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Abstract

As market intermediaries, electricity retailers buy electricity from the wholesale market

or self generate for re(sale) on the retail market. Electricity retailers are uncertain about

how much electricity their residential customers will use at any time of the day until they

actually turn switches on. While demand uncertainty is a common feature of all commodity

markets, retailers generally rely on storage to manage demand uncertainty. On electricity

markets, retailers are exposed to joint quantity and price risk on an hourly basis given the

physical singularity of electricity as a commodity. In the literature on electricity markets,

few articles deals on intra-day hedging portfolios to manage joint price and quantity risk

whereas electricity markets are hourly markets. The contributions of the article are twofold.

First, we define through a VaR and CVaR model optimal portfolios for specific hours (3am,

6am, . . . ,12pm) based on electricity market data from 2001 to 2011 for the French

market. We prove that the optimal hedging strategy differs depending on the cluster hour.

Secondly, we demonstrate the significantly superior efficiency of intra-day hedging portfolios

over daily (therefore weekly and yearly) portfolios. Over a decade (2001-2011), our results
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clearly show that the losses of an optimal daily portfolio are at least nine times higher than

the losses of optimal intra-day portfolios.

Keywords: Electricity; Risk; Retailer; Hedging; Portfolio; Intra-day; VaR;

CVaR.

JEL classification: C02, L94, G11, G32.

Introduction and literature review

In competitive wholesale and retail electricity markets, electricity retailers buy electric-

ity from producers through long term contracts, on the day-ahead/spot market, or self-

generate, for (re)sale on the retail market. On the residential segment, retailers have

to serve fluctuating load at usually fixed predetermined prices (Boroumand and Zach-

mann, 2012; Bushnell, 2008). As market intermediaries, retailers have the contractual

obligation to harmonize their upstream (sourcing) and downstream (sales) portfolios of

electricity. Demand uncertainty is a common feature of all commodity markets and is tra-

ditionally managed through inventories. For all commodity retailers, inventories enable

intertemporal arbitrages and facilitate matching between sourcing and selling portfolios

in accordance with supply/demand variability. However, in electricity markets, retailers

are uncertain about how much electricity their customers will consume at any hour of

the day until they turn actually switches on. In standard electricity retail contracts, re-

tailers operate under an obligation to serve and cannot curtail delivery (except in the

case of the so-called interruptible contracts). On the supply side, the economic non stora-

bility of (large) electricity volumes contributes to make electricity markets very specific.

Consequently, electricity needs to be generated and consumed simultaneously. This non-

storability contributes to the exceptionally high volatility of electricity wholesale prices

in most spot markets around the world (Geman, 2008). The crucial dimension of price

formation in electricity markets is the instantaneous nature of the product (Bunn, 2004)

leading to structural price jumps (Goutte and al. 2013 and 2014). Regardless of how

retailers hedge their expected load, they will inevitably be short or long given demand

stochasticity. Any corresponding adjustment on the spot market will be made at volatile

hourly prices whereas retail prices are generally fixed for a significantly longer period

given consumers risk aversion (generally one year minimum with tacit conduction). This

asymmetry of price patterns combined to demand variability can generate very high losses

for retailers which are not efficiently hedged. Indeed, retailers cannot pass through in-
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creases of wholesale prices to their customers either because of potential losses of market

shares on a longer run or because electricity prices are frozen (like in most US states).

Given the strong positive correlation and multiplicative interaction between load level

and spot price (Stoft, 2002), any under or over- contracted position will be settled at

the most unfavorable times. Most likely, when retailers are short (consumption exceeds

demand forecasts), spot prices are high and above retail prices. Reversely, when retail-

ers are long, spot prices will most likely be lower than their average sourcing cost. To

sum up, the hourly variability of demand, its inelasticity, and the rigidity of supply (non

storability and plant outages) expose retailers net profits to hourly volumetric and price

risks, both correlated with weather conditions (Stoft, 2002). Price and quantity risks can

be very severe given that supply and demand conditions usually shift adversely (Stoft

2002). Suppliers profits depend on electricity demand, spot price, and retail price. Since

retail prices are usually fixed for residential customers (Henney, 2006), profit is strongly

impacted by hourly spot price variations. Consequently, retailers are unable to hedge

their electricity sales by only trading in forward and spot markets on a monthly, weekly,

or daily basis. They need to engage in risk management strategies on an hourly basis

to mitigate the exposure of their profits or their opportunity cost (if they self-generate)

exposed to joint price and volumetric risk. As a consequence of electricity liberalization,

a wide variety of hedging instruments have emerged to enable economic agents to manage

their risks (Hull, 2012; Geman, 2008; Hunt, 2002; Hunt and Shuttleworth, 1997). Since

quantity risk is non tradable (i.e. cannot be transferred by a retailer to another economic

agent), hedging consists in price-based financial instruments (Brown and Toft, 2002). In

electricity markets, efficient hedging should be against variations in total costs (quantity

times price), which is complex with hourly demand variability. A retailer profit facing a

multiplicative risk of price and quantity is nonlinear in price. Therefore, hedging with

linear payoff instruments (forward and futures contracts) is not efficient (Boroumand and

Zachmann, 2012). Conventional hedging strategies deal with one source of uncertainty.

Methodologies to hedge price risk have been studied by the literature. However, hedging

joint price and quantity risk for electricity retailers remains an outstanding issue. The

literature on risk management within electricity markets adopts usually the perspective

of electricity producers (Pineda and Conejo, 2012; Conejo et al 2008, Roques et al 2006,

Paravan and al, 2004). Chao et al. (2008) deals with the vertical allocation of risk bearing

within the electricity value chain. On retailers perspective, Boroumand and Zachmann

(2012) compare the risk profiles of different financial and physical hedging portfolios ac-

cording to the Value at Risk (95%). By defining optimal annual hedging portfolios, they
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show the risk management benefits of relying on financial options and physical assets

with different marginal costs (base, semi base, and peak plants). Chemla et al (2011)

show the superior efficiency of vertical integration over forward hedging when retailers

are highly risk averse. Xu and al (2006) present a midterm power portfolio optimization

and the corresponding methodology to manage risks. Oum et al 2006 and Oum and Oren

2010 obtain the optimal hedging strategy with electricity derivatives by maximizing the

expected utility of the hedged profit (Oum et al, 2006) and the expected profit subject to

a VaR constraint (Oum and Oren 2010). The authors explore optimal procurement time

of the hedging portfolio. Vehvilinen and Keppo (2003) study the optimal hedging of price

risk using a mix of electricity derivatives. Carrion et al (2007) develop a risk-constrained

stochastic programming framework to decide which forward contracts the retailer should

sign and at which price it must sell electricity in order to maximize its expected profit for

a given risk exposure. Carrion et al (2009) propose a bilevel programming approach to

solve the medium-term decision-making problem of an electricity retailer.

However, to our knowledge, few articles propose portfolio optimization based on in-

traday hedging for electricity intermediaries, despite the well-known structural electricity

price spikes subsequent notably to the non storability of electricity. The frequency of spot

hourly price spikes reinforces the necessity of intra day hedging strategies.

Our results clearly demonstrate that the optimal hedging portfolio varies in relation

with the hours of the day. The contribution of the article is twofold. First, our model

demonstrates that the average of the cumulated hourly losses [as measured by the average

VaR and CVaR] of the eight homogeneous group of hours is lower than the VaR (95%) and

the corresponding CVaR of a single daily optimal portfolio. Therefore, we propose several

optimal hedging portfolios per day. Secondly, for any group of hours, we demonstrate that

the optimal portfolio is specific.

The article is structured as follows: Section 1 presents the statistical features of the

simulated data. Section 2 presents our methodology. In section 3, we present the results

of our simulations. The last section concludes and provides policy recommendations.
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1 Data

The methodology is an extension of Boroumand and Zachmann (2012) with two key dif-

ferences. First, we realize simulations on electricity price and volume data over a ten

year period (2001- 2011). The extensive data simulation contributes to the high robust-

ness of our results. Secondly, we test intra-day portfolios rather than annual portfolios.

Therefore, we calculate intra-days VaR for each hourly cluster. We take the French spot

electricity price from 27 Nov 2001 to 8 March 2011.

Our model relies on data from the French spot electricity market from 27 Nov 2001

to 8 March 2011. This market is relevant for several reasons. First, the spot price is the

reference price of the French wholesale market. Indeed, many retailers index their price

on the referential spot price. Overall, the EPEX spot auction represents 70% of all day

ahead transactions. Admittedly, the size of the market in 2001 was smaller but it has

never been an extension of the incumbent, which is an actor among others. Indeed, EDF

uses mainly its production for its own portfolio of clients. The French spot market is the

3rd biggest market in Europe in terms of volume (687 TWh in 2011), the HHI index is

low (691 for the last semester of 2011), and the liquidity is high with 57858 transactions

for the first semester of 2011 (CRE1, 2011).

We define eight different hourly prices, namely our cluster hours, which are: 3am,

6am, 9am, 12am, 3pm (15), 6pm (18), 9pm (21), 12pm (24).

Figure 1 clearly exhibits spot price spikes. Figure 2 shows the different levels of

consumption volume and variability for each cluster hour.

2 Hedging strategies

We demonstrate that a retailer cannot reproduce the risk- reducing benefits of physical

hedging by pure contractual portfolios. For this purpose, we compare the risk profiles of

different portfolios of hedging with the traditional Value at Risk (VaR) indicator. The

Value at Risk (VaR) is an aggregated measure of the total risk of a portfolio of contracts

and assets. The VaR summarizes the expected maximum loss (worst loss) of a portfolio

over a target horizon (10 years in this article) within a given confidence interval (generally

1Observatoire des marchés de l’électricité et du gaz.
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Figure 1: Spot electricity price for each cluster hour from 27 Nov 2001 to 8 March 2011.
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Figure 2: Electricity load for each cluster hour from 27 Nov 2001 to 8 March 2011.
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95%). Thus, VaR is measured in monetary units, Euros in our article. As the maximum

loss of a portfolio, the VaR(95%) is a negative number. Therefore, maximizing the VaR

is equivalent to minimizing the portfolios loss. We rely on the Value-at-Risk because it is

a good measure of the downside risk of a portfolio and is for example used as preferred

criteria for market risk in the Basel II agreement. We strengthen the robustness of our

results with the CVaR.

The Conditional Value-at-Risk, CVaR, is strongly linked to the previous risk measure

(i.e. VaR) which is, as mentioned above, the most widely used risk measure in the practice

of risk management. By definition, the VaR at level α ∈ (0, 1), V aR(α) of a given portfolio

loss distribution is the lowest amount not exceeded by the loss with probability α (usually

α ∈ [0.95, 1)). The Conditional Value at Risk at level α CV aR(α) is the conditional

expectation of the portfolio losses beyond the V aR(α) level. Compared to VaR, the CVaR

is known to have better mathematical properties. It takes into account the possible heavy

tails of portfolio loss distribution. Risk measures of this type were introduced by Artzner

et al. (1999) and have been shown to share basic coherence properties (which is not the

case of V aR(α).

2.1 Payoff of the assets and contracts within a hedging portfolio

A retailer is assumed to have concluded a retail contract (the retail contract is given ex

ante and is therefore not a portfolios parameter of choice) with its customers that imply

stochastic demand Vt for t = 1 : T . The demand distribution is known to the retailer

and the uncertainty about the actual demand Vt is completely resolved in time t. To

fulfill its retail commitments the retailer can buy electricity on the spot market at the ex

ante uncertain spot market price Pt. The spot market price distribution is known by the

retailer. To reduce its risk from buying an uncertain amount of electricity at an uncertain

price, the retailer can conclude financial contracts and/or acquire physical generation

assets. All contracts (including the retail contract and the physical assets generation

volumes) are settled on the spot market that is assumed to be perfectly liquid. Thus, the

payoff streams depend on a given number of hourly spot market realizations.
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2.1.1 Portfolios’ structures

Let denote by πi,t, the price at time t = 1 : T of a particular contract with name i. We

consider five different contracts/assets namely a retail contract, a forward contract, a

power plant, a call option on the spot price and a put option on the spot price given the

spot price. In Table (1), we recall the payoff of these five contracts.

Table 1: Payoffs of different contracts/assets given the spot price Pt.
Contract Payoff

Retail contract πretail,t = −Pt.Vt + E[Pt.Vt]
Forward πforward,t = Vforward.Pt − E[Vforward.Pt]
Power plant πplant,t = Vplant ×max (Pt −mc, 0)− E [Vplant ×max (Pt −mc, 0)]
Call option πcall,t = Vcall ×max (Pt −K, 0)− E [Vcall ×max (Pt −K, 0)]
Put option πput,t = Vput ×max (K − Pt, 0)− E [Vput ×max (K − Pt, 0)]

If for example, the electricity spot price (Pt) is above the strike price of the options

(K) there is a positive payoff of the call option, while the payoff of the put option is zero.

The payoff of the power plant, depends on the installed capacity of the plant (Vplant) and

its marginal cost (mc) and only the payoff of the retail contract depends on the stochastic

demand Vt. We subtract the expected value E(.) from the gross payoff all contracts/assets

to obtain a zero expected value. That is, we assume to be in a perfect and complete market

(no market power, no transaction costs, full transparency, etc.). Consequently, arbitrage

would not allow for the existence of systematic profits.

Without this assumption, the method for the evaluation of contracts and assets would

drive our results. Indeed, the net loss calculated for each portfolio would be strongly

determined by the valuation method of the assets or contracts within each portfolio

2.2 Methodology of numerical simulations

The marginal generation cost of the power plant is set to the median of the simulated

spot prices mc Euro/MWh (second line of Table (2)), thus representing a peak load

power plant. The strike price of the options is set to the expectation value of the spot

price K = E[Pt] Euro/MWh (first line of Table (2)).

We clearly see in Table 2, that all statistical indicators on a 10 year basis vary con-

siderably depending on the cluster. For instance, the variance price for cluster 3am is
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158.03 whereas it is 2790.30 for cluster 9am. In the same vein, the Mean price of cluster

3am is 24.11 whereas it is 57.99 for cluster 12am. This is related to the fact that elec-

tricity markets are hourly markets. Price and demand variability are on an hourly basis.

This hourly feature and the presence of price spikes justify an intra-day hedging approach

rather than a daily approach.

Table 2: Descriptive Statistics of the simulated data for each cluster hour

Clusters Hours
3am 6am 9am 12am

Mean price (E[Pt]) 24,11 23,97 46,66 57,99
Median price (mc) 21,77 21,94 42,01 49,87
Mean load 46978,33 46970,76 57137,90 59106,19
Median load 45428,00 45383,00 55431,00 57793,00
Variance price 158,03 153,92 2790,30 4473,27
Variance load 36966692,94 37830907,83 41246907,38 28520369,27

Clusters Hours
3pm 6pm 9pm 12pm

Mean price (E[Pt]) 48,50 44,08 45,17 35,76
Median price (mc) 42,52 39,33 40,52 32,99
Mean load 56482,52 54875,10 55260,57 53092,89
Median load 55659,00 52932,00 54308,00 51468,00
Variance price 1047,84 619,90 1268,30 252,82
Variance load 24607724,92 40756544,24 39911753,29 29013300,90

2.3 The risk minimization

We can calculate the cumulated annual payoffs of the N=3347 hourly price/volume com-

binations for all 2000 simulations given the portfolio (Vforward, Vplant, Vcall, Vput):

πi =
N∑
t=1

[
πretail,t(P

i
t , V

i
t )
]

+
[
Vforward × πforward,t(P

i
t )
]

+
[
Vplant × πplant,t(P i

t ,mc)
]

+
[
Vcall × πcall,t(P i

t , K)
]

(2.1)

+
[
Vput × πput,t(P i

t , K)
]

Thus πi is the global payoff of the ith hourly price and volume simulation of a day
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given the portfolio defined by (Vforward, Vplant, Vcall, Vput). Using an optimization routine2,

the portfolio that produce the lowest VaR(95%) can be identified. As the routine does

not necessarily converges for this non-linear problem (especially for the three and four

assets case), we rerun the optimization for each case with 100 different randomly drawn

starting values. The result of the best run can be considered sufficiently close to the global

optimum, as all results tend to be within a fairly narrow range.

The objective is to find the portfolio consisting of one 1 MWh baseload retail contract

and a linear combination of financial contracts as well as physical assets that reduces

the retailers risk. Thus, the factors for the other contracts/assets are also measured in

MWh. The next Tables give the results given by two types of portfolios that maximize

the VaR(95%)

– portfolios containing one retail contract.

– portfolios containing one retail contract and different power plants .

2.4 Optimization results

All hourly optimization results are given in Appendix (Tables 6 to 13). To present more

complete results, we give the corresponding Daily optimization results in Table 14.

As shown by Table 3, the simulations show that the optimal hedging varies consider-

ably for each cluster.

A critical result of this Table is that this variation of optimal hedging strategy is not

only in terms of VaR or CVaR values (i.e. we obtain results in the range of −1615.38

to −676, 94 for the VaR and −2692, 99 to −954, 53 for the CVaR) but also in terms of

hedging portfolio: 5 (resp. 4) out of 8 optimal portfolios for the VaR (resp. CVaR) criteria

are composed by a combination of a forward contract and 3 powerplants.

Remark 2.1. The complementarity and the non-correlation between the payoff and the

risk level of a forward and 3 different powerplants (baseload, semi-peak and peak) portfolio

enable more flexibility given the hourly variability of electricity demand.

2We proceed under constrained nonlinear optimization or nonlinear programming using the function
fmincon in Matlab.
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Table 3: Optimal hedging portfolio for each cluster hour, and for a day. The values of
the corresponding VaR and CVaR are also given.

VaR CVaR
Hour Optimal Hedging Portfolio Value Optimal Hedging Portfolio Value
3am Forward and 3 plants -676,94 Forward and 3 plants -954,53
6am All possible contracts -782,23 Only forward -1073,72
9am Forward and Vplant,75 -1615,48 Without options -2692,99
12am Forward and 3 plants -1449,12 Vplant,25 and Vplant,75 -2499,38
3pm Forward and 3 plants -1353,29 Forward and 3 plants -2295,76
6pm Vplant,25 and Vplant,75 -1496,32 Vplant,25 and Vplant,75 -1872,97
9pm Forward and 3 plants -1210,55 Forward and 3 plants -1979,57
12pm Forward and 3 plants -943,84 Forward and 3 plants -1687,96

Daily Only Options -16095,31 Forward and Vplant,75 -21917,63

Therefore, if a retailer is hedged on a daily basis given its liquidity or cost constraints, it

should at least choose this portfolio (i.e. forward contract and 3 powerplants) to minimize

its losses.
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Figure 3: VaR values obtained by the optimal hedging portfolio for each cluster hour on
a ten years basis (in blue). Corresponding mean in red.
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Figure 4: CVaR values obtained by the optimal hedging portfolio for each cluster hour
on a ten years basis (in blue). Corresponding mean in red.

3am 6am 9am 12am 3pm 6pm 9pm 12pm
−2800

−2600

−2400

−2200

−2000

−1800

−1600

−1400

−1200

−1000

−800

Cluster Hours

C
V

a
R

 9
5
%

13



Moreover, we show that a daily hedging optimization is worst than any hourly hedging

optimization (we obtain a VaR of −14102, 12 and a CVaR of −21917, 63). This implies

that intra-day hedging portfolios are much more appropriate than single daily portfolios

to manage joint volumetric and price risks on electricity markets.

Confirming on a 10 years period and on an hourly basis, one of the results in Boroumand

and Zachmann (2012), a single forward hedging is not only never optimal but also ineffi-

cient given that electricity demand is not constant. Table 4 gives the increasing loss using

a single forward hedging instead of the optimal hedging portfolio given in Table 3.

Table 4: Increasing differential loss between the single forward hedging portfolio and
optimal hedging one given in Table 3.

Hour Increasing loss in percentage
VaR CVaR

3am 105,64% 6,37%
6am 102,22 % 0,00%
9am 61,72% 5,71%
12am 27,81% 22,45%
3pm 21,97% 18,19%
6pm 106,35 % 59,12%
9pm 116,92% 11,75%
12pm 35,80% 10,56%

Daily 46.87% 24.48%

Indeed, forward hedging is not relevant within markets where demand is stochastic

and correlated to the spot price.

Over a decade (2001-2011), our results show that the losses of an optimal daily portfolio

are ten times higher for the VaR criteria (resp. nine times higher for the the CVaR

criteria) than the losses of any optimal intra-day portfolio. We obtain for the optimal

daily hedging portfolio a VaR value of −16095, 31 (resp. a CVaR value of −21917, 63)

against, −1615, 48, for the worst one in cluster hour optimization (9am). (resp. −2692, 99

for the worst one again in cluster hour optimization (9am).

2.4.1 In and out of the money case

An interesting extension of our hedging portfolio optimization is to test the case of in and

out of the money option. We run our optimization process for the cluster hour 6pm (peak
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demand) with different strike values for the call option. As mentioned in Section 2.2, the

strike price of the options is set to the expectation value of the spot price K = E[Pt]

Euro/MWh. Thus, regarding the first line of Table (2) for the cluster hour 6pm, we have

a value of at the money strike equals to K = 44, 08 euros. We take a range of strike price

values of −10 to +10 of K with step of 5.

Table 5: Optimal VaR obtained with respect to the strike K + α of the call option

Values of α
Portfolio -10 -5 0 5 10
All possible contracts -1842,64 -1842,64 -1757,36 -1633,56 -1467,77
Only options -1928,39 -1848,05 -1760,97 -1633,56 -1467,77

The more a call option is in the money the higher is its intrinsic value. Thus, the spread

between all possible contracts and only options portfolio increases. To the contrary, this

spread vanishes in the out of money case.

3 Conclusion an Policy recommendations

Our article contributes to the literature on electricity retailers risk hedging. We simulate

optimal intra-day portfolios given that electricity markets are hourly markets. First, we

demonstrate that the optimal hedging strategy differs depending on the cluster hour with

respect to VaR and CVaR risk indicators. Secondly, we prove the significantly superior ef-

ficiency of intra-day hedging portfolios over daily (therefore weekly and yearly) portfolios.

Over a decade (2001-2011), our results clearly show that the losses of an optimal daily

portfolio are at least nine times higher than the losses of optimal intra-day portfolios.

A clear understanding of risk management strategies within electricity markets is crucial

for market players, energy regulators, and financial investors. Without appropriate risk

management instruments, the contribution of electricity retail markets to the global per-

formance of the electricity industry will remain uncertain. We believe that this article

contributes to a better understanding of risk management issues in electricity markets.

The challenge for energy regulators is to enhance the liquidity of risk management instru-

ments such as intra-day options. A relevant research extension is to propose a dynamic

framework for hedging strategies with distinct and/or additional financial derivatives.
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Appendix

3.1 Hourly optimization results

Table 6: Portfolios that maximize the VaR(95%) for the cluster hour 3am.
Portfolios containing one retail contract

# Used assets Retail Vforward Vplant Vcall Vput V aR(95%) CV aR(95%)

1 All possible contracts 1 0,00 0,00 1,82 -0,16 -679,41 -1040,66
2 Without options 1 0,03 1,65 0,00 0,00 -692,45 -966,57
3 Only Options 1 0,00 0,00 1,82 -0,16 -679,42 -2049,04
4 Only forward 1 1,16 0,00 0,00 0,00 -1392,05 -1015,31
5 Only power plant 1 0,00 1,7 0,00 0,00 -702,6 -966,57

Portfolios containing one retail contract and different power plants
# Used assets Retail Vforward Vplant,50 Vplant,25 Vplant,75 V aR(95%) CV aR(95%)

6 Forward and 3 plants 1 0,05 1,36 0,00 0,45 -676,94 -954,53
7 3 plants 1 0,00 1,46 0,00 0,41 -680,8 -958,52
8 Vplant,25 and Vplant,75 1 0,00 0,00 0,6 1,45 -746,21 -1006,76
9 Forward and Vplant,75 1 0,4 0,00 0,00 1,74 -766,59 -1075,85
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Table 7: Portfolios that maximize the VaR(95%) for the cluster hour 6am.
Portfolios containing one retail contract

# Used assets Retail Vforward Vplant Vcall Vput V aR(95%) CV aR(95%)

1 All possible contracts 1 -0,43 2,26 -0,19 -0,46 -782,23 -1112,26
2 Without options 1 0,09 1,61 0,00 0,00 -792,97 -1136,84
3 Only Options 1 0,00 0,00 1,79 -0,25 -796,77 -2225,05
4 Only forward 1 1,1 0,00 0,00 0,00 -1581,83 -1073,72
5 Only power plant 1 0,00 1,72 0,00 0,00 -799,78 -1099,15

Portfolios containing one retail contract and different power plants
# Used assets Retail Vforward Vplant,50 Vplant,25 Vplant,75 V aR(95%) CV aR(95%)

6 Forward and 3 plants 1 -0,27 1,27 0,64 0,00 -791,56 -1102,53
7 3 plants 1 0,00 1,21 0,21 0,38 -787,1 -1091,08
8 Vplant,25 and Vplant,75 1 0,00 0,00 0,77 1,18 -815,34 -1168,49
9 Forward and Vplant,75 1 0,48 0,00 0,00 1,68 -839,5 -1174,92

Table 8: Portfolios that maximize the VaR(95%) for the cluster hour 9am.
Portfolios containing one retail contract

# Used assets Retail Vforward Vplant Vcall Vput V aR(95%) CV aR(95%)

1 All possible contracts 1 0,13 0,01 1,19 -0,1 -1724,74 -2901,73
2 Without options 1 -0,1 1,47 0,00 0,00 -1739,84 -2692,99
3 Only Options 1 0,00 0,00 1,43 -0,04 -1732,8 -3699,36
4 Only forward 1 1,08 0,00 0,00 0,00 -2612,6 -2846,89
5 Only power plant 1 0,00 1,35 0,00 0,00 -1778,3 -3020,88

Portfolios containing one retail contract and different power plants
# Used assets Retail Vforward Vplant,50 Vplant,25 Vplant,75 V aR(95%) CV aR(95%)

6 Forward and 3 plants 1 0,29 0,00 0,13 1,03 -1637,45 -3073,63
7 3 plants 1 0,00 0,00 0,58 0,86 -1670,58 -2749,82
8 Vplant,25 and Vplant,75 1 0,00 0,00 0,58 0,83 -1664,99 -3121,23
9 Forward and Vplant,75 1 0,46 0,00 0,00 0,94 -1615,48 -2986,75
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Table 9: Portfolios that maximize the VaR(95%) for the cluster hour 12am.
Portfolios containing one retail contract

# Used assets Retail Vforward Vplant Vcall Vput V aR(95%) CV aR(95%)

1 All possible contracts 1 1,55 0,06 -0,43 0,93 -1592,1 -2612,67
2 Without options 1 0,55 0,6 0,00 0,00 -1636,46 -2582,64
3 Only Options 1 0,00 0,00 1,17 -0,67 -1600,33 -2858,53
4 Only forward 1 1,08 0,00 0,00 0,00 -1852,15 -3060,5
5 Only power plant 1 0 1,22 0,00 0,00 -1835,1 -2579,51

Portfolios containing one retail contract and different power plants
# Used assets Retail Vforward Vplant,50 Vplant,25 Vplant,75 V aR(95%) CV aR(95%)

6 Forward and 3 plants 1 0,08 0,00 1,09 0,00 -1449,12 -2517,73
7 3 plants 1 0,00 0,03 1,16 0,00 -1483,2 -2501,17
8 Vplant,25 and Vplant,75 1 0,00 0,00 1,18 0,00 -1483,88 -2499,38
9 Forward and Vplant,75 1 0,54 0,00 0,00 0,71 -1670,76 -3088,52

Table 10: Portfolios that maximize the VaR(95%) for the cluster hour 3pm.
Portfolios containing one retail contract

# Used assets Retail Vforward Vplant Vcall Vput V aR(95%) CV aR(95%)

1 All possible contracts 1 0,00 0,00 1,14 -0,60 -1437,09 -2690,58
2 Without options 1 0,52 0,61 0,00 0,00 -1460,12 -2762,06
3 Only Options 1 0,00 0,00 1,14 -0,60 -1437,09 -2944,45
4 Only forward 1 0,96 0,00 0,00 0,00 -1650,58 -2713,29
5 Only power plant 1 0,00 1,29 0,00 0,00 -1566,72 -2762,06

Portfolios containing one retail contract and different power plants
# Used assets Retail Vforward Vplant,50 Vplant,25 Vplant,75 V aR(95%) CV aR(95%)

6 Forward and 3 plants 1 -0,26 0,00 1,52 0,02 -1353,29 -2295,76
7 3 plants 1 0,00 0,00 0,84 0,56 -1391,19 -2327,48
8 Vplant,25 and Vplant,75 1 0,00 0,00 0,90 0,48 -1363,82 -2301,62
9 Forward and Vplant,75 1 0,7 0,00 0,00 0,52 -1425,75 -2721,16
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Table 11: Portfolios that maximize the VaR(95%) for the cluster hour 6pm.
Portfolios containing one retail contract

# Used assets Retail Vforward Vplant Vcall Vput V aR(95%) CV aR(95%)

1 All possible contracts 1 -0,82 0,00 2,49 -0,54 -1757,36 -2327,81
2 Without options 1 -0,68 2,28 0,00 0,00 -1842,64 -2219,67
3 Only Options 1 0,00 0,00 1,68 0,28 -1760,97 -4745,25
4 Only forward 1 1,14 0,00 0,00 0,00 -3087,72 -2980,27
5 Only power plant 1 0,00 1,42 0,00 0,00 -2158,89 -2166,02

Portfolios containing one retail contract and different power plants
# Used assets Retail Vforward Vplant,50 Vplant,25 Vplant,75 V aR(95%) CV aR(95%)

6 Forward and 3 plants 1 0,02 0,00 0,34 1,34 -1496,79 -1888,1
7 3 plants 1 0,00 0,00 0,35 1,38 -1498,48 -1877,1
8 Vplant,25 and Vplant,75 1 0,00 0,00 0,32 1,41 -1496,32 -1872,97
9 Forward and Vplant,75 1 0,27 0,00 0,00 1,47 -1484,76 -1868,39

Table 12: Portfolios that maximize the VaR(95%) for the cluster hour 9pm.
Portfolios containing one retail contract

# Used assets Retail Vforward Vplant Vcall Vput V aR(95%) CV aR(95%)

1 All possible contracts 1 -0,39 1,88 0,00 0,00 -1337,29 -2061,97
2 Without options 1 -0,39 1,88 0,00 0,00 -1337,29 -2123,95
3 Only Options 1 0,00 0,00 1,52 0,08 -1340,6 -3569,5
4 Only forward 1 1,1 0,00 0,00 0,00 -2625,98 -2212,13
5 Only power plant 1 0,00 1,39 0,00 0,00 -1537,15 -2061,97

Portfolios containing one retail contract and different power plants
# Used assets Retail Vforward Vplant,50 Vplant,25 Vplant,75 V aR(95%) CV aR(95%)

6 Forward and 3 plants 1 -0,88 0,00 1,77 0,58 -1210,55 -1979,57
7 3 plants 1 0,00 0,35 0,32 0,88 -1330,75 -2221,06
8 Vplant,25 and Vplant,75 1 0,00 0,00 0,5 1,07 -1326,81 -2222,47
9 Forward and Vplant,75 1 0,27 0,00 0,00 1,37 -1383,16 -2465,48
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Table 13: Portfolios that maximize the VaR(95%) for the cluster hour 12pm.
Portfolios containing one retail contract

# Used assets Retail Vforward Vplant Vcall Vput V aR(95%) CV aR(95%)

1 All possible contracts 1 0,00 0,00 1,34 -0,32 -1093,49 -1952,26
2 Without options 1 0,37 0,91 0,00 0,00 -1103,48 -2079,45
3 Only Options 1 0,00 0,00 1,34 -0,32 -1093,49 -1839,94
4 Only forward 1 1,16 0,00 0,00 0,00 -1281,76 -1866,15
5 Only power plant 1 0,00 1,39 0,00 0,00 -1110,53 -2079,4

Portfolios containing one retail contract and different power plants
# Used assets Retail Vforward Vplant,50 Vplant,25 Vplant,75 V aR(95%) CV aR(95%)

6 Forward and 3 plants 1 -1,08 0,12 2,26 0,00 -943,84 -1687,96
7 3 plants 1 0,00 0,34 0,73 0,24 -1037,89 -1972,08
8 Vplant,25 and Vplant,75 1 0,00 0,00 0,9 0,44 -1042,52 -2015,61
9 Forward and Vplant,75 1 0,35 0,00 0,00 1,25 -1156,43 -2222,72

3.2 Daily optimization results

Table 14: Portfolios that maximize the VaR(95%) for a daily portfolio
Portfolios containing one retail contract

# Used assets Retail Vforward Vplant Vcall Vput V aR(95%) CV aR(95%)

1 All possible contracts 1 0,00 0,00 1,23 -0,55 -16095,31 -23636,38
2 Without options 1 0,45 0,74 0,00 0,00 -16608,72 -25900,20
3 Only Options 1 0,00 0,00 1,23 -0,55 -16095,31 -23636,38
4 Only forward 1 0,85 0,00 0,00 0,00 -23639,03 -27282,99
5 Only power plant 1 0,00 1,55 0,00 0,00 -24712,30 -34227,66

Portfolios containing one retail contract and different power plants
# Used assets Retail Vforward Vplant,50 Vplant,25 Vplant,75 V aR(95%) CV aR(95%)

6 Forward and 3 plants 1 0,62 0,00 0,00 0,72 -16784,65 -25304,00
7 3 plants 1 0 0,013 1,09 0,03 -18232,51 -32775,07
8 Vplant,25 and Vplant,75 1 0,00 0,00 1,11 0,00 -18386,91 -33155,53
9 Forward and Vplant,75 1 0,58 0,00 0,00 0,85 -16133,60 -21917,63
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