Xa are independent for all b � a > m (a, b = 1, . . . , n; m � 1), and

the corresponding U -statistic is said to be m-dependent U -statistic. It is easy to see that Tn,1 has the order

of degeneracy 0 whereas it is established in Lemma 1 that the asymptotic order of degeneracy of Tn,2 and

Tn,3 are 1.

Lemma 1: Under (B1) and (B2), E[Tn,2|X(i) = x, Y ⇤
(i) = y] ! 0 and E[Tn,3|X(i) = x, Y ⇤

(i) = y] ! 0 for

all i = 1, . . . , n as n ! 1 under H0, where x, y 2 R are fixed constants.

Lemma 1 implies that Tn,2 = Op(
1
n ) and Tn,3 = Op(

1
n ) as well, which can be established based on the

asymptotic theory of 2-dependent U -statistic whereas Tn,1 = Op(
1p
n
) as it has the order of degeneracy = 0

(e.g., see Lee (1990)). We state the asymptotic distributions of Tn,1, Tn,2 and Tn,3 under Hn in Theorems

3.2, 3.3 and 3.4, respectively.

Theorem 2: Suppose that (A1)-(A2) and (B1)-(B2) are true. Then, under Hn defined by (4),
p
n{Tn,1�
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E(Tn,1)} converges weakly to a Gaussian distribution with mean

µ1 = 2�

1Z

�1

1Z

�1

2

42
xZ

�1

yZ

�1

dHX(u)dG⇤(v) + 2

1Z

x

1Z

y

dHX(u)dG⇤(v)� 1

3

5 dK(x, y)

and variance

�2
1 =

1Z

�1

1Z

�1

2

42
xZ

�1

yZ

�1

dHX(u)dG⇤(v) + 2

1Z

x

1Z

y

dHX(u)dG⇤(v)� 1

3

5
2

dG✏(y)dHX(x).

Here HX is the marginal distribution function of X, and G⇤ is the distribution function of ✏1 � 2✏2 + ✏3.

In the proof of Theorem 2, Le Cam’s third lemma has been used to get the asymptotic normality of
p
n{Tn,1�E(Tn,1)} under Hn, and in the course of using Le Cam’s third lemma, we have used the fact that

logLn converges weakly to a random variable associated with a normal distribution having certain location

and scale parameters (see the proofs of Theorems 3.1 and 3.2). It is here appropriate to mention that the

asymptotic normality of logLn is a su�cient condition but in general, it is not a necessary condition to

establish the contiguity of Qn with respect to Pn. Instead of Le Cam’s third lemma, one can also follow

Behnen and Neuhaus (1975)’s approach based on a specific truncation method for contiguity of Qn with

respect to Pn. Also, Behnen (1971) investigated the asymptotic relative e�ciency of some tests for indepen-

dence against general contiguous alternatives of positive quadrant dependence but none of Behnen (1971)

and Behnen and Neuhaus (1975) considered Qn as a mixture distribution as we consider here. Recently,

Banerjee (2005) studied the behaviour of the likelihood ratio statistics for testing a finite dimensional pa-

rameter under local contiguous hypotheses. He perturbed the null hypothesized parameter to get the local

(or contiguous) alternatives, which is di↵erent from the perturbance on the distribution function that has

been considered by us.

Also, we would like to point out that G⇤(y) =
1R

�1

1R
�1

�
1�G✏

�
u+v�y

2

� 
dG✏(u)dG✏(v), which follows

from the arguments based on convolutions. Here G✏ is the marginal distribution function of ✏. Further, it

directly follows from Theorem 2 that
p
n{Tn,1�E(Tn,1)} converges weakly to normal distribution with zero

mean and variance = �2
1 under H0 since the sequence of alternatives Hn coincide with the null hypothesis

H0 when � = 0. In order to carry out the test having the level of significance = ↵, one needs to find out the

↵% critical value (denote it as c1,↵), i.e., (1�↵)-th quantile of the normal distribution having zero mean and

variance = �2
1 , and the asymptotic power of the test under Hn will be P [X > c1,↵], where X is the random

variable associated with the normal distribution having mean = µ1 and variance = �2
1 .

Theorem 3: Suppose that (A1)-(A2) and (B1)-(B2) are true. Then, under Hn defined by (4), n{Tn,2�

8



E(Tn,2)} converges weakly to
1P
i=1

�i{(Zi + ai)2 � 1}, where Zi’s are i.i.d. N(0, 1) random variables, and �i’s

are the eigenvalues associated with l(x, y) = E{sign(|X(1) �X(2)| + |X(3) �X(4)| � |X(1) �X(3)| � |X(2) �

X(4)|) ⇥ sign (|Y ⇤
(1) � Y ⇤

(2)| + |Y ⇤
(3) � Y ⇤

(4)| � |Y(1) � Y ⇤
(3)| � |Y ⇤

(2) � Y ⇤
(4)|)|X(1) = x, Y ⇤

(1) = y}. Here (X1, Y1),

(X2, Y2), (X3, Y3) and (X4, Y4) are i.i.d. bivariate random vectors, X(i) is the i-th order statistic of the

random variables X1, X2, X3 and X4, Y ⇤
(i) = Y(i�1) � 2Y(i) +Y(i+1), where Y(i) is the Y value corresponding

to X(i), (x, y) is the realized value of (X(1), Y(1)), and

ai = �

Z ⇢
k

f
� 1

�
gi(x)gi(y)fX,Y dxdy.

Here gi(x) and gi(y) are such that

1Z

�1

1Z

�1

l(x, y)
4Y

i=2

gk(Xi)gk(Yi)d

 
4Y

i=2

FX
i

,Y
i

!
= �kgk(x)gk(y)

for all (x, y).

Theorem 4: Suppose that (A1)-(A2) and (B1)-(B2) are true. Then, under Hn defined by (4), n{Tn,3�

E(Tn,3)} converges weakly to
1P
i=1

�⇤
i {(Z⇤

i +a⇤i )
2�1}, where Z⇤

i ’s are i.i.d. N(0, 1) random variables, and �⇤
i ’s

are the eigenvalues associated with l⇤(x, y) = E{(|X(1)�X(2)|+ |X(3)�X(4)|� |X(1)�X(3)|� |X(2)�X(4)|)⇥

(|Y ⇤
(1)�Y ⇤

(2)|+ |Y ⇤
(3)�Y ⇤

(4)|� |Y ⇤
(1)�Y ⇤

(3)|� |Y ⇤
(2)�Y ⇤

(4)|)|X(1) = x, Y ⇤
(1) = y}. Here (X1, Y1), (X2, Y2), (X3, Y3)

and (X4, Y4) are i.i.d. bivariate random vectors, X(i) is the i-th order statistic of the random variables X1,

X2, X3 and X4, Y ⇤
(i) = Y(i�1) � 2Y(i) + Y(i+1), where Y(i) is the Y value corresponding to X(i), (x, y) is the

realized value of (X(1), Y(1)) and

a⇤i = �

Z ⇢
k

f
� 1

�
g⇤i (x)g

⇤
i (y)fX,Y dxdy.

Here g⇤i (x) and g⇤i (y) are such that

1Z

�1

1Z

�1

l(x, y)
4Y

i=2

g⇤k(Xi)g
⇤
k(Yi)d

 
4Y

i=2

FX
i

,Y
i

!
= �kg

⇤
k(x)g

⇤
k(y)

for all (x, y).

Theorems 3.3 and 3.4 enable us to compute the asymptotic power of the tests based on Tn,2 and Tn,3

under Hn. In this context, note that under H0, n{Tn,2�E(Tn,2)} and n{Tn,3�E(Tn,3)} converge weakly to
1P
i=1

�i{Z2
i � 1} and

1P
i=1

�⇤
i {Z⇤2

i � 1}, respectively, which follow from the assertions in Theorems 3.3 and 3.4

9



since both ai = a⇤i = 0 if � = 0 (i.e., when H0 is true). The corresponding asymptotic critical values (denote

those are as c2,↵ and c3,↵, respectively) can be obtained from (1�↵)-th quantile of the distributions described

at the beginning of this paragraph. However, it is di�cult to derive the explicit expression of the quantiles

of the distribution since the distribution involves the infinite sum of the weighted chi-squared distribution,

where weights are the eigenvalues of the kernels associated with Tn,2 (or Tn,3). In order to overcome the

problem related to infinitely many eigenvalues and the infinite sum, we approximate the kernel function at

n1 ⇥ n1 many marginal quantile points and compute the eigenvalues of n1 ⇥ n1 finite-dimensional matrix

associated with the kernel function. The (i, j)-th element of the matrix is the (i/n1, j/n1)-th marginal

quantile (e.g., see Babu and Rao (1988)) of the joint distribution associated with the bivariate random

vector (X,Y ), where i = 1, . . . , n1 and j = 1, . . . , n1. Then, we generate a sample with size 1000 from that

approximated finite sum of the wighted chi-squared distribution, and (1 � ↵)-th quantile of that sample is

considered as the approximated value of the asymptotic critical value at ↵% level of significance. In order

to compute the power, we similarly approximate the infinite sum of the weighted chi-squared distributions

described in Theorems 3.3 and 3.4 by an appropriate finite sum of the chi-squared distributions and simulate

sample with size 1000 from the approximated distributions, and finally, the proportion of the observations in

the sample larger than the approximated critical value is considered as the estimated value of the asymptotic

power. In the asymptotic power studies of di↵erent tests, we consider n1 = 10 unless mentioned otherwise.

3.2 Examples

We consider three examples, where we investigated the asymptotic power of the tests based on Tn,1, Tn,2

and Tn,3. In all of the examples, we take the null model f✏,X(✏, x) = 1
2⇡ e

� ✏

2+x

2

2 , where ✏, x 2 R, and f✏,X is

the density function of F✏,X . As the contiguous alternative model is of the form

✓
1� �p

n

◆
f✏,X +

�p
n
k, (5)

where f✏,X is same as considered in the null model for all examples but the choices of k are di↵erent over

di↵erent examples, which are the following.

Example 1: The joint density k✏,X(e, x) is such that (✏|X = x)
D
= N⇤

x , where N⇤
x ⇠ N(0, 1+5x

100 ), and

the marginal density function of X is N(0, 1).

Example 2: The joint density k✏,X(e, x) is such that (✏|X = x)
D
= C⇤

x, where C⇤
x is a random variable

associated with Cauchy distribution with the location parameter = 0 and the scale parameter = x2. The

marginal density function of X is N(0, 1).

10



It is an appropriate place to mention that the integrals involved in µ1 and �2
1 described in the statement

of Theorem 2 are calculated theoretically. Note that in the above examples, the joint density function of

X and ✏ is the standard bivariate normal density under H0, and hence, HX and G✏ are the cumulative

distribution functions of the standard normal distribution because under H0, F✏,X = HXG✏. To compute

G⇤, we use the relation G⇤(y) =
1R

0

1R

0
{1�G✏(

u+v�y
2 )}dG✏(u)dG✏(v) as we mentioned earlier. Since both in

µ1 and �2
1 , the integrands have tractable expressions in terms of the standard normal density functions, we

are able to compute µ1 and �2
1 theoretically without using Monte Carlo Methods. For Examples 1 and 2,

the results are reported in Tables 1 and 2 (see Appendix B), and also summarized in Figure 1.

It follows from the figures in Table 1 that the tests based on Tn,1 (given in (1)), Tn,2 (given in (2)) and

Tn,3 (given in (3)) are comparable as expected since k and f✏,X are related by only scale transformation.

Hence, there is neither any e↵ect of outliers nor any significant e↵ect of the alternative distribution. It is

amply indicated by the figures in Table 2 that the tests based on Tn,1 and Tn,2 are more powerful than then

test based on Tn,3 under contiguous alternatives. It is here appropriate to point out that Tn,1 and Tn,2 are

rank based test statistic whereas Tn,3 is a moment based test statistic. For that reason, the better robustness

properties of Tn,1 and Tn,2 compared to Tn,3 have significant e↵ect on the results as the conditional density

associated with k has heavier tail than that of f✏,X .
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Figure 1: The asymptotic power of the test based on Tn,1 (solid curve �), the test based on Tn,2 (lined curve
� �) and the test based on Tn,3 (dotted lined curve �o�) for di↵erent values of � when the contiguous
alternative model is of the form (5).
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4 Finite sample study and real data analysis

In Section 3, we investigated the performance of the tests based on Tn,1, Tn,2 and Tn,3 when the sample

size n tends to infinity. It is now of interest to see the performance of the tests when the sample sizes are

finite, and for that reason, in Section 4.1, we carry out some simulation studies to compare the finite sample

power of these three tests along with the tests considered by Einmahl and Van Keilegom (2008a), Neumeyer

(2009), Hlavka et al. (2011) and Breusch-Pagan test (see Breusch and Pagan (1979)) specially for checking

heteroskedasticity. In addition, Section 4.2 shows the applicability of our proposed tests to real data.

4.1 Finite sample simulation study

We here study the finite sample power and the level of our tests using simulations and compared them

with the tests described in Einmahl and Van Keilegom (2008a), Neumeyer (2009), Hlavka et al. (2011) and

Breusch-Pagan test (see Breusch and Pagan (1979)). The Breusch-Pagan test checks whether the conditional

variance of the residuals obtained from the regression are independent of the conditioning variable (i.e, the

covariates) or not. In other words, it tests the presence of heteroskedasticity. The test statistics of Einmahl

and Van Keilegom (2008a)’s tests are denoted by Tn,KS , Tn,CM and Tn,AD as they were defined in that

article. For sake of completeness, the expressions of Tn,KS , Tn,CM and Tn,AD are provided in the following.

Let us first define Fn(x, y) =
1
n

nP
i=1

1{x(i)x, y⇤
(i)

y}, where 1A = 1 if A is true, and = 0, otherwise. The forms

of the test statistics are

Tn,KS =
p
n sup

x2R,y2R
|Fn(x, y)� F̂X(x)Ĝ(y)|, (6)

Tn,CM = n

Z Z
(Fn(x, y)� F̂X(x)Ĝ(y))2dF̂X(x)dĜ(y) (7)

and

Tn,AD = n

Z Z
(Fn(x, y)� F̂X(x)Ĝ(y))2

F̂X(x)Ĝ(y)(1� F̂X�(x))(1� Ĝ�(y))
dF̂X(x)dĜ(y). (8)

Here, F̂X(x) = Fn(x,1) and Ĝ(y) = Fn(1, y), and F� denotes the left-continuous version of for any

distribution function F . The test statistic considered in Neumeyer (2009) is denoted by

Tn,Neu =
1

n(n� 1)

nX

i=1

nX

j=1,j 6=i

1

hn
K

✓
✏̂i � ✏̂j
hn

◆Z
(I{Xi  x}� FX,n(x))(I{Xj  x}� FX,n(x))w(x)dx, (9)

where ✏̂i = yi � m̂(xi), ✏̂j = yj � m̂(xj), FX,n is the empirical distribution of the covariates X1, . . . , Xn, w is

a weight function, K and hn denote the kernel and the bandwidth, respectively. The test statistic described
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in Hlavka et al. (2011) as

Tn,W = n

1Z

�1

1Z

�1

|Dn(t1, t2)|2W (t1, t2)dt1dt2, (10)

where Dn(t1, t2) = �̂(t1, t2)��̂X(t1)�̂ê(t2), and W (t1, t2) denotes a suitable weight function. Here �̂(t1, t2) =

1
n

nP
j=1

eit1Xj

+it2êj , �̂X(t) = 1
n

nP
j=1

eitXj , and �̂ê(t) =
1
n

nP
j=1

eitêj , and êj = yj � m̂(Xj).

In this simulation study, our overall setting is similar to that in Einmahl and Van Keilegom (2008a)

and Neumeyer (2009). As they considered, suppose that the covariate random variable X is associated with

the uniform distribution on (0, 1), m(x) = x � 0.5x2, and the simulations are carried out for the sample

sizes n = 100 and = 1000 with the level of significance = 5%. Under H0 (i.e., null hypothesis), the error

random variable ✏ follows normal distribution with zero mean and standard deviation equal to 0.1. Also, we

consider first three alternative distributions as studied in Einmahl and Van Keilegom (2008a) and the fourth

one is related to skew normal distribution. For fourth one, we compare the performances of our tests with

Breusch-Pagan test.

Example 3: (✏|X = x) ⇠ N(0, 1+ax
100 ). Here a controls the variance.

Example 4: (✏|X = x)
D
= W

x

�r
x

10
p
2r

x

, where Wx ⇠ �2
r
x

, rx = 1
bx . Here b > 0 controls the skewness.

Example 5: (✏|X = x)
D
= 1

10

p
1� (cx)1/4Tx, where Tx ⇠ t2/(cx)1/4 . Here c 2 (0, 1] controls the kurtosis.

Example 6: (✏|X = x) follows a skew normal distribution (see Azzalini (1985)) with the location parameter

= ⇠(x), the scale parameter = !(x) and the shape parameter = ↵(x), where ⇠(x) = x, !(x) =
p
x2 + 3, and

↵(x) = 3⇡p
2(x2+3)�9⇡2

.

To implement the proposed tests, i.e., the tests based on Tn,1, Tn,2 and Tn,3, one needs to compute the ↵%

(here ↵ = 5) critical value of the test. For computing the critical value, we adopt the Bootstrap procedure,

which is described as follows (see also Neumeyer (2009)). We first generate a data (x1, y1), . . . , (xn, yn) from

the regression model described in the paragraph before Example 3, and based on this data, we estimate

the error ✏̂i = yi � m̂(xi), where m̂ is well-known Nadaraya-Watson estimator (see Nadaraya (1964) and

Watson (1964)) using Epanechnikov kernel (see, e.g., Silverman (1986)). We now define the centered error

✏cen,i = ✏̂i� 1
n

nP
i

✏̂i, where i = 1, . . . , n. Let F ⇤
n be the empirical distribution function of ✏cen,i (i = 1, . . . , n),

and the bootstrap sample ✏⇤1, . . . , ✏
⇤
n are generated from the empirical distribution function of centered error,

i.e., F ⇤
n . Based on the original sample of the covariate (x1, . . . , xn) and the Bootstrap sample of the errors

(✏⇤1, . . . , ✏
⇤
n), we now have the bootstrap responses y⇤i = m̂(xi) + ✏⇤i . Finally, the Bootstrap sample was

(y⇤1 , x1), . . . , (y⇤n, xn). Following the same procedure, we generate B = 500 many bootstrap resamples, and

(1 � ↵)-th quantile of the Bootstrap distribution of the test statistic is considered as the estimated critical
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value.

The computations of Tn,1, Tn,2, Tn,3, Tn,KS , Tn,CM , Tn,AD and Tn,Neu are done in R and Matlab

codes, which are available to the first author. For the test based on Tn,Neu, we report the same results

as provided in Neumeyer (2009) when n = 100. In this context, we would here like to mention that

Neumeyer (2009) reported the results of her proposed test for three choices of estimated bandwidth (denoted

as h⇤
n in that article); however, for sake of concise presentation, we report the maximum value of the

rejection probability (i.e., estimated power) among three choices of values. In case of the test described

in Hlavka et al. (2011), two versions of W (t1, t2), namely, W1(t1, t2) and W2(t1, t2), are chosen as they

considered in their article. For detailed description of W1(t1, t2) and W2(t1, t2), we refer the readers to

Section 4.1.1 in Hlavka et al. (2011). The computation of Tn,W is carried out by an R code available

in http://www.karlin.mff.cuni.cz/

~

hlavka/stat.html. All results are summarized in Figure 2 and in

Tables 3, 4, 5 and 6 in Appendix B.

The figures in Table 3 indicates that the tests based on Tn,1 and Tn,2 performs well for Example 3

and comparable with the performances of the tests based on Tn,Neu (given in (9)), Tn,W1 and Tn,W2 (given

in (10)). In that example, the test based on Tn,3 is under achieved particularly for large values of a.

For Example 4, the performances of the tests based on Tn,1, Tn,2 and Tn,3 are comparable (see Table 4).

However, for Example 5, the tests based on Tn,1 and Tn,2 and other tests as well outperform the test based

on Tn,3 (see Table 5). It is expected since Tn,3 is moment based estimator, and consequently, it is not a

robust estimator against the outliers generated from the heavy-tailed distribution. The reported values in

Table 6 (see Appendix B) clearly indicates that a test of homoscedasticity, namely, Breusch-Pagan test is

outperformed by our proposed tests since it fails to detect the varying conditional skewness of the distribution

with constant conditional variance.

4.2 Real data analysis

As we have observed in the asymptotic and the finite sample power study, the test based on Tn,3 fails to

perform well in the presence of the influential observations, we wanted to see how di↵erent tests perform on

real data having (and not having) outliers. To investigate the performance of the tests, we consider here two

real data, which are the following with detailed descriptions.

We first consider a real data set Airfoil Self Noise Data, and this data set is available in https://

archive.ics.uci.edu/ml/machine-learning-databases/00291/. It consists of six independent variables,

namely, frequency (in Hertzs), angle of attack (in degrees), chord length (in meters), free-stream velocity (in
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Figure 2: The finite sample power of di↵erent tests with 5% level of significance for Examples 4, 5 and 6. In
first row, a is the parameter described in Example 3. In second row, b is the parameter described in Example
4, and in third row, c is the parameter described in Example 5.
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meters per second) and suction side displacement thickness (in meters) and one dependent variable (i.e., Y ),

namely, scaled sound pressure level (in decibels). The size of the data set is 1503. In this study, we consider

only one independent variable (i.e., X), namely, frequency (in Hertzs). In order to check whether X and

the errors ✏ in the model (i.e., the model described in the beginning of Section 1) are independent or not,

we carry out bootstrap tests based on Tn,1, Tn,2 and Tn,3 and compute the p-values of the corresponding

tests. We first compute the value of Tn,i, i = 1, 2, 3 (denote it as t0,i) from the given data and to estimate

PH0 [Tn,i > t0,i], (i.e., p-value) i = 1, 2, 3, we generate j many bootstrap resamples from the given data

as we described in the paragraph after Example 6. Let T k
n,i denote the estimate of Tn,i for k-th resample

(k = 1, . . . , j), and the p-value of the i-th test is defined as

jP
k=1

1{Tk

n,i

>t0,i}

j . In this numerical study, we choose

j = 500, and the p-values of the tests based on Tn,1, Tn,2 and Tn,3 are 0.57, 0.49 and 0.53, respectively for

this data set. These p-values indicate that one can use the model Y = m(X) + ✏ for this data set, where

X and ✏ are independent random variables, and having the knowledge of the independence between the

covariates (i.e., X) and the errors (i.e., ✏) helps us to use di↵erent statistical procedures in a straightforward

way.
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Figure 3: The scatter plots for Airfoil self noise data and Combined cycle power plant data.

We next consider a real data set Combined Cycle Power Plant Data, which is available in https:

//archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant. This data set contains 9568 data

points collected from a Combined Cycle Power Plant over 6 years (2006-2011), when the power plant was

set to work with full load. This data set consists of four independent variables, which are hourly average

ambient variables, namely, temperature, ambient pressure, relative humidity and exhaust vacuum and one

dependent variable, namely, net hourly electrical energy output of the plant. In our study, we consider
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relative humidity as the independent variable (X). Following the same procedure described for Airfoil Self

Noise Data, we have computed the p-values of the tests based on Tn,1, Tn,2 and Tn,3, and those p-values are

0.35, 0.40 and 0.14, respectively. The large p-values associated with the tests based on Tn,1 and Tn,2 favours

the null hypothesis whereas the small value associated with the test based on Tn,3 supports the assertion in

the alternative hypothesis. Since this data set contains some outliers (see the second diagram from right in

Figure 3), the small p-value associated with the test based on Tn,3 indicates that it is not robust against the

outliers.

5 Concluding remarks

In this article, we develop three tests to check whether the regressor and the errors are independent or not

for the non-parametric regression model Y = m(X) + ✏, where Y , m(.), X and ✏ are same as defined at the

beginning of introduction. Among these three tests studied here, it is observed that the tests based on Tn,1

and Tn,2 are more robust against the outliers than the test based on Tn,3. The reason behind this fact is

that Tn,1 and Tn,2 are based on the rank or the positions of the observations whereas Tn,3 is based on the

absolute values of the observations or their powers. Besides, one can also formulate Kolmogorov-Smirnov or

Cramer-von Mises type test statistics (e.g., see Einmahl and Van Keilegom (2008a)) based on x(i) and y⇤(i),

and the performances of those tests were investigated in finite sample study. Those tests along with the tests

based on Tn,Neu and Tn,W also perform well when the data are generated from heavy tailed distribution

since those tests are also based on the rank of the observations.

We should also point out that one can also consider higher order di↵erences of y(i�1). In this article, we

considered the second order di↵erences of y(i�1), i.e., y(i+1)�2y(i)+y(i+1) as we wanted to maximize the third

moment of ✏(i+1) � 2✏(i) + ✏(i�1) among all possible choices of a✏(i+1) + b✏(i) + c✏(i�1), where a, b, c 2 R along

with the conditions (i) a2 + b2 + c2 is a constant and (ii) a+ b+ c = 0, i.e., in other words, this construction

gave us more general tests than usual test of homoscedasticity. In fact, any higher order odd moments can

be maximized by the L-moments (see, e.g., Hosking (1990), which follows from the combinatorial arguments

and the form of the expectation of the di↵erent power of the order statistics. The optimal choice of the order

of the moment and the investigation of the new versions of Tn,1, Tn,2 and Tn,3 based on the other order of

moment could be a subject of future research.

In addition, as we mentioned in the Introduction and investigated in the finite sample simulation study,

our proposed tests can detect di↵erent kind of dependence structure between the covariates and the error

random variable whereas a test of homoscedasticity fails to detect it when the conditional variance is constant.
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For further illustration of this fact, we consider the following example, where the model is Y = X2 + ✏.

Let (✏|X = x) follow skew normal distribution (see Azzalini (1985)) with the location parameter = ⇠(x),

the scale parameter = !(x) and the shape parameter = ↵(x), where ⇠(x) = x, !(x) =
p
x2 + 3, and

↵(x) = 3⇡p
2(x2+3)�9⇡2

, and X has the standard normal distribution. Here ✏ 2 R and x 2 R. We then

generate a sample (x1, y1), . . ., (x100, y100) based on the distributions of (✏, X), and for this sample, we carry

out the test based on Tn,2 and a well-known homoscedasticity test, namely, Breusch-Pagan test (see Breusch

and Pagan (1979)). To test H0 : ✏ ?? X against H1 : ✏ 6?? X, we have obtained a high p-value = 0.657 (i.e.,

favours H0) for Breusch-Pagan test whereas a small p-value = 0.041 (i.e., H0 is rejected) is obtained for the

test based on Tn,2. In other words, it clearly indicates that Breusch-Pagan test fails to detect the dependence

structure between ✏ and X since V ar(✏|X) is constant (= 3) here whereas the test based on Tn,2 is able to

detect that dependence structure as the skewness of the conditional distribution of ✏|X = x depends on x.

Furthermore, we would like to discuss another issue related to ⌧ and ⌧⇤. As we indicated in Section 2 that

for two random variables X and Y with distributions F and G, respectively, ⌧ = 0 does not necessarily imply

that X ?? Y whereas ⌧⇤ = 0 , X ?? Y . For example, let C(x, y) denote the bivariate distributions on the

unit cube with uniform marginals, and a direct algebra implies that ⌧ = 4EC(X,Y )�1, and consequently, we

have ⌧ = 0 if and only if EC(X,Y ) = 1/4. In particular, note that if X ?? Y , so are U ?? V (here U = F (X)

and V = G(Y )), then C(u, v) = uv, and hence, EC(U, V ) =

1Z

0

1Z

0

uv dudv = 1/4, which implies that

⌧ = 4EC(U, V )�1 = 0. Next, let us consider another form of C(u, v) = uv+↵u(u�1)(2u�1)v(v�1)(2v�1),

where U and V follows uniform distribution on [0, 1], and ↵ 2 [�1, 2]. Note here that for any ↵ 2 [�1, 2],

⌧ = 0; however, U ?? V only when ↵ = 0. In other words, if we consider ↵ = 1.5, we have ⌧ = 0, but

U and V are not independent. Motivated by this example, in the model Y = m(X) + ✏ considered in this

article, suppose that the joint distribution of X and ✏ is L✏,X(e, x) = ex+↵e(e� 1)(2e� 1)x(x� 1)(2x� 1)

(consider ↵ = 0 under H0 and ↵ = 1.5 under H1), where ✏ and X both follow uniform distribution on [0, 1].

Considering m(X) = X2, we then compute the p-value the tests based on both Tn,1 and Tn,2. For this

example, the test based on Tn,1 gives us a high p-value = 0.71 whereas p-value of the test based on Tn,2 is

0.08, which is quite small. This investigation clearly indicates that the test based on Tn,1 fails since even

under alternative ⌧ = 0.

The issue of robustness is also a potential research interest since Tn,1 and Tn,2 are rank based test

statistics whereas Tn,3 is a moment based test statistic. To measure the robustness, one can compare the

population versions of Tn,1, Tn,2 and Tn,3 in terms of maximum bias (e.g., see Huber (1981)). Roughly

speaking, for a functional T (F ), where F is a distribution function and T is the population version of

the estimator Tn, the maximum bias measures the e↵ect on T (F ) of an arbitrary large observation with a
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specified mass. In fact, it is shown in Dhar, Bergsma and Dassios (2016) that a version of maximum bias

of Tn,1 and Tn,2 based on (xi, yi) is bounded whereas that of Tn,3 based on (xi, yi) is unbounded, and it is

expected that those results can be extended for Tn,1, Tn,2 and Tn,3 based on (x(i), y
⇤
(i)) also. Besides, one

can derive the influence curve or the breakdown points of Tn,1, Tn,2 and Tn,3 to measure the robustness of

Tn,1, Tn,2 and Tn,3 against the outliers. On computational issue, we would like to point out that the direct

computation of Tn,2 based on (xi, yi) requires O(n4) operations whereas Weihs et al. (2016) showed that it

can be reduced to O(n2 log n), and Heller and Heller (2016) further reduced it to O(n2) operations.

In real data analysis, we carried out bootstrap tests and made the decision based on the p-values

obtained from the bootstrap tests. Since Tn,1, Tn,2 and Tn,3 are U -statistics, in view of Bickel and Freedman

(1981, Section 3, p. 1203), the bootstrap version of Tn,1, Tn,2 and Tn,3 is asymptotically (i.e., number of

replications j ! 1) valid in the sense of approximating the the original distributions of those test statistics

after appropriate normalization, and hence, the critical value obtained by bootstrap method is asymptotically

valid for the critical value that can be obtained by asymptotic distribution of the test statistics. Further, note

that since the sample sizes of those real data set are large (1503 and 9568, respectively), one can also directly

carry out the tests based on the asymptotic distributions described in Theorems 3.2, 3.3 and 3.4 as the

asymptotic distributions of Tn,1, Tn,2 and Tn,3 under H0 follow from the assertions of those theorems when

� = 0. However, one needs to estimate the unknown distribution function and the associated parameters

from the given data to implement the tests based on the asymptotic distribution. Besides, to carry out such

tests, one may also adopt some other methodologies proposed in Pfister, Buhlmann, Scholkopf and Peters

(2017) and Leung and Drton (2017).
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6 Appendix A: Proofs

Proof of Theorem 1: In order to establish the contiguity of the sequence F
n;✏,X

relative to F
✏,X

, it is enough to show that

L
n

, the logarithm of the likelihood ratio, is asymptotically normal with mean � 1

2

�2 and variance �2 (see Hajek, Sidak and Sen

(1999, p. 254, Corollary to Le Cam’s first Lemma) and the first paragraph in Section 3), where � is a positive constant. For

notational convenience, we denote Z = (✏, X), and f
n;✏,X

and f
✏,X

are the density functions associated with F
n;✏,X

and F
✏,X

,

respectively. Now, we have
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2 (0, 1) with probability 1.

Now, we define W
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it follows that W
n

is asymptotically normal with mean � �

2

2

E
f

✏,X

{m(z
1

) � 1}2 and variance �2E
f

✏,X

{m(z
1

) � 1}2 since

E
f

✏,X

n

k(z)
f

✏,X

(z) � 1
o

2

< 1. So, in order to prove contiguity of the sequence of densities associated with H
n

, it is enough to

show that |L
n

�W
n

| p! 0 as n ! 1.
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The last implication follows from the fact that
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are two independent i.i.d. samples. We

now consider (X
1

, ✏
R1 ), . . . , (Xn

, ✏
R

n

), which are i.i.d. random vectors having independent components, and it is easy to see

that ✏
R

i

has the distribution G
✏

(i.e., the distribution function of ✏) in view of the fact that R
i

’s (i = 1, . . . , n) are distributed

uniformly over {1, . . . , n}, and hence, we can redefine the model as Y
i

= m(X
i

)+ ✏
R

i

, Y
(i)

= m(X
(i)

)+ ✏
i

using (B1). Under

this model, we have

T
n,2

=
1

�

n

4

�

X

1i<j<k<ln

{a(x
(i)

, x
(j)

, x
(k)

, x
(l)

)a(m(x
(i�1)

)� 2m(x
(i)

) +m(x
(i+1)

) + ✏
i�1

� 2✏
i

+ ✏
i+1

,m(x
(j�1)

)� 2m(x
(j)

) +m(x
(j+1)

) + ✏
j�1

� 2✏
j

+ ✏
j+1

,m(x
(k�1)

)� 2m(x
(k)

)

+ m(x
(k+1)

) + ✏
k�1

� 2✏
k

+ ✏
k+1

,m(x
(l�1)

)� 2m(x
(l)

) +m(x
(l+1)

) + ✏
l�1

� 2✏
l

+ ✏
l+1

)}

Note that m(x
(j�1)

)�2m(x
(j)

)+m(x
(j+1)

) = {m(x
(j�1)

)�m(x
(j)

)}+{m(x
(j+1)

)�m(x
(j)

)} = m0(⇠
i�1

)(x
(i)

�x
(i�1)

)+

m0(⇠
i

)(x
(i+1)

� x
(i)

) = {m0(⇠
i�1

) + m0(⇠
i

)}O
p

⇣

logn

n

⌘

. The last inequality follows from the fact that m(.) is di↵erentiable

(using (B2)), and max
i2{1,...,n}

|x
(i)

� x
(i�1)

| = O
p

✓

logn

n

◆

when the support of the probability density function of X is bounded

(e.g., see Shorack and Wellner (2009, p.731, Section 4) and Mijatovic and Vladislav (2015); consider k = 1 in Theorem 1). Note

that since T
n,2

is invariant under monotone transformation, without loss of generality, one may consider x
i

s are in [0, 1] even

when the the support of the probability density function of X is unbounded (e.g., by integral transformation X ! F
X

, where

F
X

is the distribution function of X).
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Hence, we now have

T
n,2

=
1

�

n

4

�

X

1i<j<k<ln

{a(x
(i)

, x
(j)

, x
(k)

, x
(l)

)a(m0(⇠
i�1

)(x
(i)

� x
(i�1)

) +m0(⇠
i

)(x
(i+1)

� x
(i)

)

+ ✏
i�1

� 2✏
i

+ ✏
i+1

,m0(⇠
j�1

)(x
(j�1)

� x
(j)

) +m0(⇠
j

)(x
(j)

� x
(j+1)

) + ✏
j�1

� 2✏
j

+ ✏
j+1

,m0(⇠
k�1

)(x
(k)

� x
(k�1)

) +m0(⇠
k

)(x
(k+1)

� x
(k)

) + ✏
k�1

� 2✏
k

+ ✏
k+1

,

m0(⇠
l�1

)(x
(l)

� x
(l�1)

) +m0(⇠
l

)(x
(l+1)

� x
(l)

) + ✏
l�1

� 2✏
l

+ ✏
l+1

)}

=
1

�

n

4

�

X

1i<j<k<ln

{a(x
(i)

, x
(j)

, x
(k)

, x
(l)

)a({m0(⇠
i�1

) +m0(⇠
i

)}O
p

✓

logn

n

◆

+ ✏
i�1

� 2✏
i

+ ✏
i+1

, {m(⇠
j�1

) +m(⇠
j

)}O
p

✓

logn

n

◆

+ ✏
j�1

� 2✏
j

+ ✏
j+1

,

{m0(⇠
k�1

) +m0(⇠
k

)}O
p

✓

logn

n

◆

+ ✏
k�1

� 2✏
k

+ ✏
k+1

, {m0(⇠
l�1

) +m0(⇠
l

)}

O
p

✓

logn

n

◆

+ ✏
l�1

� 2✏
l

+ ✏
l+1

)}.

Hence, T
n,2

� 1⇣
n

4

⌘
P

1i<j<k<ln

{a(x
(i)

, x
(j)

, x
(k)

, x
(l)

)a(✏
i�1

�2✏
i

+ ✏
i+1

, ✏
j�1

�2✏
j

+ ✏
j+1

, ✏
k�1

�2✏
k

+ ✏
k+1

, ✏
l�1

�2✏
l

+

✏
l+1

)} p! 0 as n ! 1 in view of the fact that sup
x2R

|m
0
(x)| < 1. Since the product of two sign functions are bounded by 1, using

dominated convergence theorem (e.g., see Billingsley (1995)), we haveE(T
n,2

)� 1⇣
n

4

⌘
P

1i<j<k<ln

E[{a(x
(i)

, x
(j)

, x
(k)

, x
(l)

)a(✏
i�1

�

2✏
i

+✏
i+1

, ✏
j�1

�2✏
j

+✏
j+1

, ✏
k�1

�2✏
k

+✏
k+1

, ✏
l�1

�2✏
l

+✏
l+1

)}] ! 0 as n ! 1. Further, since (x
(1)

, . . . , x
(n)

) and (✏
1

, . . . , ✏
n

)

are two independent sequence of random variables, E(T
n,2

) � 1⇣
n

4

⌘
P

1i<j<k<ln

E[{a(x
(i)

, x
(j)

, x
(k)

, x
(l)

)]E[a(✏
i�1

� 2✏
i

+

✏
i+1

, ✏
j�1

� 2✏
j

+ ✏
j+1

, ✏
k�1

� 2✏
k

+ ✏
R

k+1
, ✏

l�1

� 2✏
l

+ ✏
l+1

)}] ! 0 as n ! 1. Note that as ✏
1

, . . . , ✏
n

are i.i.d. random

variables, E[a(✏
i�1

� 2✏
i

+ ✏
i+1

, ✏
j�1

� 2✏
j

+ ✏
j+1

, ✏
k�1

� 2✏
k

+ ✏
R

k+1
, ✏

l�1

� 2✏
l

+ ✏
l+1

)}] = 0 unless i, j, k, l 2 A, where

A = {(i, j, k, l) : P{i � 1, i, i + 1} = P{j � 1, j, j + 1} = P{k � 1, k, k + 1} = P{l � 1, l, l + 1}}. Here P denote the class of

all permutations. It follows from the construction of the set A that the number of elements in A is finite and independent of

n, and consequently, Card(A)

n

! 0 as n ! 1, where Card(A) denotes the number of elements in A. Hence, E(T
n,2

) ! 0 as

n ! 1. Arguing in a similar way as in the proof of E(T
n,2

) ! 0 as n ! 1, we have E(T 2

n,2

) ! 0 as n ! 1. These two facts

imply that T
n,2

p! 0 as n ! 1. Since both T
n,1

and T
n,3

are based on sign functions, arguing in a similar way as in the case

of T
n,2

, one can establish that T
n,1

p! 0 and T
n,3

p! 0 as n ! 1. 2

Proof of Lemma 1: Here also, we shall provide the proof for T
n,2

, and the similar arguments lead to the result for

T
n,3

. Arguing in a similar way as in the proof of Proposition 1, using (B1)-(B2), we have E
h

T
n,2

|X
(i)

= x, Y ⇤
(i)

= y
i

�

1⇣
n

4

⌘
P

1i<j<k<ln

E[{a(x, x
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, x
(k)

, x
(l)

)

E(✏, ✏
j�1

� 2✏
j

+ ✏
j+1

, ✏
k�1

� 2✏
k

+ ✏
k+1

, ✏
l�1

� 2✏
l

+ ✏
l+1

)}] ! 0, where ✏ is a fixed value of ✏
i�1

� 2✏
i

+ ✏
i+1

. Now, note

that E[a(✏, ✏
j�1

� 2✏
j

+ ✏
j+1

, ✏
k�1

� 2✏
k

+ ✏
R

k+1
, ✏

l�1

� 2✏
l

+ ✏
l+1

)}] = 0 for all ✏ unless j, k, l 2 A⇤, where A⇤ = {(j, k, l) :

P{j�1, j, j+1} = P{k�1, k, k+1}} = P{l�1, l, l+1}}. Here P is the class of all permutations. It follows from the construction

of the set A⇤ that the number of elements in A is finite and independent of n, and hence, E[T
n,2

|x
(i)

= x, y⇤
(i)

= y] ! 0 as n ! 1

for all x, y. Since T
n,3

is also based on sign function, arguing in a similar way, one can show that E
h

T
n,3

|X
(i)

= x, Y ⇤
(i)

= y
i

! 0
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as n ! 1 for all x, y. 2

To prove Theorem 2, we should state the following lemma proposed by Le Cam.

Lemma: Le Cam’s third lemma: Let {X
n

} 2 Rd be a sequence of random vectors, and the sequence of measures Q
n

is contiguous with respect to the sequence of another probability measures P
n

. If (X
n

, log dQ

n

dP

n

) converges weakly to a random

vector in Rd+1 associated with (d+ 1)-dimensional normal distribution with the location parameter =
�

µ

��

2

2

�

and the scatter

parameter =
�

⌃ ⌧

⌧

T

�

2

�

under P
n

, then {X
n

} converges weakly to a random vector in Rd associated with d-dimensional normal

distribution with the location parameter = µ+ ⌧ and the scatter parameter = ⌃ under Q
n

.

Proof: See page 90 of Van der Vaart (1998). 2

Proof of Theorem 2: Since T
n,1

is a non-degenerate U-statistics (e.g., see Lee (1990), p. 14–15) as mentioned in the

discussion after Lemma 1 and in view of expansion of L
n

in the proof of Proposition 1, the joint distribution of
p
n{(T

n,1

�

E(T
n,1

)), L
n

/
p
n} is asymptotically bivariate normal distribution. Note also that the asymptotic covariance between

p
n(T

n,1

�

E(T
n,1

)) and L
n

is

2�

n
E

f

✏,X

"

n

X

i=1

E[sign{(X �X
(i)

)(Y � Y ⇤
(i)

)}|X,Y ]⇥
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+ ✏
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))}|X,Y ]

(since 2E
f

✏,X

E[sign{(X �X
(i)

)(Y � Y ⇤
(i)

)}|X,Y ] = 0, Y
(i)

= m(X
(i)

) + ✏
i

,

sup
x

|m0(x)| < 1 and max
i2{1,...,n}
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| = o
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(1))
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dH
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1
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y

dH
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3

5 dK,

where H
X

is the distribution function of X, and G⇤ is the distribution function of ✏
1

� 2✏
2

+ ✏
3

.

Now, by a straightforward application of Le Cam’s third lemma (see also Hajek, Sidak and Sen (1999, p. 257)) and the

asymptotic distribution of a non-degenerate 2-dependent U -statistic (see Lee (1990), Arcones (1995) and Bradley (2005) for

relationship between �-mixing and m-dependent random variables), one can establish that under contiguous alternatives H
n

(see Theorem 1),
p
n(T

n,1

� E(T
n,1

)) converges weakly to a Gaussian distribution with mean

µ
1

= 2�

1
Z

�1

1
Z

�1
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and variance
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1
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1
Z
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1
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dH
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dG
✏

dH
X

.

Hence, the proof is complete. 2

Proof of Theorem 3: It follows from Lemma 1 that the asymptotic degeneracy of T
n,2

is 1, which implies that n(T
n,2

�

E(T
n,2

)) will converge weakly to
1
P

i=1

�
i

{Z2

i

� 1} under H
0

, where �
i

’s are the eigenvalues associated with l(x, y), and Z
i

’s are

i.i.d. N(0, 1) random variables (e.g., see Leucht and Neumann (2013)).

Further, note that the sequence of densities (denote it as q
n

) associated with H
n

is dominated by the density (denote

24



it as p
0

) associated with H
0

with Radon-Nikodym derivative dq

n

dp0
= 1 + n� 1

2 h
n

, where h
n

= �
⇣

k

f

� 1
⌘

2 L
2

(p
0

) since

E
f

⇣

k

f

� 1
⌘

2

< 1, which is assumed in the theorem. Hence, q
n

and p
0

satisfy the assumptions stated in Theorem 2.1 in

Gregory (1977), which concludes that n(T
n,2

� E(T
n,2

)) converges weakly to
1
P

i=1

�
i

{(Z
i

+ a
i

)2 � 1} under H
n

, where �
i

, Z
i

and a
i

are as defined in the statement of the theorem. This completes the proof. 2

Proof of Theorem 4: Lemma 1 also asserts that the asymptotic degeneracy of T
n,3

is 1, which implies that n(T
n,3

�

E(T
n,3

)) will converge weakly to
1
P

i=1

�⇤
i

{Z⇤2
i

� 1} under H
0

, where �⇤
i

’s are the eigenvalues associated with l⇤(x, y), and Z⇤
i

’s

are i.i.d. N(0, 1) random variables (e.g., see Leucht and Neumann (2013)).

Arguing in the same way as in the proof of Theorem 3, n(T
n,3

� E(T
n,3

)) converges weakly to
1
P

i=1

�⇤
i

{(Z⇤
i

+ a⇤
i

)2 � 1}

under H
n

, where �⇤
i

, Z⇤
i

and a⇤
i

are defined as in the statement of the theorem. This completes the proof. 2

7 Appendix B: Asymptotic power study and finite sample simu-

lation study

� 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
Test based on Tn,1 0.05 0.09 0.12 0.20 0.29 0.37 0.45 0.55 0.62 0.69 0.75
Test based on Tn,2 0.05 0.09 0.13 0.22 0.25 0.35 0.41 0.57 0.65 0.77 0.81
Test based on Tn,3 0.05 0.08 0.16 0.20 0.26 0.34 0.43 0.54 0.66 0.75 0.80

Table 1: The results for Example 1: The asymptotic power of di↵erent tests for di↵erent values of �. For
di↵erent values of �, the value within each cell of the second, the third and the fourth rows denote the
asymptotic power of the corresponding tests at 5% level of significance under contiguous alternatives.

� 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
Test based on Tn,1 0.05 0.07 0.14 0.26 0.39 0.48 0.62 0.74 0.86 0.99 1
Test based on Tn,2 0.05 0.08 0.15 0.22 0.41 0.50 0.60 0.77 0.90 1 1
Test based on Tn,3 0.05 0.08 0.11 0.16 0.19 0.25 0.28 0.32 0.42 0.47 0.52

Table 2: The results for Example 2: The asymptotic power of di↵erent tests for di↵erent values of �. For
di↵erent values of �, the value within each cell of the second, the third and the fourth rows denote the
asymptotic power of the corresponding tests at 5% level of significance under contiguous alternatives.
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Tests (n = 100) T
n,1 T

n,2 T
n,3 T

n,KS

T
n,CM

T
n,AD

T
n,Neu

T
n,W1 T

n,W2
a = 0 0.049 0.050 0.049 0.047 0.048 0.038 0.054 0.050 0.052
a = 1 0.128 0.129 0.147 0.099 0.176 0.146 0.222 0.202 0.213
a = 2.5 0.637 0.610 0.509 0.283 0.511 0.347 0.506 0.517 0.499
a = 5 0.780 0.801 0.693 0.401 0.688 0.557 0.734 0.709 0.713
a = 10 0.849 0.869 0.756 0.626 0.849 0.779 0.884 0.856 0.886

Tests (n = 1000) T
n,1 T

n,2 T
n,3 T

n,KS

T
n,CM

T
n,AD

T
n,Neu

T
n,W1 T

n,W2
a = 0 0.051 0.048 0.050 0.049 0.049 0.037 0.049 0.051 0.052
a = 1 0.181 0.159 0.195 0.126 0.180 0.168 0.395 0.395 0.375
a = 2.5 0.717 0.747 0.462 0.315 0.441 0.462 0.862 0.811 0.822
a = 5 0.856 0.870 0.655 0.487 0.664 0.713 0.976 0.911 0.899
a = 10 0.937 0.949 0.827 0.663 0.859 0.881 0.973 0.979 0.946

Table 3: The results for Example 3. The finite sample power of the di↵erent tests for di↵erent values of n
at 5% level of significance. The number of repetitions is 1000.

Tests (n = 100) T
n,1 T

n,2 T
n,3 T

n,KS

T
n,CM

T
n,AD

T
n,Neu

T
n,W1 T

n,W2
b = 0 0.048 0.050 0.048 0.046 0.047 0.036 0.048 0.051 0.050
b = 1 0.127 0.117 0.116 0.086 0.123 0.090 0.212 0.067 0.066
b = 2.5 0.276 0.282 0.286 0.211 0.301 0.223 0.224 0.101 0.102
b = 5 0.518 0.569 0.511 0.383 0.555 0.411 0.272 0.177 0.168
b = 10 0.769 0.799 0.761 0.632 0.800 0.696 0.225 0.225 0.222

Tests (n = 1000) T
n,1 T

n,2 T
n,3 T

n,KS

T
n,CM

T
n,AD

T
n,Neu

T
n,W1 T

n,W2
b = 0 0.052 0.052 0.051 0.048 0.049 0.036 0.054 0.052 0.051
b = 1 0.157 0.175 0.137 0.105 0.166 0.112 0.417 0.079 0.078
b = 2.5 0.418 0.411 0.406 0.259 0.427 0.286 0.446 0.165 0.157
b = 5 0.690 0.716 0.592 0.467 0.711 0.569 0.400 0.232 0.228
b = 10 0.899 0.895 0.806 0.701 0.899 0.826 0.362 0.287 0.298

Table 4: The results for Example 4. The finite sample power of the di↵erent tests for di↵erent values of n
at 5% level of significance. The number of repetitions is 1000.

Tests (n = 100) T
n,1 T

n,2 T
n,3 T

n,KS

T
n,CM

T
n,AD

T
n,Neu

T
n,W1 T

n,W2
c = 0 0.050 0.051 0.049 0.044 0.046 0.035 0.053 0.051 0.052
c = 0.2 0.069 0.075 0.056 0.055 0.050 0.055 0.096 0.063 0.065
c = 0.4 0.131 0.128 0.070 0.086 0.125 0.103 0.120 0.101 0.099
c = 0.6 0.236 0.257 0.144 0.171 0.247 0.208 0.224 0.202 0.191
c = 0.8 0.461 0.461 0.296 0.333 0.467 0.401 0.420 0.407 0.402
c = 1 0780 0.800 0.522 0.615 0.802 0.769 0.676 0.661 0.649

Tests (n = 1000) T
n,1 T

n,2 T
n,3 T

n,KS

T
n,CM

T
n,AD

T
n,Neu

T
n,W1 T

n,W2
c = 0 0.052 0.053 0.050 0.048 0.049 0.036 0.054 0.052 0.052
c = 0.2 0.091 0.096 0.061 0.063 0.086 0.062 0.166 0.064 0.062
c = 0.4 0.229 0.218 0.097 0.114 0.166 0.134 0.226 0.199 0.189
c = 0.6 0.357 0.377 0.166 0.215 0.313 0.261 0.422 0.349 0.343
c = 0.8 0.696 0.675 0.338 0.438 0.582 0.509 0.698 0.524 0.515
c = 1 0.938 0.960 0.577 0.815 0.949 0.937 0.904 0.891 0.885

Table 5: The results for Example 5. The finite sample power of the di↵erent tests for di↵erent values of n
at 5% level of significance. The number of repetitions is 1000.

Tests T
n,1 based test T

n,2 based test T
n,3 based test Breusch-Pagan test

n = 100 0.715 0.841 0.577 0.052
n = 1000 0.811 0.925 0.608 0.066

Table 6: The results for Example 6. The finite sample power of the di↵erent tests for di↵erent values of n
at 5% level of significance. The number of repetitions is 1000.
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