
 

 

Anis Matoussi and Hao Xing 

Convex duality for Epstein-Zin stochastic 
differential utility 
 
Article (Accepted version) 
(Refereed) 
 
 

 Original citation: 
Matoussi, Anis and Xing, Hao (2018) Convex duality for Epstein-Zin stochastic differential utility. 
Mathematical Finance. ISSN 1467-9965 
DOI: 10.1111/mafi.12168 
 
© 2017 Wiley Periodicals 
 
This version available at: http://eprints.lse.ac.uk/82519/ 
Available in LSE Research Online: June 2017 
 
LSE has developed LSE Research Online so that users may access research output of the 
School. Copyright © and Moral Rights for the papers on this site are retained by the individual 
authors and/or other copyright owners. Users may download and/or print one copy of any 
article(s) in LSE Research Online to facilitate their private study or for non-commercial research. 
You may not engage in further distribution of the material or use it for any profit-making activities 
or any commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE 
Research Online website.  
 
This document is the author’s final accepted version of the journal article. There may be 
differences between this version and the published version.  You are advised to consult the 
publisher’s version if you wish to cite from it. 
 
 
 

http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1467-9965
http://doi.org/10.1111/mafi.12168
http://eprints.lse.ac.uk/82519/


CONVEX DUALITY FOR EPSTEIN-ZIN STOCHASTIC DIFFERENTIAL
UTILITY

ANIS MATOUSSI AND HAO XING

ABSTRACT. This paper introduces a dual problem to study a continuous-time con-
sumption and investment problem with incomplete markets and Epstein-Zin stochastic
differential utilities. Duality between the primal and dual problems is established. Con-
sequently, the optimal strategy of this consumption and investment problem is identi-
fied without assuming several technical conditions on market models, utility specifica-
tions, and agent’s admissible strategies. Meanwhile, the minimizer of the dual problem
is identified as the utility gradient of the primal value and is economically interpreted
as the “least favorable" completion of the market.

1. INTRODUCTION

Classical asset pricing theory in the representative agent framework assumes that
the representative agent’s preference is modeled by a time-additive Von Neumann-
Morgenstein utility. This specification restricts the relationship between risk aversion
and intertemporal substitutability, leading to a rich literature on asset pricing anom-
alies, such as the low risk premium and high risk-free rate. To disentangle risk aver-
sion and intertemporal substitutability, the notion of recursive utility was introduced
by Kreps and Porteus (1978), Epstein and Zin (1989), Weil (1990), among others. Its
continuous-time analogue, stochastic differential utility, was defined by Epstein (1987)
for deterministic settings and by Duffie and Epstein (1992a) for stochastic environ-
ments. The connection between recursive utility and stochastic differential utility has
also been rigorously established by Kraft and Seifried (2014) recently. Recursive utility
and its continuous-time analogue generalize time-additive utility and provide a flexible
framework to tackle the aforementioned asset pricing anomalies, cf. Bansal and Yaron
(2004), Bhamra et al. (2010), and Benzoni et al. (2011), among others.

The asset pricing theory for recursive utility and stochastic differential utility builds
on the optimal consumption and investment problems. For Epstein-Zin utility, a specifi-
cation widely used in the aforementioned asset pricing applications, its continuous-time
optimal consumption and investment problems have been studied by Schroder and Ski-
adas (1999, 2003), Chacko and Viceira (2005), Kraft et al. (2013), Kraft et al. (2017),
and Xing (2017). These studies mainly utilize stochastic control techniques, either
the Hamilton-Jacobi-Bellman equation (HJB) in Markovian settings or the backward
stochastic differential equation (BSDE) in non-Markovian settings, to tackle these op-
timization problems directly. We call this class of methods the primal approach. How-
ever, the HJB equations that arise from these problems are typically nonlinear, and
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BSDEs are usually nonstandard. Therefore, currently available results obtained via the
primal approach still come with unsatisfactory restrictions on either market models,
utility specifications, or agent’s admissible actions.

In contrast, for portfolio optimization problems for time-additive utility, a martin-
gale (or duality) approach was introduced by Pliska (1986), Cox and Huang (1989),
Karatzas et al. (1987), Karatzas et al. (1991), and He and Pearson (1991). Instead of
tackling the primal optimization problem directly, a dual problem was introduced whose
solution leads to the solution of the primal problem via the first-order condition. For
time-additive utility, this dual approach allows unnecessary assumptions to be stripped
away and portfolio optimization problems to be solved with minimal assumptions on
market models and utilities, cf. Kramkov and Schachermayer (1999, 2003) for terminal
consumption and Karatzas and Žitković (2003) for intertemporal consumption.

This paper proposes a dual problem for an optimal consumption and investment
problem in incomplete markets with Epstein-Zin utility. It is a minimization prob-
lem of a convex functional of state price densities (deflators). Similar to the primal
problem, the dual value process aggregates the state price density and future evolution
of the dual value process. Hence, the dual problem also takes a recursive form; we
call it the stochastic differential dual. Similar to time-additive utility, the solution of
this dual problem can be economically interpreted as the least favorable completion of
the market; i.e., the agent’s optimal portfolio does not contain the fictitious assets that
are introduced to complete the market, cf. He and Pearson (1991) and Karatzas et al.
(1991).

In contrast to time-additive utility, the convex functional appearing in the dual prob-
lem does not follow directly from applying the Fenchel-Legendre transformation to
the utility function. Instead, we utilize a variational representation of recursive utility,
introduced by Geoffard (1996), El Karoui et al. (1997) and Dumas et al. (2000), to
transform the primal problem to a min-max problem, which leads to a variational repre-
sentation of the dual problem. This dual variational representation can be transformed
back to a recursive form thanks to the homothetic property of Epstein-Zin utility in the
consumption variable.

We assume that the risk aversion γ and elasticity of intertemporal substitution (EIS)
ψ of Epstein-Zin utility satisfy either γψ ≥ 1, ψ > 1 or γψ ≤ 1, ψ < 1. This class
includes a large portion of cases where Epstein-Zin utility is known to exist in the
literature; see Proposition 2.1. Moreover, this class allows the dual variable ν for the
min-max problem to be chosen from an admissible class of processes that are uniformly
bounded from below. For Epstein-Zin utility, this notion of admissibility is easier to
check than the integrability conditions used in El Karoui et al. (1997) and Dumas et al.
(2000).

The dual problem gives rise to an inequality between the primal value function and
the concave conjugate of the dual value function. When this inequality is an identity,
there is duality between the primal and dual problems, or there is no duality gap. Con-
sider market models whose investment opportunities are driven by some state variables.
We obtain duality in two situations: 1) non-Markovian models with bounded market
price of risk, together with γψ ≥ 1, ψ > 1 or γψ ≤ 1, ψ < 1; 2) Markovian models
with unbounded market price of risk, including the Heston model, the 3/2 model, and
the Kim-Omberg model, when γ, ψ > 1. The latter market and utility specifications are
widely used in the aforementioned asset pricing applications.

The duality between primal and dual problems allow us to simultaneously verify the
primal and dual optimizers. On the primal side, technical conditions on utilities and
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market models in Kraft et al. (2013) are removed. Moreover, Xing (2017) introduced
a permissible class of strategies which is needed to verify optimality of the candidate
strategy. Thanks to duality, this permissible class is removed, and the primal optimality
is established in the standard admissible class, which consists of all nonnegative self-
financing wealth processes. On the dual side, the super-differential of the primal value
is identified as the minimizer of the dual problem, extending this well-known result
from time-additive utility to stochastic differential utility. In the primal approach, the
super-differential of the primal value is identified via the utility gradient approach by
Duffie and Skiadas (1994). In this approach, one needs to show that the sum of the
deflated wealth process and the integral of the deflated consumption stream form a
martingale for the candidate optimal strategy. This martingale property now becomes a
direct consequence of duality.

The remainder of the paper is organized as follows. A dual problem is introduced
for Epstein-Zin utility in Section 2. The main results are presented in Section 3, where
duality is established for two market and utility settings. In the second setting, we first
introduce two abstract conditions that lead to duality. These abstract conditions are then
specified as explicit parameter conditions in three examples. All proofs are presented in
Section 4 and basic facts about the Epstein-Zin aggregator are recorded in the appendix.

2. CONSUMPTION INVESTMENT OPTIMIZATION AND ITS DUAL

2.1. Epstein-Zin preferences. Let (Ω, (Ft)0≤t≤T ,F ,P) be a filtered probability
space whose filtration (Ft)0≤t≤T satisfies the usual assumptions of completeness and
right-continuity.

Let C be the class of nonnegative progressively measurable processes defined on
[0, T ] × Ω. For c ∈ C and t < T , ct represents the consumption rate at the time
t, and cT stands for the lump sum consumption at the time T . We consider an agent
whose preference over C-valued consumption streams is described by a continuous time
stochastic differential utility of Kreps-Porteus or Epstein-Zin type. To describe this
preference, let δ > 0 represent the discounting rate, 0 < γ 6= 1 be the relative risk
aversion, and 0 < ψ 6= 1 be the elasticity of intertemporal substitution (EIS). Define
the Epstein-Zin aggregator f via

(2.1) f(c, u) := δ
c
1− 1

ψ

1− 1
ψ

((1− γ)u)1−
1
θ − δθu, for c > 0 and (1− γ)u > 0,

where θ := 1−γ
1−1/ψ . Given a bequest utility UT (c) = ε c

1−γ

1−γ , where ε > 0 represents the
weight of the bequest utility comparing to the intertemporal consumption, the Epstein-
Zin utility for the consumption stream c ∈ C over a time horizon T is a semimartingale
(U ct )0≤t≤T which satisfies

(2.2) U ct = Et
[
UT (cT ) +

∫ T

t

f(cs, U
c
s )ds

]
, for all t ∈ [0, T ].

Here Et[·] stands for the conditional expectation E[·|Ft]. This utility specification ex-
cludes the cases with unit EIS (ψ = 1) and zero bequest, which we will comment on in
Remarks 2.10 and 3.3 later.

We call a consumption stream c admissible if the associated Epstein-Zin utility U c

exists, moreover it is of class (D) and satisfies (1− γ)U c > 0. The class of admissible
consumption streams is denoted by Ca. All existing sufficient conditions for existence
of Epstein-Zin utility in the literature are summarized in the following result, which, in
particular, implies Ca 6= ∅.
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PROPOSITION 2.1 Let the filtration (Ft)0≤t≤T be the augmented filtration generated
by some Brownian motion.

(i) (Schroder and Skiadas, 1999, Theorem 1) When either γ > 1, 0 < ψ < 1, or
0 < γ < 1, ψ > 1, for any c ∈ C such that E[

∫ T
0
c`tdt+c`T ] <∞ for all ` ∈ R,

there exists a unique U c such that E[ess supt |U ct |`] <∞ for every ` > 0.
(ii) (Xing, 2017, Propositions 2.2 and 2.4) When γ, ψ > 1, for any c ∈ C such that

E[
∫ T
0
c
1−1/ψ
t dt+ c1−γT ] <∞, there exists a unique U c of class (D).

For general filtration (Ft)0≤t≤T ,
(iii) (Seiferling and Seifried, 2015, Theorems 3.1 and 3,3) When γψ ≥ 1, ψ > 1, or

γψ ≤ 1, ψ < 1, for any c ∈ C such that E[
∫ T
0
c`tdt + c`T ] < ∞ for all ` ∈ R,

there exists a unique U c such that E[ess supt |U ct |`] <∞ for every ` ∈ R.
In all above cases, (1− γ)U > 0 and U c0 is concave in c.

Remark 2.2. For our main results in Section 3, we will work with the admissible set Ca,
whose associated Epstein-Zin utility admits mild integrability properties. As a result,
these main results establish optimality of the optimal consumption stream c∗ in a large
admissible class. Moreover, to verify the membership of c∗ in Ca, one only needs to
check that U c

∗
exists and is of class (D), rather than the integrability assumptions of c

presented in Proposition 2.1.

2.2. Consumption investment optimization. Consider a model of financial mar-
ket with assets S = (S0, S1, . . . , Sn), where S0 is the price of a riskless asset,
(S1, · · · , Sn) are prices for risky assets, and S is assumed to be a semimartingale whose
components are all positive.

An agent, starting with an initial capital w > 0, invests in this market by choosing
a portfolio represented by a predictable, S-integrable process π = (π0, π1, . . . , πn).
With πit representing the proportion of current wealth invested in asset i at time t, π0

t =
1−
∑n
i=1 π

i
t is the proportion invested in the riskless asset. Given an investment strategy

π and a consumption stream c, agent’s wealth processW(π,c) follows

(2.3) dW(π,c)
t =W(π,c)

t− π>t
dSt
St−
− ctdt, W(π,c)

0 = w.

A pair of investment strategy and consumption stream (π, c) is admissible if c ∈ Ca and
W(π,c) is nonnegative. The class of admissible pairs is denoted byA. This admissibility
outlaws doubling strategies and ensures existence of the associated Epstein-Zin utility.

The agent aims to maximize her utility at time 0 over all admissible strategies, i.e.,

(2.4) U0 = sup
(π,c)∈A

U c0 .

We call (2.4) the primal problem.

2.3. Dual problem. Rather than tackle the primal problem directly, we introduce a
dual problem in this section. To formulate this dual problem, we focus on Epstein-Zin
utility satisfying the following parameter restriction:

(2.5) γψ ≥ 1 and ψ > 1.

The restriction γψ ≥ 1 is equivalent to the convexity of f(c, u) in u, see Lemma
A.1 part (i). The case where f(c, u) is concave in u can be treated similarity, see
Remark 2.9 below. The convexity (resp. concavity) of f(c, u) in u implies preference
for early (resp. late) resolution of uncertainty (cf. Kreps and Porteus (1978) and Skiadas
(1998). On the other hand, because {γψ ≥ 1, ψ > 1} = {γ, ψ > 1} ∪ {0 < γ <



CONVEX DUALITY FOR EPSTEIN-ZIN STOCHASTIC DIFFERENTIAL UTILITY 5

1.γψ ≥ 1}, (2.5) ensures the existence of Epstein-Zin utility due to Proposition 2.1.
When γψ = 1, Epstein-Zin utility reduces to the time-additive utility with constant
relative risk aversion γ, whose dual problem is well understood. Therefore we focus
on γψ, ψ > 1 when we introduce the dual problem and only compare with the time-
additive utility case at the end of this section.

The convexity of f(c, u) in u leads to an alternative representation of stochastic dif-
ferential utility. This variational representation was first proposed by Geoffard (1996)
in a deterministic continuous-time setting, and extended by El Karoui et al. (1997) and
Dumas et al. (2000) to uncertainty. Let us recall the felicity function F , defined as the
Fenchel-Legendre transformation of f with respect to its second argument:

(2.6) F (c, ν) := inf
(1−γ)u>0

(
f(c, u) + νu

)
, for c > 0, ν > δθ.

As γψ, ψ > 1 implies θ < 1, we have from Lemma A.1 part (ii) that

F (c, ν) = δθ
c1−γ

1− γ

(
δθ − ν
θ − 1

)1−θ

, for c > 0, ν > δθ,

moreover F (c, ν) is concave in c and concave in ν when c > 0 and ν > δθ, f and F
satisfy the duality relation

(2.7) f(c, u) = sup
ν>δθ

(
F (c, ν)− νu

)
, for c > 0, (1− γ)u > 0.

To introduce the variational representation, define

(2.8) V := {ν | progressively measurable and ν > δθ}.

For each ν ∈ V, c ∈ Ca, s, t ∈ [0, T ], define

U c,νt := Et
[
κνt,TUT (cT ) +

∫ T

t

κνt,sF (cs, νs)ds
]
, where κνt,s := exp

(
−
∫ s

t

νudu
)
.

The following result is a minor extension of (El Karoui et al., 1997, Section 3.2) and
(Dumas et al., 2000, Theorem 2.1).

LEMMA 2.3 For any c ∈ Ca,

U c0 = sup
ν∈V

U c,ν0 .

Using Lemma 2.3, the primal problem in (2.4) is transformed into

U0 = sup
(π,c)∈A

sup
ν∈V

E
[
κν0,TUT (cT ) +

∫ T

0

κν0,sF (cs, νs)ds
]

= sup
ν∈V

sup
(π,c)∈A

E
[
κν0,TUT (cT ) +

∫ T

0

κν0,sF (cs, νs)ds
]
.

(2.9)

For a given ν ∈ V , the inner problem in the second line above can be considered
as an optimization problem for a bequest utility UT and a time-additive intertemporal
utility F (c, ν), parameterized by ν, which can be viewed as a fictitious discounting rate.
To present the dual problem of this inner problem, we define the Fenchel-Legendre
transform of UT and F (with respect to its first argument):
(2.10)
VT (d) := sup

c>0
(UT (c)− d c), G(d, ν) := sup

c>0
(F (c, ν)− d c), for d > 0, ν > δθ.



6 ANIS MATOUSSI AND HAO XING

Lemma A.1 part (iii) shows that

VT (d) = ε
1
γ

γ

1− γ
d
γ−1
γ , G(d, ν) = δ

θ
γ

γ

1− γ
d
γ−1
γ

(
δθ − ν
θ − 1

) 1−θ
γ
,

for d > 0, ν > δθ. Moreover G(d, ν) is convex in d and concave in ν.
Recall the class of state price densities (supermartingale deflators):

D := {D |D0 = 1, D > 0, DW(π,c) +
∫ ·
0
Dscsds

is a supermartingale for all (π, c) ∈ A}.

We assume that
D 6= ∅.

Introducing the dual problem to the inner problem in the second line of (2.9), we obtain

U0 ≤ sup
ν∈V

inf
y>0,D∈D

{
E
[
κν0,TVT ((κν0,T )−1yDT ) +

∫ T

0

κν0,sG((κν0,s)
−1yDs, νs)ds

]
+ wy

}
≤ inf
y>0,D∈D

{
sup
ν∈V

E
[
κν0,TVT ((κν0,T )−1yDT ) +

∫ T

0

κν0,sG((κν0,s)
−1yDs, νs)ds

]
+ wy

}
.

(2.11)

Now the inner problem in the second line of (2.11) can be viewed as a variational
problem. In order to transform it back to a recursive form, we use the power function
form of VT and G in d to get

κν0,TVT ((κν0,T )−1yDT ) = (κν0,T )
1
γ VT (yDT ) = κ

ν
γ
0,TVT (yDT ),

κν0,sG((κν0,s)
−1yDs, νs) = (κν0,s)

1
γG(yDs, νs) = κ

ν
γ
0,sG(yDs, νs).

Plugging the previous two identities to the second line of (2.11) and introducing

V
yD,

ν
γ

t := Et
[
κ
ν
γ
t,TVT (yDT ) +

∫ T

t

κ
ν
γ
t,sG(yDs, νs)ds

]
,

we transform (2.11) to

(2.12) U0 ≤ inf
y>0,D∈D

(
sup
ν∈V

V
yD,

ν
γ

0 + wy
)
.

The inner problem is of variational form. In order to transform it to a recursive form,
we introduce the convex conjugate of G with respect to its second variable

(2.13) g(d, v) := sup
ν>δθ

(G(d, ν)− ν v), for d > 0, (1− γ)v > 0.

Lemma A.1 part (iv) shows that

g(d, v) = δψ
d1−ψ

ψ − 1
((1− γ)v)1−

γψ
θ − δθv, for d > 0, (1− γ)v > 0.

Additionally we introduce an analogue of stochastic differential utility for the dual prob-
lem.
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Definition 2.4. For y > 0 and D ∈ D, an Epstein-Zin stochastic differential dual for
yD is a semimartingale (V yDt )0≤t≤T satisfying

(2.14) V yDt = Et
[
VT (yDT ) +

∫ T

t

g(yDs,
1
γV

yD
s )ds

]
, for all t ∈ [0, T ].

Similar to Epstein-Zin utility, we denote by Da the class of state price densities D
whose associated stochastic differential duals V yD exist for all y > 0, (1−γ)V yD > 0,
and V yD is of class (D). Sufficient conditions for the existence of stochastic differential
duals are summarized as follows, which imply Da 6= ∅.

PROPOSITION 2.5 Let the filtration (Ft)0≤t≤T be the augmented filtration generated
by some Brownian motion.

(i) When either γ > 1, 0 < ψ < 1, or 0 < γ < 1, ψ > 1, for any y > 0 and
D ∈ D such that E[

∫ T
0
D`
tdt + D`

T ] < ∞ for all ` ∈ R, there exists a unique
V yD satisfying (2.14), (1 − γ)V yD > 0, and E[ess supt |V

yD
t |`] < ∞ for

every ` > 0.
(ii) When γ, ψ > 1, for any y > 0, D ∈ D such that E[

∫ T
0
D1−ψ
t dt+D

(γ−1)/γ
T ] <

∞, there exists a unique V yD of class (D) satisfying (1 − γ)V yD > 0 and
(2.14).

Coming back to the right-hand side of (2.12), an argument similar to Lemma 2.3
then yields

LEMMA 2.6 For any D ∈ Da and y > 0,

V yD0 = sup
ν∈V

V yD,ν0 .

Combining the previous result with (2.12), we obtain the following duality inequal-
ity, whose right-hand side is called the dual problem.

THEOREM 2.7 Assume that γψ ≥ 1 and ψ > 1. Then

(2.15) sup
(π,c)∈A

U c0 ≤ inf
y>0

(
inf
D∈Da

V yD0 + w y
)
.

A diagram illustrating relationship between various functions introduced above is
presented in Figure 1, starting from the primal problem in the upper left corner and
ending at the dual problem in the bottom left corner.

Remark 2.8. When γψ = 1, Epstein-Zin utility reduces to time-additive utility with
constant relative risk aversion γ. Then (2.2) and (2.14) reduce to the following standard
form of primal and dual problems,

U ct = Et

[
e−δTUT (cT ) +

∫ T

t

δe−δs
c1−γs

1− γ
ds

]
,

V yDt = Et

[
e
− δγ TVT (yDT ) +

∫ T

t

δ
1
γ e
− δγ s γ

1−γ (yDs)
γ−1
γ ds

]
.

The duality inequality (2.15) follows from duality between the power utility and its
convex conjugate, together with the fact that E

[
cTDT +

∫ T
0
csDs

]
≤ w.

Remark 2.9. When f(c, u) is concave in u, i.e., γψ ≤ 1, we can replace the supremum
(resp. infimum) in (2.6), (2.7), and (2.13) by infimum (resp. supremum). Then the
same statement of Theorem 2.7 holds when γψ ≤ 1 and ψ < 1.
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Primal

Dual

Recursive Variational

UT (c), f (c, u) UT (c), F (c, ν)

VT (d), G(d, ν)VT (d), g(d, v)

convex conjugate in c

concave conjugate in u

convex conjugate in ν

FIGURE 1. Double Fenchel-Legendre transformation

Remark 2.10. Theorem 2.7 excludes the unit EIS case (ψ = 1). This is because the
dual domain V in (2.8) for the variational representation is specifically designed for the
non-unit EIS case. For the unit EIS case, the HJB equations in optimal consumption
and investment problems are typically linear in the utility variable, hence it is easier to
work with the primal approach; see (Schroder and Skiadas, 2003, Section 5.6), Chacko
and Viceira (2005), and Kraft et al. (2017).

3. MAIN RESULTS

For a wide class of financial models specified below, this section shows that the
inequality (2.15) is actually an identity, i.e., there is no duality gap. Moreover optimal
primal optimizer (π∗, c∗) and dual optimizer (y∗, D∗) will be identified as follows

(3.1) max
(π,c)∈A

U c0 = U c
∗

0 = V y
∗D∗

0 + wy∗ = min
y>0

( min
D∈Da

V yD0 + wy).

3.1. Market setting. We work with models with Brownian noise. Let (Ft)0≤t≤T be
the augmented filtration generated by a k + n-dimensional Brownian motion B =
(W,W⊥), where W (resp. W⊥) represents the first k (resp. last n) components. We
will also use (FWt )0≤t≤T (resp. (FW⊥t )0≤t≤T ) as the augmented filtration generated
by W (resp. W⊥).

Consider a model of financial market where assets S = (S0, S1, . . . , Sn) have the
dynamics

dS0
t = S0

t rtdt, dSit = Sit

[
(rt + µit)dt+

n∑
j=1

σijt dW
ρ,j
t

]
, i = 1, . . . , n,(3.2)

where r, µ, σ and ρ are FW -adapted processes valued in R,Rn,Rn×n,Rn×k, respec-
tively, and satisfy

∫ T
0
|αt|2dt < ∞ a.s. for α = r, µ, σ, ρ. Moreover Σ := σσ′ is

assumed to be invertible. For an Rn×n-valued process ρ⊥ satisfying ρρ′ + ρ⊥(ρ⊥)′ =
1n×n (the n-dimensional identity matrix), the n-dimensional Brownian motion W ρ is
defined as W ρ :=

∫ ·
0
ρsdWs +

∫ ·
0
ρ⊥s dW

⊥
s . Define

D0
t := e−

∫ t
0
rsdsE

(
−
∫
µ′sΣ

−1
s σsdW

ρ
s

)
t
, t ∈ [0, T ].
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It follows that each component of D0S is a nonnegative local martingale, hence a su-
permartingale. The process D0 is called a supermartingale deflator, whose presence
excludes arbitrage opportunities, cf. Karatzas and Kardaras (2007).

For (π, c) ∈ A, agent’s wealth processW(π,c) follows

(3.3) dW(π,c)
t =W(π,c)

t [(rt + π′tµt)dt+ π′tσtdW
ρ
t ]− ctdt,

which implies D0 ∈ D.

3.2. Candidate optimal strategy. We consider a dynamic version of the primal and
dual problem by introducing the primal and dual value processes

Uπ,ct := ess sup
(π̃,c̃)∈A(π,c,t)

U c̃t and VyDt := ess inf
D̃∈Da(D,t)

V yD̃t ,

where

A(π, c, t) :={(π̃, c̃) ∈ A : (π̃, c̃) = (π, c) on [0, t]},

Da(D, t) :={D̃ ∈ Da : D̃ = D on [0, t]}.

Due to the homothetic property of Epstein-Zin utilities, we speculate that Uπ,c and VyD
have the following decomposition:

(3.4) Uπ,ct = 1
1−γ (W(π,c)

t )1−γeY
p
t and VyDt = γ

1−γ (yDt)
γ−1
γ eY

d
t /γ ,

for some processes Y p and Y d.
Let us recall the martingale principle: Uc +

∫ ·
0
f(cs,Ucs)ds (resp. VyD +∫ ·

0
g(yDs,

1
γV

yD
s )ds) is a supermartingale (resp. submartingale) for an arbitrary (π, c)

(resp. D) and is a martingale for the optimal one. For Markovian models, the mar-
tingale principle is a reformulation of the dynamic programming principle. For non-
Markovian models, it can be considered as the dynamic programming for BSDEs, cf.,
eg. Hu et al. (2005). The following result determines the dynamics of Y p and Y d using
the martingale principle. Moreover, candidate optimal strategies for both primal and
dual problems are identified. In particular, the candidate dual optimizer D∗ follows

dD∗t /D
∗
t = −rtdt+ ξ∗t dWt + η∗t dW

⊥
t ,

for some ξ∗ and η∗.

LEMMA 3.1 The ansatz (3.4) and the martingale principle imply that both (Y p, Zp)
and (Y d, Zd), for some processes Zp and Zd, satisfy the BSDE

(3.5) Yt = log ε+

∫ T

t

H(Ys, Zs)ds−
∫ T

t

ZsdWs, t ∈ [0, T ],

where H : Ω× R× Rk → R is given by

(3.6) H(y, z) := 1
2zMtz

′ + 1−γ
γ µ′tΣ

−1
t σtρtz

′ + θ δ
ψ

ψ e
−ψθ y + ht − δθ.

Here, suppressing the subscript t,
(3.7)
Σ := σσ′, M := 1k×k + 1−γ

γ ρ′σ′Σ−1σρ, and h := (1− γ)r + 1−γ
2γ µ

′Σ−1µ.
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The function H , interpreted as the Hamilton of the primal and dual optimization prob-
lem, has the following representation

H(y, z) =(1− γ)rt − δθ + 1
2 |z|

2 + (1− γ) sup
c

[
− c+ δe−

1
θ y 1

1− 1
ψ

c
1− 1

ψ
]

+ (1− γ) sup
π

[
− γ

2π
′Σtπ + π′(µt + σtρtz

′)
]

=(1− γ)rt − δθ + θ δ
ψ

ψ e
−ψθ y + 1

2γ |z|
2

+ (1− γ) inf
µt+σtρtξ′+σtρ⊥t η

′=0

[
1
2γ (|ξ|2 + |η|2)− 1

γ ξz
′
]
,

(3.8)

whose optimizers are

π(t, z) = 1
γΣ−1t (µt + σtρt z

′), c(y) = δψe−
ψ
θ y,

ξ(t, z) = −(µ′t + zρ′tσ
′
t)Σ
−1
t σtρt + z, η(t, z) = −(µ′t + zρ′tσ

′
t)Σ
−1
t σtρ

⊥
t .

In the next section, we will start from the BSDE (3.5) and show that it admits a
solution (Y, Z). Define

π∗t =π(t, Zt),
c∗t

W(π∗,c∗)
t

= c̄(Yt),

ξ∗t =ξ(t, Zt), η∗t = η(t, Zt), y∗ = w−γeY0 , and

dD∗t /D
∗
t =− rtdt− (µ′t + Ztρ

′
tσ
′
t)Σ
−1
t σtdW

ρ
t + ZtdWt

=− rtdt+ ξ∗t dWt + η∗t dW
⊥
t .

(3.9)

We call (π∗, c∗) and (y∗, D∗) the candidate optimal strategies for primal and dual prob-
lems.

Remark 3.2. The form of (π∗, c∗) has been documented in various settings, see
(Schroder and Skiadas, 1999, Theorem 2 and 4) for complete markets, (Kraft et al.,
2013, Equation (4.4)), (Kraft et al., 2017, Theorem 6.1), and (Xing, 2017, Equation
(2.14)) for Markovian models. The form of D∗ can be obtained via the utility gradient
approach, cf. (Duffie and Epstein, 1992b, Equation (35)), (Duffie and Skiadas, 1994,
Theorem 2), and (Schroder and Skiadas, 1999, Equation (3)). The novelty of this paper
is to relate the utility gradient D∗ and the minimization problem in (3.8), see Corollary
3.7 below.

Remark 3.3. Lemma 3.1 requires ε > 0, in other words, the Epstein-Zin preferences
we considered has non-zero bequest utility. The case with zero bequest utility was
considered in Schroder and Skiadas (1999). However the utility parameter restriction
Equation (8) therein excludes the γ, ψ > 1 case.

3.3. Models with bounded market price of risk. This section verifies the identity
(3.1), hence confirm the optimality of (π∗, c∗) and D∗. We start with the following
restriction on model coefficients.

Assumption 3.4. The processes r and µ′Σ−1µ are both bounded.

This assumption allows non-Markovian models, but requires the market price of risk√
µ′Σ−1µ to be bounded. Markovian models with unbounded market price of risk will

be discussed in the next section, where more technical conditions will be imposed. We
will also assume the same restriction on utility parameters γ and ψ as in Theorem 2.7
and Remark 2.9.
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LEMMA 3.5 Suppose that γψ ≥ 1, ψ > 1, or γψ ≤ 1, ψ < 1, and Assumption 3.4
holds. Then (3.5) admit a solution (Y, Z) such that Y is bounded and Z ∈ HBMO.

Having establish a solution (Y,Z) to (3.5), the following result verifies the opti-
mality of (π∗, c∗) and (y∗, D∗) in (3.9). This result generalizes (Kraft et al., 2017,
Theorem 5.1) to non-Markovian models and establishes the optimality of (π∗, c∗) in a
large admissible set.

THEOREM 3.6 Suppose that γψ ≥ 1, ψ > 1, or γψ ≤ 1, ψ < 1, and Assumption 3.4
holds. Then, (π∗, c∗) and (y∗, D∗) satisfy

(3.10) max
(π,c)∈A

U c0 = U c
∗

0 = V y
∗D∗

0 + wy∗ = min
y>0

( min
D∈Da

V yD0 + wy).

Therefore (π∗, c∗) is the optimal strategy for the primal problem, D∗ is the optimal
state price density for the dual problem, and y∗ is the Lagrangian multiplier.

As a direct consequence of Theorem 3.6, the optimal state price density D∗ is iden-
tified as the super-differential of the primal value function, coming from the utility
gradient approach, cf. Duffie and Epstein (1992b), Duffie and Skiadas (1994).

COROLLARY 3.7 Let the assumptions of Theorem 3.6 hold. The minimizer D∗ of the
dual problem satisfies

(3.11) D∗t = wγe−Y0 exp
[ ∫ t

0

∂uf(c∗s, U
c∗

s )ds
]
∂cf(c∗t , U

c∗

t ), t ∈ [0, T ],

andW(π∗,c∗)D∗ +
∫ ·
0
D∗sc

∗
sds is a martingale.

3.4. Models with unbounded market price of risk. Many widely used market mod-
els in the asset pricing literature come with unbounded market price of risk; for ex-
ample, Heston model in Chacko and Viceira (2005), Kraft (2005), and Liu (2007),
Kim-Omberg model in Kim and Omberg (1996) and Wachter (2002). To obtain similar
results to Theorem 3.6 and Corollary 3.7, we focus on the utility specification

γ, ψ > 1,

and work with Markovian models, whose investment opportunities are driven by a state
variable X satisfying

(3.12) dXt = b(Xt)dt+ a(Xt)dWt.

Here X takes value in an open domain E ⊆ Rk, b : E → Rk and a : E → Rk×k.
The domain E is assumed to satisfy E = ∪nEn, where (En)n is a sequence of open
domains in E such that En is compact and En ⊂ En+1 for each n. Given functions
r : E → R, µ : E → Rn, σ : E → Rn×n, and ρ : E → Rn×k, the processes r, µ, σ, ρ
in (3.2) are the corresponding functions evaluated at X . Instead of Assumption 3.4,
these model coefficients satisfy the following assumptions.

Assumption 3.8. r, µ, σ, b, a, and ρ are all locally Lipschitz in E; A := aa′ and Σ =
σσ′ are positive definite in any compact subdomain of E; dynamics of (3.12) does not
reach the boundary ofE in finite time; moreover r+ 1

2γµ
′Σ−1µ is bounded from below

on E.

The regularity of coefficients and the non-explosion assumption ensure that the dy-
namics for X is well-posed, i.e., (3.12) admits a unique E-valued strong solution
(Xt)0≤t≤T . The assumption on the lower bound of r + 1

2γµ
′Σ−1µ allows for un-

bounded market price of risk and is readily satisfied when r is bounded from below.
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To present an analogue of Theorem 3.6 and Corollary 3.7, let us first introduce two
sets of abstract conditions, which will be verified in two classes of models below.

Assumption 3.9.
(i) dP

dP = E
( ∫

1−γ
γ µ′Σ−1σρ(Xs)dWs

)
defines a probability measure P equivalent

to P;
(ii) EP[ ∫ T

0
h(Xs)ds

]
> −∞, where h comes from (3.7).

When all model coefficients are bounded, as in Assumption 3.4, Assumption 3.9 is
automatically satisfied. When the market price of risk is unbounded, the last part of
Assumption 3.8 and γ > 1 combined imply that h in (3.7) is bounded from above by
hmax := maxx∈E h(x), but not bounded from below. Nevertheless Assumption 3.9
allows us to transform (3.5) under P and present the following result from (Xing, 2017,
Proposition 2.9).

LEMMA 3.10 Let Assumptions 3.8 and 3.9 hold. For γ, ψ > 1, (3.5) admits a solution
(Y,Z) such that, for any t ∈ [0, T ],

(3.13) EP
t

[ ∫ T

t

h(Xs) ds
]
− δθ(T − t) + θ

δψ

ψ
e(δψ−

ψ
θ hmax)T (T − t) ≤ Yt ≤

≤ −δθ(T − t) + logEP
t

[
exp

(∫ T

t

h(Xs) ds
)]
,

and EP[
∫ T
0
|Zs|2ds] <∞. In particular, because h ≤ hmax, Y is bounded from above.

Having constructed (Y,Z), (π∗, c∗) and D∗ in (3.9) are well defined. To verify their
optimality, let us introduce an operator F. For φ ∈ C2(E),

(3.14) F[φ] := 1
2

k∑
i,j=1

Aij∂
2
xixjφ+

(
b+ 1−γ

γ aρ′σ′Σ−1µ
)′
∇φ+ 1

2∇φ
′aMa′∇φ+h,

where the dependence on x is suppressed on both sides. To understand this operator,
note that the solution (Y, Z) to (3.5) is expected to be Markovian, i.e., there exists a
function u : [0, T ]×E → R such that Y = u(·, X). Then the BSDE (3.5) corresponds
the following PDE:

∂tu+ F[u] + θ δ
ψ

ψ e
−ψθ u − δθ = 0, u(T, x) = 0.

As θ < 0 when γ, ψ > 1, Y is bounded from above, and hence so is u. Therefore the
last two terms in the previous PDE are bounded, and F is the unbounded part of the
spatial operator.

Assumption 3.11. There exists φ ∈ C2(E) such that
(i) limn→∞ infx∈E\En φ(x) =∞;

(ii) F[φ] is bounded from above on E.

The function φ in the previous assumption is called a Lyapunov function. Its exis-
tence facilitates the proof of a verification result, leading to the following result.

THEOREM 3.12 Suppose that γ, ψ > 1, and that Assumptions 3.8, 3.9, 3.11 hold. Then
the statements of Theorem 3.6 and Corollary 3.7 hold.

Remark 3.13. The proof of Theorem 3.6 (resp. Theorem 3.12) implies that for any
solution (Y, Z) of (3.5) with Y bounded (resp. bounded from above), Y is the same
as Y p and Y d which are uniquely identified via the primal and dual value functions in
(3.4). Therefore the following uniqueness results for (3.5) hold:
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• Suppose that γψ ≥ 1, ψ > 1, or γψ ≤ 1, ψ < 1, and Assumption 3.4 holds.
Then (3.5) admits a unique solution (Y,Z) with bounded Y .

• Suppose that γ, ψ > 1, and that Assumptions 3.8, 3.9, 3.11 hold. Then (3.5)
admits a unique solution (Y,Z) with Y bounded from above.

Remark 3.14. The optimality of (π∗, c∗) has been verified in (Xing, 2017, Theorem
2.14) under similar, but more restrictive, conditions. First, Xing (2017) restricts strate-
gies to a permissible class which is smaller than the current admissible classA. It is the
duality inequality (2.15) that allows us to make this extension. Secondly, (Xing, 2017,
Assumption 2.11) is needed to ensure c∗ satisfies the integrability condition in Propo-
sition 2.1 (ii). This integrability condition translates to model parameter restrictions,
see (Xing, 2017, Proposition 3.2 ii)) for the Heston model and (Xing, 2017, Proposition
3.4 ii)) for the Kim-Omberg model. Rather than forcing c∗ to satisfy this integrability
condition, which is a sufficient condition for the existence of Epstein-Zin utility, we
show that the class (D) Epstein-Zin utility exists for c∗, hence c∗ belongs to Ca, which
abstractly envelops all Epstein-Zin utilities and, in particular, contains those ones sat-
isfying the integrability condition. As a result the aforementioned model parameter
restrictions for the Heston model and the Kim-Omberg model can be removed in the
following examples.

Example 3.15 (Heston model). Consider a 1-dimensional process X following

dXt = b(`−Xt)dt+ a
√
XtdWt,

where b, ` ≥ 0, a > 0, and b` > 1
2a

2. These parameter restrictions ensure the existence
of a strictly positive process X . Given r0, r1 ∈ R, λ0, λ1, ρ ∈ Rn, and σ : (0,∞) →
Rn×n which is locally Lipschitz on (0,∞) and satisfies Σ(x) := σσ(x)′ > 0, consider
the following asset dynamics

dS0
t = S0

t (r0 + r1Xt)dt,

dSit = Sit

[
(r0 + r1Xt)dt+

n∑
j=1

σij(Xt)
(( λj0√

Xt

+ λj1
√
Xt

)
dt+ dW ρ,j

t

)]
,

i = 1, . . . , n.

This class of models encapsulates several special examples with 1 risky assets (n = 1):
• The Heston model studied in Kraft (2005) and Liu (2007): λ0 = 0, λ1 ∈ R,
σ(x) =

√
x.

• The inverse Heston model studied in Chacko and Viceira (2005): λ0 = 0,
λ1 ∈ R, σ(x) = 1√

x
.

• When λ0 6= 0 and σ(x) =
√
x, the previous model is not an affine model, but

is in the class of essentially affine models proposed by Duffee (2002).
Denote Θ(x) := σ(x)′Σ(x)−1σ(x). The following result specifies Assumptions 3.8,
3.9, and 3.11 to explicit model parameter restriction.

PROPOSITION 3.16 Assume γ, ψ > 1 and the following conditions:
(i) r1 + infx>0

1
2γλ
′
1Θ(x)λ1 ≥ 0;

(ii) Either r1 > 0 or infx>0 λ
′
1Θ(x)λ1 > 0;

(iii) b` > 1
2a

2 and b`+ infx>0
1−γ
γ aλ′0Θ(x)ρ > 1

2a
2.

Then the statements of Theorem 3.6 and Corollary 3.7 hold.

Example 3.17 (3/2 model). Consider a 1-dimensional process X following

dXt = (pXt + qX2
t )dt+ aX

3/2
t dWt,
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where p ∈ R, a > 0, q < 1
2a

2. Feller’s test ensures the existence of a strictly positive
process X satisfying the previous SDE. Using X to model the variance process has
received a large amount of empirical support; see the survey in (Carr and Sun, 2007,
Page 109).

Given r0, r1 ∈ R, λ, ρ ∈ Rn, σ ∈ Rn×n, consider the following asset dynamics

dS0
t = S0

t (r0 + r1Xt)dt,

dSit = Sit

[
(r0 + r1Xt)dt+

n∑
j=1

σij
√
Xt

(
λj1
√
Xtdt+ dW ρ,j

t

)]
, i = 1, . . . , n.

Denote Θ := σ′Σ−1σ. The following result provides sufficient conditions for Assump-
tions 3.8, 3.9, and 3.11.

PROPOSITION 3.18 Assume γ, ψ > 1 and the following conditions:
(i) r1 + 1

2γλ
′Θλ ≥ 0;

(ii) Either r1 > 0 or λ′Θλ > 0;
(iii) q < 1

2a
2 and q + 1−γ

γ aλ′Θρ < 1
2a

2.

Then the statements of Theorem 3.6 and Corollary 3.7 hold.

Example 3.19 (Linear diffusion). Consider a 1-dimensional Ornstein-Uhlenbeck pro-
cess X following

dXt = −bXtdt+ adWt,

where a, b > 0. Given r0, r1 ∈ R, λ0, λ1, ρ ∈ Rn and σ ∈ Rn×n with Σ := σσ′ > 0,
consider the following asset dynamics

dS0
t = S0

t (r0 + r1Xt)dt,

dSit = Sit

[
(r0 + r1Xt)dt+

n∑
j=1

σij
((
λj0 + λj1Xt

)
dt+ dW ρ,j

t

)]
, i = 1, . . . , n.

This model has been studied by Kim and Omberg (1996) and Wachter (2002) for time
separable utilities, and by Campbell and Viceira (1999) for recursive utilities in discrete
time. Set Θ := σ′Σ−1σ. The following result from (Xing, 2017, Proposition 3.4)
specifies Assumptions 3.8, 3.9, and 3.11 to explicit model parameter restrictions.

PROPOSITION 3.20 Assume γ, ψ > 1 and either of the following parameter restrictions
hold:

(i) r1 = 0 and −b+ 1−γ
γ aλ′1Θρ < 0;

(ii) λ′1Θλ1 > 0.
Then the statements of Theorem 3.6 and Corollary 3.7 hold.

4. PROOFS

4.1. Proof of Lemma 2.3. Note that {γψ > 1, ψ > 1} = {γ > 1, ψ > 1}∪{0 < γ <
1, γψ > 1}. The proof is split into two cases.

γ > 1, ψ > 1. We will first prove

(4.1) U c0 ≥ sup
ν∈V

U c,ν0 , for any c ∈ Ca.

To this end, it suffices to focus on ν ∈ V such that U c,ν0 > −∞. For such ν, because
UT , F < 0 when γ > 1, therefore the process Et

[
κν0,TUT (cT ) +

∫ T
0
κν0,sF (cs, νs)ds

]
is of class (D). On the other hand, the class (D) property of U c for c ∈ Ca and the
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boundedness of κν for ν ∈ V ensure the integrability of κν0,TUT (cT ), hence the class
(D) property of the process Et[κν0,TUT (cT )]. Due to F < 0, we have

Et
[
κν0,TUT (cT ) +

∫ T

0

κν0,sF (cs, νs)ds
]
≤ κν0,tU

c,ν
t ≤ Et[κν0,TUT (cT )].

The class (D) property of both upper and lower bounds implies the class (D) property
of κν0,·U

c,ν .
As U c,ν0 and U c0 are finite, both

U c +

∫ ·
0

f(cs, U
c
s )ds and κν0,·U

c,ν +

∫ ·
0

κν0,sF (cs, νs)ds

are martingales. It follows that U c,ν +
∫ ·
0
F (cs, νs) − νsU c,νs ds is a local martingale.

Therefore there exists a local martingale L such that

d(U ct − U
c,ν
t )− νt(U ct − U

c,ν
t ) = −dAt + dLt,

where At =
∫ t
0
f(cs, U

c
s )− (F (cs, νs)− νsU cs )ds is an increasing process due to (2.7).

As a result, κν0,·(U
c−U c,ν) is a local super-martingale. On the other hand, we have seen

that κν0,·U
c,ν is of class (D). Moreover, κν0,·U

c is of class (D), thanks to the boundedness
of κν and class (D) property of U c. Hence the local super-martingale κν0,·(U

c − U c,ν)
is a supermartingale. Hence

(4.2) U ct − U
c,ν
t ≥ Et

[
κνt,T (U cT − U

c,ν
T )

]
= 0.

Taking supremum in ν, we confirm (4.1).
To show that the inequality in (4.1) is actually an identity, it suffices to identify ν ∈ V

such that U c ≤ U c,ν0 . To this end, take νc := −fu(c, U c). Lemma A.1 part (i) and θ <
1 ensure νc ∈ V . It then follows from (2.2) and (2.7) that κν

c

0,·U
c+
∫ ·
0
κν

c

0,sF (cs, ν
c
s)ds is

a local martingale, and hence a submartingale, due to F < 0 and the class (D) property
of κν

c

0,·U
c. Therefore

(4.3) U c0 ≤ E
[
κν

c

0,TUT (cT ) +

∫ T

0

κν
c

0,sF (cs, ν
c
s)ds

]
= U c,ν

c

0 ,

which concludes the proof.

0 < γ < 1, γψ > 1. In this case, F,UT > 0. We show U c,ν0 < ∞ for any c ∈
Ca, ν ∈ V first. To this end, for c ∈ Ca and ν ∈ V , define an increasing pro-
cess Ac,ν :=

∫ ·
0
f(cs, U

c
s ) − (F (cs, νs) − νsU cs )ds. Equation (2.2) then implies that

U c+
∫ ·
0
F (cs, νs)− νsU csds+Ac,ν is a martingale, hence κν0,·U

c+
∫ ·
0
κν0,sF (cs, νs)ds

is a local supermartingale. Taking a localization sequence (τn)n, we have

U c0 ≥ E

[
κν0,τn∧TU

c
τn∧T +

∫ τn∧T

0

κν0,sF (cs, νs)ds

]
.

Sending n → ∞ on the right-hand side, the class (D) property of U c and monotone
convergence theorem imply

(4.4) E

[∫ T

0

κν0,sF (cs, νs)ds

]
<∞.

Combined with E[κν0,TUT (cT )] <∞, we obtain U c,ν0 <∞.
Because F > 0, we have

Et[κν0,TUT (cT )] ≤ κν0,tU
c,ν
t ≤ Et

[
κν0,TUT (cT ) +

∫ T

0

κν0,sF (cs, νs)ds
]
.
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Therefore κν0,·U
c,ν is of class (D), and a similar argument as in the previous case

confirms (4.1). To show the inequality in (4.1) is an identity, same argument as the
previous case shows that νc ∈ V and κν

c

0,·U
c +

∫ ·
0
κν

c

0,sF (cs, ν
c
s)ds is a local martin-

gale. Moreover, due to F > 0, (4.4), and the class (D) property of U c, we obtain that
κν

c

0,·U
c +

∫ ·
0
κν

c

0,sF (cs, ν
c
s)ds is a martingale. Hence (4.3) holds as an identity.

4.2. Proof of Proposition 2.5. Let the filtration be generated by some Brownian mo-
tion B. Solving (2.14) is equivalent to solve the following BSDE

V yDt = γ
1−γ ε

1
γ (yDT )

γ−1
γ +

∫ T

t

δψ

ψ−1 (yDs)
1−ψ

(
1−γ
γ V yDs

)1−γψθ − δθ
γ V

yD
s ds

−
∫ T

t

ZyDs dBs.

(4.5)

Set Yt = 1−γ
γ e−

δθ
γ tV yDt and Zt = 1−γ

γ e−
δθ
γ tZyDt . The previous BSDE translates to

(4.6)

Yt = e−
δθ
γ T ε

1
γ (yDT )

γ−1
γ +

∫ T

t

[
δψ θ

γψ e
−δψs(yDs)

1−ψY
1−γψθ
s

]
ds−

∫ T

t

ZsdBs.

(i) γ > 1, 0 < ψ < 1, or 0 < γ < 1, ψ > 1. Define Y = Y
γψ
θ and Z = γψ

θ Y
γψ
θ −1Z.

Then (Y,Z) satisfies

Yt =e−δψT ε
ψ
θ (yDT )1−ψ +

∫ T

t

[
δψe−δψs(yDs)

1−ψ + 1
2

(
θ
γψ − 1

)
Z2
s

Ys

]
ds

−
∫ T

t

ZsdBs.

This is exactly the type of BSDE studied in (Schroder and Skiadas, 1999, Equation
(A7)). It then follows from (Schroder and Skiadas, 1999, Theorem A2) that the previous
BSDE admits a unique solution (Y,Z) with E[ess supt |Yt|`] < ∞ for any ` > 0. (To

treat the terminal condition e−δψT ε
ψ
γ (yDT )1−ψ , we consider an approximated termi-

nal condition ζ+ e−δψT ε
ψ
θ (yDT )1−ψ with ζ > 0 and its associated solution (Yζ ,Zζ).

Proceed as in the proof of (Schroder and Skiadas, 1999, Theorem A2), Y is constructed
as limζ↓0 Yζ). Coming back to (Y, Z), the statement in (i) is confirmed.

(ii) γ, ψ > 1. Our assumption on D implies the integrability of e−
δθ
γ T ε

1
γ (yDT )

γ−1
γ

and
∫ T
0
e−δψs(yDs)

1−ψds. Moreover, because γ, ψ > 1, we have θ < 0, therefore
the generator of (4.6) is decreasing in the Y -component. This is exactly the type of
BSDEs studied in (Xing, 2017, Proposition 2.2). Then the statement in (ii) is confirmed
following the proof of (Xing, 2017, Proposition 2.2).

4.3. Proof of Lemma 3.1. The statement for the primal problem is proved in Xing
(2017), see the argument leading to equation (2.14) therein. In particular, because all
investment opportunities are driven by W , it suffices to consider the martingale part of
Y p as a stochastic integral with respect to W .

Let us outline the argument for the primal problem. Parameterize c by c = cW and
suppose that

dY pt = −Hp
t dt+ Zpt dWt,
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for some processes Hp and Zp. Calculation shows

dW1−γ
t = (1− γ)W1−γ

t

[
rt − ct + π′tµt −

γ
2π
′
tΣtπt

]
dt+ (1− γ)W1−γ

t π′tσtdW
ρ
t ,

deY
p
t = eY

p
t
[
−Hp

t + 1
2 |Z

p
t |2
]
dt+ eY

p
t Zpt dWt.

(4.7)

Therefore the drift of W
1−γ

1−γ e
Y p +

∫ ·
0
f(cs,

W1−γ
s

1−γ e
Y ps )ds is (after suppressing the sub-

script t)

W1−γ

1−γ e
Y p
{

(1− γ)r − δθ + 1
2 |Z

p|2 + (1− γ)
[
− c+ δe−

1
θ Y

p
1

1− 1
ψ

c
1− 1

ψ
]

+ (1− γ)
[
− γ

2π
′Σπ + π′(µ+ σρ(Zp)′)

]
−Hp

}
.

The martingale principle then yields the previous drift to be nonpositive, leading to
Hp = Hp(Y pt , Z

p
t ) with

Hp(y, z) =(1− γ)rt − δθ + 1
2 |z|

2 + (1− γ) sup
c

[
− c+ δe−

1
θ y 1

1− 1
ψ

c
1− 1

ψ
]

+ (1− γ) sup
π

[
− γ

2π
′Σtπ + π′(µt + σtρtz

′)
]
,

whose maximizer is obtained by calculation.
For the dual problem, suppose that

dY dt = −Hd
t dt+ Zdt dWt,

for some processes Hd and Zd. Calculation shows

dD

γ−1
γ

t = γ−1
γ D

γ−1
γ

t

[
− rt − 1

2γ (|ξt|2 + |ηt|2)
]
dt+ γ−1

γ D

γ−1
γ

t (ξtdWt + ηtdW
⊥
t ),

de
Y dt
γ = e

Y dt
γ
[
− 1

γH
d
t + 1

2γ2 |Zdt |2
]
dt+ e

Y dt
γ Zdt

γ dWt.

(4.8)

Therefore the drift of γ
1−γ (yD)

γ−1
γ eY

d/γ +
∫ ·
0
g
(
yDs,

1
1−γ (yDs)

γ−1
γ eY

d
s /γ
)
ds is (af-

ter suppressing the subscript t)

1
1−γ (yD)

γ−1
γ e

Y d

γ
{

(1− γ)r − δθ + θ δ
ψ

ψ e
−ψθ Y

d

+ 1
2γ |Z

d|2

+(1− γ)
[

1
2γ (|ξ|2 + |η|2)− 1

γ ξ(Z
d)′
]
−Hd

}
.

Then the martingale principle implies that the previous drift is nonnegative, leading to
Hd = Hd(Y d, Zd) with

Hd(y, z) =(1− γ)rt − δθ + θ δ
ψ

ψ e
−ψθ y + 1

2γ |z|
2

+ (1− γ) inf
µt+σtρtξ′+σtρ⊥t η

′=0

[
1
2γ (|ξ|2 + |η|2)− 1

γ ξz
′
]
.

It then remains to obtain the minimizer for Hd. To this end, consider the uncon-
strained problem

1
2γ (|ξ|2 + |η|2)− 1

γ ξz
′ + λσρξ′ + λσρ⊥η′.

The first order condition yields

ξ = z − γλσρ and η = −γλσρ⊥.
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Plugging these optimizers into the constraint µ + σρξ′ + σρ⊥η′ = 0 yields the La-
grangian multiplier λ = 1

γ (µ′ + zρ′σ′)Σ−1, hence the form of minimizer ξ(t, z) and
η(t, z).

Plugging π(t, z), c̄(y) back into Hp(y, z) and ξ(t, z), η(t, z) back into Hd(y, z), we
obtain that bothHp(y, z) andHd(y, z) are the same asH(y, z) in (3.6). Therefore both
(Y p, Zp) and (Y d, Zd) are solution to (3.5).

4.4. Proof of Lemma 3.5. Because µ′Σ−1µ is bounded, |µ′Σ−1σρ|2 ≤
µ′Σ−1µ implies that 1−γ

γ µ′Σ−1σρ is bounded as well. Therefore, dP/dP =

E(
∫

1−γ
γ µ′sΣ

−1
s σsρsdWs)T defines a probability measure P equivalent to P, hence

(3.5) can be rewritten as

(4.9) Yt = log ε+

∫ T

t

H(Ys, Zs)ds−
∫ T

t

ZsdW s,

where W = W −
∫ ·
0

1−γ
γ ρ′sσ

′
sΣ
−1
s µsds is a P-Brownian motion by the Girsanov theo-

rem, and

H(y, z) := 1
2zMtz

′ + θ δ
ψ

ψ e
−ψθ y + ht − δθ.

Here because the eigenvalues of σ′Σ−1σ are either 0 or 1, we have 0 ≤
zρ′σ′Σ−1σρz′ ≤ zρ′ρz′ ≤ |z|2. This inequality implies that

0 < |z|2 ≤ zMtz
′ ≤ 1

γ |z|
2, when 0 < γ < 1,

0 < 1
γ |z|

2 ≤ zMtz
′ ≤ |z|2, when γ > 1.

(4.10)

Therefore the z-term in H is positive and has quadratic growth. On the other hand,
Assumption 3.4 implies that h is bounded. We denote hmin = ess inft∈[0,T ] ht and
hmax = ess supt∈[0,T ] ht. Due to the exponential term in y, we introduce a truncated
version of (4.9)

(4.11) Y nt = log ε+

∫ T

t

Hn(Y ns , Z
n
s )ds−

∫ T

t

Zns dW s, for n > 0,

where the truncated generator

Hn(y, z) := 1
2zMtz

′ + θ δ
ψ

ψ

(
e−

ψ
θ y ∧ n

)
+ ht − δθ

is Lipschitz in y, has quadratic growth in z, and Hn(0, 0) is bounded. This is the
quadratic BSDE studied in Kobylanski (2000) and Theorem 2.3 therein implies that
(4.11) admits a solution (Y n, Zn) with Y n bounded and Zn ∈ H2(P).

Note that {γψ ≥ 1, ψ > 1} = {0 < γ < 1, γψ ≥ 1} ∪ {γ, ψ > 1} and {γψ ≤
1, ψ < 1} = {0 < γ < 1, ψ < 1} ∪ {γ > 1, γψ ≤ 1}. We split the following
discussion into two cases.

Case 0 < γ < 1, γψ ≥ 1, or γ > 1, γψ ≤ 1: In this case 0 < θ ≤ 1, hence the sec-
ond term in Hn is positive, therefore Hn(y, z) ≥ hmin − δθ for all n. Compari-
son theorem for quadratic BSDE (cf. (Kobylanski, 2000, Theorem 2.6)) yields that
Y nt ≥ log ε + (hmin − δθ)(T − t) ≥ log ε − (hmin − δθ)−T , for all t and n, where
f− = −min{f, 0}. As a result, exp(−ψθ Y

n) ≤ ε−ψ/θ exp(ψθ (hmin−δθ)−T ) for all n.
TakeN := ε−ψ/θ exp(ψθ (hmin−δ)−T ). For any n ≥ N ,H(Y n, Zn) = Hn(Y n, Zn),
therefore, (Y,Z) := (Y n, Zn) is a solution to (4.9).

Case γ, ψ > 1, or 0 < γ,ψ < 1: In this case θ < 0, hence the second term inHn is neg-
ative. As a result, (4.10) implies Hn(y, z) ≤ 1

2 max{1, 1γ }|z|
2 + hmax − δθ. Consider



CONVEX DUALITY FOR EPSTEIN-ZIN STOCHASTIC DIFFERENTIAL UTILITY 19

the BSDE

Y
n

t = log ε+

∫ T

t

[
1
2 max{1, 1γ }|Z

n

s |2 + hmax − δθ
]
ds−

∫ T

t

Z
n

s dW s,

which has the solution Y
n

t = log ε+ (hmax − δθ)(T − t) and Z
n

t = 0. Then the com-
parison theorem for quadratic BSDE yields that Y nt ≤ Y

n

t ≤ log ε + (hmax − δθ)+T ,
for all t and n, where f+ = max{f, 0}. As a result, θ < 0 implies that exp(−ψθ Y

n) ≤
ε−ψ/θ exp(−ψθ (hmax− δθ)+T ) for all n. Take N := ε−ψ/θ exp(−ψθ (hmax− δθ)+T ).
For any n ≥ N , H(Y n, Zn) = Hn(Y n, Zn), therefore, (Y,Z) := (Y n, Zn) is a
solution to (4.9).

Finally, we will show Z ∈ HBMO in both cases. For any stopping time τ , (4.9) and
Z ∈ H2(P) imply

1
2E

P
τ

[ ∫ T

τ

ZsMsZ
′
sds
]

= Yτ − log ε− EP
τ

[ ∫ T

τ

θ δ
ψ

ψ e
−ψθ Ys + hs − δθ ds

]
.

Because Y and h are bounded, the right-hand side of the previous identity is bounded
by some constant C, which does not depend on τ . Therefore Eτ [

∫ T
τ
ZsMsZ

′
sds] ≤ 2C

for any stopping time τ . Combining the previous inequality with (4.10), we confirm
Z ∈ HBMO(P). As µ′Σ−1σρ is bounded, hence it belongs to HBMO(P). It then follows
from (Kazamaki, 1994, Theorem 3.6) that Z ∈ HBMO(P).

4.5. Proof of Theorem 3.6. For any solution (Y, Z) of (3.5) with bounded Y , and
π∗, c∗, D∗ defined in (3.9), let us define

(4.12) U∗t = 1
1−γ (W∗t )1−γeYt and Vy,∗t = γ

1−γ (yD∗t )
γ−1
γ eYt/γ ,

whereW∗ = W(π∗,c∗). It is clear that (1 − γ)U∗ > 0 and (1 − γ)Vy,∗ > 0. We will
prove U∗,Vy,∗ are of class (D), and

U∗t = Et
[ ∫ T

t

f(c∗s,U∗s)ds+ UT (W∗T )
]
,(4.13)

Vy,∗t = Et
[ ∫ T

t

g(yD∗s ,
1
γV

y,∗
s )ds+ VT (yD∗T )

]
,(4.14)

for any y > 0 and t ∈ [0, T ]. Therefore (π∗, c∗) ∈ A and D∗ ∈ Da. Take y = y∗ =
w−γeY0 and denote V∗ = Vy∗,∗. We have fromW∗0 = w and D∗0 = 1 that

U∗0 = 1
1−γw

1−γeY0 = γ
1−γ (y∗)

γ−1
γ eY0/γ + wy∗ = V∗0 + wy∗ = inf

y>0
(Vy,∗0 + wy).

Combining this identity with (2.15), (3.10) is confirmed.

U∗ is of class (D) and it satisfies (4.13): Using (4.7), where (Y p, Zp) is replaced by
(Y, Z), H from (3.8), and (π∗, c∗) from (3.9), we obtain

d (W∗t )
1−γ

eYt

= − (W∗t )
1−γ

eYt
(
δθ (c∗s)

1− 1
ψ
(

(W∗t )
1−γ

eYt
)− 1

θ − δθ
)
dt

+ (W∗t )
1−γ

eYt [(1− γ)(π∗t )′σtdW
ρ
t + ZtdWt]

= − (W∗t )
1−γ

eYt
(
θδψe−

ψ
θ Yt − δθ

)
dt+ (W∗t )

1−γ
eYt [(1− γ)(π∗t )′σtdW

ρ
t + ZtdWt] .

(4.15)
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This implies

(4.16) (W∗t )
1−γ

eYt = w1−γeY0 exp
(
−
∫ t

0

(
δψθe−

ψ
θ Ys − δθ

)
ds
)
Qt,

where

Qt = E
(∫

(1− γ)(π∗s )′σsdW
ρ
s +

∫
ZsdWs

)
t

= E
(∫

LsdWs +

∫
L⊥s dWs

)
t
,

L = 1−γ
γ µ′Σ−1σρ+ ZM, L⊥ = 1−γ

γ (µ′ + Zρ′σ′)Σ−1σρ⊥.

(4.17)

Because Y is bounded, the first three terms on the right-hand side of (4.16) are
bounded uniformly for t ∈ [0, T ]. For the exponential local martingale Q, note that
µ′Σ−1σρρ′σ′Σ−1µ ≤ µ′Σ−1µ and ZMM ′Z ′ ≤ 2[1 + ( 1−γ

γ )2]|Z|2. The bounded-
ness of µ′Σ−1µ and Z ∈ HBMO imply L ∈ HBMO as well. A similar argument yields
L⊥ ∈ HBMO. It then follows from (Kazamaki, 1994, Theorem 2.3) that Q is a martin-
gale, hence is of class (D). Coming back to (4.16), we have confirmed that (W∗)1−γeY
is of class (D), and so is U∗.

To verify (4.13), (4.15) shows that U∗+
∫ ·
0
f(c∗s,U∗s)ds is a local martingale. Taking

a localizing sequence (σn)n≥1, we obtain

U∗t + δθEt
[ ∫ T∧σn

t

U∗sds
]

= Et
[
U∗T∧σn +

∫ T∧σn

t

δ
(c∗s)

1− 1
ψ

1− 1
ψ

((1− γ)U∗s)
1− 1

θ ds
]
,

on {t < σn}. Sending n → ∞, the monotone convergence theorem and the class (D)
property of U∗ yield

U∗t + δθEt
[ ∫ T

t

U∗sds
]

= Et
[
UT (W∗T ) +

∫ T

t

δ
(c∗s)

1− 1
ψ

1− 1
ψ

((1− γ)U∗s)
1− 1

θ ds
]
.

The class (D) property of U∗ ensures δθEt[
∫ T
t
U∗sds] < ∞ a.s.. Subtracting it from

both sides of the previous equation, (4.13) is confirmed.

Vy,∗ is of class (D) and satisfies (4.14): Using (4.8) together withD∗ from (3.9), where
(Y d, Zd) is replaced by (Y,Z), we obtain

d(D∗t )
γ−1
γ e

Yt
γ =− θ

γψ δ
ψ(D∗t )

γ−1
γ e

(1−γψθ )
Yt
γ dt+ δθ

γ (D∗t )
γ−1
γ e

Yt
γ dt

+ (D∗t )
γ−1
γ e

Yt
γ [(1− γ)(π∗t )′σtdW

ρ
t + ZtdWt]

The previous SDE for (D∗)
γ−1
γ eYt/γ has the following solution

(4.18) (D∗t )
γ−1
γ e

Yt
γ = e

Y0

γ exp
(
− θ

γψ δ
ψ

∫ t

0

e−
ψ
θ Ysds+ δθ

γ t
)
Qt,

where Qt comes from (4.17). Because Y is bounded, the second term on the right-
hand side is bounded uniformly for t ∈ [0, T ]. Therefore the class (D) property of Q

implies the same property of (D∗)
γ−1
γ eY/γ and Vy,∗. The discussion after (4.8) and

the optimality of ξ∗ and η∗ imply that Vy∗ +
∫ ·
0
g(yD∗s ,

1
γV

y∗
s )ds is a local martingale.

A similar localization argument as the previous step confirms (4.14).



CONVEX DUALITY FOR EPSTEIN-ZIN STOCHASTIC DIFFERENTIAL UTILITY 21

Remark 4.1. A careful examination reveals that the previous proof only requires −Y/θ
to be bounded from above and Q to be a martingale. Indeed, when −Y/θ is bounded
from above, both the third term on the right-hand side of (4.16) and the second term on
the right-hand side of (4.18) are bounded. Combining with the class (D) property of Q,
we reach the same conclusion. We record this observation here for future reference.

4.6. Proof of Corollary 3.7. We will prove that D∗ given in (3.11) satisfies the SDE
ofD∗ in (3.9). As this SDE clearly admits an unique solution, this unique solution must
be given by (3.11).

Denote Wπ∗,c∗ by W∗ and U c
∗

by U∗. Calculation using (2.1), (3.9) and (4.12)
shows that

D∗t =wγe−Y0 exp
[ ∫ t

0

δ(θ − 1)((1− γ)U∗s )−
1
θ (c∗s)

1− 1
ψ ds− δθt

]
· δ((1− γ)U∗t )1−

1
θ (c∗t )

− 1
ψ

= exp
[ ∫ t

0

(θ − 1)δψe−
ψ
θ Ysds− δθt

] (W∗t )−γeYt

w−γeY0
.

On the other hand, set c∗ = c∗/W∗. Calculation using (3.5) and (3.9) yields

d(W∗)−γ =(W∗)−γ
[
− γ(r − c∗ + (π∗)′µ) + γ(γ+1)

2 (π∗)′Σπ∗
]
dt

− γ(W∗)−γ(π∗)′σdW ρ

=(W∗)−γ
[
− γ(r − c̃∗) + 1−γ

2γ µ
′Σ−1µ+ 1

γµ
′Σ−1σρZ ′

+ 1+γ
2γ Zρ

′σ′Σ−1σρZ ′
]
dt− γ(W∗)−γ(π∗)′σdW ρ

deY =eY
[
−H(Y,Z) + 1

2ZZ
′
]
dt+ eY ZdW.

Combining the previous three identities, we confirm

dD∗ =D∗
[
− γ(r − c∗) + (θ − 1)δψe−

ψ
θ Y − δθ

+ 1−γ
γ µ′Σ−1µ+ 1−γ

γ µ′Σ−1σρZ ′ + 1
2ZMZ ′ −H(t, Y, Z)

]
dt

+D∗[−γ(π∗)′σdW ρ + ZdW ]

=D∗
[
− r +

(
θ − 1− θ

ψ + γ
)
δψe−

ψ
θ Y
]
dt+D∗ [−γ(π∗)′σdW ρ + ZdW ]

=− rD∗dt+D∗ [−γ(π∗)′σdW ρ + ZdW ] ,

where the third identity follows from θ + γ − 1− θ
ψ = 0.

For the second statement, when (3.10) holds, the first inequality in (2.11) must be an
identity. Hence E

[
W∗TD∗T +

∫ T
0
D∗sc

∗
sds
]

= w, which implies the martingale property
of D∗W∗ +

∫ ·
0
D∗sc

∗
sds, because this process is already a supermartingale.

4.7. Proof of Theorem 3.12. For any solution (Y,Z) of (3.5) with Y bounded from
above, we have −Y/θ bounded from above. On the other hand, (Xing, 2017, Lemma
B.2) proved that Q from (4.17) is a martingale when Assumptions 3.8, 3.9, 3.11 hold.
Therefore the statement readily follows from Remark 4.1.

4.8. Proof of Proposition 3.16. This proof is similar to (Xing, 2017, Proposition 3.2),
whose Assumption 2.11 is no longer needed here, see Remark 3.14.
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Assumption 3.8: One only needs to check r(x)+ 1
2γµ(x)′Σ(x)−1µ(x) is bounded from

below on (0,∞). To this end,

r(x)+ 1
2γµ(x)′Σ(x)−1µ(x) = r0+ 1

γλ
′
0Θ(x)λ1+ 1

2γλ
′
0Θ(x)λ0

1

x
+(r1+ 1

2γλ
′
1Θ(x)λ1)x.

Note that Θ is bounded on (0,∞), because its eigenvalues are either 0 or 1. Therefore
r(x) + 1

2γµ(x)′Σ(x)−1µ(x) is bounded from below on (0,∞) thanks to condition (i).

Assumption 3.9: Note 1−γ
γ µ(x)′Σ(x)−1σ(x)ρ = 1−γ

γ

(
λ0√
x

+ λ1
√
x
)′

Θ(x)ρ. Consider
the martingale problem associated to

L :=
[
b`+ 1−γ

γ aλ′0Θ(x)ρ−
(
b− 1−γ

γ aλ′1Θ(x)ρ
)
x
]
∂x + 1

2a
2x∂2x, on (0,∞).

Because Θ(x) is bounded and b` + infx>0
1−γ
γ aλ′0Θ(x)ρ > 1

2a
2 in condition (iii),

Feller’s test of explosion implies that the previous martingale problem is well-posed.
Then (Cheridito et al., 2005, Remark 2.6) implies that the stochastic exponential in
Assumption 3.9 (i) is a P−martingale, hence P is well defined.

For Assumption 3.9 (ii),
(4.19)
h(x) = (1−γ)r0+ 1−γ

γ λ′0Θ(x)λ1+ 1−γ
2γ λ

′
0Θ(x)λ0

1
x +
[
(1−γ)r1+ 1−γ

2γ λ
′
1Θ(x)λ1

]
x.

Note that X and X̃ = X−1 have the following dynamics under P:

dXt =
[
b`+ 1−γ

γ aλ′0Θ(x)ρ−
(
b− 1−γ

γ aλ′1Θρ
)
Xt

]
+ a
√
XtdW t,

dX̃t =
[(
b− 1−γ

γ aλ′1Θρ
)
X̃t −

(
b`+ 1−γ

γ aλ′0Θρ− a2
)
X̃2
t

]
dt− aX̃3/2dW̄t,

where W is a P−Brownian motion. As Θ is bounded, one has EP[
∫ T
0
Xsds] < ∞.

On the other hand, note that −
(
b`+ infx>0

1−γ
γ aλ′0Θ(x)ρ− a2

)
< 1

2a
2 follows from

b` + infx>0
1−γ
γ aλ′0Θ(x)ρ > 1

2a
2. It follows from (Carr and Sun, 2007, Theorem 4

and Appendix 4) and the comparison theorem for SDE that EP[
∫ T
0
X̃sds] < ∞. As a

result, EP[
∫ T
0
h(Xs)ds] > −∞ follows from (4.19) and γ > 1.

Assumption 3.11: The operator F in (3.14) reads

F[φ](x) = 1
2a

2x∂2xφ+
(
b`+ 1−γ

γ aλ′0Θ(x)ρ−
(
b− 1−γ

γ aλ′1Θ(x)ρ
)
x
)
∂xφ

+ 1
2Ma2x(∂xφ)2 + (1− γ)r0 + 1−γ

γ λ′0Θ(x)λ1 + 1−γ
2γ λ

′
0Θ(x)λ0

1
x

+ (1− γ)
(
r1 + 1

2γλ
′
1Θ(x)λ1

)
x,

where M = 1 + 1−γ
γ ρ′Θ(x)ρ > 0 because ρ′Θρ ≤ 1. Consider

φ(x) = −c log x+ cx,

for two positive constants c and c, which will be determined later. It is clear that φ(x) ↑
∞ when x ↓ 0 or x ↑ ∞. On the other hand, calculation shows

F[φ](x) =C(x) +
[
1
2a

2c+ 1
2a

2c2M − c
(
b`+ 1−γ

γ aλ′0Θ(x)ρ
)

+ 1−γ
2γ λ

′
0Θ(x)λ0

]
1
x

+
[
−
(
b− 1−γ

γ aλ′1Θ(x)ρ
)
c+ 1

2a
2c2M + (1− γ)r1 + 1−γ

2γ λ
′
1Θ(x)λ1

]
x,

where C is a bounded function. Because b` + infx>0
1−γ
γ aλ′0Θ(x)ρ > 1

2a
2 and

1−γ
2γ λ

′
0Θ(x)λ0 ≤ 0, the coefficient of 1

x is negative for sufficiently small c. When
r1 or infx>0 λ

′
1Θ(x)λ1 > 0, because γ > 1 and Θ(x) is bounded, the coefficient of
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x is negative for sufficiently small c. Therefore, these choices of c and c imply that
F[φ](x) ↓ −∞ when x ↓ 0 or x ↑ ∞, hence F[φ] is bounded from above on (0,∞),
verifying Assumption 3.11.

4.9. Proof of Proposition 3.18. Note that

r(x) + 1
2γµ(x)′Σ−1 1

xµ(x) = r0 + (r1 + 1
2γλ
′Θλ)x.

Therefore Assumption 3.8 follows from condition (i). For Assumption 3.9,
1−γ
γ µ(x)′Σ−1 1

xσ
√
xρ = 1−γ

γ λ′Θρ
√
x. Consider the martingale problem associated

to
L :=

[
px+

(
q + 1−γ

γ aλ′Θρ
)
x2
]
∂x + 1

2a
2x3∂2x, on (0,∞).

Due to q + 1−γ
γ aλ′Θρ < 1

2a
2 from condition (iii), Feller’s test of explosion ensures

that the previous martingale problem is well-posed. Then the same argument as the
previous subsection ensures that P is well defined. On the other hand,

h(x) = (1− γ)r0 +
[
(1− γ)r1 + 1−γ

2γ λ
′Θλ

]
x.

Then EP[
∫ T
0
h(Xs)ds] > −∞ follows from γ > 1 and EP[

∫ T
0
Xsds] <∞ from (Carr

and Sun, 2007, Theorem 4 and Appendix 4).
Comparing to the previous subsection, the main difference here is the choice of

Lyapunov function φ. To this end,

F[φ](x) = 1
2a

2x3∂2xφ+
(
px+

(
q + 1−γ

γ aλ′Θρ
)
x2
)
∂xφ+ 1

2Ma2x3(∂xφ)2

+ (1− γ)r0 + (1− γ)[r1 + 1−γ
2γ λ

′Θλ]x,

where M = 1 + 1−γ
γ ρ′Θρ > 0. Consider φ ∈ C2(0,∞) such that

φ(x) = −c log x for 0 < x < 1 and φ(x) = c log x for x > 2,

where c and c are two positive constants to be determined later. Clearly φ(x) ↑ ∞when
x ↓ 0 or x ↑ ∞. When 0 < x < 1, calculation shows

F[φ](x) = C +
[
1
2a

2c−
(
q + 1−γ

γ aλ′Θρ
)
c+ 1

2a
2Mc2 + (1− γ)r1 + 1−γ

2γ λ
′Θλ

]
x,

for some constant C. Therefore, for any c > 0, limx↓0 F[φ](x) is bounded from above.
On the other hand, when x > 2,

F[φ](x) = C +
[
− 1

2a
2c+

(
q+ 1−γ

γ aλ′Θρ
)
c+ 1

2a
2Mc2 + (1− γ)r1 + 1−γ

2γ λ
′Θλ

]
x,

for some constant C. When either r1 or λ′Θλ is strictly positive, the coefficient of x
is negative for sufficiently small c. Combining the previous two cases, we confirm that
F[φ] is bounded from above on (0,∞), hence verify Assumption 3.11.

APPENDIX A. BASIC FACTS

Direct calculations specify various functions introduced in Section 2.3.

LEMMA A.1 The Epstein-Zin aggregator f in (2.1), and its double conjugates F , G,
g, defined in (2.6), (2.10), (2.13), respectively, satisfy the following statements.

(i) f(c, u) is concave in c. For c, (1− γ)u > 0,

−fu(c, u) = δ(1− θ)c1−
1
ψ ((1− γ)u)−

1
θ + δθ,

fuu(c, u) = δ
γψ − 1

ψ
c1−

1
ψ ((1− γ)u)−

1
θ−1.
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Therefore f(c, u) is convex in u if and only if γψ ≥ 1.
(ii) When γψ 6= 1,

F (c, ν) =δθ
c1−γ

1− γ

(
δθ − ν
θ − 1

)1−θ

, for c > 0, δθ−νθ−1 > 0,

Fcc(c, ν) =− δθγc−γ−1
(
δθ − ν
θ − 1

)1−θ

,

Fνν(c, ν) =δθ
ψ

1− γψ
c1−γ

(
δθ − ν
θ − 1

)−1−θ
.

Therefore F (c, ν) is concave in c. Moreover F (c, ν) is concave in ν if and only
if γψ > 1.

(iii) When γψ 6= 1,

G(d, ν) =δ
θ
γ

γ

1− γ
d
γ−1
γ

(
δθ − ν
θ − 1

) 1−θ
γ
, for d > 0, δθ−νθ−1 > 0,

Gdd(d, ν) =δ
δ
γ

1

γ
d
− 1
γ−1

(
δθ − ν
θ − 1

) 1−θ
γ
,

Gνν(d, ν) =δ
θ
γ

1

γ(1− γψ)
d
γ−1
γ

(
δθ − ν
θ − 1

) 1−θ
γ −2

.

Therefore G(d, ν) is convex in d. Moreover G(d, ν) is concave in ν if and only
if γψ > 1.

(iv)

g(d, v) =δψ
d1−ψ

ψ − 1
((1− γ)v)1−

γψ
θ − δθv, d > 0, (1− γ)v > 0,

−gv(d, v) =δψ(1− θ)d1−ψ((1− γ)v)−
γψ
θ + δθ,

gvv(d, v) =δψγ(γψ − 1)d1−ψ((1− γ)v)−
γψ
θ −1.

Therefore g(d, v) is convex in d. Moreover g(d, ν) is convex in v if and only if
γψ ≥ 1.
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