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Modularity and Greed in Double AuctionsI

Paul Düttinga, Inbal Talgam-Cohenb, Tim Roughgardenb

aDepartment of Mathematics, London School of Economics, Houghton Street, London WC2A 2AE, UK.
bDepartment of Computer Science, Stanford University, 353 Serra Mall, Stanford, CA 94305, USA.

Abstract

Designing double auctions is a complex problem, especially when there are restrictions on the sets of buyers and
sellers that may trade with one another. The goal of this paper is to develop a modular approach to the design of
double auctions, by relating it to the exhaustively-studied problem of designing one-sided mechanisms with a single
seller (or, alternatively, a single buyer).

We consider several desirable properties of a double auction: feasibility, dominant-strategy incentive compatibil-
ity, the still stronger incentive constraints offered by a deferred-acceptance implementation, exact and approximate
welfare maximization, and budget balance. For each of these properties, we identify sufficient conditions on two
one-sided algorithms—one for ranking the buyers, one for ranking the sellers—and on a method for their composition
into trading pairs, which guarantee the desired property of the double auction.

Our framework also offers new insights into classic double auction designs, such as the VCG and McAfee auctions
with unit-demand buyers and unit-supply sellers.

Keywords: Mechanism Design, Double Auctions, Trade Reduction Mechanism, Deferred-Acceptance Auctions

1. Introduction

Double auctions play an important role in mechanism design theory and practice. They are of theoretical impor-
tance because they solve the fundamental problem of how to organize trade between a set of buyers and a set of sellers,
when both the buyers and the sellers act strategically. Important practical applications include the New York Stock
Exchange (NYSE), where buyers and sellers trade shares, and the FCC Incentive Auction, which was held in 2016 to
reallocate spectrum licenses from TV broadcasters to mobile communication providers [34].

Designing double auctions can be a complex task, with several competing objectives, like feasibility, dominant-
strategy incentive compatibility (DSIC), the still stronger incentive constraints offered by a deferred-acceptance im-
plementation such as weak group-strategyproofness (WGSP) or implementability as a clock auction [33], exact or
approximate welfare maximization, and budget balance (BB). (See Section 2 for definitions.)

In this paper we utilize the fact that the problem of designing single-sided mechanisms is well-studied, and develop
the following modular approach to designing double-sided auctions for complex settings. We split the design task into
three algorithmic modules: one for the buyers, one for the sellers and one for their combination. Designing the
algorithm for the buyers or the sellers is based on the well-developed theory of designing single-sided mechanisms, in
which problems such as feasibility checking have been exhaustively studied—see examples below. The third module
incorporates a composition rule that combines buyers and sellers to determine the final allocation. Payments are
determined by computing thresholds from the three algorithms.1 The goal of this paper is to develop a theory that
explains when and how such a modular approach works.2

IA preliminary version of this article appeared in the Proceedings of the 15th ACM Conference on Economics and Computation.
Email addresses: p.d.duetting@lse.ac.uk (Paul Dütting), italgam@cs.stanford.edu (Inbal Talgam-Cohen),

tim@cs.stanford.edu (Tim Roughgarden)
1Threshold payments are defined in Section 2; informally they are based on the threshold bids of the players, which differentiate between

acceptance and rejection by the mechanism.
2Using terminology from the study of algorithms in computer science, our approach can also be described at a high level as a “black-box

reduction” from designing double auctions to the problem of designing single-sided mechanisms.
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1.1. Motivating Examples

Suppose there are n buyers and m sellers. Each buyer i wants to acquire one unit of an identical good, and has a
value vi for it. Each seller j produces one unit of the good, and producing it incurs a cost of c j.

Assume first there are no restrictions on which buyers and sellers can trade with one another (we refer to this
below as the unconstrained problem). Is it possible, by composing two single-sided algorithms, to implement the
Vickrey-Clarke-Groves (VCG) mechanism [48, 11, 21] that maximizes welfare and is DSIC? What about McAfee’s
trade reduction mechanism [32], which accepts all buyer-seller pairs from the welfare-maximizing solution except for
the least valuable one, and is DSIC and BB?3

The answer to these questions is “yes”. We can implement the VCG mechanism using simple greedy algorithms
that sort the buyers by non-increasing value and the sellers by non-decreasing cost. We iteratively query these algo-
rithms for the next buyer-seller pair and accept it if the buyer has a larger value vi than the seller’s cost c j, and we
apply threshold payments. For McAfee’s trade reduction mechanism we use reverse versions of these algorithms, that
sort the players by non-decreasing value and non-increasing cost. We iteratively query these algorithms for the next
buyer-seller pair and reject it if none of the previously inspected buyer-seller pairs had non-negative gain from trade
vi − c j ≥ 0, and we again apply threshold payments.

Now, what happens if we add feasibility constraints on which buyers and sellers can trade? Such feasibility con-
straints are important in practical applications, and their potential richness mirrors the richness of real-life economic
settings; see, for example, the recent work on the proposed FCC Incentive Auction [34, 37, 30, 31].

As a first example, consider the variation of the above problem in which the buyers belong to one of three cate-
gories (e.g., they are firms that are either small, medium, or large in market share). To ensure diversity among buyers,
the policy maker requires that no more than ki buyers from each category i shall be accepted (for additional quota
examples see, e.g., [22]).

In this example it is still possible to implement the VCG and trade reduction mechanisms by composing two one-
sided algorithms. The only change is to the algorithm used for the buyers. In its forward version we would go through
the buyers in order of their value and accept the next buyer if and only if we haven’t already accepted kc buyers from
that buyer’s category c. In its backward version we would go through the buyers in reverse order and reject the next
buyer unless there are kc or fewer buyers from that category left.

As a second example, consider the variant of the original (unconstrained) problem in which sellers have one of
two “sizes”, s or S , where S > s. For instance, sellers could be firms that pollute the environment to different extents.
Suppose there is a cap C on the combined size of the sellers that can be accepted (for additional packing examples
see, e.g., [1]).

In this example it is less clear what to do. Even putting aside our goal of modular design, computing the welfare-
maximizing solution is an NP-hard packing problem [e.g., 26], and so specifically the one-sided greedy by cost
algorithm is no longer optimal. We thus shift our attention to approximately-maximizing solutions, but it is not clear
which one-sided approximation methods—greedy according to cost, greedy according to cost divided by size, non-
greedy algorithms, etc.—would offer good approximation guarantees in the double auction context, where the choices
of buyers and sellers are entangled. Furthermore, it is not clear if the good properties of the double-sided VCG and
McAfee mechanisms would continue to hold.

1.2. Approach and Results

We advocate a modular approach to the design of double auctions, which is applicable to complex feasibility
constraints on both sides of the market. All of the resulting double auction mechanisms are deterministic.

The modular approach breaks the design task into two subtasks: (a) the design of two one-sided algorithms and (b)
the design of a composition rule that pairs buyers and sellers. To identify what we want from the respective subtasks,
we prove a number of compositions theorems of the following general form:

3For simplicity we focus on a version of McAfee’s trade reduction mechanism in which the least valuable pair is always rejected. Cf. the full
version which is defined as follows: Sort buyers by non-increasing value v1 ≥ v2 ≥ . . . and sellers by non-decreasing cost c1 ≤ c2 ≤ . . . . Let k be
the largest index such that vk ≥ ck . Compute t = (vk+1 + ck+1)/2. If t ∈ [ck , vk] let buyers/sellers 1, . . . , k trade with each other. Otherwise exclude
the buyer-seller pair with the k-th highest value and the k-th lowest cost from trade.
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If the one-sided algorithms A1 and A2 have properties X1 and X2 and the composition rule has property
Y , then the resulting double auction has property Z.

A main theme of this work is thus to identify sufficient conditions on the two one-sided algorithms and on the method
of composition that guarantee a desired property of the double auction.

We start with sufficient conditions that ensure that the double auction is DSIC, resp., has the stronger incentive
properties shared by deferred-acceptance implementations generalizing the Gale-Shapley mechanism (see [34, 18]
and Section 4). Interestingly, monotonicity of all involved components is not sufficient for DSIC; we also need that
the one-sided algorithms are consistent in the sense that they return the players that can be accepted for trade in order
of their “quality”, i.e., their contribution to social welfare,4 and for this reason greedy approaches play an essential role
in our designs. In the above examples, the greedy-by-value and greedy-by-cost algorithms have this property, while a
greedy algorithm based on cost divided by size may violate it. An important consequence of the sufficient conditions
we obtain is that trade reduction mechanisms can be implemented within the deferred-acceptance framework, and
therefore share the stronger incentive properties of mechanisms within this class. In particular, this approach shows
for the first time that McAfee’s trade reduction mechanism is WGSP.

We then identify conditions that ensure the double auction obtains a certain fraction of the optimal welfare. These
conditions ask that the one-sided algorithms achieve a certain approximation ratio “at all times”—the intuition being
that the final number of accepted players is extrinsic since it depends on the interplay with the other side of the
market, and so the algorithm should be close to optimal for any possible number of accepted players rather than
just for the final number of accepted players. We analyze such guarantees for a number of algorithms, including the
greedy-by-value and greedy-by-cost algorithms used in the examples above.

We complement the above results with a lower bound on the welfare obtainable by any WGSP mechanism
(whether based on composition or not). We conclude that in some cases, including the unconstrained setting and
the setting with diversity constraints discussed above, the trade reduction mechanism is not only implementable via
the modular composition approach, but it also minimizes the worst-case welfare loss subject to WGSP.

The last property we consider is BB. Here we show that the same conditions on the one-sided algorithms and the
composition that enable implementation within the deferred-acceptance framework also lead to BB. We complement
this result with a lower bound on the welfare achievable by any BB double auction. We again conclude that in several
settings, the trade reduction mechanism minimizes the worst-case welfare loss subject to BB.

1.3. Applications

To demonstrate the usefulness of our modular approach, we use it to design novel double auctions for problems
with non-trivial feasibility structure. We focus on three types of feasibility constraints. These serve to illustrate our
design framework in several concrete settings, and are not an exhaustive list of the applications of our results. We
describe them somewhat informally below, and formally in Section 2.3.

1. Matroids:5 The set of feasible subsets of players is downward-closed (if a set S is feasible any subset T ⊆ S is
feasible), and satisfies an exchange axiom (if two sets S ,T are feasible and T is larger than S , then there must
be an element u ∈ T \ S such that S ∪ {u} is feasible). The unconstrained problem discussed above as well as
the problem with diversity quota constraints are special cases of this category.

2. Knapsacks: Each player has a size and a set of players is feasible if their combined size does not exceed a given
threshold. The variation of the unconstrained problem in which sellers have one of two distinct sizes is a special
case of this constraint.

3. Matchings: We are given a graph such that each player corresponds to an edge in this graph, and a set of players
is feasible if it corresponds to a matching in this graph. A concrete example of this constraint is a setting where

4A buyer contributes more to social welfare as his value increases; a seller contributes more to social welfare as his cost decreases. In other
words, a buyer’s quality increases as his ability to extract value from the good increases, and a seller’s quality increases as his ability to produce
the good at lower cost increases.

5Matroid structure corresponds to an economic substitutability condition referred to as players are substitutes in the related literature [cf., 49].
This condition requires that the welfare—the total value of all buyers minus the total cost of all sellers—is a submodular function of the set of
buyers or sellers, which is the case for matroid feasibility constraints.
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the sellers on the market correspond to certain pairs of firms, who can cooperate to produce complementary
goods, both of which are required to provide the service being sold on the market. The sellers can thus be
thought of as edges of a bipartite graph, where on one side there are firms producing the first complementary
good and on the other there are firms producing the other good [cf., 40].

Intuitively, the first setting is precisely the setting in which greedy by quality is optimal. The second and third
settings can be thought of as different relaxations of the matroid constraint, in which greedy by quality is not optimal
but often performs well.

Our framework yields novel VCG- and trade reduction-style mechanisms for all three settings. The former are
DSIC, whereas the latter are WGSP, implementable as a clock auction and BB. It also translates approximation
guarantees for greedy algorithms into welfare guarantees for these double auctions. These guarantees show that the
welfare degrades gracefully as we move away from settings in which greedy is optimal.

1.4. Further Related Work

The design principle of modularity is embraced in a diverse range of complex design tasks, from mechanical
systems through software design to architecture [e.g., 5]. Splitting a complex design task into parts or modules,
addressing each separately and then combining the modules into a complete system helps make the design and analysis
tractable and robust. Economic mechanisms that operate in complex incentive landscapes while balancing multiple
objectives are natural candidates for reaping the benefits of modularity. Two predecessors of our work that apply a
modular approach to a mechanism design problem are [35, 13], but they consider different settings than ours (one-
sided rather than two-sided), or different objectives (profit in the “competitive analysis” framework rather than welfare,
strategyproofness, and budget balance).

Most prior work on double auctions is motivated by the impossibility results of [23] and [36], which state that
optimal welfare and BB cannot be achieved simultaneously subject to DSIC or even Bayes-Nash incentive compat-
ibility (BIC). One line of work escapes this impossibility by relaxing the efficiency requirement. This direction can
be divided into mechanisms that are BIC and mechanisms that are DSIC. An important example of the former is the
buyer’s bid double auction [45, 44, 46], which sets a single price to equate supply and demand. More recent work
that falls into this category is [12, 17]. A prominent example of the latter is McAfee’s trade reduction mechanism,
which allows all but the least efficient trade. This mechanism has been generalized to more complex settings in
[3, 8, 20, 4, 10]. More recent work that falls into this category is [27, 6] (where [27] actually applies ex post incentive
compatibility, as appropriate for interdependent values). A second line of work that seeks to escape the impossibility
results was recently initiated by [9], by analyzing the trade-off between incentives and efficiency while insisting on
budget balance. Our work is different in that it adds to the double auction design problem the objectives of feasibility
and WGSP, and takes an explicitly modular approach to achieve the objectives.

The WGSP property that we highlight was studied in detail in [25], although a complete characterization of WGSP
mechanisms is not known. Deferred-acceptance algorithms on which part of our work is based are proposed in [34],
and their performance is analyzed in [15]. Our work extends the deferred-acceptance framework from one-sided
settings to two-sided settings.

The greedy approach has been extensively studied in the context of one-sided mechanism design, for both single-
and multi-parameter settings; see, e.g., [7] and references within.

1.5. Paper Organization

Section 2 covers preliminaries of the settings to which our framework applies, and formally defines properties
of double auctions that we are interested in, including incentive compatibility of different types (DSIC and WGSP),
welfare-maximization, and BB; this section can be skipped by the expert reader. Section 3 describes our composition
framework: First we define the one-sided algorithms, and then we turn to different methods of composing these
one-sided algorithms.

The next three sections are roughly organized by the desired double auction property. Section 4 proves our DSIC
and WGSP composition theorems. Section 5 gives our welfare composition theorem. Section 6 proves our BB
composition theorem. Finally, Section 7 studies the interplay of welfare, incentives, and BB.
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2. Problem Statement

This section defines the double auction settings and the properties of double auction mechanisms that we are
interested in. We also single out three settings that will serve as running examples.

2.1. Double Auction Settings with Feasibility Constraints

We study single-parameter double auction settings. These are two-sided markets, with n buyers on one side of the
market and m sellers on the other. There is a single kind of item for sale. The buyers each want to acquire a single unit
of this item, and the sellers each have a single unit to sell. A set of buyers and sellers is feasible if the set of buyers
is feasible and the set of sellers is feasible, and there are at least as many sellers as there are buyers. Which sets of
buyers are feasible is expressed as a set system (N,IN), where N is the ground set of all n buyers, and IN ⊆ 2N is a
non-empty collection of all the feasible buyer subsets. Similarly, feasible seller sets are given as a set system (M,IM),
where M is the ground set of all m sellers, and IM ⊆ 2M is a non-empty collection of all the feasible seller subsets.
The set systems are downward closed, meaning that for every nonempty feasible set, removing any element of the set
results in another feasible set. We assume that the two feasibility set systems are represented in a computationally
tractable way,6 and are known to the mechanism designer.

Each buyer i has a value vi ∈ [0, v̄i] where v̄i < v̄, and each seller j has a cost c j ∈ [0, c̄ j] where c̄ j < c̄, and v̄ = c̄
are the maximum possible value and cost. For simplicity and without loss of generality, unless stated otherwise, we
assume that values and costs are unique. The type spaces [0, v̄i], [0, c̄ j] are publicly known, and the bid spaces are
equal to the type spaces. A player’s quality is his value if he is a buyer, and minus his cost if he is a seller. We denote
by ~v (resp. ~c) the value (resp. cost) profile of all buyers (resp. sellers). The players’ utilities are quasi-linear, i.e., buyer
i’s utility from acquiring a unit at price pi is vi − pi, and seller j’s utility from selling his unit for payment p j is p j − c j.
The optimal welfare is the maximum difference between the total value and total cost over feasible subsets of players.
That is,

OPT (~v, ~c) = max
B,S : B∈IN , S∈IM , |B|≤|S |

∑i∈B

vi −
∑
j∈S

c j

 .
Note that since we consider downward-closed set systems, the optimal welfare will always be attained by buyer set B
and seller set S such that |B| = |S |.

2.2. Double Auction Mechanisms

We study direct and deterministic7 double auction mechanisms, which consist of an allocation rule x(·, ·) and a
payment rule p(·, ·). The allocation rule takes a pair of value and cost profiles ~v, ~c as input, and outputs the set of
players who are accepted for trade, also referred to as allocated. For every buyer i (resp. seller j), xi(~v, ~c) ∈ {0, 1}
(resp., x j(~v, ~c) ∈ {0, 1}) indicates whether he is allocated by the mechanism. The payment rule also takes a pair of
value and cost profiles ~v, ~c as input, and computes payments that the mechanism charges the buyers and pays to the
sellers. We use pi(~v, ~c) to denote the payment buyer i is charged, and p j(~v, ~c) to denote the payment seller j is paid. A
buyer who is not accepted is charged 0 and a seller who is not accepted is paid 0.

The welfare of a mechanism is the total value of buyers that it accepts minus the total cost of the sellers that it
accepts. That is,

W(~v, ~c) =
∑
i∈N

xi(~v, ~c) · vi −
∑
j∈M

x j(~v, ~c) · c j.

6More formally, consider for example the buyer set system. We assume that it is represented succinctly by a tractable algorithm, called a
feasibility oracle, which for every set of buyers returns whether this set is feasible or not.

7A double auction mechanism is deterministic if for every input (~v, ~c) and every execution of the mechanism on this input, the mechanism
selects the same sets of buyers B ⊆ N and sellers S ⊆ M and sets the same payments p = (pi)i∈N∪M .

5



Non-Strategic Properties. We study the following non-strategic properties of double auction mechanisms:

• Feasibility. A double auction mechanism is feasible if for every value and cost profiles ~v, ~c, the set of accepted
buyers and sellers is feasible. Formally, if B is the set of accepted buyers and S is the set of accepted sellers,
then B ∈ IN , S ∈ IM and |B| ≤ |S |.

• Budget balance (BB). A double auction mechanism is budget balanced if for every value and cost profiles ~v, ~c,
the difference between the sum of payments charged from the accepted buyers and the sum of payments paid to
the accepted sellers is non-negative.

• Efficiency. A double auction mechanism is δ-approximately efficient if for every value and cost profiles ~v, ~c, its
welfare W(~v, ~c) is at least a (1/δ)-fraction of the optimal welfare OPT (~v, ~c). Clearly, for feasible mechanisms
δ ≥ 1, and δ = 1 precisely if the mechanism achieves optimal welfare.

Strategic Properties. We also study the following strategic properties of double auction mechanisms:

• Individual rationality (IR). A double auction mechanism is IR if for every value and cost profiles ~v, ~c, every
accepted buyer i is not charged more than his value vi, and every accepted seller j is paid at least his cost c j.
Non-accepted players are charged/paid zero.

• Dominant-strategy incentive compatible (DSIC). A double auction mechanism is DSIC if for every value and
cost profiles ~v, ~c and for every i, j, v′i , c

′
j, it holds that buyer i is (weakly) better off reporting his true value vi than

any other value v′i , and seller j is (weakly) better off reporting his true cost c j than any other cost c′j. Formally,

xi(~v, ~c) · vi − pi(~v, ~c) ≥ xi((v′i , v−i), ~c) · vi − pi((v′i , v−i), ~c),

and similarly for seller j.

• Weak group-strategyproofness (WGSP). A double auction mechanism is WGSP if for every value and cost
profiles ~v, ~c, for every set of buyers and sellers B ∪ S and every alternative value and cost reports of these
players v′B, c

′
S , there is at least one player in B ∪ S who is (weakly) better off when the players report truthfully

as when they report v′B, c
′
S . Intuitively, such a player does not have a strict incentive to join the deviating group.8

The following characterization of DSIC and IR double auction mechanisms follows from standard arguments. A
similarly simple characterization of WGSP and IR double auction mechanisms is not available.9

Definition 2.1. The allocation rule x(·, ·) is monotone if for all value and cost profiles ~v, ~c, every accepted buyer who
raises his value while other values and costs remain fixed is still accepted, and every accepted seller who lowers his
cost while other values and costs remain fixed is still accepted.

Definition 2.2. For a monotone allocation rule x(·, ·), the threshold payment of buyer i given profiles ~v−i, ~c, and the
threshold payment of seller j given profiles ~v, ~c− j, are, respectively,

inf
vi: xi(~v,~c)=1

vi, sup
c j: x j(~v,~c)=1

c j.

Intuitively, the threshold payment of a player is the lowest value (resp. highest cost) he can report and still be
accepted. We can now state the characterization result:

Proposition 2.3. A double auction mechanism is DSIC and IR if and only if the allocation rule is monotone and the
payment rule applies threshold payments, assuming the normalization that vi = 0 implies pi(~v, ~c) = 0 for every buyer
i and c j = 0 implies p j(~v, ~c) = 0 for every seller j.

Note that threshold payments are sufficient to guarantee IR, and since all the mechanisms we consider apply
threshold payments, we do not discuss individual rationality further. Also, since we focus on DSIC mechanisms, we
use the terms true value (resp. cost), reported value (resp. cost) and bid interchangeably.

8A stronger notion requires that no group of buyers and sellers can jointly deviate to make some member of the group strictly better off while
all other members are no worse off. This stronger notion is violated by all common double auction formats. For example, if a seller’s cost sets the
price for a buyer, then the seller can claim to have a lower cost to lower the buyer’s payment without affecting his own utility.

9While there is no such characterization, [25] recently made some progress towards characterizing WGSP and BB mechanisms in the context
of cost sharing mechanisms.
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2.3. Running Examples

We now define formally the examples of feasibility constraints mentioned and motivated in Section 1.3. We denote
by U the ground set of players (either the buyers or sellers), and by I the collection of feasible subsets of players.

1. Matroids: A set system (U,I) is a matroid if it satisfies the following three axioms: (1) ∅ ∈ I, (2) for all
S ⊂ T ⊆ U : T ∈ I implies S ∈ I (downward-closed property), (3) if S ,T ∈ I and |T | > |S |, then there
exists u ∈ T \ S such that S ∪ {u} ∈ I (exchange property). The sets in I are called independent and all other
sets are called dependent. A maximal independent set—that is, an independent set which becomes dependent
upon adding any element of U—is called a basis, and a minimal dependent set—that is, a dependent set whose
proper subsets are all independent—is called a circuit.

2. Knapsacks: In this case, the elements of the ground set U have publicly-known sizes (s1, . . . , s|U |), and the
family of feasible sets I includes every subset S ⊆ U such that its total size

∑
i∈S si is at most the capacity C of

the knapsack. We denote the ratio between the size of the largest element and the size of the knapsack by λ ≤ 1,
and the ratio between the size of the smallest element and the size of the largest element by µ ≤ 1. It is assumed
that 1/µ is integral.

3. Matchings: A third class of feasibility restrictions are bipartite matching constraints. In this case the ground
set U is the edge set of some bipartite graph G = (V,U), and the family of feasible sets I are the subsets of the
ground set that correspond to bipartite matchings in this graph.

A more detailed discussion of matroids and intuitive examples can be found in [47, 29]. The connection between
matroids and the greedy approach is discussed in [41, 16, 24, 28].

3. Composition Framework

In this section we describe our framework for designing double auctions via composition. We first describe the
one-sided algorithms and then the different ways of composing them.

3.1. Ranking Algorithms

The one-sided algorithms we use for our compositions are called ranking algorithms. A ranking algorithm for a
set of buyers N (resp. a set of sellers M) is a deterministic algorithm that receives as input a value profile ~v (resp. a
cost profile ~c), and outputs an ordered set consisting of all buyers (resp. all sellers), which we refer to as a stream. The
rank of a buyer (resp. seller), denoted by ri(~v) (resp. r j(~c)), is his position in the stream (e.g., 1 if he appears first).
The closer a player’s rank is to 1, the smaller or lower his rank. Accessing the next player in the stream is called
querying the ranking algorithm. When querying the kth player, the query history is the identities and qualities (values
or costs) of the k − 1 previously-queried players. We say that a history h is a prefix of another history h′ when the
queries recorded in h are the first queries recorded in h′.

We now distinguish between two natural directions of ranking algorithms by their different feasibility guarantees.
The following two definitions are stated for buyers, but apply to sellers as well.

Definition 3.1. A ranking algorithm is forward-feasible for a given feasibility set system (N,IN) if for every valuation
profile ~v and corresponding stream of buyers i1, . . . , in there exists a highest rank ` ∈ {0, . . . , n} such that for for every
τ ∈ {1, . . . , `}, {i1, . . . , iτ} ∈ IN .

That is, a ranking algorithm is forward-feasible if for every input, every prefix of the output stream (up to a certain
length) is a feasible set according to the feasibility set system.

Definition 3.2. A ranking algorithm is backward-feasible for a given set system (N,IN) if for every valuation profile ~v
and corresponding stream of buyers i1, . . . , in there exists a lowest rank ` ∈ {0, . . . , n} such that for every τ ∈ {`, . . . , n},
N \ {i1, . . . , iτ} ∈ IN .
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In other words, a ranking algorithm is backward-feasible if for every input, there exists a prefix of the output
stream such that after discarding it or any larger prefix that contains it, the remaining buyer set is feasible according
to the feasibility set system.

A class of algorithms that naturally leads to forward-feasible ranking algorithms is the class of (forward) greedy
algorithms. These algorithms start from an empty set and iteratively add a player, until it is no longer feasible to do
so. In the corresponding ranking of players the accepted players appear in the order they are accepted, followed by
the rejected players. Reverse greedy algorithms, on the other hand, which start with all players tentatively accepted
and then iteratively reject players until it becomes feasible to accept the remaining ones, naturally lead to backward-
feasible ranking algorithms. In the corresponding ranking the rejected players appear in the order they are rejected,
followed by the accepted players.10

Example 3.3 (Greedy Ranking by Value with Knapsack Constraints). Suppose there are 4 buyers A, B,C,D with sizes
4, 3, 2, 1 and values 3, 7, 1, 8, and the feasibility constraint is that the total size of accepted buyers cannot exceed 4.
A natural forward greedy algorithm would inspect and accept buyers in order of non-decreasing value, until it is no
longer feasible to add additional players. This algorithm would first pick buyer D and then buyer B, at which point the
total size of the accepted buyers has reached 4. We can extend this to a ranking by adding the rejected players in any
order, for example by non-decreasing value. The derived ranking would be D, B, A,C, with buyers A, B,C,D having
ranks 3, 2, 4, 1. This ranking satisfies Definition 3.1 with ` = 2. Proceeding in a similar fashion we can derive the
ranking C, A, B,D from the reverse greedy algorithm that inspects buyers in order of non-ingreasing value, and rejects
the next buyer unless it is feasible to accept the remaining ones. In this ranking the ranks of the buyers A, B,C,D are
2, 3, 1, 4. It satisfies Definition 3.2 with ` = 2.

Running Examples. Let us briefly recall some standard, greedy-based algorithms for the three running examples.
These algorithms find an approximately optimal, feasible subset of players. It is straightforward to then turn these
into forward- resp. backward-feasible ranking algorithms.

1. Matroids: There exists a forward and a reverse greedy algorithm for matroids, both find a feasible solution of
maximum quality [47]. The forward greedy algorithm sorts players by non-decreasing quality, and accepts the
next player if it is feasible to do so. The reverse greedy algorithm inspects the players in the opposite order
(i.e., from low to high quality) and rejects the current player if the set of players that have not yet been rejected
minus the current player contains a basis. See Appendix B for details.

2. Knapsacks: The standard (forward) greedy algorithm for knapsack assigns each player a score, which is his
quality divided by his size, sorts the players by non-decreasing score, and then adds the players in this order
as long as they still fit into the knapsack. This greedy algorithm achieves a 2-approximation. An alternative
(also forward) greedy algorithm adds players in order of non-decreasing quality as long as they still fit into the
knapsack. This greedy algorithm achieves a ((1 − λ)µ)−1-approximation, where λ, µ are defined as in Section
2.3. Both these algorithms can be turned into reverse greedy algorithms. Additional details can be found in
Appendix C.

3. Matchings: For matchings adding edges in order of non-decreasing quality unless one of their end points is
already matched yields a 2-approximation. This algorithm cannot be turned into a reverse greedy algorithm, but
in Appendix D we describe a reverse greedy algorithm that is based on ideas developed in [15] that achieves the
same performance guarantee.

3.2. Composition of Ranking Algorithms
We distinguish between compositions of two forward-feasible ranking algorithms, and two backward-feasible

ones. We call the former forward composition and the latter backward composition. A crucial ingredient to both is
the following definition of a composition rule.

Definition 3.4. A composition rule for a ranking algorithm for buyers and a ranking algorithm for sellers is a boolean
function, which receives as input a buyer-seller pair (i, j) composed by querying the two ranking algorithms, the pair’s
value and cost vi, c j, and their query histories, and outputs either 1 (“the pair is accepted”) or 0 (“the pair is rejected”).

10These constructions leave some freedom in regard to how to rank the rejected (accepted) players in the rankings derived from forward (reverse)
greedy algorithms. We use this freedom in the upcoming sections.
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Specific composition rules that we will use in this paper are the t-threshold composition rule, the lookback com-
position rule, and the lookback t-threshold composition rule defined next.

Definition 3.5. The t-threshold composition rule accepts a buyer-seller pair (i, j) if and only if the pair’s gain from
trade vi − c j is at least t, where t is a non-negative threshold in R.

Definition 3.6. The class of lookback composition rules contains a composition rules that decide whether to accept
or reject a buyer-seller pair (i, j) without observing their value and cost vi, c j, but rather observing only the history of
values and costs of previously-queried players.

Definition 3.7. The lookback t-threshold composition rule is a lookback composition rule that accepts a buyer-seller
pair (i, j) if and only if some part of the history contains a previously-queried pair (i′, j′), whose gain from trade vi′−c j′

is at least t, where t is a non-negative threshold in R. In particular, if the history does not contain any buyer-seller pair,
then the pair (i, j) is rejected.

We are now ready to formally define forward and backward composition. Intuitively, the main difference between
forward and backward composition is in the information that is available to the composition rules they use.

Definition 3.8. The forward composition of two forward-feasible ranking algorithms (also see Algorithm 2 in Ap-
pendix A) greedily determines an allocation as follows:

1. It queries the output streams of both forward-feasible ranking algorithms. If either ranking algorithm has
reached an infeasible player, then it stops and rejects all remaining players.

2. Otherwise it applies the composition rule to the resulting buyer-seller pair to decide whether or not to accept it
based on its value and cost and the history of previous queries.

3. If it accepts the pair, then it continues with Step 1. Otherwise, it stops and rejects all remaining players.

Definition 3.9. The backward composition of two backward-feasible ranking algorithms (also see Algorithm 3 in
Appendix A) greedily determines an allocation as follows:

0. (Preprocessing.) It rejects the first n −min{n − `B,m − `S } buyers, and the first m −min{n − `B,m − `S } sellers
by querying the output streams, where `B, `S are the ranks of the largest-rank buyer and seller, respectively, that
must be rejected for feasibility. The remaining players now form a feasible set.

1. It queries the output streams of both backward-feasible ranking algorithms.
2. It applies the composition rule to the resulting buyer-seller pair to decide whether or not to reject it based on its

value and cost and the history of previous queries, excluding preprocessing queries from Step 0.11

3. If it rejects the pair, then it continues with Step 1. Otherwise, it stops and accepts all remaining players.

Observation 3.10. Forward and backward composition leads to a feasible set of accepted buyers and sellers.

We present two illustrative examples that demonstrate what our composition framework is able to achieve in
simple settings.

Example 3.11 (VCG Mechanism via Forward Composition). Consider an unconstrained double auction setting. For
such a setting, the trivial forward-feasible ranking algorithm ranks the players from high to low quality (i.e., from high
to low value or from low to high cost). Observe that the VCG double auction is precisely a forward composition of the
trivial forward-feasible ranking algorithms using the 0-threshold composition rule and applying threshold payments.
Indeed, it sorts the players from high to low quality and greedily accepts trading pairs (i, j) while their gain from trade
vi − c j is positive.

Example 3.12 (McAfee’s Trade Reduction Mechanism via Backward Composition). In the same unconstrained dou-
ble auction setting, the trivial backward-feasible ranking algorithm ranks the players in reverse order, from low to high
quality (i.e., from low to high value or from high to low cost). McAfee’s trade reduction double auction is precisely
a backward composition of the trivial backward-feasible ranking algorithms using the lookback 0-threshold composi-
tion rule and applying threshold payments. Indeed, it sorts the players from low to high quality and greedily rejects
trading pairs, until it has rejected a pair (i, j) whose gain from trade vi − c j is non-negative.

11The exclusion of queries carried out during preprocessing is so that the composition rule will only take into account pairs that could have
potentially traded. This is necessary to achieve the budget balance property—see Section 6.
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More generally, the forward-feasible greedy ranking algorithms for matroids combined with the 0-threshold rule
and threshold payments are in fact the VCG mechanism, while the backward-feasible greedy ranking algorithms for
matroids combined with the lookback 0-threshold rule and threshold payments are precisely McAfee’s mechanism.
The next example illustrates this for McAfee’s mechanism.

Example 3.13 (Trade Reduction on Matroids). Consider a scenario with 4 buyers and values 8, 5, 3, 2, and 3 sellers
with costs 1, 2, 4. Suppose we can accept at most two sellers for trade (e.g., because they are firms which need a
facility to produce the good and there is space for at most two facilities). Note this is a matroid constraint, with a
simple matroid called “2-uniform” [38]. The backward-feasible greedy ranking algorithm for matroids would return
buyers in order 4, 3, 2, 1 with `B = 0, and sellers in order 3, 2, 1 with `S = 1. So in the preprocessing step of the
backward composition, buyers 4, 3 and seller 3 would be rejected. The lookback 0-threshold composition rule would
proceed by also rejecting buyer-seller pair (2, 2). Now for the first time there exists a pair rejected by the composition
rule with positive gain from trade, and the mechanism would stop and accept the remaining buyer-seller pair (1, 1).

Even more generally, the composition framework enables us to generalize the VCG and trade reduction mecha-
nisms to accommodate feasibility constraints beyond matroids, as long as the constraints have appropriate forward-
and backward-feasible ranking algorithms. This leads to Definitions 4.4 (VCG-style double auction) and 4.9 (trade
reduction-style double auction) below.

Running Examples. Our composition framework leads to a wealth of double auction mechanisms via forward or
backward composition. Specifically, any of the ranking algorithms described at the end of the previous subsection can
be combined with the composition rules described above. However, not all combinations will yield DSIC or WGSP
mechanisms or succeed in obtaining a good fraction of the optimal welfare. Our goal in the next few sections will be
to develop a theory that explains which properties of the ranking algorithms and the composition rule guarantee that
the resulting double auction mechanism has these properties.

4. Incentives

Recall that a composition theorem relates the properties of ranking algorithms and a composition rule to those
of the composed double auction mechanism. We state and prove our DSIC composition theorem in Section 4.1.
The DSIC composition theorem applies equally well to forward and backward composition. Afterwards, in Section
4.2, we present our WGSP composition theorem. This theorem applies only to backward compositions—this is one
of the significant differences between the forward and backward approaches. We discuss the implications of both
composition theorems for our three running examples.

4.1. DSIC Composition Theorem

To state the DSIC composition theorem we shall need the following definitions, related to the monotonicity notion
from Definition 2.1. The first two conditions (Definition 4.1 and Definition 4.2) capture properties of the one-sided
ranking algorithms. A third condition (Definition 4.3) concerns the composition rule that is used to combine the
one-sided ranking algorithms into a double auction.

Definition 4.1. A ranking algorithm is rank-monotone if a player’s rank (weakly) improves with quality:

• For forward-feasible ranking algorithm this is the case if for every buyer i, valuation profile ~v, and valuation
v′i > vi it holds that ri(v′i ,~v−i) ≤ ri(~v) and for every seller j, cost profile ~c, and cost c′j > c j, it holds that
r j(c′j, ~c− j)) ≥ r j(~c).

• For a backward-feasible ranking algorithm this is the case if for every buyer i, valuation profile ~v, and valuation
v′i > vi it holds that ri(v′i ,~v−i) ≥ ri(~v) and for every seller j, cost profile ~c, and cost c′j > c j, it holds that
r j(c′j, ~c− j)) ≤ r j(~c).

Definition 4.2. A ranking algorithm is consistent if in the feasible part of the output stream the order of the players is
compatible with their qualities:
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• For a forward-feasible ranking algorithm this means that for any two buyers i , i′ and any valuation profile ~v
with corresponding index ` up to which the stream of players is feasible, ri(~v) < ri′ (~v) ≤ ` implies that vi ≥ vi′

and for any two sellers j , j′ and any cost profile ~c with corresponding index ` up to which the stream of
players is feasible, r j(~c) < r j′ (~v) ≤ ` implies that c j ≤ c j′ .

• For a backward-feasible ranking algorithm this means that for any two buyers i , i′ and any valuation profile ~v
with corresponding index ` after which the stream of players becomes feasible, ` < ri(~v) < ri′ (~v) implies that
vi ≤ vi′ and for any two sellers j , j′ and any cost profile ~c with corresponding index ` after which the stream
of players becomes feasible, ` < r j(~c) < r j′ (~v) implies that c j ≥ c j′ .

Note that the two properties defined in Definition 4.1 and Definition 4.2 are incomparable in the sense that neither
implies the other: A forward-feasible ranking algorithm for buyers which outputs buyer 1 if v1 ≤ t and buyer 2
otherwise is consistent but not rank monotone. A forward-feasible ranking algorithm for buyers which always outputs
buyer 1 and then buyer 2, even when v2 > v1, is rank-monotone but not consistent.

Definition 4.3. Consider a composition rule, and let the following be two different inputs to it: two buyer-seller pairs
(i, j) and (i′, j′), with qualities (vi, c j) and (vi′ , c j′ ), and histories (hi, h j) and (hi′ , h j′ ), respectively. Assume that the
second input dominates the first in terms of quality, i.e., vi′ ≥ vi and c j′ ≤ c j. The composition rule is monotone for
forward composition if for any such two inputs where the histories hi′ and h j′ are prefixes of the histories hi and h j, if
it accepts the pair (i, j) then it accepts the pair (i′, j′). The composition rule is monotone for backward composition if
for any such two inputs the histories hi and h j are prefixes of the histories hi′ and h j′ , if it accepts the pair (i, j) then it
accepts the pair (i′, j′).

An example of a composition rule that is monotone for both forward and backward composition is the t-threshold
composition rule, since it ignores the histories and accepts whenever vi − c j ≥ t, which implies that vi′ − c j′ ≥ t. The
following definition relates the above concepts to the VCG double auction mechanism, generalized to accommodate
feasibility constraints.12

Definition 4.4. A VCG-style double auction mechanism is a forward composition of consistent, rank-monotone rank-
ing algorithms using the 0-threshold composition rule and applying threshold payments.

We are now ready to state our composition theorem. We only prove the theorem for forward composition; the
result for backward composition follows by an analogous argument.

Theorem 4.5. A forward (or backward) composition of consistent, rank monotone ranking algorithms using a com-
position rule that is monotone for forward (or backward) composition and applying threshold payments is a DSIC
double auction mechanism.

Proof. We apply the characterization of DSIC double auctions in Proposition 2.3 to show that the composition is
DSIC. We only need to show that the allocation rule is monotone—this also means that the payments are well-
defined. Fix value and cost profiles ~v, ~c. We argue that an accepted buyer who raises his value remains accepted; a
similar argument shows that an accepted seller who lowers his cost remains accepted, thus completing the proof.

Denote the accepted buyer by i, and the seller with whom i trades by j. Consider the application of the composition
rule to the pair (i, j), and denote by (vi, c j) and (hi, h j) the pair’s qualities and histories, respectively. By assumption,
the composition rule accepts (i, j). By rank monotonicity of the forward-feasible ranking algorithm for buyers, when
i raises his value to v′i > vi, his rank weakly decreases. Let j′ be the seller with whom i is considered for trade by
the composition rule after he raises his value and his rank decreases. Consider the application of the composition
rule to the pair (i, j′), and denote by (v′i , c j′ ) and (h′i , h j′ ) the pair’s qualities and histories, respectively. Then by
consistency of the forward-feasible ranking algorithm for sellers, c j′ ≤ c j. Since the composition rule is monotone for
forward composition, and since the history h′i is a prefix of hi, the pair (i, j′) must be accepted for trade as well by the
composition rule.

12The welfare of a VCG-style mechanism as defined in Definition 4.4 is not necessarily optimal. Since we focus on computationally tractable
mechanisms, this is as can be expected—maximizing welfare subject to feasibility constraints is not always computationally tractable (assuming
P,NP).
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The following is an immediate corollary of Theorem 4.5.

Corollary 4.6. Let t ∈ R be a threshold. Every forward composition of consistent, rank-monotone ranking algorithms
using the t-threshold composition rule and applying threshold payments is DSIC. In particular, VCG-style double
auctions are DSIC.

Necessity of the Conditions. The following examples show that monotonicity of the ranking algorithms and the com-
position rule as well as consistency of the ranking algorithms are necessary for the DSIC composition theorem.

Example 4.7 (Necessity of Rank Monotonicity and Composition Rule Monotonicity). Let n = m = 1. Let the
type spaces be [0, v̄1] = [0, 1] and [0, c̄1] = [0, 0]. Suppose that either the 0-threshold composition rule is used
in conjunction with the ranking algorithm that outputs buyer 1 only if his value is strictly below 1 and the ranking
algorithm that always outputs seller 1 or that the composition rule in use accepts a buyer-seller pair only if their gain
from trade is below 1 and the ranking algorithms always output buyer 1 and seller 2. In both cases, buyer 1 is accepted
for trade when v1 < 1 but not when v′1 = 1.

Example 4.8 (Necessity of Ranking Algorithm Consistency). Let n = m = 2. Let the type spaces be [0, v̄1] =

[0, v̄2] = [0, c̄1] = [0, c̄2] = [0, 1]. Consider a forward composition using the 0-threshold composition rule of the
forward-feasible ranking algorithm for buyers that ranks buyer 1 before buyer 2 if and only if v1 ≥ 0.5 and the
forward-feasible ranking algorithm for sellers that always ranks seller 1 before seller 2. If the valuations and cost are
v1 = 0.25, v2 = 0.75, c1 = 0.5, and c2 = 0 then buyer 1 is accepted for trade. If buyer 1’s value is v′1 = 1 instead, then
he is paired with seller 1 and no longer accepted.

Running Examples. All ranking algorithms that we have discussed so far are rank monotone. The only ranking
algorithm that we have discussed so far that is not consistent is the greedy algorithm for knapsacks that ranks players
by quality divided by size.

4.2. WGSP Composition Theorem
For our WGSP composition theorem we leverage the framework of deferred-acceptance algorithms [34]. We first

explain deferred-acceptance algorithms and their relation to one-sided auctions, and then we discuss how they can be
used in the context of ranking algorithms for double auctions.

Deferred-acceptance algorithms can be used to maximize the sum of the players’ valuations or to minimize the
sum of the sellers’ costs. We describe them formally in Algorithm 1. The maximization (minimization) variant of a
deferred-acceptance algorithm combined with threshold payments is a deferred-acceptance auction for sale (procure-
ment), and has several desirable incentive properties such as WGSP.

Deferred-acceptance algorithms can also form the basis of backward-feasible ranking algorithms, as follows:
A deferred-acceptance ranking algorithm for buyers (sellers) is a ranking algorithm that first runs a maximization
(minimization) version of a deferred-acceptance algorithm. It sets the first part of the output stream of buyers (sellers)
to be the set R of players rejected by the deferred-acceptance algorithm (the order of players is the order in which
they are rejected), and lets the rank of the largest-rank buyer (seller) to reject be ` = |R|. The second part of the
output stream is obtained by sorting the buyers (sellers) that are accepted by the deferred-acceptance algorithm from
low to high value (high to low cost). Observe that, by construction and by monotonicity of the scoring functions, the
resulting rankings are backward-feasible, rank-monotone, and consistent.

The following definition relates the above concepts to the trade reduction mechanism of McAfee, generalized to
accommodate feasibility constraints.

Definition 4.9. A trade reduction-style mechanism is a backward composition of (backward-feasible, rank-monotone,
and consistent) deferred-acceptance ranking algorithms using the lookback 0-threshold composition rule and applying
threshold payments.

We are now ready to state our WGSP composition theorem.

Theorem 4.10. A backward composition of (backward-feasible, rank-monotone, and consistent) deferred-acceptance
ranking algorithms using a lookback composition rule and applying threshold payments is a WGSP double auction
mechanism.

12



ALGORITHM 1: Deferred-Acceptance Algorithm—Maximization and Minimization Versions

Input: Set of players P and their bid profile ~b, access to a feasibility set system (P,IP)
Output: Feasible set of players A ∈ IP

% Maximization version (minimization version in brackets)

Initialize A = P % Set of active players—initially all players
while A , ∅ do

% Let sA
i (bi, b−A) for every i ∈ A be a scoring function such that:

% Player i’s score depends on his own bid bi, the bids of the inactive players b−A, and the set of active players A
% Player i’s score does not depend on the bids of the set of active players A \ {i}
% Player i’s score may possibly depend on the feasibility set system (P,IP)
% Score sA

i (·, ·) is non-negative and weakly increasing in its first argument
% Score sA

i (·, ·) = ∞ (0) for all i ∈ A only if A is feasible
assign every active player i ∈ A the score sA

i (bi, b−A)
if all scores are∞ (0) then % The set A is feasible, return it

stop algorithm
else % Reject lowest (highest) scoring player

let i∗ be a player with lowest finite (highest nonzero) score
set A = A \ {i∗}

end if
end while

Proof. It is sufficient to show that the allocation rule of the backward composition in the theorem statement can be
implemented by a deferred-acceptance algorithm applied to the set of all players N ∪ M: Consider the one-sided
deferred-acceptance auction for sale based on this algorithm; by construction its allocation rule is identical to the
original allocation rule of the backward composition, and both mechanisms apply threshold payments. Thus the
incentives of the players in both mechanisms are identical. The theorem then follows from Corollary 1 of [34], by
which every deferred-acceptance auction is WGSP.13

Consider the backward composition of deferred-acceptance ranking algorithms. We begin by transforming the
deferred-acceptance ranking algorithm for sellers into a deferred-acceptance ranking algorithm for pseudo-buyers,
which runs a maximization rather than minimization version of a deferred-acceptance algorithm:

• The original sellers become pseudo-buyers by multiplying their original costs by −1 and treating the result
as the values of the pseudo-buyers for being accepted. In other words, if seller j incurs a cost of c j when
accepted, then the corresponding jth pseudo-buyer’s value for being accepted is −c j. Note that pseudo-buyers
have non-positive values.

• We define new scoring functions for the deferred-acceptance ranking algorithm for the pseudo-buyers. Consider
the new scoring function sS

j (v j, v−S ), where j is a pseudo-buyer, S is the set of active pseudo-buyers, and v j, v−S

are the non-positive values of pseudo-buyers. Then sS
j (v j, v−S ) is defined from the original scoring function ŝS

j
of seller j, as follows:

sS
j (v j, v−S ) =

∞, if ŝS
j (−v j,−v−S ) = 0

−ŝS
j (−v j,−v−S ) + C, otherwise

where C is a large enough constant to make the scores positive (C depends on the original scoring functions and
on the maximum cost c). Observe that every new scoring function sS

j is weakly increasing in its first argument,
as required for a deferred-acceptance algorithm.

It is not hard to see that the maximization deferred-acceptance algorithm for pseudo-buyers with the new scoring
functions is equivalent in its output to the minimization deferred-acceptance algorithm for sellers with the original

13Note that while the deferred-acceptance framework of [34] primarily focuses on finite bid spaces, some of the results including Corollary 1
apply to infinite bid spaces as well, as in our setting (see Footnote 17 of [34]).
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scoring functions (the equivalence is by replacing the pseudo-buyers with the corresponding sellers). Thus the result-
ing deferred-acceptance ranking algorithms are equivalent in their output streams.

Our goal for the remainder of the proof is to use the deferred-acceptance ranking algorithms for buyers and for
pseudo-buyers, in particular the original scores sB

i (vi, v−B) for buyers together with the new scores for pseudo-buyers
sS

j (v j, v−S ) as well as the ranks `B, `S of the largest-rank buyer and pseudo-buyer to reject for feasibility, in order to
obtain a maximization deferred-acceptance algorithm for the set of buyers and pseudo-buyers. This algorithm will be
equivalent to the allocation rule of the backward composition in the theorem statement (in the sense that the two are
identical after replacing the pseudo-buyers with the corresponding sellers).

To achieve the above, we need to define scoring functions such that Algorithm 1 will implement the backward
composition whose steps are described in Algorithm 3. In defining the scoring functions we shall utilize the lookback
composition rule of the backward composition, and the fact that scoring functions are allowed to depend on the set of
active players. The scoring functions are as follows:

• Rejecting `B buyers and `S sellers: If the number of inactive buyers is less than `B, i.e., the set B of active
buyers is infeasible, the functions set the scores of all active buyers to sB

i (vi, v−B) and the scores of all active
pseudo-buyers to ∞. This means that the player who will be removed next from the set of active players is the
buyer with the lowest score.

Once the set of active buyers B is feasible, if the number of inactive pseudo-buyers is less than `S , i.e., the set
of active pseudo-buyers S is infeasible, the functions set the scores of all active pseudo-buyers to sS

j (v j, v−S ),
and the scores of all active buyers to ∞. This means that the player who will be removed next from the set of
active players is the pseudo-buyer with the lowest score.

• Maintaining the balance |B| = |S |: If there are more active pseudo-buyers than buyers, i.e., |S | > |B|, the
functions set the scores of all active pseudo-buyers to v j + C, where C is a large enough constant to make the
scores positive, and the scores of all active buyers to ∞. This means that the player who will be removed next
from the set of active players is the pseudo-buyer with the lowest value. On the other hand, if there are less
active pseudo-buyers than buyers, i.e., if |S | < |B|, the functions set the scores such that the player who will be
removed next is the buyer with the lowest value. This is an accurate implementation of the composition whose
deferred-acceptance ranking algorithms are consistent.

• Implementing the composition rule: The interesting case is when the set of active buyers B is feasible, the set
of active pseudo-buyers S is feasible, and |B| = |S |. In this case the scores should implement the decision of the
lookback composition rule for the next buyer-seller pair. Here we use the fact that the decision only depends
on previously-rejected players, excluding those rejected during the preprocessing. Since the scoring functions
are allowed to depend on the reports of the inactive players, and in particular can identify the players rejected
during the preprocessing, they can simulate the decision of the lookback composition rule and assign scores
accordingly:

– If the decision is to reject the next pair, the functions set the scores such that the player who will be
removed next from the set of active players is the buyer with the lowest value. (The matching pseudo-
buyer with the lowest value will then be removed as part of maintaining the balance.)

– If the decision is to accept the next pair, the functions set the scores of all active players to∞. This brings
the deferred-acceptance algorithm to a stop, rejecting all players previously removed from the set of active
players.

This completes the construction of the scoring functions. It is not hard to check that they are weakly increasing in
their first argument, thus providing a deferred-acceptance implementation of the backward composition, as required.

The following is an immediate corollary of Theorem 4.10.

Corollary 4.11. Let t ∈ R be a threshold. Every backward composition of deferred-acceptance ranking algo-
rithms using the lookback t-threshold composition rule and applying threshold payments is WGSP. In particular,
trade reduction-style double auctions are WGSP.
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Two further corollaries apply to backward compositions of deferred-acceptance ranking algorithms using a look-
back composition rule, after restricting attention to finite bid spaces: (i) Such double auctions can be implemented as
clock auctions (by Proposition 3 in [34]); (ii) For every such double auction, consider a double auction that uses the
same allocation rule but charges first-price payments, then it has a complete-information Nash equilibrium in which
the allocation and payments are identical to the DSIC outcome of the backward composition double auction with
threshold payments (by Proposition 6 in [34]).

Necessity of Backward Composition. Examples similar to the ones in [34] show that none of the strong incentive
properties shown in this subsection can be obtained by double auctions that are obtained through forward composition.
In Section 6 we furthermore show that double auctions that are obtained through backward composition of deferred-
acceptance ranking algorithms also satisfy BB, while double auctions that are the result of forward composition cannot
simultaneously achieve BB, WGSP, and high welfare.

Running Examples. As in the case of the DSIC composition theorem, we ask what implications does the WGSP
composition theorem have for our running examples, and sketch how it applies to all three examples.

The forward greedy algorithm for matroids can be implemented as a deferred-acceptance algorithm (see Appendix
B for details). The forward greedy algorithm for knapsack which sorts buyers by non-increasing value can also be
implemented as a deferred-acceptance algorithm (see Appendix C for details). For matchings, on the other hand,
the forward greedy-by-quality algorithm cannot be implemented via deferred acceptance; we therefore design a new
deferred-acceptance algorithm for matchings (see Appendix D for details).

5. Welfare

In this section we discuss the welfare guarantees of double auction mechanisms arising from compositions, and
the implications for the three running examples.

Throughout this section we will consider fixed feasibility constraints as given by the set systems IN , IM and the
requirement that a set of buyers B ⊆ N and a set of sellers S ⊆ M is feasible if B ∈ IN , S ∈ IM and |B| ≤ |S |.

Our goal will be to relate the welfare W(~v, ~c) achieved by a fixed double auction mechanism obtained through
composition to the optimal welfare OPT (~v, ~c) for value and cost profile (~v, ~c). Specifically, we will identify properties
related to the composition rule and the ranking algorithms that guarantee that the resulting double auction mechanism
achieves optimal or near-optimal welfare on every input.

Recall that since we assume downward-closed feasibility sets, the optimal welfare will be achieved by a set of
buyers and a set of sellers of equal cardinality. In our analysis, we will use s∗(~v, ~c) to denote the cardinality of the
pair (B∗, S ∗) with the maximum number of trades among all pairs (B, S ) ∈ IN × IM with |B| = |S | achieving optimal
welfare OPT(~v, ~c).

5.1. Welfare Composition Theorem

To state our welfare composition theorem we need a few parameters that quantify relevant properties of the com-
position rule and the ranking algorithms and how hard the problem instance is.

The first pair of parameters is related to how “exhaustive” the composition rule is. The first parameter s(~v, ~c)
denotes the number of buyer-seller pairs that the double auction mechanism accepts on input (~v, ~c). The second
parameter s′(~v, ~c) denotes the optimal number of buyer-seller pairs that a composition mechanism based on the same
ranking algorithms but with a potentially different composition rule could have accepted. In other words, s′(~v, ~c) is
the number of buyer-seller pairs that the 0-threshold rule would accept. Note that for unconstrained double auction
settings it is possible that

∀~v, ~c : s′(~v, ~c) = s∗(~v, ~c);

and this is also the case for some constrained settings such as matroids.
In our analysis we will focus on cases where s′(~v, ~c) ≥ 1 and s(~v, ~c) ≤ s′(~v, ~c). The former means that a forward

(or backward) composition based on these ranking algorithms could have accepted at least one buyer-seller pair with
non-negative gain from trade. The latter means that the double auction mechanism under consideration does not
accept buyer-seller pairs with negative gain from trade.
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The next two parameters α ≥ 1 and β ≥ 1 quantify how close to the optimal solution the one-sided ranking
algorithms are at any point q of their execution, in the worst case over all inputs ~v resp. ~c. Intuitively, such an “any
time” guarantee is necessary as the final number of accepted buyers depends on the interaction of the two ranking
algorithms and is therefore extrinsic to the buyer-ranking algorithm (and similarly for the sellers).

Formally, let card(IN) = maxB∈IN |B| and card(IM) = maxS∈IM |S | denote the cardinality of the largest feasible
buyer resp. seller set. For every q ∈ [card(IN)], denote by vOPT(q) the value of the feasible solution of at most q
buyers that maximizes total value. For every q ∈ [card(IM)], denote by cOPT(q) the cost of the feasible solution of at
least q sellers that minimizes total cost. That is,

vOPT (q) = max
B∈IN ,|B|≤q

∑
i∈B

vi and cOPT (q) = min
S∈IM ,|S |≥q

∑
j∈S

c j.

For a given forward-feasible ranking algorithm, we append 0’s to the buyer stream if it has length less than card(IN)
and we append c̄’s to the seller stream if it has length less than card(IM). We denote by vALG(q) (resp. cALG(q)) the
value (resp. cost) achieved by greedily allocating to the first q ∈ [card(IN)] buyers (resp. q ∈ [card(IM)] sellers) in
the modified output stream. For a given backward-feasible ranking algorithm, the definitions are the same except that
the last q buyers (resp. sellers) in the feasible part of the output stream are considered. A ranking algorithm for buyers
is a uniform α-approximation if for every value profile ~v and every q ≤ card(IN),

vALG(q) ≥
1
α
· vOPT(q).

A ranking algorithm for sellers is a uniform β-approximation if for every cost profile ~c and every q ≤ card(IM),

cALG(q) ≤ β · cOPT(q).

The closer α ≥ 1 and β ≥ 1 are to 1, the better the ranking algorithms.
The final parameter γ(~v, ~c) measures how difficult the problem instance (~v, ~c) is; and is a standard tool with mixed-

sign objective functions [cf. 43]. It measures how close the optimal solution OPT (~v, ~c) is to zero. Recall the definition
of s∗(~v, ~c) from above, then OPT (~v, ~c) = vOPT (s∗(~v, ~c)) − cOPT (s∗(~v, ~c)). Let γ(~v, ~c) = vOPT (s∗(~v, ~c))/cOPT (s∗(~v, ~c)).
Clearly, γ ≥ 1 as vOPT (s∗(~v, ~c)) ≥ cOPT (s∗(~v, ~c)). For γ(~v, ~c) = 1 we have OPT (~v, ~c) = 0; hence we focus on the case
where γ(~v, ~c) > 1 below. Intuitively, the closer γ(~v, ~c) is to 1, the closer the optimal welfare is to 0, and the harder it is
to achieve a good relative approximation.

Theorem 5.1. Consider input (~v, ~c) for which OPT (~v, ~c) > 0. The forward (backward) composition of two consistent,
forward-feasible (backward-feasible) ranking algorithms that are uniform α- and β-approximations, using a com-
position rule that accepts the s(~v, ~c) ≤ s′(~v, ~c) lowest (resp. highest) ranking buyer-seller pairs, achieves welfare at
least

s(~v, ~c)
s′(~v, ~c)

·

γ(~v,~c)
α
− β

γ(~v, ~c) − 1
· OPT(~v, ~c).

Note that if α = β = 1, then the second term in the approximation factor vanishes. For general α and β the bound
degrades gracefully from this ideal case, in the sense that the dependence on the approximation ratios 1

α
and β is linear.

Proof. Our goal is to show that

vALG(s(~v, ~c)) − cALG(s(~v, ~c)) ≥
s(~v, ~c)
s′(~v, ~c)

·

γ(~v,~c)
α
− β

γ(~v, ~c) − 1
·

(
vOPT (s∗(~v, ~c)) − cOPT (s∗(~v, ~c))

)
.

Since the double auction is composed of forward-feasible (backward-feasible) consistent ranking algorithms, we can
number the buyers and sellers from the beginning (end) of the respective streams by 1, 2, . . . such that v1 ≥ v2 ≥ · · · ≥

vs′(~v,~c) and c1 ≤ c2 ≤ · · · ≤ cs′(~v,~c). Using this notation,

vALG(s(~v, ~c)) − cALG(s(~v, ~c)) =

s(~v,~c)∑
i=1

(vi − ci) and vALG(s′(~v, ~c)) − cALG(s′(~v, ~c)) =

s′(~v,~c)∑
i=1

(vi − ci).
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Another implication of the fact that the double auction is composed of consistent ranking algorithms is that the
gain from trade is non-increasing. That is, i < j implies vi − ci ≥ v j − c j. Hence for all s such that s(~v, ~c) < s ≤ s′(~v, ~c)
we have vs − cs ≤

1
s(~v,~c)

∑s(~v,~c)
i=1 (vi − ci). It follows that

vALG(s(~v, ~c)) − cALG(s(~v, ~c)) =

s′(~v,~c)∑
i=1

(vi − ci) −
s′(~v,~c)∑

i=s(~v,~c)+1

(vi − ci)

≥

s′(~v,~c)∑
i=1

(vi − ci) −
(
s′(~v, ~c) − s(~v, ~c)

)
·

1
s(~v, ~c)

s(~v,~c)∑
i=1

(vi − ci)

=

(
vALG(s′(~v, ~c)) − cALG(s′(~v, ~c))

)
−

(
s′(~v, ~c)
s(~v, ~c)

− 1
)
·

(
vALG(s(~v, ~c)) − cALG(s(~v, ~c))

)
.

Rearranging this shows

vALG(s(~v, ~c)) − cALG(s(~v, ~c)) ≥
s(~v, ~c)
s′(~v, ~c)

·

(
vALG(s′(~v, ~c)) − cALG(s′(~v, ~c))

)
. (1)

Recall that s∗(~v, ~c) is defined as the number of trades in a solution that maximizes welfare, while s′(~v, ~c) is the
number of trades that maximizes welfare for the given ranking algorithms. By the definition of s′(~v, ~c) all trades up to
and including s′(~v, ~c) are beneficial, and then either one of the streams reached its end or the subsequent trades are no
longer beneficial. Hence, by the definition of vALG and cALG,

vALG(s′(~v, ~c)) − cALG(s′(~v, ~c)) ≥ vALG(s∗(~v, ~c)) − cALG(s∗(~v, ~c)). (2)

Finally, we use that the ranking algorithms are uniform α- and β-approximations and the definition of γ(~v, ~c) to
deduce that

vALG(s∗(~v, ~c)) − cALG(s∗(~v, ~c)) ≥
1
α
· vOPT (s∗(~v, ~c)) − β · cOPT (s∗(~v, ~c))

=

(
γ(~v, ~c)
α
− β

)
· cOPT (s∗(~v, ~c))

=

γ(~v,~c)
α
− β

γ(~v, ~c) − 1
·

(
vOPT (s∗(~v, ~c)) − cOPT (s∗(~v, ~c))

)
. (3)

Combining inequalities (1)–(3) completes the proof.

We obtain the following corollaries for VCG- and trade reduction style-mechanisms with the 0-threshold or the
lookback 0-threshold composition rule.

Corollary 5.2. Consider input (~v, ~c) for which OPT (~v, ~c) > 0. Consider the forward composition of two forward-
feasible, consistent ranking algorithms that are uniform α- and β-approximations. The 0-threshold rule accepts the
s′(~v, ~c) lowest ranking buyer-seller pairs. Hence its welfare is at least

γ(~v,~c)
α
− β

γ(~v, ~c) − 1
· OPT (~v, ~c).

Corollary 5.3. Consider input (~v, ~c) for which OPT (~v, ~c) > 0. Consider the backward composition of two backward-
feasible, consistent ranking algorithms that are uniform α- and β-approximations. The lookback 0-threshold rule
accepts the s′(~v, ~c) − 1 highest ranking buyer-seller pairs. Hence its welfare is at least(

1 −
1

s′(~v, ~c)

)
·

γ(~v,~c)
α
− β

γ(~v, ~c) − 1
· OPT (~v, ~c).

When α = β = 1, these two corollaries specialize to the traditional guarantees of the VCG and trade reduction
mechanisms. For general α and β these bounds again degrade gracefully from this ideal case as the dependence on
the approximation ratios 1

α
and β is again linear.
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Running Examples. Since all ranking algorithms that we have not yet ruled out are consistent, it is the uniform
approximation property that we have to check. The greedy algorithms for matroids are not only optimal, but also
uniformly so (as we show in Appendix B). Similarly, the algorithm for knapsacks that ranks by quality is a uniform
((1 − λ)µ)−1 approximation (as we show in Appendix C). For matchings, we show that the algorithm that we propose
is a uniform 2-approximation (see Appendix D).

6. Budget Balance

This section studies the budget balance properties of double auction mechanisms that are obtained through com-
position. We show that a broad range of backward compositions of two deferred-acceptance algorithms using the
lookback composition rule—including trade-reduction style mechanisms—are BB. We also present an impossibility
result for forward compositions.

6.1. BB Composition Theorem
The budget balance composition theorem is as follows. We say that a backward composition reduces an efficient

trade if there is a buyer-seller pair with non-negative gain from trade that is rejected by the composition rule (Step 2
of Algorithm 3).14 Then:

Theorem 6.1. A backward composition of deferred-acceptance ranking algorithms using a lookback composition
rule that reduces at least one efficient trade and applying threshold payments is a BB double auction mechanism.

Proof. Without loss of generality, denote the buyers in the output stream of the deferred-acceptance ranking algorithm
for buyers by 1, 2, . . . , n, and the sellers in the output stream of the deferred-acceptance ranking algorithm for sellers
by 1, 2, . . . ,m. Recall that a backward composition is a composition of two backward-feasible ranking algorithms;
the streams returned by such algorithms each have a player, denoted by `B and `S respectively for buyers and sellers,
such that the following holds: for every i ≥ `B, the set of buyers N \ {1, . . . , i} is feasible, and for every j ≥ `S , the set
of sellers M \ {1, . . . , j} is feasible.

Let (`′B, `
′
S ) be a buyer-seller pair with non-negative gain from trade that is reduced by the composition rule. Such

a pair exists by assumption. Since players 1, . . . ,max{`B, `S } from both streams are rejected in the preprocessing
stage of the backward composition (Algorithm 3), it must be the case that both `′B and `′S are strictly greater than
max{`B, `S }, i.e., they appear in their respective streams after the players rejected in the preprocessing stage. Denote
the value of `′B by v′, and the cost of `′S by c′. Clearly, v′ ≥ c′.

Our goal is to show that every buyer whom the composition accepts pays at least v′. A symmetric argument shows
that every seller whom the composition accepts is paid at most c′. Since v′ ≥ c′ this is sufficient to establish the
property of budget balance. In fact, due to threshold payments, it is enough to show that every buyer i whom the
composition accepts will be rejected if he reports a value lower than v′.

Consider an accepted buyer i. By the greediness of backward composition, which repeatedly rejects until the first
buyer-seller pair is accepted, it must be the case that i > `′B, i.e., buyer i appears after the reduced buyer `′B in the buyer
ranking. By consistency of the deferred-acceptance ranking algorithm for buyers, i’s original report is thus at least v′.
What changes if i reports a value lower than v′? By consistency, the buyer ranking must change in this case, and we
denote by r the new rank of buyer i. We distinguish two cases:

• r ≤ max{`B, `S }. That is, the new rank of i is smaller than the original rank of the largest-ranked buyer to
discard for feasibility. We now exploit a property of deferred-acceptance algorithms together with consistency
to establish that in the new buyer stream where buyer i appears in rank r, the first r− 1 buyers have not changed

14In the proof we use the property of backward composition by which the composition rule does not take into account efficient trades reduced in
the preprocessing stage (Step 0 of Algorithm 3). The following example shows why this is necessary: Consider a setting with two buyers and two
sellers. The value profile is (8, 4) and the cost profile is (6, 5). It is only feasible to accept up to one buyer, and the deferred-acceptance ranking
algorithm for buyers scores the first buyer by his value and the second buyer by 3 times his value. The sellers are unconstrained and ranked by the
trivial backward-feasible ranking algorithm (which clearly has a deferred-acceptance implementation). Thus the buyer stream is 1, 2 and the seller
stream is 1, 2, and the preprocessing step rejects buyer 1 and seller 1, a pair with positive gain from trade. If this pair were part of the history, the
pair buyer 2 and seller 2 would be accepted. But this pair has negative gain from trade and so the resulting mechanism is either not IR or not BB.
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and are still buyers 1, ..., r − 1. The property we use is that an active player’s bid does not affect the scores of
any other active player in the deferred-acceptance algorithm. Since we know that rejecting buyers 1, . . . , r − 1
is not enough for feasibility, buyer i is necessarily rejected.

• r > max{`B, `S }. As above, the first r − 1 buyers in the new buyer stream have not changed and are still buyers
1, . . . , r − 1. Therefore, by consistency and since i reports a value lower than v′, it must hold that r ≤ `′B. We
now use the fact that originally the buyer-seller pair (`′B, `

′
S ) was reduced. This means that the decision of the

lookback composition rule given the history up to and including rank r−1 is to reject, and so buyer i is rejected.

This completes the proof.

We conclude that McAfee’s trade reduction mechanism, and more generally any trade reduction-style mechanism
as defined in Definition 4.9, satisfies budget balance.

Necessity of Backward Composition. Next we show that DSIC double auction mechanisms that are the result of
forward composition are particularly ill-equipped to achieve either WGSP or budget balance while maintaining a
non-trivial efficiency guarantee.

Proposition 6.2. Consider a double auction setting with n = m = 2 and no feasibility constraints. For every forward
composition of consistent ranking algorithms that is DSIC, there exist value and cost profiles for which either the
budget deficit is arbitrarily high and the mechanism is not WGSP, or the welfare is arbitrarily small with respect to
OPT.

Proof. Let H be an arbitrarily large constant. We show there exist value and cost profiles such that either the budget
deficit is at least H/8 and the mechanism is not WGSP, or the welfare is at most an 8/H-fraction of the welfare
achievable by the trade reduction double auction.

We define the following value and cost profiles:

~v 1 = (H,H) ~v 2 = ( H
4 , ε) ~v 3 = (H, ε) ~v 4 = ( 3H

8 , ε)
~c 1 = ( 3H

4 ,H − ε) ~c 2 = (0, 0) ~c 3 = ( 5H
8 ,H − ε) ~c 4 = (0,H − ε).

Observe that for profile pairs (~v 1, ~c 1), (~v 2, ~c 2), the trade reduction double auction with greedy ranking algorithms
achieves welfare of at least H/4, and for the profile pair (~v 4, ~c 3) its welfare is zero. It is also both BB and WGSP for
all profile pairs.

We first show that for all the above value (cost) profiles, we can assume that the ranking algorithms rank first the
buyer (seller) with higher value (lower cost). This holds trivially for ~v 1 and ~c 2 given that the ranking algorithms have
non-empty outputs (otherwise, the welfare is 0 and we are done). The other profiles are all of the form ~v = (vh, v`)
where vh − v` ≥ H/4 − ε and v` ≥ ε; and ~c = (c`, ch) where ch − c` ≥ H/4 − ε and ch ≤ H − ε. If the buyer ranking
algorithm given ~v does not rank first the higher buyer, by consistency it does not rank this buyer at all, and so the
welfare can be arbitrarily small with respect to the welfare of the trade reduction double auction (e.g., when ~v is paired
with cost profile (v` − ε, v` − ε)). The argument for the seller ranking algorithm is similar (e.g., when ~c is paired with
value profile (ch + ε, ch + ε)).

Now consider profile pairs (~v 1, ~c 1) and (~v 2, ~c 2). Let (v, c) be the value and cost of the first buyer-seller pair that
the composition rule considers; observe in both cases it has either v = H or c = 0. By DSIC, the composition rule for
the first buyer-seller pair is equivalent to setting a threshold tB = tB(c) on the buyer’s value, and a threshold tS = tS (v)
on the seller’s cost. What are the possible thresholds tB(0), tS (H)? If either tB(0) > H/4 or tS (H) < 3H/4 then the first
buyer-seller pair is rejected, and the maximum welfare from the second buyer-seller pair is ε, completing the proof.
It is left to reason about the case in which tB(0) ≤ H/4 and tS (H) ≥ 3H/4. We now show that if this is the case then
there is a large budget deficit for the profile pair (~v 3, ~c 2), and in addition the WGSP property is violated.

Given (~v 3, ~c 2), the first buyer-seller pair that the composition rule considers has value and cost (H, 0), which
clears both thresholds and is accepted for trade. Threshold payments imply a deficit of ≥ H/2, and since the most
that the second buyer-seller pair can contribute to covering this deficit is ε, the total budget deficit is� H/8 for small
enough ε.
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We conclude by showing a violation of WGSP. Consider the profile pair (~v 4, ~c 3); the first buyer-seller pair has
value and cost (3H/8, 5H/8). If it is accepted then the welfare is negative and the proof is complete. Otherwise,
consider a group deviation to the profile pair (~v 3, ~c 4). The first buyer-seller pair then has reported value and cost
(H, 0) and is accepted with payments tB(0) ≤ 2H/8, tS (H) ≥ 6H/8. This deviation is strictly preferable to both players
in the deviating pair, completing the proof.

Running Examples. Our BB composition theorem applies to all ranking algorithms that are implementable within
the deferred-acceptance framework: the greedy algorithm for matroids, the greedy-by-quality algorithm for knapsack,
and the new matching algorithm that we describe in Appendix D.

7. Lower Bounds

This section investigates the interplay between welfare on one hand and incentives and budget balance on the other.
We prove lower bounds on the welfare achievable by double auctions (compositions or not) that are either WGSP or
DSIC and BB. We show the lower bounds for the most basic setting, the unconstrained double auction setting.

7.1. Lower Bound Subject to WGSP
Our lower bound for WGSP mechanisms applies to deterministic, anonymous double auction mechanisms. A

double auction mechanism for problem instance IN ,IM is anonymous if any renaming of the players does not change
the players’ payoffs. Formally, denote the utility of player i ∈ N ∪ M given input (~v, ~c) by ui(~v, ~c). Then, for every
permutation π of the buyers and sellers such that π(i) ∈ N for all i ∈ N and π(i) ∈ M for all i ∈ M and all inputs (~v, ~c) it
holds that ui((vi)i∈N , (ci)i∈M) = uπ(i)((vπ(i))i∈N , (cπ(i))i∈N). While natural double auctions for our setting are anonymous,
it would also be interesting to extend our lower bound to non-anonymous mechanisms.

Theorem 7.1. Consider an unconstrained double auction setting. That is, IN = 2N and IM = 2M and therefore
B ⊆ N and S ⊆ M are feasible whenever |B| ≤ |S |. Let c̄ > v̄ > 0. Consider valuations vi ∈ [0, v̄] for all i ∈ N and
costs c j ∈ [0, c̄] for all j ∈ M. Recall that s∗(~v, ~c) denotes the maximum number of trades in a welfare-maximizing
solution for input (~v, ~c). Then no deterministic, anonymous double auction mechanism that is WGSP can guarantee a
worst-case approximation guarantee strictly better than

1 −
1

s∗(~v, ~c)
.

Proof. Assume by contradiction that there is a deterministic, anonymous double auction mechanism that is WGSP
and achieves a strictly better worst-case approximation guarantee. Then there must be an ε > 0 such that for all inputs
(~v, ~c) the mechanism achieves welfare at least

W(~v, ~c) ≥
(
1 −

1
s∗(~v, ~c)

+ ε

)
· OPT (~v, ~c).

Consider the following class of inputs (~vs,v, ~cs,c) parameterized by integer s such that 1 ≤ s ≤ min(n,m) and
v, c > 0. The first s buyers have a value of v and the remaining buyers have a value of 0. Similarly, the first s sellers
have a cost of c and the remaining sellers have a cost of c̄.

Then for any fixed s we have s∗(~vs,v, ~cs,c) = s if v ≥ c and s∗(~vs,v, ~cs,c) = 0 otherwise. For v > c we get a
contradiction to the claimed welfare guarantee if not all of the first s buyers and s sellers trade. Hence in this case
exactly these buyers and sellers must win. Similarly, for v < c we get a contradiction to the claimed welfare guarantee
if any buyer-seller pair is accepted for trade. Hence in this case all players must lose. For ease of presentation we will
assume that for v = c all players with non-zero value/cost win.

Since the double auction mechanism is anonymous we know that winning buyers (sellers) with the same value
(cost) must make (receive) identical payments. In particular, if all buyers (sellers) win and have the same value (cost)
then all buyers (sellers) must make (receive) identical payments.

We claim that for any fixed s and all v ≥ c > 0 the double auction mechanism must set the payments pB(~vs,v, ~cs,c)
of the first s buyers and the payments pS (~vs,v, ~cs,c) to the first s sellers to pB(~vs,v, ~cs,c) = c and pS (~vs,v, ~cs,c) = v. The
arguments for the buyers and the sellers are symmetric, and so we only present the argument for the buyers.
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We first show that the payments for buyers with values v = c must be pB(~vs,v, ~cs,c) = c. If the payments are
pB(~vs,v, ~cs,c) > c, we get a contradiction to WGSP, because the buyers currently have utility v − pB(~vs,v, ~cs,c) < 0 and
could jointly deviate to v′ < c which would make them lose and pay nothing for a utility of zero. If the payments are
pB(~vs,v, ~cs,c) < c, then in an instance (~vs,v′ , ~cs,c) where the first s buyers have values v′ and the first s sellers have costs
c such that c > v′ > pB(~vs,v, ~cs,c), the buyers could jointly deviate and report a value of c. Before the deviation they are
losing and not paying anything for a utility of zero, after the deviation they are winning and paying pB(~vs,v, ~cs,c) < v′

which gives them a strictly positive utility.
Next we show that the payments for buyers with values v > c must be pB(~vs,v, ~cs,c) = c. If the payments are

pB(~vs,v, ~cs,c) > c, then these buyers could strictly gain by a group deviation to c. This would strictly improve their
utility from v − pB(~vs,v, ~cs,c) to v − c, where we use that they pay exactly c if they report a value of c. If the payments
are pB(~vs,v, ~cs,c) < c, then in an instance (~vs,v′ , ~cs,c) where the first s buyers have values v′ = c and the first s sellers
have costs c, the buyers could strictly gain by a group deviation to v because this will lower their payment from c to
pB(~vs,v, ~cs,c) < c, where we again use that for v′ = c each buyer has to pay c.

The statement of the theorem follows from this partial characterization of the payments by considering an input
(~vs,v, ~cs,c) from the restricted class of inputs described above with s ≥ 1 and v ≥ c > 0 and a group deviation of the
s buyers with value v and the s sellers with cost c to v′, c′ such that v′ > v ≥ c > c′ because this—as we have just
shown— will strictly reduce the payments of the buyers from c to c′ and strictly increase the payments to the sellers
from v to v′.

From Corollary 5.3 we know that we can achieve the lower bound established in the previous theorem via the
backward composition of uniformly optimal deferred-acceptance ranking algorithms with the lookback 0-threshold
rule. We conclude that whenever the trade reduction mechanism can be implemented in this manner, it achieves
optimal worst-case welfare subject to WGSP.

7.2. Lower Bound Subject to DSIC and BB
Next we show a lower bound that applies to all deterministic double auction mechanisms resulting from composi-

tion or not that are DSIC and BB.

Theorem 7.2. Consider an unconstrained double auction setting. That is, IN = 2N and IM = 2M and therefore
B ⊆ N and S ⊆ M are feasible whenever |B| ≤ |S |. Let c̄ > v̄ > 0. Consider valuations vi ∈ [0, v̄] for all i ∈ N and
costs c j ∈ [0, c̄] for all j ∈ M. Recall that s∗(~v, ~c) denotes the maximum number of trades in a welfare-maximizing
solution for input (~v, ~c). Let k = min{n,m}. Then for no ε with (k − 1)/(2k2 − 1) < ε < 1/s∗(~v, ~c) there exists a
deterministic double auction mechanism that is DSIC and BB and achieves a worst-case approximation guarantee of

1 −
1

s∗(~v, ~c)
+ ε.

Note that (k − 1)/(2k2 − 1) = o(1) meaning that (k − 1)/(2k2 − 1) → 0 as k → ∞. So asymptotically the theorem
establishes a lower bound of 1 − 1/s∗(~v, ~c).

Proof. For contradiction, assume that there is a DSIC and BB double auction that achieves a strictly better worst-case
approximation guarantee. Then there must be an ε > (k − 1)/(2k2 − 1) such that the welfare on any input (~v, ~c) is at
least

W(~v, ~c) ≥
(
1 −

1
s∗(~v, ~c)

+ ε

)
· OPT (~v, ~c).

Fix some s such that 1 ≤ s ≤ k = min{n,m} and consider an input (~vs,y, ~cs,x) in which the first s buyers have a
value of y and the first s sellers have a cost of x where 0 < x < y, while all other buyers have a value of 0 and all
other sellers have a cost of c̄. For this input it is optimal to accept all buyers with value y and all sellers with cost x, so
s∗(~vs,y, ~cs,x) = s.

Consider a unilateral deviation by some buyer with value y to value y′ such that y ≥ y′ ≥ x. We claim that the
buyer must remain winning as long as

y′ >

(
1 − 1

s − ε(s − 1)
)

y + εsx

1 − 1
s + ε

. (4)
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To see this observe that in the altered input (~vs,y,y′ , ~cs,x) we still have s∗(~vs,y,y′ , ~cs,x) = s. Moreover, OPT(~vs,y,y′ , ~cs,x) =

(s − 1)(y − x) + (y′ − x). So if the buyer who deviated to y′ would not win, then the welfare achieved by the double
auction would be at most (s − 1)(y − x). But then, together with inequality (4), this would contradict the claimed
approximation ratio on input (~vs,y,y′ , ~cs,x).

Now consider a unilateral deviation by some seller with cost x to cost x′ such that y ≥ x′ ≥ x. Then an analogous
argument shows that the buyer must remain winning as long as

x′ <

(
1 − 1

s − ε(s − 1)
)

x + εsy

1 − 1
s + ε

. (5)

Together with the DSIC requirement these arguments show that the payments of the buyers with value y in the
original instance are at most the RHS of inequality (4) and the payments to the sellers with cost x in the original
instance are at least the RHS of inequality (5). We obtain a contradiction to BB if the former is smaller than the latter.
This is the case for

ε >
s − 1

2s2 − s
,

which we assumed to be the case for s = k.

From Corollary 5.3 we know that we can achieve this asymptotic lower bound via the backward composition of
uniformly optimal deferred-acceptance ranking algorithms with the lookback 0-threshold rule. Hence whenever the
trade reduction mechanism can be implemented in this manner, it is not only worst-case optimal subject to WGSP but
also subject to DSIC and BB.

8. Conclusion and Discussion

Motivated by the complexity of double auction design, we proposed a modular approach to the design of double
auctions that decomposes the design task into the tasks of designing greedy ranking algorithms for either side of the
market and a composition rule. Focusing on settings in which buyers each demand one unit and sellers each supply
one unit and there are restrictions on which sets of buyers resp. sellers can be accepted for trade, we proved a number
of composition theorems for (approximate) efficiency, DSIC or WGSP, and BB, which relate the properties of the
double auction to the properties of the modules used in its construction.

We instantiated our approach for three different feasibility structures—matroids, knapsacks, and matchings. For
matroids we showed that both the VCG mechanism and a natural analog of McAfee’s trade reduction mechanism can
be implemented via composition. For the other settings we obtained VCG- and trade reduction-style mechanisms that
are DSIC resp. WGSP and BB and achieve near-optimal efficiency. We also identified a sense in which our guarantees
are the best possible, subject to strong incentive or budget balance constraints.

A natural question going forward is whether our modular approach can be extended to settings with cross-market
constraints, and/or to settings with multi-unit demand and multi-unit supply.

While it is certainly conceivable that our modular approach can be extended to cross-market constraints, any such
approach would have to delegate the information about a player’s matchability to the ranking algorithms. Let us
demonstrate why this is a challenging task by means of an example. For this consider the setting where buyers are
still unit demand and sellers are still unit supply, but there is an exogeneous constraint on which buyers and sellers can
trade with one another. A natural idea here would be to boost a player’s score if he can be matched with many other
players. For example, a buyer’s value could be multiplied by the number of potential sellers from whom he can buy.
And similarly, a seller’s cost could be divided by the number of buyers to whom he can sell. This approach, however,
seems unlikely to yield high welfare.

Example 8.1 (Low Welfare with Cross-market Constraints). Suppose there are 2n buyers and 3n sellers. Buyer
i ∈ {1, . . . , n} can buy from seller i. Buyer i ∈ {n + 1, . . . , 2n} can buy from sellers j ∈ {i, i + n}. Suppose that
all 2n buyers have a value of 1, that the first n sellers have a cost of 0, while the remaining 2n sellers have a cost
of C >> 0. Now the ranking algorithm that boosts a buyer’s score by multiplying his value with the number of
potential matches would rank the second n buyers first, while the ranking algorithm that boosts a seller’s score by
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dividing its cost through the number of buyers to whom he can sell would rank the first n sellers first. But now any
forward composition rule that iteratively queries the two ranking algorithms for the next buyer-seller pair will only
see infeasible buyer-seller pairs.

Similarly, any method of expressing a player’s matchability in the one-sided ranking algorithms would have to
ensure that a better rank coincides with a better chance of being accepted for trade, or it would risk being vulnerable
to mis-reports. The following example demonstrates that this may be difficult to achieve with the natural idea of
boosting the scores of more matchable players.

Example 8.2 (Incentive Issues with Cross-market Constraints). Suppose there are n = 2 buyers and m = 2 sellers.
Suppose further that buyer 1 has a value of 1 − ε and can trade with both sellers, while buyer 2 has a value of 2 and
can only trade with the second seller. Finally, suppose that seller 1 has a cost of 1 − ε, while seller 2 has a cost of 2.
Assume that buyers are scored by multiplying their value with the number of potential matches, while for sellers the
cost is divided by the number of potential matches. Consider the forward composition of these ranking algorithms
using the composition rule that accepts a buyer-seller pair if it is feasible and has non-negative gain from trade. If the
second buyer reports truthfully then he is ranked first and paired with the first seller, and therefore he is not accepted
for trade, but if he lowers his report to 2 − 3ε then he will be accepted for trade.

The second direction in which our results could be extended—buyers with multi-unit demand and sellers with
multi-unit supply—seems very promising but would also require new techniques.

The reason for this is that our two main technical tools for establishing the incentive properties of the double
auctions that we obtain—the characterization of DSIC double auctions via monotonicity and threshold payments and
the deferred-acceptance auctions framework—no longer apply in these more general settings.

A possible starting point for such a theory could be the ideas behind Ausubel’s clinching auction [2] and its
extension to polyhedral feasibility constraints [19], which yield DSIC mechanisms for one-sided settings that can be
implemented as clock auctions.
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A. Pseudocode for Forward and Backward Composition

In this appendix we provide pseudocode for forward composition (cf. Algorithm 2) and backward composition
(cf. Algorithm 3) as defined in Section 3.2.

ALGORITHM 2: The Allocation Rule of Forward Composition
Input: Value profile ~v and cost profile ~c, access to ranking algorithms and a composition rule
Output: Set of accepted players A

Initialize A = ∅ % Accepted players
Let `B, `S be the ranks of the players up to which the buyer and seller streams are feasible

% Repeatedly query the ranking algorithms
while |A| < min{`B, `S } do % There are still feasible buyer-seller pairs

query both ranking algorithms on inputs ~v, ~c, respectively, to compose the next buyer-seller pair i, j % Step 1
run the composition rule on i, j, their value and cost, and their query histories % Step 2
if i, j accepted then

A = A ∪ {i, j} % Add i, j to the set of accepted players
else

stop algorithm % The algorithm stops as soon as it rejects the first pair of players; all players not currently in A are rejected
end if

end while

ALGORITHM 3: The Allocation Rule of Backward Composition
Input: Value profile ~v and cost profile ~c, access to backward-feasible ranking algorithms and a composition rule
Output: Set of accepted players A = (N ∪ M) \ (RB ∪ RS )

Initialize RB = ∅; RS = ∅ % Rejected buyers and sellers
Let `B, `S be the ranks of the largest-rank buyer and seller to discard for feasibility

% Preprocessing—reject players until the remaining buyer and seller sets are both feasible and have equal size % Step 0
for k = 1 to n −min{n − `B,m − `S } do

query the ranking algorithm for buyers on input ~v for the next buyer i
RB = RB ∪ {i}; % Reject buyer i

end for
for k = 1 to m −min{n − `B,m − `S } do

query the ranking algorithm for sellers on input ~c for the next seller j
RS = RS ∪ { j}; % Reject seller j

end for
% Repeatedly query the ranking algorithms
while A = (N ∪ M) \ (RB ∪ RS ) , ∅ do % There are still active players

query both ranking algorithms on inputs ~v, ~c, respectively, to compose the next buyer-seller pair (i, j) % Step 1
run the composition rule on (i, j), their value and cost, and their query histories excluding preprocessing queries % Step 2
if (i, j) rejected then

RB = RB ∪ {i}; RS = RS ∪ { j} % Reject buyer i and seller j
else

stop algorithm % The algorithm stops as soon as it accepts the first pair of players; all players in RB ∪ RS are rejected
end if

end while

B. Ranking Algorithms for Matroids

In this appendix we discuss ranking algorithms for matroids. We give pseudocode for the forward-feasible ranking
algorithm derived from the forward greedy algorithm (cf. Algorithm 4) and the backward-feasible ranking algorithm
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derived from the reverse greedy algorithm (cf. Algorithm 5). In Proposition B.1 we show that these ranking algo-
rithms are uniformly optimal. Afterwards, in Proposition B.2 we show how to implement Algorithm 5 as a deferred-
acceptance algorithm.

ALGORITHM 4: Forward-feasible Ranking Algorithm for Matroids (Presented for Buyers)
Input: Value profile ~v, w.l.o.g assumed to be sorted v1 ≥ · · · ≥ vn, feasability oracle access to matroid (N,IN)
Output: Forward-feasible output stream S

Initialize S = () % Output stream
Initialize ` = 0 % Rank of lowest-ranked buyer up to which the output stream is feasible

for i = 1 to n do % Go over buyers from high to low quality
if S ∪ {i} ∈ IN then % If adding buyer i to the stream preserves its independence

append i to S
` = ` + 1

end if
end for
Append the players i < S to S in any order

ALGORITHM 5: Backward-feasible Ranking Algorithm for Matroids (Presented for Buyers)
Input: Value profile ~v, w.l.o.g. assumed to be sorted v1 ≥ · · · ≥ vn, feasability oracle access to matroid (N,IN)
Output: Backward-feasible output stream S

Initialize S = () % Output stream
Initialize ` = 0 % Rank of largest-ranked buyer to discard for feasibility

% Phase 1
for i = n down to 1 do % Go over buyers from low to high quality

if i forms a circuit with buyers from N \ (S ∪ {i}) then % Identify buyers that need to be rejected for feasibility
append i to S
` = ` + 1

end if
end for
% Phase 2
for i = n down to 1 do % Go over buyers from low to high value

if i < S then % Append every remaining buyer not yet in the stream
append i to S

end if
end for

Note that feasability oracle access to the matroid is sufficient to check whether a given element forms a circuit
with a given set in a computationally tractable way, e.g., by checking whether the element is in the set’s closure [42].

Proposition B.1. The forward- and backward-feasible ranking algorithms for matroids based on the forward and
reverse greedy algorithms for matroids are uniformly optimal.

Proof. That the greedy algorithm finds a maximum weight basis of any matroid is a well known fact [47]. The claim
that these algorithms are uniformly optimal follows from the fact that if we restrict the independent sets to sets of size
at most k, the matroid structure is preserved [e.g., 47].

Proposition B.2. The backward-feasible ranking algorithm for matroids based on the reverse greedy algorithm for
matroids can be implemented as a deferred-acceptance algorithm.

Proof. We can decide whether we are in Phase 1 or Phase 2 of the algorithm by checking whether the set of active
players A is independent. If the set of active players A is not independent, then we are in Phase 1. And we can score
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the active players using:

sA
i (vi, v−A) =

{
vi if i forms a circuit with a subset of A \ {i},
∞ otherwise,

where we note that forming a circuit is a structural property of the other active players and independent of their
valuations. On the other hand, if the set of active players A is independent, then we are in Phase 2 and we can score
the active players by value in order to maintain consistency.

C. Ranking Algorithms for Knapsacks

In this appendix we present additional details for the ranking algorithms for knapsacks. We first show that the
forward and backward-feasible ranking algorithms derived from the greedy-by-quality algorithm are uniform 1/(1 −
λ)µ-approximations. Recall that we defined λ ≤ 1 to be the ratio between the largest element’s size and the knapsack
size, that we defined µ ≤ 1 to be the ratio between the smallest element’s size and the largest element’s size, and that
we assumed that 1/µ is integral. Afterwards we show how to implement the backward-feasible ranking algorithm as
a deferred-acceptance algorithm.

Proposition C.1. The forward- and backward feasible ranking algorithms for knapsack based on the forward or
reverse greedy-by-quality algorithm are uniform 1

(1−λ)µ -approximations.

Proof. The proof is by induction on the maximum allowed number k of elements in the knapsack. For every k ≥ 0
and for every knapsack instance Q, denote by AQ

k the solution for Q of size at most k found by the greedy algorithm,
and by OQ

k the optimal solution for Q of size at most k. Fix k > 0. Induction hypothesis: for every instance Q it holds
that w(AQ

k−1)/(1 − λ)µ ≥ w(OQ
k−1), where w(AQ

k−1) and w(OQ
k−1) denote the total quality of solutions AQ

k−1 and OQ
k−1. The

hypothesis is easy to verify for k = 1.
Consider a knapsack instance Q′ in which all elements fit into the knapsack. Without loss of generality we assume

that sizes are normalized such that the size of the knapsack is 1, and that the elements are ordered from high to low
quality. Thus the first step of the greedy algorithm is to place element 1 into the knapsack. We define a residual
instance Q where the allowed number of elements is k − 1, and the size of the knapsack decreases by the size of
element 1. In addition, the elements whose sizes are larger than the residual knapsack are removed from the residual
element set. By the greediness of the algorithm, we know that w(AQ′

k ) = w(AQ
k−1) + w1.

Assume that the optimal solution to Q′ with up to k elements does not include element 1, by how much is w(OQ
k−1)

decreased relative to w(OQ′

k ) due to placing element 1 in the knapsack? There are two sources of loss. First, element
1 takes up place in the knapsack according to its size, and thus excludes elements from the optimal solution. Second,
there may be elements removed from the residual element set since they no longer fit into the knapsack, so that the
element sets available to OQ′

k and to OQ
k−1 may differ.

We start from the second source of loss. Observe that the minimum size of an element removed from the residual
element set is 1 − λ, and the maximum quality of such an element is w1. There are at most 1/(1 − λ) such elements
in the optimal solution to Q′. If their aggregate size is at least the size of element 1, removing them from the optimal
solution also makes room for element 1, and so in this case

w(OQ
k−1) ≥ w(OQ′

k ) − w1
1

1 − λ
≥ w(OQ′

k ) − w1
1

(1 − λ)µ
.

On the other hand, if the aggregate size of elements to remove from the residual set is less than the size of element
1, then there are at most λ/(1 − λ) such elements (using that by normalization, the size of element 1 is at most λ).
In addition, there is the first source of loss, from excluding a maximum number of 1/µ additional elements from the
optimal solution to make room for element 1 (we use here the assumption that 1/µ is integral). Thus, in this case,

w(OQ
k−1) ≥ w(OQ′

k ) − w1

(
1
µ

+
λ

1 − λ

)
≥ w(OQ′

k ) − w1
1

(1 − λ)µ
,

where in the second inequality we used that λ ≥ λµ.
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Putting everything together and using the induction assumption we get that

w(OQ′

k ) ≤ w(OQ
k−1) + w1

1
(1 − λ)µ

≤ w(AQ
k−1)

1
(1 − λ)µ

+ w1
1

(1 − λ)µ
≤ w(AQ′

k )
1

(1 − λ)µ
,

thus verifying the hypothesis for k and completing the proof.

Proposition C.2. The backward-feasible ranking algorithm for knapsacks based on the reverse greedy-by-quality
algorithm can be implemented as a deferred-acceptance algorithm.

Proof. The reverse greedy algorithm repeatedly rejects the element with lowest quality until the elements that are still
active fit into the knapsack. The sizes of the elements as well as the capacity of the knapsack are structural properties.
The implementation for buyers uses the following scores for active players in A:

sA
i (vi, v−A) =

{
vi if the total size of active players A exceeds the size of the knapsack,
∞ otherwise.

Once enough players have been rejected so that the active set A becomes feasible, we can continue to score elements
by quality in order to maintain consistency.

D. Ranking Algorithms for Matchings

In this appendix we present the novel backward-feasible ranking algorithm for matchings. We describe the algo-
rithm and analyze its approximation guarantee in Section D.1. Afterwards, in Section D.2, we show how to implement
it within the deferred-acceptance framework.

D.1. Backward-Feasible Ranking Algorithm
We describe a reverse greedy algorithm that is based on an idea of [39]. Our description (cf. Algorithm 6) follows

that of [14]. Unlike the algorithm of Drake and Hougardy our algorithm is randomized.
Our algorithm starts with an arbitrary node and then grows a path of locally heaviest edges. If such a path cannot

be extended any further, it restarts this process at an arbitrary node. In the end—with probability 1/2—it takes all
even edges along the paths. Otherwise, it takes all odd edges. Once the remaining edges are feasible, we can continue
to output edges in reverse order of their weight for the sake of consistency. This gives rise to a backward-feasible
ranking algorithm.

ALGORITHM 6: Path Growing Algorithm
Input: Graph G = (V, E), weights w(e) ≥ 0 for all edges e ∈ E
Output: Matching M

Set M1 = ∅, M2 = ∅, i = 1
while E , ∅ do

Choose x ∈ V of degree at least 1 arbitrarily
while x has a neighbor do

Let (x, y) be the heaviest edge incident to x
Add (x, y) to Mi

Set i = 3 − i
Remove x from G
Set x = y

end while
end while
Output M1 with probability 1/2, otherwise output M2

Proposition D.1. The backward-feasible ranking algorithm based on the path growing algorithm is consistent, rank
monotone, and a uniform 2-approximation.
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Proof. The algorithm is consistent because it outputs the elements of the set Mi that has been picked in order of their
weights. It is rank monotone because by increasing its bid a player can only enter and not drop out of either M1 or M2.
For the approximation guarantee we assign each edge to some node in the graph in the following way. Whenever a
node is removed, all edges that are currently incident to that node are assigned to it. To prove the factor 2, we consider
an optimal solution of cardinality k. Each of these edges is assigned to a node. If we consider the edges adjacent to
these nodes that were added to M1 ∪ M2, then from the fact that we picked the locally heaviest edges we know that
their total weight is at least the weight of the optimal edges. The claim now follows from the fact that we pick each of
these edges (or a better one) with probability 1/2.

D.2. Implementation as Deferred-Acceptance Algorithm

The randomization can be implemented by tossing a fair coin at the beginning of the algorithm, and by choosing
M1 if the coin shows heads and by choosing M2 if the coin shows tails. The path growing part of the algorithm can be
implemented as described in [15]. Once the set of active edges becomes feasible, we can continue to score by weight
in order to maintain consistency.
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