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Abstract

We propose a methodology for denoising, variance-stabilizing and normalizing signals whose

varying mean and variance are linked via a single parameter, such as Poisson or scaled chi-squared.

Our key observation is that the signed and square-rooted generalized log-likelihood ratio test for

the equality of the local means is approximately distributed as standard normal under the null.

We use these test statistics within the Haar wavelet transform at each scale and location, referring

to them as the likelihood ratio Haar (LRH) coefficients of the data. In the denoising algorithm, the

LRH coefficients are used as thresholding decision statistics, which enables the use of thresholds

suitable for i.i.d. Gaussian noise. In the variance-stabilizing and normalizing algorithm, the LRH

coefficients replace the standard Haar coefficients in the Haar basis expansion. We prove the

consistency of our LRH smoother for Poisson counts with a near-parametric rate, and various

numerical experiments demonstrate the good practical performance of our methodology.
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1 Introduction

The popularity of wavelets and their potential for useful applications in data science did not escape the

attention of Peter Hall1, who wrote, amongst others, on threshold choice in wavelet curve estimation

(Hall and Patil, 1996a,b), wavelet methods for functions with many discontinuities (Hall et al., 1996),

wavelets for regression with irregular design (Hall and Turlach, 1997) and block-thresholded wavelet

estimators (Hall et al., 1999). I learned of Peter through wavelets by reading some of his papers on

the topic during my doctoral study. I remember my surprise at discovering that both my then PhD

supervisor, Guy Nason, and someone else I knew, Prakash Patil, had co-authored papers with Peter

Hall. When I shared my surprise with Guy, he responded by saying that he did not know many people

who were not Peter’s co-authors! Even though I can unfortunately count myself in this “minority”

category, I have learned and am still learning a great deal from Peter, especially by appreciating the

careful and elegant way in which he used mathematics to support his arguments.

Traditional wavelet transformations are orthonormal transformations of the input data into coef-

ficients that carry information about the local behaviour of the data at a range of dyadic scales and

locations. They tend to offer sparse representation of the input data, with a small number of wavelet

coefficients often being able to encode much of the energy of the input signal, and are computable and

invertible in linear time via recursive pyramid algorithms (Mallat, 1989; Daubechies, 1992). Reviews

of the use of wavelets in statistics can be found, for example, in Vidakovic (1999) and Nason (2008).

One canonical task facilitated by wavelets is the removal of noise from signals, which usually proceeds

by taking a wavelet transform of the data, thresholding away the (typically many) wavelet coefficients

that are small in magnitude, preserving those few that are large in magnitude, and taking the inverse

wavelet transform. Since the seminal paper by Donoho and Johnstone (1994) in which the general

idea was first proposed, several other methods for wavelet smoothing of one-dimensional signals have

appeared, but the vast majority make the i.i.d. Gaussian noise assumption. By contrast, the focus

1This article is to appear in a special issue of Statistica Sinica in memory of Prof. Peter Hall.
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of this article is the treatment of signals in which the variance of the noise is a function of its mean;

this includes Poisson- or scaled-chi-squared-distributed signals. (Throughout the paper, we refer to a

distribution as a ‘scaled chi-squared’, or simply ‘chi-squared’, if it takes the form σ2m−1χ2
m.)

The simplest example of a wavelet transform, and the focus of this article, is the Haar transform,

which can be described as a sequence of symmetric scaled differences of consecutive local means of

the data, computed at dyadic scales and locations and naturally forming a binary tree consisting of

‘parents’ and ‘children’. Its local difference mechanism means that it offers sparse representations for

(approximately) piecewise-constant signals. Our starting point is the observation that testing whether

or not each Haar coefficient of a signal exceeds a certain threshold (in the denoising task described above)

can be interpreted as the likelihood ratio test for the equality of the corresponding local means of the

signal in the i.i.d. Gaussian noise model. In this paper, we take this observation further and propose

similar multiscale likelihood ratio tests for other distributions, most notably those in which the variance

is a function of the mean, such as Poisson or scaled chi-squared. The proposed multiscale likelihood

ratio tests will reduce to the traditional thresholding of Haar wavelet coefficients for Gaussian data, but

will take entirely different and new forms for other distributions. This will lead to a new, unified class

of algorithms useful for problems such as e.g. Poisson intensity estimation, Poisson image denoising,

spectral density estimation in time series, or time-varying volatility estimation in finance. (Extension

of our methodology to images is as straightforward as the extension of the standard one-dimensional

Haar wavelet transform to two dimensions.)

The new multiscale likelihood ratio tests will naturally induce a new construction, likelihood ratio

(Haar) wavelets, which have the benefit of producing (equivalents of) Haar wavelet coefficients that

are asymptotically standard normal under the null hypothesis of the corresponding local means being

equal, even for inhomogeneous non-Gaussian signals. This will (a) make it much easier to choose a

single threshold parameter in smoothing these kinds of data and (b) serve as a basis for new normal-

izing transformations for these kinds of data, which bring their distribution close to Gaussianity. This
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article demonstrates both these phenomena. The device that enables these results is the Wilks’ theo-

rem, according to which the signed square-rooted likelihood ratio statistic will often be approximately

distributed as standard normal, a fact that, we believe, has not been explored in a variance-stabilization

context before.

Wavelet-based Poisson noise removal, with our without the use of a variance-stabilizing and/or

normalizing transform, has a long history. For a Poisson variable X, the Anscombe (1948) transform

2(X + 3/8)1/2 brings its distribution to approximate normality with variance one. Donoho (1993) pro-

poses to pre-process Poisson data via the Anscombe transform, and then use wavelet-based smoothing

techniques suitable for i.i.d. Gaussian noise. This and a number of other wavelet-based techniques for

denoising Poisson-contaminated signals are reviewed and compared in Besbeas et al. (2004). These in-

clude the translation-invariant multiscale Bayesian techniques by Kolaczyk (1999b) and Timmermann

and Nowak (1997, 1999), shown to outperform earlier techniques in Kolaczyk (1997, 1999a) and Nowak

and Baraniuk (1999). Willett and Nowak (2003) propose the use of “platelets” in Poisson image de-

noising. The Haar-Fisz methodology Fryzlewicz and Nason (2004), drawing inspiration from earlier

work by Fisz (1955) outside the wavelet context, proceeds by decomposing the Poisson data via the

standard Haar transform, then variance-stabilizing the Haar coefficients by dividing them by the MLE

of their own standard deviation, and then using thresholds suitable for i.i.d. Gaussian noise with

variance one. Closely related ideas appear in Luisier et al. (2010) and Reynaud-Bouret and Rivoirard

(2010). Jansen (2006) extends the Haar-Fisz idea to other wavelets. As an alternative to Anscombe’s

transform, which is known not to work well for low Poisson intensities, Zhang et al. (2008) introduce a

more involved square-root-type variance-stabilizing transform for (filtered) Poisson data. Hirakawa and

Wolfe (2012) propose Bayesian Haar-based shrinkage for Poisson signals based on the exact distribution

of the difference of two Poisson variates (the Skellam distribution).

In multiplicative set-ups, such as signals distrubuted as Xk = σ2
km
−1χ2

m, the logarithmic transform

stabilizes the variance exactly, but does not bring the distribution of the transformed Xk close to
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normality, especially not for small values ofm such as 1 or 2. In the context of spectral density estimation

in time series, in which the signal is approximately exponentially distributed, wavelet shrinkage for the

logged (and hence variance-stabilized) periodogram is studied, amongst others, in Moulin (1994), Gao

(1997), Pensky et al. (2007) and Freyermuth et al. (2010). An alternative route, via pre-estimation of

the variance of the wavelet coefficients (rather than via variance stabilization) is taken in Neumann

(1996). Haar-Fisz or wavelet-Fisz estimation for the periodogram or other (approximate) chi-squared

models is developed in Fryzlewicz et al. (2006), Fryzlewicz and Nason (2006) and Fryzlewicz et al.

(2008). In more general settings, wavelet estimation for exponential families with quadratic or cubic

variance functions is considered in Antoniadis and Sapatinas (2001), Antoniadis et al. (2001) and Brown

et al. (2010). The Haar-Fisz or wavelet-Fisz transformations for unknown distributions are studied in

Fryzlewicz (2008), Fryzlewicz et al. (2007), Motakis et al. (2006) and Nason (2014). Variance-stabilizing

transformations are reviewed in the (unpublished) manuscript by Foi (2009).

Our approach departs from the existing literature in that our variance-stabilization and normaliza-

tion device does not involve either the pre-estimation of the variance (as, effectively, in the Haar-Fisz

transform) or the application of a Box-Cox-type transform (as in the Anscombe variance stabilization

for Poisson data or the logarithmic transform in multiplicative models). By contrast, we use the entire

likelihood for the purpose of variance-stabilization and normalization. As a result, the thresholding

decision in our proposed smoothing methodology is not based on the usual wavelet detail coefficients,

but on the newly-proposed likelihood ratio Haar coefficients. For completeness, we mention that Ko-

laczyk and Nowak (2004) construct multiscale decompositions of the Poisson likelihood, which leads

them to consider binomial likelihood ratio tests for the purpose of thresholding; however, this is done

in a context that does not use the signed and square-rooted generalized log-likelihood ratio tests or

utilize their variance-stabilizing or normalizing properties.

The paper is organized as follows. Section 2 motivates and introduces the concept of likelihood

ratio Haar coefficients and outlines our general methodology for smoothing and variance stabiliza-
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tion/normalization. Section 3 describes our method in two special cases, those of the Poisson and the

scaled chi-squared distribution. Section 4 formulates and discusses a consistency result for the Poisson

smoother. Section 5 provides a numerical study illustrating the practical performance of our smoothing

and variance stabilization/normalization algorithms. The online supplement contains the proof of our

theoretical result and further technical details.

2 General methodology

Let X1, . . . , Xn be a sequence of independent univariate random variables such that Xk ∼ F (θk), where

F (θ) is a family of distributions parameterized by a scalar parameter θ such that E(Xk) = θk. Our

two running examples are: Xk ∼ Pois(λk), and Xk ∼ σ2
km
−1χ2

m (throughout the paper, we refer to

the latter example as ‘scaled chi-squared’ or simply ‘chi-squared’). Extensions to higher-dimensional

parameters are possible, but certain aspects of the asymptotic normality are then lost.

We recall the traditional Haar transform and the fundamentals of signal smoothing via (Haar)

wavelet thresholding. In the following, we assume that n = 2J , where J is an integer. Extensions to

non-dyadic n are possible, see e.g. Wickerhauser (1994). Given the input data X = (X1, . . . , Xn), we

define s0 = (s0,1, . . . , s0,n) = X. The Haar transform recursively performs the following steps

sj,k = 2−1/2(sj−1,2k−1 + sj−1,2k), dj,k = 2−1/2(sj−1,2k−1 − sj−1,2k), (1)

for j = 1, . . . , J and k = 1, . . . , 2J−j. The indices j and k are thought of as “scale” and “location”

parameters, respectively, and the coefficients sj,k and dj,k as the “smooth” and “detail” coefficients

(respectively) at scale j, location k. It is easy to express sj,k and dj,k as explicit functions of X:

sj,k = 2−j/2
k2j∑

i=(k−1)2j+1

Xi, dj,k = 2−j/2

(k−1)2j+2j−1∑
i=(k−1)2j+1

Xi −
k2j∑

i=(k−1)2j+2j−1+1

Xi

 .
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Defining dj = (dj,k)
2J−j

k=1 , the Haar transform H of X is H(X) = (d1, . . . ,dJ , sJ,1). The “pyramid”

algorithm in formulae (1) enables the computation of H(X) in O(n) operations. H(X) is an orthonormal

transform of X and can be inverted by undoing steps (1). If the mean signal Θ = (θ1, . . . , θn) is

piecewise-constant, then those coefficients dj,k that correspond to the locally constant segments of Θ

will be zero-centered. This justifies the following procedure for estimating the mean vector Θ: take the

Haar transform of X, retain those coefficients dj,k for which |dj,k| > t for a certain threshold t and set

the others to zero, then take the inverse Haar transform of the thus-“hard”-thresholded vector. In the

i.i.d. Gaussian noise model, in which Xk = θk + εk, where ε ∼ N(0, σ2) with σ2 assumed known, the

operation |dj,k| > t is the likelihood ratio test for the local constancy of Θ in the following sense.

1. Assume (θu)
(k−1)2j+2j−1

u=(k−1)2j+1
= θ(1) for all u, and (θv)

k2j

v=(k−1)2j+2j−1+1 = θ(2) for all v. The indices u

(respectively v) are the same as those corresponding to the Xu’s (Xv’s) with positive (negative)

weights in dj,k.

2. Test H0 : θ(1) = θ(2) against H1 : θ(1) 6= θ(2); the Gaussian likelihood ratio test reduces to

|dj,k| > t, where t is naturally related to the desired significance level. H0 can alternatively be

phrased as E(dj,k) = 0, and H1 – as E(dj,k) 6= 0.

Because under each H0, the variable dj,k is distributed as N(0, σ2) due to the orthonormality of the

Haar transform, the same t can meaningfully be used across different scales and locations (j, k).

In models other than Gaussian, the operation |dj,k| > t can typically no longer be interpreted

as the likelihood ratio test for the equality of θ(1) and θ(2). Moreover, the distribution of dj,k will

not generally be the same under each H0 but will, in many models, vary with the local (unknown)

parameters (θi)
k2j

i=(k−1)2j+1, which makes the selection of t in the operation |dj,k| > t challenging. This

is, for example, the case in our running examples, Xk ∼ Pois(λk) and Xk ∼ σ2
km
−1χ2

m, both of which

are such that Var(Xk) is a non-trivial function of E(Xk), which translates into the dependence of dj,k

on the local means vector (θi)
k2j

i=(k−1)2j+1, even under the null hypothesis E(dj,k) = 0.
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In the (non-Gaussian) model under consideration, our proposal is to remedy this by replacing the

operation |dj,k| > t with a likelihood ratio test for H0 : θ(1) = θ(2) against H1 : θ(1) 6= θ(2) suitable

for the distribution at hand. More specifically, denoting by L(θ |Xk1 , . . . , Xk2) the likelihood of the

constant parameter θ given the data Xk1 , . . . , Xk2 and by θ̂(1), θ̂(2) the MLEs of θ(1), θ(2), respectively,

we design a new Haar-like transform, in which we replace the “test statistic” dj,k by

gj,k = sign(θ̂(1)−θ̂(2))

{
2 log

supθ(1) L(θ(1) |X(k−1)2j+1, . . . , X(k−1)2j+2j−1) supθ(2) L(θ(2) |X(k−1)2j+2j−1+1, . . . , Xk2j )

supθ L(θ |X(k−1)2j+1, . . . , Xk2j )

}1/2

,

(2)

the signed and square-rooted generalized log-likelihood ratio statistic for testing H0 against H1. The

rationale is that by Wilks’ theorem, under H0, this quantity will asymptotically be distributed as

N(0, 1) for a class of models that includes, amongst others, our two running examples. We refer to gj,k

as the likelihood ratio Haar coefficient of X at scale j and location k. By performing this replacement,

we tailor-make a new Haar transform suitable for the distribution of the input vector.

2.1 General methodology for smoothing

We now outline the general methodology for signal smoothing (denoising) involving likelihood ratio

Haar wavelets. The problem is to estimate Θ from X. Let I be the indicator function. The basic

smoothing algorithm proceeds as follows.

1. With X on input, compute the coefficients sj,k, dj,k and gj,k as defined by (1) and (2).

2. Estimate each µj,k := E(dj,k) by

µ̂j,k =

 0 j = 1, . . . , J0,

dj,kI(|gj,k| > t) j = J0 + 1, . . . , J.
(3)
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3. Defining µ̂j = (µ̂j,k)
2J−j

k=1 , compute the inverse Haar transform of the vector (µ̂1, . . . , µ̂J , sJ,1) and

use it as the estimate Θ̂ of Θ.

We set µ̂j,k = 0 at the finest scales because of a certain strong asymptotic normality argument; see

the proof of Theorem 4.1. This theorem also specifies the permitted magnitude of J0. The operation

in the second line of (3) is referred to as hard thresholding; soft thresholding, in which the surviving

coefficients are shrunk towards zero, is also possible. The threshold t is a tuning parameter of the

procedure and we discuss its selection later. The above algorithm differs from the standard smoothing

using Haar wavelets in that we use gj,k, rather than dj,k, as the thresholding statistic.

2.2 General methodology for variance stabilization and normalization

Due to the fact that gj,k will typically be distributed as close to N(0, 1) under each H0 (that is, for

the majority of scales j and locations k), replacing the coefficients dj,k with gj,k can be viewed as

“normalizing” or “Gaussianizing” the input signal in the Haar wavelet domain. The standard inverse

Haar transform will then yield a normalized version of the input signal. We outline the basic algorithm

below.

1. With X on input, compute the coefficients sj,k and gj,k as defined by (1) and (2).

2. Defining gj = (gj,k)
2J−j

k=1 , compute the inverse Haar transform of the vector (g1, . . . ,gJ , sJ,1) and

denote the resulting vector by G(X).

Throughout the paper, we will be referring to G(X) as the likelihood ratio Haar transform of X. In

the online supplement, we show that the likelihood Haar transform is invertible, at least in the Poisson

and chi-squared cases. An invertible variance-stabilization transformation such as G(X) is useful as it

enables the smoothing of X in a modular way: (i) apply G(X), (ii) use any smoother suitable for i.i.d.

standard normal noise, (iii) take the inverse of G(X) to obtain a smoothed version of X.
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3 Specific examples: Poisson and chi-squared

For Xi ∼ Pois(λ), we have P (Xi = k) = exp(−λ)λ
k

k!
for k = 0, 1, . . ., and if Xs, . . . , Xe ∼ Pois(λ), then

the MLE λ̂ of λ is X̄e
s = 1

e−s+1

∑e
i=sXi. This, after straightforward algebra, leads to

gj,k = sign(X̄
(k−1)2j+2j−1

(k−1)2j+1 − X̄k2j

(k−1)2j+2j−1+1)2j/2 (4)

×
{

log(X̄
(k−1)2j+2j−1

(k−1)2j+1 )X̄
(k−1)2j+2j−1

(k−1)2j+1 + log(X̄k2j

(k−1)2j+2j−1+1)X̄k2j

(k−1)2j+2j−1+1 − 2 log(X̄k2j

(k−1)2j+1)X̄k2j

(k−1)2j+1

}1/2

,

using the convention 0 log 0 = 0. ForXi ∼ σ2
im
−1χ2

m = Γ(m/2,m/(2σ2
i )), ifXs, . . . , Xe ∼ Γ(m/2,m/(2σ2)),

then the MLE σ̂2 of σ2 is X̄e
s = 1

e−s+1

∑e
i=sXi. This gives

gj,k = sign(X̄
(k−1)2j+2j−1

(k−1)2j+1 − X̄k2j

(k−1)2j+2j−1+1)2j/2 (5)

×
{
m

[
log(X̄k2j

(k−1)2j+1)− 1

2
log(X̄

(k−1)2j+2j−1

(k−1)2j+1 )− 1

2
log(X̄k2j

(k−1)2j+2j−1+1)

]}1/2

.

Up to the multiplicative factor m1/2, the form of the transform in (5) is the same for any m, which

means that the chi-squared likelihood ratio Haar coefficients gj,k (computed with an arbitrary m) also

achieve variance stabilization if m is unknown (but possibly to a constant different from one). In

both the Poisson and the chi-squared cases, gj,k is a function of the local means X̄
(k−1)2j+2j−1

(k−1)2j+1
and

X̄k2j

(k−1)2j+2j−1+1, which is unsurprising as these are sufficient statistics for the corresponding population

means in both these distributions. These local means and, therefore, the coefficients gj,k, can be

computed in computational time O(n) using the pyramid algorithm in formulae (1).

4 L2 theory for the likelihood ratio Haar Poisson smoother

In this section, we provide a theoretical mean-square analysis of the performance of the signal smoothing

algorithm involving likelihood ratio Haar wavelets, described in Section 2.1. Although we focus on the

Poisson distribution, the statement of the result and the mechanics of the proof will be similar for

certain other distributions, including scaled chi-squared. The following result holds.
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Theorem 4.1 Let Λ = (λ1, . . . , λn) be a positive piecewise-constant vector, i.e. let there exist up to

N indices η1, . . . , ηN for which ληi 6= ληi−1. Let n = 2J , where J is a positive integer. Assume Λ is

bounded from above and away from zero, and denote Λ̄ := maxi λi, Λ := mini λi, Λ′ = Λ̄ − Λ and

λ̄es = 1
e−s+1

∑e
i=s λi. Let Xk ∼ Pois(λk) for k = 1, . . . , n. Let Λ̂ be obtained as in the algorithm of

Section 2.1, using threshold t and with a fixed β ∈ (0, 1) such that J0 = blog2 n
βc. Then, with dj,k and

µj,k defined in the algorithm of Section 2.1 and with X̄e
s = 1

e−s+1

∑e
i=sXi, on set A ∩ B, where

A = {∀ j = J0 + 1, . . . , J, k = 1, . . . , 2J−j (λ̄k2
j

(k−1)2j+1)
−1/2|dj,k − µj,k| < t1},

B = {∀ j = J0, . . . , J, k = 1, . . . , 2J−j 2j/2(λ̄k2
j

(k−1)2j+1)
−1/2|X̄k2j

(k−1)2j+1 − λ̄k2
j

(k−1)2j+1| < t2},

whose probability approaches 1 as n→∞ if t1 = C1 log1/2 n and t2 = C2 log1/2 n with C1 > {2(1−β)}1/2

and C2 > {2(1− β)}1/2, if threshold t is such that

t ≥ t1

(1− t22−
J0+1

2 Λ−1/2)1/2
, (6)

we have

n−1‖Λ̂− Λ‖2 ≤
1

2
n−1N(Λ′)2(nβ − 1) + 2n−1N Λ̄1/2

{
(J − J0)(t2 + t21)Λ̄

1/2 + t2t2(2 + 21/2)n−β/2
}

+ n−1t21λ̄
n
1 ,

where ‖ · ‖ is the l2-norm of its argument.

Bearing in mind the magnitudes of t2 and J0, we can see that the term t22
−J0+1

2 Λ−1/2 becomes

arbitrarily close to zero for large n, and therefore, from formula (6), the threshold constant t can

become arbitrarily close to t1. In particular, it is safe to set t to be the “universal” threshold suitable

for iid N(0, 1) noise (Donoho and Johnstone, 1994), that is t = {2 log n}1/2. It is in this sense that our
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likelihood ratio Haar construction achieves variance stabilization and normalization: in order to denoise

Poisson signals in which the variance of the noise depends on the local mean, we make it possible to

use the universal Gaussian threshold, as if the noise were Gaussian with variance one. In classical Haar

wavelet thresholding with |dj,k| > t̃ as the thresholding decision, t̃ would have to depend on the level

of the Poisson intensity Λ over the support of dj,k, which is unknown; our approach circumvents this.

If the number N of change-points does not increase with the sample size n, then the dominant term

in the mean-square error is of order O(nβ−1). This suggests that β should be set to be “arbitrarily

small”, in which case the MSE becomes arbitrarily close to the parametric rate O(n−1).

5 Practical performance

In the online supplement, we demonstrate that the likelihood ratio Haar coefficients appear to offer

better normalization and variance stabilization than the Fisz coefficients. In this section, we show that

this translates into better MSE properties of the likelihood ratio Haar smoother than the analogous

Haar-Fisz smoother, in both the Poisson and the exponential models, on the examples considered. For

comprehensive comparison of the performance of the Haar-Fisz smoother to that of other techniques,

see Fryzlewicz and Nason (2004), Besbeas et al. (2004) and Fryzlewicz (2008), among others. Our test

signals are [1] Donoho and Johnstone’s (1994) blocks and [2] bumps functions, scaled to have (min,

max) of [1] (0.681, 27.029) and [2] (1, 12.565), both of length n = 2048. We consider the following

models: (1a), (2a): Poisson models, in which the signals [1], [2] (respectively) play the role of the

Poisson intensity Λ, so that Xk ∼ Pois(λk); (1b), (2b): Exponential models, in which the signals [1],

[2] (respectively) play the role of the exponential mean σ2, so that Xk ∼ σ2
k Exp(1) = σ2

k2
−1χ2

2.

For all models, we compare the MSE performance of “like-for-like” likelihood ratio Haar and Haar-

Fisz smoothers, both constructed as described in Section 2.1, except the Haar-Fisz smoother uses

the corresponding coefficients fj,k in place of gj,k. We use the non-decimated (translation invariant,
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Method \Model (1a) (1b) (2a) (2b)
Haar-Fisz 0.615 8.647 0.357 1.053

Likelihood ratio Haar 0.605 7.958 0.341 0.905

Table 1: MSE over 1000 simulations for the two methods and four models described in Section 5.

stationary, maximum overlap) Haar transform (Nason and Silverman, 1995) to achieve fast averaging

over all possibly cyclic shifts of the input data. For better comparison of the effects of thresholding

alone, we use J0 = 0. We use the universal threshold t = {2 log n}1/2. Figures 1 and 2 show sample

reconstructions for the likelihood ratio Haar method in the Poisson models (1a), (2a).

Table 1 shows that the likelihood ratio Haar smoother outperforms Haar-Fisz across all the models

considered. For the Poisson models, the improvement is fairly modest (2% for blocks, 4% for bumps) but

for the exponential models, it is more significant (8% for blocks, 14% for bumps). One important reason

for this improved performance is that as demonstrated in the online supplement, the likelihood ratio

Haar coefficients have a higher magnitude than the corresponding Fisz coefficients, and therefore more

easily survive thresholding. This implies that the likelihood ratio Haar smoother lets through “more

signal” compared to the Haar-Fisz smoother if both use the same threshold, however chosen. Another

possible reason is that as shown in the online supplement, the likelihood ratio Haar coefficients are

closer to variance-one normality than the Fisz coefficients and therefore the use of thresholds designed

for standard normal noise may be more suitable for them.

We now briefly illustrate the normalizing and variance-stabilizing properties of the likelihood ratio

Haar transform G(·) described in Section 2.2, using data simulated from models (1a) and (1b). We use

the non-decimated version of the Haar transform.

Figure 3 illustrates the results for the Poisson case. In both the Poisson and the exponential

examples, the likelihood ratio Haar transform is a very good normalizer and variance-stabilizer: the

transformed data minus the transformed signal shows good agreement with an i.i.d. normal sample;

its sample variance equals 1.07 for the Poisson model and 1.14 for the exponential model. Particularly

13
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Figure 2: Sample likelihood ratio Haar recon-
struction in model (2a), see Section 5 for de-
tails.

for the exponential model, the likelihood ratio Haar transform is a significantly better normalizer than

the Haar-Fisz transform (not shown here).

5.1 California earthquake data

In this section, we revisit the Northern California earthquake dataset, analysed in Fryzlewicz and Na-

son (2004) and available from http://quake.geo.berkeley.edu/ncedc/catalog-search.html. We

analyze the time series Nk, k = 1, . . . , 1024, where Nk is the number of earthquakes of magnitude 3.0 or

more which occurred in the kth week, the first week under consideration starting April 22nd, 1981 and

the final ending December 5th, 2000. We assume Nk ∼ Pois(λk) and estimate Λ using our likelihood

ratio Haar smoother, used as described in Section 5.

The estimate and the data are shown in Figure 4. The appearance of the estimator reveals an

interesting phenomenon, not necessarily easily seen in the noisy data: for many of the intensity spikes

observed in this dataset, the intensity in the time period just before the spike appears to be much lower

14
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Figure 3: The Poisson model. Top left: Poisson intensity Λ (red) and simulated data X (black).
Top right: the likelihood ratio transform G(Λ) (red) and G(X) (black). Middle left: G(X) − G(Λ).
Middle right: Q-Q plot of G(X)−G(Λ) against the normal quantiles. Bottom left: sample acf plot of
G(X)−G(Λ). Bottom right: sample acf plot of (G(X)−G(Λ))2.
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Figure 4: Northern California earthquake
data: Nk (dashed) and the likelihood ratio
Haar estimate (thick solid). See Section 5.1
for details.
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Figure 5: The likelihood ratio Haar smooth of
Mk under the Poisson assumption.

than the intensity in the period following the spike, which may point to a degree of persistence in the

seismic activity following the major spikes in activity observed in these data.

Further, we analyse the histogram of counts Mk, k = 0, . . . , 255, defined as the number of weeks

in which k earthquakes of magnitude 3.0 or more which occurred. The raw data (not shown here)

show an apparent bimodality with modes at 4 and 6. To verify whether this is a spurious or “real”

effect, we smooth Mk using our likelihood ratio Haar smoother suitable for Poisson data (note that Mk,

being a histogram, can approximately be modelled as Poisson-distributed). Figure 5 reveals that our

fit preserves the bimodality, which gives support to the argument that this is a genuine, rather than

spurious, effect. This finding points towards a mixture model with two components: one corresponding

to “quieter” periods (i.e. those with a low intensity of earthquakes of magnitude 3.0 or more) and the

other to periods with high earthquake intensity.
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Likelihood ratio Haar variance stabilization and normalization

for Poisson and other non-Gaussian noise removal – online

supplement

Piotr Fryzlewicz∗

June 15, 2017

1 Links between likelihood ratio Haar wavelets and the Haar-
Fisz methodology (with numerical examples)

This section compares the likelihood ratio Haar coefficients gj,k, defined in the general,
Poisson and chi-squared cases in formulae (2), (4) and (5) of the main paper, respectively,
to the Fisz coefficients fj,k (Fryzlewicz and Nason, 2004), which the above work defines
as the Haar coefficients dj,k divided by the maximum likelihood estimates of their own
standard deviation under the null hypothesis E(dj,k) = 0. We start with the Poisson case
and note that by Fryzlewicz and Nason (2004), fj,k is then expressed as

fj,k = 2j/2−1
X̄

(k−1)2j+2j−1

(k−1)2j+1
− X̄k2j

(k−1)2j+2j−1+1√
X̄k2j

(k−1)2j+1

.

We first note that sign(gj,k) = sign(fj,k) and that Lemma 3.2, used with f(u) = u log u; f(0) =
0 in the notation of that lemma, reduces to |gj,k| ≥ |fj,k|. Moreover, since the inequality in
Lemma 3.2 arises as a simple application of Jensen’s inequality to the convex function f(·),
it is intuitively apparent that the less convexity in f(·), the closer gj,k will be to fj,k. Noting
that f ′′(u) = u−1 and therefore the degree of convexity in f(u) decreases as u increases,
it can heuristically be observed that gj,k and fj,k should be closer to each other for larger

values of X̄
(k−1)2j+2j−1

(k−1)2j+1
and X̄k2j

(k−1)2j+2j−1+1
(i.e. for high Poisson intensities), and further

apart otherwise.

To illustrate this phenomenon and other interesting similarities and differences between
the Fisz and the likelihood ratio Haar coefficients in the Poisson case, consider the fol-

lowing two numerical examples, in which we simulate 1000 realisations of X̄
(k−1)2j+2j−1

(k−1)2j+1

∗Department of Statistics, London School of Economics, Houghton Street, London WC2A 2AE, UK.
Email: p.fryzlewicz@lse.ac.uk. Work supported by the Engineering and Physical Sciences Research
Council grant no. EP/L014246/1.
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and X̄k2j

(k−1)2j+2j−1+1
and compute the corresponding 1000 realisations of {g(i)j,k}

1000
i=1 and

{f (i)j,k}
1000
i=1 .

• j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 10, E(X̄k2j

(k−1)2j+2j−1+1
) = 10.5. As is apparent from

Figure 1, the values of g
(i)
j,k − f

(i)
j,k are close to zero. Figure 2 provides further evidence

that the empirical distributions of f
(i)
j,k and g

(i)
j,k are difficult to distinguish by the

naked eye. Q-q plots (not shown) exhibit good agreement for both g
(i)
j,k and f

(i)
j,k

with the normal distribution, and we have V̂ar(g
(i)
j,k) = 1.06 and V̂ar(f

(i)
j,k) = 1.05,

which provides evidence that both the likelihood ratio Haar coefficients and the Fisz
coefficients achieve good variance stabilization in this high-intensity case.

• j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 0.2, E(X̄k2j

(k−1)2j+2j−1+1
) = 0.7. Figures 3 and 4 demon-

strate that in this low-intensity case, the distributions of f
(i)
j,k and g

(i)
j,k are now further

apart. The Fisz coefficients and the likelihood ratio Haar coefficients seem to be simi-

larly close to the normal distribution, with the empirical skewness and kurtosis for f
(i)
j,k

being 0.39 and 2.52 (respectively) and those for g
(i)
j,k being 0.35 and 2.53 (respectively).

However, the likelihood ratio Haar coefficients achieve far better variance stabilization

in this low-intensity example: we have V̂ar(g
(i)
j,k) = 0.92 versus V̂ar(f

(i)
j,k) = 0.68.
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Figure 1: The Poisson case. His-
togram of the empirical distribu-

tion of {|g(i)j,k| − |f (i)j,k |}
1000
i=1 with

j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 10,

E(X̄k2j

(k−1)2j+2j−1+1
) = 10.5.
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Figure 2: The Poisson case. Box-
plots of the empirical distributions of

{g(i)j,k}
1000
i=1 (left) and {f (i)j,k}

1000
i=1 (right)

with j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 10,

E(X̄k2j

(k−1)2j+2j−1+1
) = 10.5.

We now turn to the chi-squared distribution. The Fisz coefficients for the σ2χ2
1 distribution

are derived in Fryzlewicz et al. (2006), those for the exponential distribution (σ22−1χ2
2)

appear in Fryzlewicz et al. (2008) and the general case σ2m−1χ2
m is covered in Fryzlewicz

(2008). In the general case of the σ2m−1χ2
m distribution, using the notation from the current
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Figure 3: The Poisson case. His-
togram of the empirical distribu-

tion of {|g(i)j,k| − |f (i)j,k |}
1000
i=1 with

j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 0.2,

E(X̄k2j

(k−1)2j+2j−1+1
) = 0.7.
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Figure 4: The Poisson case. Box-
plots of the empirical distributions of

{g(i)j,k}
1000
i=1 (left) and {f (i)j,k}

1000
i=1 (right)

with j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 0.2,

E(X̄k2j

(k−1)2j+2j−1+1
) = 0.7.

paper, the Fisz coefficients fj,k are expressed as

fj,k = 2
j−3

2 m1/2
X̄

(k−1)2j+2j−1

(k−1)2j+1
− X̄k2j

(k−1)2j+2j−1+1

X̄k2j

(k−1)2j+1

. (1)

As in the Poisson case, we obviously have sign(gj,k) = sign(fj,k). Lemma 3.2, used with
f(u) = − log u in the notation of that lemma, reduces to |gj,k| ≥ |fj,k|. Moreover, by the
same convexity argument as in the Poisson case, gj,k and fj,k will be closer to each other

for larger values of X̄
(k−1)2j+2j−1

(k−1)2j+1
and X̄k2j

(k−1)2j+2j−1+1
.

A major difference between the Poisson and the chi-square cases is that in the chi-square
case, fj,k is a compactly supported random variable (see formula (1)), whereas gj,k is not.
This difference does not apply in the Poisson case, in which neither fj,k nor gj,k are com-
pactly supported. This has implications for how quickly fj,k and gj,k approach the normal
distribution (with increasing j or m) in the chi-square case, and we illustrate this numeri-
cally below.

As before, we simulate 1000 realisations of X̄
(k−1)2j+2j−1

(k−1)2j+1
and X̄k2j

(k−1)2j+2j−1+1
and compute

the corresponding 1000 realisations of {g(i)j,k}
1000
i=1 and {f (i)j,k}

1000
i=1 . We consider the following

four cases.

• m = 1, j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 10, E(X̄k2j

(k−1)2j+2j−1+1
) = 10.5. In this case,

the likelihood ratio Haar coefficients provide far better variance stabilization and

normalization than the Fisz coefficients. For f
(i)
j,k , we have the following empirical

values: variance 0.67, skewness 0.03, kurtosis 1.81. For g
(i)
j,k, we have variance 1.29,

skewness 0.03, kurtosis 3.06. Figure 5 confirms the superiority of the likelihood ratio
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Haar coefficients over the Fisz coefficients as regards their closeness to the normal
distribution.

• m = 1, j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 0.2, E(X̄k2j

(k−1)2j+2j−1+1
) = 0.7. This low-sigma case

differs from the previous one mainly in that both the likelihood ratio Haar coefficients
and the Fisz coefficients are skewed to the right, although the Fisz coefficients (much)

more so. For f
(i)
j,k , we have the following empirical values: variance 0.59, skewness 0.89,

kurtosis 2.70. For g
(i)
j,k, we have variance 1.23, skewness 0.46, kurtosis 3.1. Figure 6

provides further visual evidence of the higher degree of symmetry in the likelihood
ratio Haar coefficients and its closeness to the normal distribution.

• m = 2, j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 10, E(X̄k2j

(k−1)2j+2j−1+1
) = 10.5. As m increases,

both the likelihood ratio Haar coefficients and the Fisz coefficients move closer towards
variance-one normality, although again the likelihood ratio Haar coefficients beat Fisz.

For f
(i)
j,k , we have the following empirical values: variance 0.81, skewness 0.05, kurtosis

2.19. For g
(i)
j,k, we have variance 1.16, skewness 0.03, kurtosis 2.97. Figure 7 shows

both empirical distributions.

• m = 2, j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 0.2, E(X̄k2j

(k−1)2j+2j−1+1
) = 0.7. In this low-sigma

case also, the likelihood ratio Haar coefficients appear to be far closer to variance-one

normality than the Fisz coefficients. For f
(i)
j,k , we have the following empirical values:

variance 0.57, skewness 1.15, kurtosis 4.08. For g
(i)
j,k, we have variance 1.04, skewness

0.45, kurtosis 3.64. Figure 8 shows both empirical distributions.
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Figure 5: The chi-squared case. Boxplots

of the empirical distributions of {g(i)j,k}
1000
i=1

(left) and {f (i)j,k}
1000
i=1 (right) with m =

1, j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 10,

E(X̄k2j

(k−1)2j+2j−1+1
) = 10.5.
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Figure 6: The chi-squared case. Boxplots

of the empirical distributions of {g(i)j,k}
1000
i=1

(left) and {f (i)j,k}
1000
i=1 (right) with m =

1, j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 0.2,

E(X̄k2j

(k−1)2j+2j−1+1
) = 0.7.

Overall, our empirical observations from the above (and other unreported) numerical ex-
ercises are as follows. For fine scales (i.e. those for which j is small) and for low degrees
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Figure 7: The chi-squared case. Boxplots

of the empirical distributions of {g(i)j,k}
1000
i=1

(left) and {f (i)j,k}
1000
i=1 (right) with m =

2, j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 10,

E(X̄k2j

(k−1)2j+2j−1+1
) = 10.5.
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Figure 8: The chi-squared case. Boxplots

of the empirical distributions of {g(i)j,k}
1000
i=1

(left) and {f (i)j,k}
1000
i=1 (right) with m =

2, j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 0.2,

E(X̄k2j

(k−1)2j+2j−1+1
) = 0.7.

of freedom m, the likelihood ratio Haar coefficients are much closer to a normal variable
with variance one than the corresponding Fisz coefficients. From the properties of the chi-
squared distribution, the effect of increasing j while keeping m constant is similar to the
effect of increasing m while keeping j constant. As m or j increases, the likelihood ratio
Haar coefficients appear to move closer to the normal distribution with variance one. How-

ever, for the same to happen with Fisz coefficients, the two means, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) and

E(X̄k2j

(k−1)2j+2j−1+1
), need to be relatively close to each other. The latter phenomenon can

also be observed in the Poisson case for increasing j. This is not unexpected as the results
from Fisz (1955) suggest that the asymptotic normality with variance one arises when the
two means approach each other asymptotically; no results are provided in Fisz (1955) on
the case in which the two means diverge.

We end this section with an interesting interpretation of Lemmas 3.2 and 3.4 in the case of
the Poisson distribution. Note that together, they imply

2j/2−1

∣∣∣X̄(k−1)2j+2j−1

(k−1)2j+1
− X̄k2j

(k−1)2j+2j−1+1

∣∣∣√
2

1

X̄
(k−1)2j+2j−1

(k−1)2j+1

+ 1

X̄k2j

(k−1)2j+2j−1+1

≥ |gj,k| ≥ 2j/2−1

∣∣∣X̄(k−1)2j+2j−1

(k−1)2j+1
− X̄k2j

(k−1)2j+2j−1+1

∣∣∣√
1
2

(
X̄

(k−1)2j+2j−1

(k−1)2j+1
+ X̄k2j

(k−1)2j+2j−1+1

) ,

on in other words, the magnitude of the likelihood ratio Haar coefficient is bounded from
below by the magnitude of the corresponding Fisz coefficient and from above by the magni-
tude of a “Fisz-like” coefficient in which the arithmetic mean in the denominator has been
replaced by the harmonic mean.
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2 Invertibility of the likelihood Haar transform

Inverting the standard Haar transform proceeds by transforming each pair of coefficients
(sj,k, dj,k) into (sj−1,2k−1, sj−1,2k), hierarchically for j = J, . . . , 1 (note that s0,k = Xk).
Similarly, to demonstrate that the likelihood Haar transform is invertible, we need to show
that it is possible to transform (sj,k, gj,k) into (sj−1,2k−1, sj−1,2k).

We first show the invertibility of the Poisson likelihood ratio Haar transform. Denoting for

brevity u = X̄
(k−1)2j+2j−1

(k−1)2j+1
, v = X̄k2j

(k−1)2j+2j−1+1
and ignoring some multiplicative constants

and the square-root operation in gj,k, which are irrelevant for invertibility, this amounts to
showing that (u, v) can be uniquely determined from (u + v)/2 and sign(u − v){u log u +
v log v − (u + v) log((u + v)/2)}. The term sign(u − v) determines whether u ≤ v or vice
versa, so assume that u ≤ v w.l.o.g. Denoting by a the known value of u+ v, observe that
the function (a − v) log(a − v) + v log v is strictly increasing for v ∈ [a/2, a], which means
that v can be determined uniquely and therefore that the Poisson likelihood ratio Haar
transform is invertible.

We now show the invertibility of the chi-squared likelihood ratio Haar transform. We denote

u = X̄
(k−1)2j+2j−1

(k−1)2j+1
, v = X̄k2j

(k−1)2j+2j−1+1
and ignore some multiplicative constants and the

square-root operation in gj,k which are irrelevant for invertibility. Assume that u ≤ v w.l.o.g.
Denoting by a the known value of u + v, observe that the function − log(a − v) − log v is
strictly increasing for v ∈ [a/2, a), which means that v can be determined uniquely and
therefore that the chi-squared likelihood ratio Haar transform is invertible.

3 Technical results including proof of Theorem 4.1 from the
main paper

Lemma 3.1 Let function f : [u, v] → R be such that f ′ is continuous on [u, v] and f
′′

is
continuous on (u, v). There exists a point ξ ∈ (u, v) such that

f(u)− 2f

(
u+ v

2

)
+ f(v) =

(u− v)2

4
f
′′
(ξ).

Proof. Let z = (u+ v)/2 and δ = (v − u)/2, then

f(u)− 2f

(
u+ v

2

)
+ f(v) = f(z − δ)− 2f(z) + f(z + δ).

Defining g(x) = f(z − x)− 2f(z) + f(z + x), Taylor’s theorem yields

g(δ) = g(0) + δg′(0) +
δ2

2
g′′(ξ′) =

δ2

2
g′′(ξ′) =

δ2

2
{f ′′(z + ξ′) + f ′′(z − ξ′)}, (2)

where ξ′ ∈ (0, δ). By the intermediate value theorem, there exists a ξ ∈ (z−ξ′, z+ξ′) ⊂ [u, v]
such that {f ′′(z + ξ′) + f ′′(z − ξ′)}/2 = f ′′(ξ), which by (2) completes the result.

Lemma 3.2 Let function f : [u, v] → R be such that f ′ is continuous on [u, v] and f
′′

is
convex on (u, v). Then

f(u)− 2f

(
u+ v

2

)
+ f(v) ≥ (u− v)2

4
f
′′
(
u+ v

2

)
.
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Proof. Straightforward from the convexity of f ′′ and (2).

Lemma 3.3 Let function f : [u, v] → R be such that f ′ is continuous on [u, v] and f
′′

is
nonincreasing on [u, v). Then

f(u)− 2f

(
u+ v

2

)
+ f(v) ≤ (u− v)2

8

{
f ′′
(
u+ v

2

)
+ f ′′(u)

}
.

Proof. Straightforward from (2) and the fact that f ′′ is nonincreasing on [u, v).

Lemma 3.4 Let function f : [u, v] → R be such that f ′ is continuous on [u, v] and f
′′

is
convex on [u, v]. Then

f(u)− 2f

(
u+ v

2

)
+ f(v) ≤ (u− v)2

8

{
f ′′(v) + f ′′(u)

}
.

Proof. Straightforward from the convexity of f ′′ and (2).

Lemma 3.5 The Poisson distribution satisfies Cramer’s conditions.

Proof. The Poisson distribution is log-concave, and Schudy and Sviridenko (2011), Lemma
7.4, show that all log-concave random variables Z are central moment bounded with real
parameter L > 0, that is, satisfy for any integer i ≥ 1,

E|Z − E(Z)|i ≤ i LE|Z − E(Z)|i−1.

Moreover, again by Schudy and Sviridenko (2011), Lemma 7.5, we have

L = 1 + max(E(|Z − E(Z)| | Z ≥ E(Z)), E(|Z − E(Z)| | Z < E(Z))),

which for the Pois(λ) distribution gives L = O(λ1/2). But

E|Z − E(Z)|i ≤ i LE|Z − E(Z)|i−1

≤ i!Li−2E(Z − E(Z))2,

which completes the proof of the lemma.

Proof of Theorem 4.1 from the main paper.

We first show that P (A ∩ B)→ 1. We have

P (Ac) ≤
J∑

j=J0+1

2J−j∑
k=1

P ((λ̄k2
j

(k−1)2j+1)
−1/2|dj,k − µj,k| ≥ t1). (3)

Since by Lemma 3.5, the Poisson distribution satisfies Cramer’s conditions, Λ is bounded
from above and away from zero, and 2J0 = O(nβ) for β ∈ (0, 1), the strong asymptotic
normality from the Corollary underneath the proof of Theorem 1 in Rudzkis et al. (1978)
can be used, which in our context implies that if t1 = O(log1/2 n), then

P ((λ̄k2
j

(k−1)2j+1)
−1/2|dj,k − µj,k| ≥ t1) ≤ CΦ(t1), (4)

7



where Φ(·) is the cdf of the standard normal distribution and C is a universal constant.
Using (4), Mills’ ratio inequality and the fact that t1 = C1 log1/2 n, we bound (3) from
above by C̃ log−1/2 n n1−β−C

2
1/2, where C̃ is a constant, which proves that P (A)→ 1. The

proof that P (B)→ 1 is identical.

We now turn to the estimator. Due to the orthonormality of the Haar transform, we have

n−1‖Λ̂− Λ‖2 = n−1
J∑
j=1

2J−j∑
k=1

(µ̂j,k − µj,k)2 + n−1(sJ,1 − λ̃)2, (5)

where λ̃ = n−1/2
∑n

k=1 λk.

We first consider scales j = 1, . . . , J0, for which µ̂j,k = 0. At each scale j, there are at
most N indices k for which µj,k 6= 0. From the definition of dj,k, for those µj,k, we have
µj,k ≤ 2j/2−1Λ′, which gives

J0∑
j=1

2J−j∑
k=1

(µ̂j,k − µj,k)2 ≤ N(Λ′)2
J0∑
j=1

2j−2 = N(Λ′)2(2J0−1 − 1

2
). (6)

We now consider the remaining scales j = J0 + 1, . . . , J and first take an arbitrary index
(j, k) for which λi is not constant for i = (k − 1)2j + 1, . . . , k2j . For such a (j, k), we have
(using Lemma 3.2 in the second inequality)

(µ̂j,k − µj,k)2 = (dj,kI(|gj,k| > t)− µj,k)2

≤ 2d2j,kI(|gj,k| ≤ t) + 2(dj,k − µj,k)2

≤ 2d2j,kI(|dj,k| ≤ t(X̄k2j

(k−1)2j+1)
1/2) + 2(dj,k − µj,k)2

≤ 2t2X̄k2j

(k−1)2j+1 + 2(dj,k − µj,k)2

≤ 2t2(λ̄k2
j

(k−1)2j+1 + t22
−j/2(λ̄k2

j

(k−1)2j+1)
1/2) + 2t21λ̄

k2j

(k−1)2j+1.

Summing the bound over the at most N indices k within each scale for which λi is not
constant for i = (k − 1)2j + 1, . . . , k2j , as well as over scales j = J0 + 1, . . . , J , and noting
that λ̄k2

j

(k−1)2j+1
≤ Λ̄, gives the upper bound of

2N Λ̄1/2
{

(J − J0)(t2 + t21)Λ̄
1/2 + t2t2(1 + 2−1/2)2

−J0+1
2

}
. (7)

We finally consider again the scales j = J0 + 1, . . . , J and those indices (j, k) for which λi is
constant for i = (k− 1)2j + 1, . . . , k2j , which implies µj,k = 0. For each such (j, k), we have

(µ̂j,k)
2 = d2j,kI(|gj,k| > t).

Consider the following sequence of inequalities, with the first one being implied by Lemma

8



3.4, and the second using the fact that λ̄
(k−1)2j+2j−1

(k−1)2j+1
= λ̄k2

j

(k−1)2j+2j−1+1
= λ̄k2

j

(k−1)2j+1
.

|gj,k| > t ⇒ |dj,k|2−1/2
∣∣∣∣∣∣ 1

X̄
(k−1)2j+2j−1

(k−1)2j+1

+
1

X̄k2j

(k−1)2j+2j−1+1

∣∣∣∣∣∣
1/2

> t

⇒
|dj,k|

(λ̄k2
j

(k−1)2j+1
− δ)1/2

> t ∨ |X̄(k−1)2j+2j−1

(k−1)2j+1
− λ̄(k−1)2

j+2j−1

(k−1)2j+1
| ≥ δ

∨ |X̄k2j

(k−1)2j+2j−1+1 − λ̄
k2j

(k−1)2j+2j−1+1| ≥ δ

⇔
|dj,k|

(λ̄k2
j

(k−1)2j+1
)1/2

> t

(
1− δ

λ̄k2
j

(k−1)2j+1

)1/2

∨ 2j/2(λ̄
(k−1)2j+2j−1

(k−1)2j+1
)−1/2|X̄(k−1)2j+2j−1

(k−1)2j+1
− λ̄(k−1)2

j+2j−1

(k−1)2j+1
| ≥ δ2j/2(λ̄(k−1)2

j+2j−1

(k−1)2j+1
)−1/2

∨ 2j/2(λ̄k2
j

(k−1)2j+2j−1+1)
−1/2|X̄k2j

(k−1)2j+2j−1+1 − λ̄
k2j

(k−1)2j+2j−1+1| ≥

δ2j/2(λ̄k2
j

(k−1)2j+2j−1+1)
−1/2. (8)

Let us set δ = t22
−j/2(λ̄k2

j

(k−1)2j+1
)1/2, then if

t1 ≤ t(1− t22−j/2(λ̄k2
j

(k−1)2j+1)
−1/2)1/2, (9)

then the right-hand side of the implication (8) is negated on A ∩ B, which implies that so
is the left-hand side, and therefore µ̂j,k = 0. Note (9) is satisfied if (6) from the main paper
holds.

Putting together (6) and (7) and noting that n−1(sJ,1− λ̃)2 ≤ n−1t21λ̄n1 on A, we bound (5)
by

1

2
n−1N(Λ′)2(nβ−1)+2n−1N Λ̄1/2

{
(J − J0)(t2 + t21)Λ̄

1/2 + t2t2(2 + 21/2)n−β/2
}

+n−1t21λ̄
n
1

on condition that (6) from the main paper holds, which completes the proof.
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