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Abstract

We present a three player Bayesian game for which there are no ǫ-equilibria
in Borel measurable strategies for small enough positive ǫ, however there
are non-measurable equilibria. The structure of the game employs a non-
amenable semi-group action corresponding to the knowledge of the players.
The equilibrium property is related to the proper colouring of graphs and the
Borel chromatic number; but rather than keeping adjacent vertices coloured
differently there are algebraic conditions relating to the topology of the space
and some ergodic operators.

Key words: Bayesian games, non-amenable semi-group action, equilibrium
existence



1 Introduction

A fundamental concept of game theory is that of an equilibrium, a determi-
nation of strategies for each player such that no player prefers to switch to
another strategy, given that the strategies of the other players remain fixed.
An ǫ-equilibrium for any ǫ ≥ 0 is defined in the same way – no player prefers
by more than ǫ to switch to another strategy. With any class of games, one
asks if all games of the class possess equilibria. If not, does every game of
the class at least possess an ǫ-equilibrium for every positive ǫ?

A Bayesian game is a game of incomplete information, a game for which
players have private information. Bayesian games are ancient, most card
games being good examples. What happens when the possibilities for private
information become uncountable in number? In that context, what do we
mean by a player preferring some strategy over another by at least ǫ?

To focus on the complexities of the information structure, we assume through-
out that there are finitely many players and to each player finitely many
actions.

The conventional assumption is that the payoff from a strategy in a Bayesian
game is an integration of a measurable function over the whole space of
possibilities. Usually we assume that there is a topological space Ω with a
probability measure µ defined on the collection F of Borel sets and that each
player i is assigned a sigma algebra Fi contained in F . The sigma algebra
Fi corresponds to player i’s knowledge of the space and also defines that
player’s strategy space as the set of functions from Ω to the set of probability
distributions on that player’s actions which are measurable with respect to
Fi. We assume also that for every choice of actions, one for each player, the
payoff to each player is F measurable (or even continuous). In this way, a
collection of strategies, one for each player, defines an expected payoff for
each of the players. If there is an equilibrium in this context, it is called a
Harsanyi equilibrium (Simon 2003).

It was demonstrated (Simon 2003) that there is a three player game defined in
this way that lacks a Harsanyi equilibrium, yet does possess a different kind of
equilibrium when the players are allowed strategies that are not measurable
with respect to their Borel fields and their payoff evaluations are local in
character and do not involve integrating over the whole space Ω. Equilibria
of this latter kind are called Bayesian equilibria (Simon 2003).
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The definition of a Bayesian equilibrium requires additional conditions on
the structure of the game. In particular, for each player i the sigma algebra
Fi has to be generated by a partition Pi of Ω so that Fi is the collection
of sets such that B ∈ Fi if and only if B ∈ F and for every A ∈ Pi either
A ⊆ B or A ∩ B = ∅. Furthermore, for every x ∈ A ∈ Pi there is a regular
conditional probability with respect to µ with support in A that is constant
inside of A, and furthermore there is a countable or finite subset A′ ⊆ A such
that the payoff is 0 to player i at all points in A\A′ no matter what actions
are chosen by the players. A strategy for player i is now allowed to be any
function from Ω to the probability distributions on that player’s actions such
that for every A ∈ Pi the function is a constant inside of A. In this way,
using the regular conditional probabilities, a local expected payoff is defined
for player i in all members A of Pi regardless of the strategies chosen. A
Bayesian ǫ-equilibrium is defined to be a collection of such strategies, one
for each player, so that for every player i and every set A ∈ Pi the player i
cannot obtain an improvement of more than ǫ in his or her expected payoff
relative to that set A ∈ Pi by choosing a different strategy.

While Harsanyi equilibria do not always exist, the question remained, how-
ever, does there exist always Harsanyi ǫ-equilibria?

We answer this question in the negative; there is a three-player Bayesian
game where each player has two actions for which there are no Harsanyi
ǫ-equilibria for all ǫ ≤ 1

1000
, and yet, assuming the Axiom of Choice, there

are non-measurable Bayesian equilibria that employ pure strategies almost
everywhere (pure meaning that the strategies map to the two extremal points
of the one-dimensional probability simplex).

Harsanyi (1967) introduced a global theoretical perspective to Bayesian games.
Milgrom and Weber (1985) asked implicitly the question whether Bayesian
games always have measurable equilibria after proving existence for a special
class of Bayesian games and analysing a game which did not belong to that
class yet still had Borel measurable equilibria.

A significant advance was performed by Hellman (2014). He showed that
there is a two-player Bayesian game with Bayesian equilibria but no Bayesian
ǫ-equilibrium that is also Borel measurable for small enough positive ǫ. This
discovery was advanced further by Hellman and Levy (2016), who demon-
strated that a broad class of knowledge structures support games for which
the same holds. The Hellman and Levy paper serves well as a general source
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to the structure, problems, and history of Bayesian games, especially in their
relation to countable equivalence relations that are amenable.

What is the relationship between a Harsanyi ǫ-equilibrium and a Borel mea-
surable Bayesian ǫ-equilibrium? It is required of a Bayesian ǫ-equilibrium
that throughout the space each player cannot gain locally more than ǫ through
an alternative strategy. However in a Harsanyi ǫ-equilibrium there could be a
player who, according to the strategies defining the ǫ-equilibrium, could im-
prove his or her payoff by as much as B > 0 at a set of measure no more than
ǫ/B. A Borel measurable Bayesian ǫ-equilibrium is a Harsanyi ǫ-equilibrium,
but not necessarily vice versa. Indeed it is not difficult to show that for every
ǫ > 0 there are Harsanyi ǫ-equilibria to the Hellman game cited above.

One can perceive sets of very small measure where a player can act fool-
ishly as a kind of firewall, absorbing the conflicts between the measurability
and equilibrium requirements. Amenable structures tend to allow for such
firewalls; for example with the related topic of Borel colouring; see Kechris,
et all (1999). Therefore we would not have expected to find a game exam-
ple lacking Harsanyi ǫ-equilibria (yet possessing Bayesian equilibria) without
utilising a non-amenable structure to the knowledge of the players.

As long as a game has an Harsanyi ǫ-equilibrium for every positive ǫ there is
an equilibrium payoff, namely a cluster point of payoffs corresponding to the
ǫ-equilibria as ǫ goes to 0. By this interpretation of an equilibrium payoff,
ours is a Bayesian game that has equilibria, but no equilibrium payoff.

With our example, there is no proper subset of the probability space for which
the players have common knowledge, hence the arguments used are different
from that of previous Bayesian games that lack Harsanyi equilibria but have
Bayesian equilibria, which do utilise countable equivalence relations. Rather
there is a directional relation of influence such that behaviour at every point
is influenced by what happens at at most countably many other points.

After the first two lemmas, the game theoretic aspects are replaced by a
concern with the “parity rule”, an algebraic condition on functions from a
probability space, acted upon by a free semi-group with two generators, to
the group of order two. Although strictly speaking the parity rule is different
from the proper colouring of a graph, the relation to such colouring is un-
mistakable. We believe that our result will inspire work in related directions
involving similar algebraic conditions, with or without any further connec-
tions to game theory. Further interest here includes the measurability of the
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functions with respect to finitely additive extensions of the given probability
measure.

The rest of this paper is organised as follows. In the next section we de-
fine the game, followed in the third section by a proof that this game has
no Harsanyi 1

1000
-equilibrium. In the fourth section we show that it does

have non-measurable Bayesian equilibria. The concluding fifth section is a
presentation of open problems.

2 The Game:

Let G+ = F+
2 be the free semi-group generated by the non-negative powers

of two independent generators T1 and T2, with e the identity included in
G+. Let X be the space {0, 1}G+

, with an x ∈ X a collection of the form
(xe, xT1 , xT2 , xT1T2 , xT2T1 , xT 2

1 , xT 2
2 , . . . ) with xU ∈ {0, 1} for every U ∈ G+. A

cylinder of X is determined by a finite subset U of G+ and a specified value
in {0, 1} for each of the U ∈ U (with either xU = 0 or xU = 1 allowed for all
U 6∈ U). An open set of X is an arbitrary union of cylinders.

For both i = 1, 2 define Ti : X → X to be the shift: Ti(x)
V = xTiV for all

V ∈ G+, and for every U, V ∈ G+ define U : X → X by U(x)V = xUV .
This defines a right action of G+ on X, meaning that UV (x) = V ◦ U(x).
For every x ∈ X define G+(x) to be the countable set {U(x) | U ∈ G+}.
Very important to the structure of X is that for every x, y ∈ X there are two
z0, z1 ∈ X such that T1(zi) = x and T2(zi) = y for both i = 0, 1, and they
differ only in the e location. We call the points z0, z1 the twins determined

by x and y. We place the canonical probability distribution m on X which
gives 1

2
to each 0 or 1 placed in each position of G+ and independently, so

that a cylinder defined by n positions is given the probability 2−n. With
this probability distribution, we see that all U ∈ G+ are measure preserving
actions, meaning that m(U−1A) = m(A) for all Borel subsets A.

Of special importance, the independent probability on each position implies
that the distribution m on X can be reconstructed from the measure preserv-
ing property of the T1 : X → X and T2 : X → X, its product distribution
m2, combined with an equal probability given to both twins.

Let D be the set D := {r, g}, r for red and g for green. The probability space
on which the game is played will be Ω := D×X. We define the topology on
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Ω to be that induced by the clopen (closed and open) sets defined by the set
D and the cylinders of X, so that Ω is a Cantor set. We define the canonical
probability distribution µ on Ω so that for each choice of d ∈ D and 0 or
1 in n distinct positions the probability for this cylinder will be 1

2
2−n. For

example, µ gives the set {(r, x) | xe = 0, xT1 = 1} the probability 1
8
. The

measure µ is the common prior for the game, meaning the Borel probability
measure by which the game is defined.

There are three players, labelled G0, R1, R2. The information sets of a player
are the sets that partition the space Ω from which that player’s Borel field
is defined in the way described above. What we call the belief of a player
at one of his or her information sets is the regular conditional probability
that is constant within that set. The information sets of each player are
defined as follows. For each x ∈ X Player G0 considers (g, x) and (r, x)
possible, with a belief in both points of equal 1

2
probability, and these two

points constitute its information set. For each i = 1, 2 and each x Player Ri’s
considers (r, x) and {g} × T−1

i (x) possible, and this pairing of a point with
the corresponding Cantor set is its information set. Player Ri’s belief is that
the point (r, x) and the set {g} × T−1

i x are equally likely, with 1
2
probability

given to both. Notice that this belief by the player Ri is consistent with the
probability distribution µ on Ω, as the measure preserving property of the
Ti implies that m(T−1

i (A)) = m(A) for all Borel subsets A of X. Within
the set {g}×T−1

i x Player Ri’s belief is the canonical one consistent with the
measure µ, giving all cylinders of the same length the same probability. If B
is the information set of a player, it means that this player cannot distinguish
between any two points of this set and therefore has to conduct the same
behaviour throughout the set. Otherwise, as described, we place no further
restrictions on the strategies of the players.

All players have only two actions. The red players R1 and R2 have the actions
a0, a1 and the green player G0 has the actions b0, b1.

For either player Ri the only payoff that matters is that obtained at those
states labelled r, and for the player G0 the same is true for those states
labelled g. There are two equivalent approaches to be taken, illustrated
for a player Ri. Either the payoff obtained at (r, x), described below, is
duplicated at all the other points in the same information set, namely the set
{g}×T−1

i (x), or the payoffs obtained at (r, x), described below, is multiplied
by 2 and at all other points in the same information set the payoff is 0.
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Though the latter interpretation may be better suited to some theoretical
approaches, as it employs the probability distribution µ on Ω, we will assume
throughout the former equivalent interpretation (and for Player G0 as well at
the information sets of the form {(r, x), (g, x)}). This will allow us to focus
on the set X and its probability distribution m.

The b0 and b1 pertain to actions of Player G0 at both (g, x) and (r, x). If
xe = 0 then the payoff matrices for the players Ri at the states (r, x) are

R1

b0 b1

a0 300 0
a1 0 100

and R2

b0 b1

a0 100 0
a1 0 300

.

If xe = 1 then the payoff matrices at (r, x) are reversed:

R1

b0 b1

a0 100 0
a1 0 300

and R2

b0 b1

a0 300 0
a1 0 100

.

More complex are the payoffs of the player G0 at a state (g, x). The matrix
is three dimensional, meaning that it is a 2× 2× 2 matrix. We need only to
describe a 2 × 2 matrix corresponding to each action of the G0 player. The
rows and columns stand for the actions of the R1 and R2 players, respectively.
Those actions a0 and a1 are performed by the R1 player at both (g, x) and
(r, T1x) and by the R2 player at both (g, x) and (r, T2x). First we describe
the payoff matrices if xe = 0:

b0

a0 a1

a0 1000 0
a1 0 2000

b1

a0 a1

a0 0 1000
a1 2000 0

On the other hand, if xe = 1 then the structure of payoffs is reversed:

b0

a0 a1

a0 0 1000
a1 2000 0

b1

a0 a1

a0 2000 0
a1 0 1000

A strategy of a player is a function from its collection of information sets to
the probability distributions on its two actions (a one dimensional simplex).
The strategy is Borel measurable if that function is measurable with respect
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to its Borel sigma algebra (which is defined canonically as above from its
information sets).

However the G0 player acts at some (g, x), that action is copied at (r, x)
(because the G0 player cannot distinguish between these two points). How-
ever the Ri players respond at (r, x), those actions are copied at the sets
{g}×T−1

i (x) respectively (as the Ri player cannot distinguish between (r, x)
and {g}×T−1

i (x)). The behaviour of a player at (g, x) or (r, x) will influence
inductively the behaviour of all players at an uncountable subset leading
upward through repetitive applications of the T−1

i . In the other direction,
the behaviour that influences inductively a player’s payoff at (g, x) or (r, x)
lies entirely within the countable set D ×G+(x). With regard to this latter
aspect of influence (rather than influencing), our game shares similarity with
those defined by countable equivalence relations.

3 No Harsanyi 1
1000 -equilibria

Before we show that the game has no Harsanyi 1
1000

-equilibrium, we focus on
the subset {g} ×X.

Let A0 be the subset of X such that Player G0 at {g} ×A0 chooses b0 with
probability at least 19

20
. Let A1 be the corresponding subset of X such that

Player G0 chooses b1 with probability at least 19
20
. Let AM be the subset

X\(A0 ∪ A1).

As a general rule, from the above payoff matrices and the assumption that
players are following their interests (the interests of the Ri players at (r, x)
being that of conveying the choice of the G0 player at (g, x)), we would expect
that if T1(x) ∈ Ai and T2(x) ∈ Aj, and xe = k then x ∈ Ai+j+k where i+j+k
is represented modulo two. We call this the parity rule, and say that this
rule holds for a point x whenever these three belongings are true.

If any player chooses both actions at some point with strictly more than 1
20

we say that the player is mixing at that point (meaning x ∈ AM when this
player is G0). If there is a player and a set A of measure at least w > 0
where that player prefers one strategy over another by at least r > 0 and
either that player is mixing or choosing the non-preferred action by at least
1
20
, then that player can gain at least rw

20
by choosing a different strategy.

Therefore in an ǫ-equilibrium it follows that w is at most 20ǫ
r
. In particular,
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we use in many places r = 80 and ǫ = 1
1000

, hence w ≤ 1
4000

. This simple fact
is the bridge between the equilibrium concept and the semi-group action on
X.

With respect to an ǫ-equilibrium for sufficiently small enough ǫ, there are two
aspects of the game very important to our following arguments, First, where
the strategies in an approximate equilibrium are not mixing, they tend to fall
into the parity rule and stay there. Second, mixing is strongly discouraged
by the structure of the payoffs. This dynamic is formalised in the next two
lemmas.

Lemma 1: For every x ∈ X, regardless of the strategy of the G0 player, ei-
ther one or the other corresponding Player R1 or R2 at (r, x) has a preference
of at least 80 to choose either a0 or a1 over the other action. Let x, y ∈ X
be any two points in X and let z0 and z1 be the twins where T1(zi) = x and
T2(zi) = y for i = 0, 1 and ze0 = 0 and ze1 = 1. If one of R1 or R2 is not
mixing at the corresponding (r, x) or (r, y), respectively, then Player G0 at
either (g, z0) or at (g, z1) has a preference of at least 80 to choose either b0

or b1 over the other action.

Proof: Without loss of generality assume that xe = 0 and that the Player
G0 at (g, x) chooses b0 with probability at least 1

2
. By choosing a1 the R1

player would get no more than 50 and by choosing a0 the R1 player would
get at least 150. On the other hand, if the Player G0 at (g, x) chooses b1

with probability at least 1
2
then the R2 player would get no more than 50 by

choosing a0 and at least 150 by choosing a1.

Next, due to symmetries, it suffices to consider the two cases of the R2 player
choosing a0 with probability no more than 1

20
and the R2 player choosing a1

with probability no more than 1
20
.

Let w ≤ 1
20

be the probability that the R2 player chooses a0. We break this
case into two sub cases, where Player R1 chooses a0 with at least 3

5
and where

Player R1 chooses a0 with at most 3
5
. If Player R1 chooses a0 with at least

3
5
then the G0 player at (g, z1) gets at least 570 for playing b0 and no more

than 400(1−w)+2000w for playing b1, which reaches a maximum of 480 at
w = 1

20
. If Player R1 chooses a1 with at least 2

5
then the G0 player at (g, z0)

gets at least 760 from choosing b0 and no more than 600(1−w)+ 2000w for
playing b1, which reaches a maximum of 670 at w = 1

20
.

Now let w ≤ 1
20

be the probability that the R2 player chooses a1. We break
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this case into two sub cases, where Player R1 chooses a0 with at least 3
5
and

where Player R1 chooses a0 with at most 3
5
. If Player R1 chooses a0 with at

least 3
5
then the G0 player at (g, z1) get at least 1140 from choosing b1 and

no more than 820 by choosing b0. If Player R1 chooses a1 with at least 2
5

then the G0 player at (g, z0) gets at least 780 from choosing b1 and no more
than 600(1−w)+2000w from choosing b0, which reaches a maximum of 670
at w = 1

20
. ✷

The consequence of Lemma 1 is that the players are hardly ever mixing in
an approximate equilibrium. That is formalised in the next lemma.

Lemma 2: In any Borel measurable 1
1000

-equilibrium of the game, the G0

player mixes with probability less than 16
10,000

and the parity rule holds for all

but at most 4
1000

of the space X.

Proof: Let B1 be the subset of X such that the R1 player is mixing at the
points labelled r and let B2 be the subset of X such that the R2 player at
the points labelled r is mixing. Let c = m(AM), a = m(B1) and b = m(B2).
As the T1z and T2z are distributed independently as variables of z, in an
1

1000
equilibrium the following holds: c ≤ 1

4000
+ ab+ 1

2

(

a+ b
)

, where the 1
4000

refers to the maximum probability for the G0 player to choose an action with
at least 1

20
probability that is suboptimal by a quantity of at least 80, the

ab refers to the probability that both players Ri are mixing at both points
(r, Tiz) for i = 1, 2, and a+b

2
refers to the probability (from Lemma 1) that

Player G0’s two actions give payoffs that are within 80 of each other for one
but not both of the twins z0 and z1 (where one or the other of R1 at (r, T1zj)
or R2 at (r, T2zj) are mixing, but not both). By Lemma 1, the probability of
both R1 mixing at (r, x) and R2 mixing at (r, x) cannot exceed 1

4000
. From

this we conclude that a + b ≤ c + 1
1000

, considering also the possibility that
G0 is not mixing at (g, x) nevertheless one or the other of the Ri players at
(r, x) is mixing.

From ab ≤ 1
4
(a + b)2, and the above, we get the quadratic 0 ≤ c2 − 999

500
c +

3,001
1,000,000

. After completing the square we get that |c − 999
1000

| ≥
√
.995. Since

c cannot be greater than 1 we are left with c < .999 − .9974 = .0016. The
probability that the parity rule is not followed for a z ∈ X is no more than
the probability of the G0 player mixing at either (g, T1z) or (g, T2z) plus the
probability that the R1 player at (r, T1z), the R2 player at (r, T2z) or the G0

player at (g, z) is not properly responding to the corresponding non-mixing
behaviour. These probabilities sum to .00395. . ✷
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Next we show it is impossible for there to exist a 1
1000

equilibrium Borel
measurable equilibrium, using the regularity of the measure.

Let Cn be the set of cylinders of depth n, where the two cylinders defined by
the values xe = 0 and xe = 1 have depth 0. With 2n+1 − 1 words of length
n or less the cardinality of Cn is 22

n+1−1 and m(c) = 2−2n+1+1 for all c ∈ Cn.
Recall the definition of the sets A0 and A1. For every c ∈ Cn and i = 0, 1
let wi(c) be the conditional probability m(Ai ∩ c)/m(c). For every cylinder
c define η(c) := mini=0,1 wi(c) and let r(c) be the conditional probability in
the cylinder c of belonging to the set where the parity rule does not hold.

In the next lemma, we show that the parity rule is a powerful force to equalise
the probabilities for both actions b0 and b1. This cannot be guaranteed for
all cylinders, due to the small yet persistent probability that the parity rule
doesn’t hold. But it does hold in general for most cylinders, regardless of
the depth. Two free generators and the dual causation implicit in the parity
rule force this equalisation.

Lemma 3: In any Borel measurable 1
1000

-equilibrium of the game, the aver-

age qi =
∑

c∈Ci
η(c)

|Ci|
is at least 1

3
for every i.

Proof: The proof is by induction. There are two elements in C0 and eight
elements in C1. Let c0 and c1 be the two elements of C0. We observe that

c0 =
⋃

i,j=0,1

{x ∈ X | T1(x) ∈ ci, T2(x) ∈ cj} ∩ {x ∈ X | xe = 0} and

c1 =
⋃

i,j=0,1

{x ∈ X | T1(x) ∈ ci, T2(x) ∈ cj} ∩ {x ∈ X | xe = 1}.

Let x0 and x1 be two points such that xe
0 = 0, xe

1 = 1, and xU
0 = xU

1 for every
other U 6= e. However membership in A0 or A1 is determined by T1xi and
T2xi, the parity rule requires the opposite membership for xj when j 6= i. As
the parity rule must hold in a set of size at least 1− 1

250
, it follows that in the

whole space the probability given to both A0 and A1 must be approximately
the same. More precisely, as at least 124

125
of the points of X are such that

both it and its twin obey the parity rule, the probability must be at least 62
125

for both A0 and A1. Now let c be either c0 or c1. As c is created by either
the e position being 0 or 1 and the four combinations of c0 and c1 in both
direction T1 and T2, whatever are the probabilities given for the two wi(c0)

and the two wi(c1), the fact that wi(c0)+wi(c1)
2

≥ 62
125

for both i = 0, 1, implies
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that the conditional probability given to both A0 and A1 at c must be at
least 2( 62

125
)2 − 1

125
≥ .48.

We assume the claim is true for qi. Every t ∈ Ci+1 is created through the
combination of a pair c, d ∈ Ci with a determination of 0 or 1 for the e position
(though this determination will play no rule in the following argument).
Let ic be the label for the action bic that is less frequent at c (defining
the value η(c)), and define id the same way. Let j be the label for the
action following from the parity rule determined by the e position and the
combination of the ic label with the dominant label k 6= id at d or the id label
with the dominant l 6= ic label at c (however that may be determined by the e
position). If r(c) = r(d) = r(t) = 0 then the parity rule would give bj exactly
η(c)(1− η(d)) + η(d)(1− η(c)), as it would give the other action the greater
quantity (1−η(c))(1−η(d))+η(c)η(d). Due to the influence of the quantities
r(c), r(d), r(t) we cannot say for sure that j is the action less taken at t. But
we can say that η(t) ≥ −r(t)+η(c)(1−η(d)− r(d))+η(d)(1−η(c)− r(c)) ≥
η(c)+η(d)−2η(c)η(d))−r(t)− r(c)+r(d)

2
. But with

∑

c∈Cj
r(c) ≤ 1

250
|Cj| for all

j and the identical calculation conditioned for both halves {x | xe = 0} and
{x | xe = 1} it follows that qi+1 ≥ − 1

125
+ 1

|Ci|2

∑

c,d∈Ci
η(c)+η(d)−2η(c)η(d) =

− 1
125

+ 1
|Ci|

∑

c∈Ci
η(c)+ 1

|Ci|

∑

d∈Ci
η(d)+ 1

|Ci|2
(
∑

c∈Ci
η(c))(

∑

d∈Ci
η(d)) = − 1

125
+

2qi − 2q2i . By induction we conclude that qi+1 ≥ 4
9
− 1

125
> 1

3
. ✷

Theorem 1: There can be no Borel measurable 1
1000

-equilibrium.

Proof: With η(c) defined as in the proof of Lemma 3, for the mutually
exclusive measurable sets A0, A1 of X it would follow from the regularity of

the measure µ that limn→∞ qn = limn→∞

∑
c∈Cn

η(c)

|Cn|
= 0. But by Lemma 3 it

never falls below 1
3
. ✷

As the probability distribution µ is regular, and the question concerns ap-
proximate equilibria, the negative result persists when we consider strategies
that are measurable with respect to the completion of µ.

Notice that where the players are obeying the parity rule, even approximately
so, the location where the payoff to Player G0 is close to 2000 or to 1000 is
determined by one or the other of the two other players, by Player R1 in
the half {x ∈ X | xe = 0} and by Player R2 in the half {x ∈ X | xe = 1}.
Where the parity rule holds the measurability of the payoff of Player G0

implies the measurability of the strategies of the Ri players and hence also
the measurability of the strategy of the G0 player in response. For the G0
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player to have an “equilibrium payoff” by some interpretation this payoff
structure shows that one must define that concept quite remotely from the
existence of Harsanyi ǫ-equilibria.

4 Bayesian equilibria:

Extend the parity rule so that it requires from a colouring function c : X ′ →
{0, 1} that c(x) = c(T1(x))+c(T2(x))+xe (modulo 2) for some subsetX ′ ⊂ X
with Ti(X

′) ⊆ X ′ for both i = 1, 2. In this section we will show that we can
colour the space X = {0, 1}G+

modulo a null set N using only two colours:
1 and 0 or red and blue, respectively, so that the parity rule is obeyed, and
furthermore extend this to an equilibrium of the game played on the whole
space Ω.

Recall the definition, stated in the section 2, of the twins determined by some
x, y ∈ X. We say that a subset A of X is closed if for every pair x, y in A
the twins determined by x and y are also in A. By the closure A of a set
A ⊆ X we mean the smallest closed set containing A. We say that A ⊆ X is
pyramidic if x ∈ A implies that U(x) ∈ A for all U ∈ G+. The main example
of pyramidic set is G+(x), where x is an arbitrary element of X.

Notice that whenever a set is pyramidic that its closure is also pyramidic,
and a colouring of a pyramidic set that obeys the parity rule can be extended
in the natural way to a colouring of its closure that obeys the parity rule.
The latter may fail if the set A is not pyramidic, meaning that there is some
x ∈ A such that not all of G+(x) is in A. The reason for potential failure is
that the colour of x before the closure operation may contradict that implied
through the closure of the subset A∩(G+(x)\{x}). But if all of G+(x) is in A
and has been coloured consistently already according to the parity rule, this
cannot happen. Of special concern are the twins determined by some x and
y, or any pair z1, z2 that differ in at most finitely many positions. Consider
the situation that z1 is in a pyramidic set P but z2 is not in P . Through
the colouring of G+(z1) ⊆ P and its closure, a colour for z2 is determined.
One must colour the closure of a pyramic set P before moving on to colour
anything else; otherwise one may colour twins the same colour and the in-
consistency becomes apparent only later.
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Define now the set

N = {x ∈ X : U(x) = V (x), for some distinct U, V ∈ G+}.

This set is a null set with respect to the product measurem on X. Indeed, for
any given two distinct words U, V ∈ G+, the equality implies an agreement
on infinitely many coordinates, and there are only countably many words
U ∈ G+. Let X1 be X \N . Notice that Ti(X1) ⊆ X1 for both i = 1, 2.

We are ready to prove the following lemma:

Lemma 4: Assuming the Axiom of Choice, there exists a colouring of X1

using the two colours {0, 1} which satisfies the parity rule.

Proof: Let x0 be any element of X1 and obtain the set P0 := G+(x0). We
define now a colouring of P0 as follows:

(i) colour all the points T1U(x0) in red, where U ∈ G+(x0) and U is the
identity or begins on the right with T1;

(ii) colour all the points T2V (x0) in blue, where V ∈ G+(x0) is the identity
or begins on the right with T2;

(iii) colour the remaining points of the pyramid P0 in the way that they
satisfy the parity rule.

After colouring all the points of P0, extend the colouring to all the points in
the closure P0 of P0.

Next create a partial ordering on colourings of pyramidic and closed subsets
of X that obey the parity rule, with one colouring greater than another if
the subset is larger and their colourings agree on their common intersection
(the smaller subset). Any tower of such colourings will define a colouring
that obeys the parity rule. As Zorn’s Lemma implies that there is a maximal
element, it suffices to show that maximality implies that all of X1 has been
coloured. Let P be any maximal pyramidic and closed subset of X1 with a
colouring that obeys the parity rule. Assume that P does not include all of
X1. Let x be a member of X1 that is not in P .

We say that x has a hitting point in P if U(x) ∈ P for some U ∈ G+ and
whenever U = VW and W is not the identity then V (x) 6∈ P .
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Now we have the two cases:

Case 1) x has no hitting point with respect to P . Then we colour the closure
G+(x) in the same way as the initial pyramidic set P0.

Case 2) x has a hitting point in P . Then colour the elements of G+(x) taking
into an account the colours of the hitting points. Notice that the closure of
P implies that if Ux is not in P then one of UTix is also not in P , so that
if UTix is a hitting point then UTjx is not a hitting point, for i 6= j. This
allows us to colour x arbitrarily and then move downward in a way consistent
with the parity rule, with the colouring of UTix determined already only if,
for j 6= i, the point UTjx is a hitting point or UTjx had just been coloured
arbitrarily.

And then we colour the closure of G+(x) ∪ P according to the parity rule
for a larger set that is closed, pyramidic, and consistent with both the parity
rule and the pre-existing colouring. ✷

Theorem 2: Assuming the Axiom of Choice, there exists a Bayesian equi-
librium on all of Ω such that the strategies are pure (all weight on one action)
for all but a subset of measure zero.

Proof: Following on from the proof of Lemma 4, we assume a colouring of
X1 that obeys the parity rule. For all three players G0, R1 and R2 define
pure strategies on D × X1 accordingly, with the action of the G0 player at
(g, x) and (r, x) determined by the colouring of x and the actions of the Ri

player at (r, x) and {g} × T−1
i (x) copying the colouring of x. With x any

point in X\X1, let Γx be the game defined on D ×G+(x)\X1 such that the
strategies on D × (G+(x) ∩ X1) are fixed by the above colouring. As the
game has only countably many positions, by Simon (2003) there is a Nash
equilibrium defined on the game Γx (from sequences of Nash equilibria defined
on finite subsets). Notice that it defines an equilibrium when including those
already fixed strategies on D×(G+(x)∩X1) (as the players at these points in
D×(G+(x)∩X1) are not influenced by the behaviour done elsewhere). Extend

this equilibrium to an equilibrium on the set D × (G+(x) ∪X1) through
optimal responses (noticing that nothing done at a point y has any influence
on the payoffs of a player at points Uy for any U 6= e). Those optimal
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responses could involve in every case all weight given to a single action.
As with the proof of Lemma 4, we define a partial ordering on pyramidic
and closed subsets P of X with equilibria defined on D × P such that the
partial ordering requires that the equilibrium behaviour has to agree on the
common intersection. With P any closed and pyramidic subset for which an
equilibrium is defined on D × P , we define a game ΓP

y on D ×G+(y)\P for
any y 6∈ P and, following the same argument as above, show that it extends
the equilibrium on D×P to one on D×G+(y) ∪ P . In this way, using Zorn’s
Lemma, we show that an equilibrium can be defined on all of Ω. ✷

There are some points in X for which any equilibrium requires a mixed
strategy. Let x, y be the two points defined by xe = 0, ye = 1, T1(x) = y,
T2(x) = x, T1(y) = x and T2(y) = x. No matter how x is coloured, because
T1(y) = T2(y) = x and ye = 1, y must be coloured with 1. But then
T1(x) = y, T2(x) = x and xe = 0 forces x to be coloured differently from
itself.

5 Conclusion: open questions

Is there an example of an ergodic game (Simon 2003) that has no Harsanyi
ǫ-equilibrium for some positive ǫ? The examples of Simon (2003) and of
Hellman (2014) were ergodic games, and ergodic games have Bayesian equi-
libria (Simon 2003). We believe the answer is yes and that it can be done
through the action of a non-amenable group which defines the information
structure of the players. With the example of this paper, there was a very
strong mixing structure that kept the probability high for both actions at all
cylinders. We believe that the weaker mixing structure from a group action
would be sufficient to obtain the same result.

In the example of this paper, there are three players. Can the same result
be accomplished with two players? Our initial belief was that the answer is
yes, but now we are agnostic. With two players, by fixing the behaviour of
one player the payoffs to both are affine in the behaviour of the other player.
This is a restrictive condition, and yet we know of no theory preventing the
sufficiently complex structure of causation.

Lastly, what is the relationship between Bayesian equilibria and the Banach-
Tarski paradox? Let G be a group acting in a measure preserving way on
a probability space X with measure µ and for every player i let Gi be a
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finite subgroup of G so that the information sets of Player i are the orbits
of Gi and G is generated by the Gi. Is there a Bayesian game so defined
such that for every Bayesian equilibrium and for every G-invariant finitely
additive measure extending µ the equilibrium is not measurable with respect
to the finitely additive measure? On this question we were initially agnostic,
but now believe that it is possible.
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