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ABSTRACT 

Unemployment insurance (UI) reduces the opportunity cost of leisure, but it is unknown 

whether this additional leisure time is physically active. To obtain unbiased estimates of 

the effect of UI on physically active leisure participation, I exploit changes in UI program 

legislation across US states and time. Using nationally representative monthly data 

between 2003 and 2010 from the Behavioral Risk Factor Surveillance System (BRFSS) 

and the American Time Use Survey (ATUS), I find evidence that both state UI eligibility 

expansions and increases in maximum allowable state UI benefits coincide with greater 

probability of physical activity among the recently unemployed. Based on point 

estimates, state UI eligibility expansions increased the probability of physical activity 

participation by 8 to 10 percentage points among the unemployed with less than a high 

school education, while a 10 percent increase in the maximum allowable state UI benefit 

increased the probability of physical activity by 0.3 to 0.6 percentage points among the 

unemployed who have completed high school or some college. 

Keywords: Unemployment; physical activity; difference-in-difference-in-difference; 

Grossman model, labor-leisure tradeoff; BRFSS; ATUS  
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1. INTRODUCTION  

Many studies suggest that job loss has deleterious effects on a variety of health behaviors 

and conditions and may even increase the risk of premature death (Catalano et al., 2011, 

Modrek, 2013, Browning and Heinesen, 2012, Sullivan and von Wachter, 2009). 

However the notion that increases in non-labor time may actually be good for health is 

supported by several studies that find increases in unemployment to be associated with 

reductions in overall mortality rates (Tapia Granados, 2005, Ruhm, 1995, Ruhm, 2000, 

Ruhm, 2003, Ruhm, 2005, Gerdtham and Ruhm, 2006). A common explanation for the 

latter is that healthy lifestyles are also countercyclical: joblessness increases physical 

activity among the habitually inactive, as well as weight loss among the severely obese. 

For example, a one percentage point increase in US state unemployment rates has been 

associated with a sizeable 1.5% increase in physical activity and a 1.4% decrease in 

severe obesity at the population level (Ruhm 2005).  

In this paper, I test whether unemployment insurance (UI) might explain why some 

individuals engage in physical activity while out of work. While UI programs are not 

designed specifically to promote healthy behaviors, it is well established that UI reduces 

the opportunity cost of leisure (Chetty 2008; Moffitt and Nicholson 1982; Mortensen 

1977). Although sedentary and physically active leisure are both subsidized by UI, 

economic theory posits that demand for time-intensive, health promoting activities will 

increase as the price of engaging in these activities decreases. This could mean that UI 

recipients are more likely to participate in physically active leisure compared to non-

recipients.  



 4 

In the US, a key methodological challenge in assessing the causal impact of UI on 

physically active leisure is the non-random selection into benefit receipt, as not all 

unemployed people are eligible, or apply for UI. To obtain unbiased estimates of the 

effect of UI on physical activity, I take two approaches. First, I exploit wide variation 

across US states in the timing of a policy known as ‘Alternate Base Period’ (ABP) which 

allows unemployed workers to file UI claims based on wages earned closer in proximity 

to the time of job displacement. This policy uniquely expands UI eligibility for 

unemployed individuals with irregular work history, the vast majority of whom have less 

than a high school education; however, the policy has not been shown to affect UI receipt 

among more highly educated groups. In the second approach, I make use of within-state 

variations in the maximum allowable UI benefit level. Although the dollar value of UI 

benefits received is individually determined, state laws define the maximum amount and 

duration of benefits that workers are entitled to receive after job loss, leading to 

considerable variability across states and time in terms of UI benefit generosity. 

I test the effects of these variations in state UI laws on nationally representative monthly 

data between 2003 and 2010 from both the Behavioral Risk Factor Surveillance System 

(BRFSS) and the American Time Use Survey (ATUS). I consistently find that UI is 

associated with greater participation in physical activity. ABP state UI eligibility 

expansions coincide with increased probability of engaging in physical activity among 

unemployed people with no high school degree using difference-in-difference models and 

difference-in-difference-in-difference models (where additional control groups are 

formed of more highly educated unemployed individuals whose UI eligibility is 

unaffected by the expansion). Likewise, I find increases in maximum allowable state UI 
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benefit levels are associated with greater probability of participating in physical activity 

among unemployed high school graduates and those who attended some college. 

However there are no significant effects among the highly educated unemployed, for 

whom changes in benefit levels are likely to replace a relatively small share of previous 

wages, or for low educated unemployed who are unlikely to qualify to receive the 

maximum allowable UI benefit level.  

2. BACKGROUND 

2.1 Literature review 

The rationale for UI to increase physical activity is tied to the expectation that 

unemployment benefits lengthen unemployment duration by distorting job search 

incentives and subsidizing leisure time, with the strongest effects among liquidity 

constrained households (Chetty 2008; Moffitt and Nicholson 1982; Mortensen 1977). 

This hypothesis is derived directly from labor supply theory, which proposes a trade-off 

between deciding whether to engage in labor or leisure to maximize utility. During 

periods of joblessness, individuals do not engage in wage producing labor, leading to 

greater consumption of leisure due to reductions in its opportunity cost. The decreased 

cost of leisure time associated with joblessness is likely to be conditional to some extent 

on access to financial resources; otherwise, a large portion of time while unemployed 

must be allocated to job search to preserve consumption levels (Gruber, 1997).  

For the unemployed receiving unemployment benefits, as there is no work effort or time 

required to produce additional income, there is less need to choose between labor, job 
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search
1
, and leisure (Besley and Coate, 1992). Leisure time—both sedentary and 

physically active— is effectively subsidized by unemployment benefits (Holmlund, 

1998) with the choice between sedentary and physically active leisure depending to some 

extent on individual preferences. An important question is therefore whether this 

additional leisure time attributed to unemployment benefits could inadvertently be health 

promoting. If individuals with access to unemployment benefits choose to spend some of 

their newfound leisure time engaging in physical activities, the time off of work could 

ultimately improve their health. 

The canonical Grossman model of demand for health posits that demand for time-

intensive health promoting activities will increase as the price of engaging in these 

activities decreases (Grossman, 1972, Becker, 1965). A utility maximizing unemployed 

individual with excess free time could be expected to spend some of this time investing in 

their health by participating in physical activities. With leisure time underwritten by UI, 

the price of undertaking time consuming healthy activities, such as exercise, diminishes 

substantially. This temporary increase in income from UI without commensurate work 

effort is distinct from temporary wage increases requiring labor, which reduce health 

investment behaviors due to their propensity to encourage additional work hours 

(Dustmann and Windmeijer, 2000). The increase in income associated with UI could 

therefore result in increases in active, health producing leisure.  

                                                             
1
 All US states require that the unemployed actively search for work—for example, by 

signing up for internet employment-search services or keeping a record of weekly work 

searches—to be UI eligible. Therefore, some amount of time must be allocated to job 

searching for UI benefit receivers. 
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There is in fact already evidence already suggesting that UI has a positive effect on 

health, though no studies have investigated whether there are effects of UI on physical 

activity or time spent engaging in healthy behaviors (Rodriguez, 2001, Rodríguez et al., 

2001, Rodriguez et al., 1997, McLeod et al., 2012a). Most studies linking unemployment 

benefit programs to health have focused only on the association between actual receipt of 

unemployment benefits and self-assessed health measures. In general, these studies 

suggest that unemployed workers receiving benefits are in better health than unemployed 

workers who do not receive unemployment benefits. A potential caveat of these studies is 

the strong selection associated with claiming or being eligible for unemployment 

benefits.  Eligibility to receive benefits, as well as the amount of benefits received, is 

determined based on a worker’s career, salary, and reason for job loss; each of these 

factors is plausibly an independent predictor of health behaviors. Cylus et al provide 

convincing ‘quasi-experimental’ evidence that the level of UI generosity can play an 

important role in health; exploiting variation across states and time in the maximum 

allowable state UI benefit level, the authors find that more generous UI benefit programs 

reduce the likelihood of poor self-assessed health among the unemployed (Cylus, 

Glymour et al. 2015) and slightly moderate the effect of unemployment rates on suicides 

(Cylus, Glymour et al. 2014). However whether the health effects of UI are driven by 

changes in income, leisure time, or a combination remains unclear.  

The idea that UI could incentivize physical activity is also consistent with literature on 

the determinants of physical activity participation. In the US, lack of time has been cited 

as a primary reason for physical inactivity (Brownson et al., 2001). A study using the 

BRFSS dataset finds that increases in hours of work are associated with less physical 
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activity among the low educated; the author emphasizes that changes in time rather than 

changes in income drive the results (Xu, 2013). Research also indicates that as wages and 

the opportunity cost of time increase, the intensity of physical activity increases so that 

less time is needed to achieve comparable levels of fitness (Meltzer and Jena, 2010). This 

implies that for UI recipients, whose opportunity cost of time is low, the decision to 

engage in physical activity may result in relatively less-intensive, more time-consuming 

leisurely physical activity, such as walking. A recent study from 2003 to 2010 using the 

ATUS also finds that physical activity increases as a result of unemployment, with effects 

largely among low-educated men; however the increased physical activity associated 

with unemployment does not fully substitute for decreases in work-related physical 

activity (Colman and Dave, 2013).  

2.2 Unemployment insurance in the US 

The Federal-state UI program in the US was established as part of the Social Security Act 

of 1935, following years of fragmented and largely unsuccessful attempts at 

unemployment compensation legislation in various states. A key barrier to creating 

unemployment benefit programs at the state level was the concern that financing an 

unemployment benefit program based on employer taxes would lead to variations across 

states in employer costs, stifling interstate competition. The Social Security Act’s main 

contribution was therefore not to set up a Federal unemployment benefit program, but 

rather, the Act made it easier for states to establish their own unemployment benefit 

programs because it created a Federal unemployment tax to be levied equally across all 

employers in all states. 



 9 

As a result, states are responsible for designing and administering their own UI programs 

based on general principles set by the Federal government. Each state UI program 

provides qualifying job losers with varying levels of temporary wage replacement for a 

limited period of time, with the maximum allowable weekly benefit level and the 

maximum duration of benefit receipt determined by the states themselves. This results in 

a large degree of heterogeneity in maximum allowable UI levels (weekly maximum 

benefit level X maximum duration) across states and time. In 2010, the maximum 

allowable state UI benefit level varied from a low of $6,110 in Mississippi to a high of 

$28,290 in Massachusetts. From 2003 to 2010, the largest increase in maximum 

allowable benefits was in New Mexico ($6,474) and the largest decrease was in 

Washington (-$320); the median state change during that time was in California ($2,080). 

Four states (Florida, Michigan, New York and Tennessee) made no changes to their 

maximum UI levels between 2003 and 2010. 

Job losers are not guaranteed to receive UI; on the contrary, eligibility, as well as the 

actual amount of benefit received (subject to the maximum allowable benefit level) is 

based on complex criteria that job losers must meet, and which differ substantially across 

states and over time. One of the key impediments to UI eligibility relates to an 

individual’s prior work history (US Department of Labor, 2009a). To receive UI, 

unemployed individuals must have a minimum level of earnings as determined by each 

state over a predefined base period; historically, this base period has comprised the 

earliest four of the previous five completed quarters before job loss (Figure 1, upper 

panel). The purpose of requiring a minimum level of earnings over a standard base period 

is to ensure that individuals in receipt of benefits have sufficient attachment to the labor 
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market prior to job loss; the lag between job loss and the base period allows sufficient 

time for administrative UI eligibility processing. Individuals who do not have adequate 

earnings during this standard base period are not eligible to receive UI benefits. This 

largely penalizes individuals with irregular work histories and low wages; research shows 

that low earners are less likely than high earners to receive UI, underscoring the 

complications of studying any effects of UI via direct comparisons between UI recipients 

and non-recipients (Gould-Werth and Shaefer, 2012). 

2.2.1 UI modernization: Alternate Base Periods 

In an effort to increase UI take-up among marginalized workers, states have 

progressively been allowing the unemployed to claim UI eligibility using wages earned 

over Alternate Base Periods (ABP). Under ABP, UI eligibility is not based on earnings 

during the earliest four of the previous five completed quarters, but rather, the eligibility 

window is shifted forward by one quarter to comprise the four most recently completed 

quarters (Figure 1, lower panel). By shifting the base period window to account for more 

recent earnings, individuals who have unsteady work histories have a greater chance of 

qualifying for UI. ABP implementation may also increase application rates among 

individuals who would not have applied otherwise (O'Leary, 2010).  
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Figure 1. Time periods used to determine eligibility for UI, standard base period vs. 

alternate base period 

Standard 

Base Period           

Q1 Q2 Q3 Q4 Q5 

Example 

date of job 

loss 

January-

March 2014 

April-June 

2014 

July-

September 

2014 

October-

December 

2014 

January-

March 2015 

April 15th 

2015 

  

    

  

Alternate 

Base Period 

    

  

Q1 Q2 Q3 Q4 Q5 

Example 

date of job 

loss 

January-

March 2014 

April-June 

2014 

July-

September 

2014 

October-

December 

2014 

January-

March 2015 

April 15th 

2015 

      Source: Adapted based on Gould-Werth, A., & Shaefer, H. L. (2013)  

Note: The grey boxes are the quarters that are used to determine monetary eligibility for 

UI given April 15
th

, 2014 as the hypothetical date of job loss. For a worker to be eligible 

for UI, they must meet State earnings requirements in the quarters highlighted in grey. 

 

The first state to implement ABP was Vermont in 1988; by the end of the 20
th

 century, 

only 6 more states had followed suit (Rhode Island, Washington, New Jersey, Ohio, 

North Carolina and New York) followed by Maine, Massachusetts, Michigan, Wisconsin 

and New Hampshire by 2001 (Figure 2). However between 2003 and 2010, 21 more 

states plus Washington D.C. enacted legislation for ABP at varying points in time. One of 

the reasons for such a large increase in ABP is that as part of the American Recovery and 

Reinvestment Act (ARRA) of 2009, states were given access to special funds totaling $7 

billion, conditional on reforms to modernize their UI program. One-third of these funds 
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were made available to states if they had ABP in place, which led 10 states to enact ABP 

legislation in 2009 followed by 3 more states in 2010 (O'Leary, 2010). These Federal 

stimulus funds were subsequently transferred into each state’s UI trust fund, without any 

requirement for the funding to pay for the UI modernization reforms themselves. 

 

Figure 2. Year of Alternate Base Period implementation in US states 

 

Source: Based on information from the US Department of Labor website: 

(http://workforcesecurity.doleta.gov/unemploy/laws.asp) 

 

While ABP legislation increases the share of the unemployed who are eligible to receive 

UI, there is only limited evidence of the degree to which it has increased UI take-up. A 

Pre-2003 2003 2004 2005 2008 2009 2010 2011 2012

Not by 

end of 

2012
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report for the US Department of Labor in 1995 concluded that, based on five of the six 

states that had enacted ABP policy at that time, the presence of ABP could increase the 

number of eligible UI claimants by between 6 and 8 percent overall (Vroman, 1995). The 

study found that, as expected, beneficiaries of the policy were typically low-wage 

earners, as earnings among ABP eligible individuals were lower than workers who were 

eligible under the standard base period. Another simulation using data from the Survey of 

Income and Program Participation (SIPP) also finds that low-wage workers (in the 

bottom quartile of wage earners) disproportionately gain from ABP (Stettner et al., 2005).  

The only nationally representative study of ABP uses data from the Current Population 

Survey (CPS) and finds analogous evidence that ABP increases UI take-up among low 

wage earners (Gould-Werth and Shaefer 2013). Despite well-known underreporting of UI 

receipt in the CPS, the authors conclude that between 1987 and 2011, the unemployed 

seeking part-time work with less than a high school degree were more likely to receive 

UI under ABP, but they do not find statistically significant effects on UI take-up among 

other more highly educated unemployed cohorts. This result is perhaps unsurprising, 

given that non-high school graduates are likely to be low-wage, part-time and intermittent 

workers – the target demographic of the policy. 

3. METHODS 

3.1 Data 

The primary data source for this study is the BRFSS, which is a nationally representative 

repeated cross-sectional dataset and the largest telephone survey in the world (Centers for 
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Disease Control, 2014). The BRFSS collects data on personal health behaviors and 

individual characteristics and has frequently been used to study the relationship between 

unemployment and health (Ruhm and Black, 2002, Ruhm, 2005, Ruhm, 2003, Dee, 2001, 

Tefft and Kageleiry, 2014, Helliwell et al., 2011).  

To supplement the analysis, I also use data from the ATUS (Bureau of Labor Statistics, 

2014). Sponsored by the Bureau of Labour Statistics and conducted by the US Census 

Bureau, the ATUS is a nationally representative repeated cross-sectional dataset 

comprised of randomly selected individuals from the CPS. Interviewees report detailed 

information on how they spent their time, minute-by-minute, during the previous day. 

The ATUS has been used previously to investigate time spent job searching as well as 

time spent on health promoting activities (Krueger and Mueller, 2010, Cawley and Liu, 

2012, Tudor-Locke et al., 2010, Colman and Dave, 2013).    

I use data from the 2003 through 2010 waves of both surveys because since 2011, the 

BRFSS has changed its weighting methodology to iterative proportional fitting, which 

replaced the previously used post-stratification weighting method
2
. Likewise, the Bureau 

of Labor Statistics provides state-specific monthly unemployment rates beginning in 

2003, which I use as a control variable to proxy economic conditions.  

The BRFSS outcome variable of interest is a self-reported yes-no question regarding 

whether the respondent took part in any leisure time physical activity during the past 

                                                             
2
 Weighting is required to account for unequal probabilities of respondents being 

included in the survey (Ruhm 2005); weights make the BRFSS data representative of the 

adult population in the state, allowing me to obtain consistent estimates of average 

treatment effects (Ruhm & Black, 2002).  
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month: During the past month, other than your regular job, did you participate in any 

physical activities or exercises such as running, calisthenics, golf, gardening, or walking 

for exercise?. Despite the potential for measurement error, research suggests that self-

reported measures of physical activity, such as the question used in the BRFSS, are valid, 

reliable and correlate with objective measures (Aires et al., 2003, Yore et al., 2007). 

These types of questions are commonly used to measure physical activity (Brownson et 

al., 2005, Ford et al., 2010, Barker et al., 2011, Mensah et al., 2005, Hackmann et al., 

2012, Tekin et al., 2013). While other BRFSS data on self-reported moderate and 

vigorous physical activity are potentially of interest, they are only available in alternating 

BRFSS waves (i.e. in odd years) so that there are only 4 years of data between 2003 and 

2010. This not only reduces the sample size considerably, but also means that in many 

instances, there are no observations at, or around the actual time of a state’s ABP 

implementation, as well as fewer within-state changes in UI maximum allowable 

benefits. As a result, I do not make use of these variables. 

While the ATUS does not contain the identical leisure-time physical activity question as 

the BRFSS, it does contain information on the minutes spent participating in a long list of 

sporting activities. I limit the analysis to minutes spent walking, running, or engaging in 

any sporting activity overall because walking and running are commonly reported 

sporting activities, do not require specific equipment, and can be done without team 

members or competitors; the any sporting activity category captures all types of physical 

activities in aggregate. I do not include minutes spent walking or running while traveling 

from one place to another, as I consider this to be a mode of transport rather than 

participation in a leisure time physical activity. Although the reported minutes spent 
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exercising in the ATUS could be considered a more objective outcome measure than the 

self-reported question in the BRFSS, the ATUS itself has a number of drawbacks. 

Importantly, the ATUS unemployed sample is considerably smaller than the BRFSS. 

This may be problematic given the small effect of ABP on UI take-up and the fact that I 

am interested in within-state changes over time, which requires fairly large unemployed 

samples within each state and time period. Information on employment status collected 

through the CPS and reported in the ATUS also may not refer to the exact same month as 

the information collected on time-use, making it difficult to ensure that the time-use data 

consists exclusively of unemployed individuals. 

Other relevant data available and used in both surveys include gender, age group (18-24, 

25-34, 35-44, 45-54,55-64), marital status, education level, race (white, black, or other), 

body mass index (BMI)
3
, as well as state of residence, year and month surveyed.  

Information on the date of each state’s ABP implementation and annual UI maximum 

allowable benefit levels were taken from the US Department of Labor website. Maximum 

allowable benefits are disaggregated by the maximum allowable amount per week (in US 

dollars) and the maximum number of weeks workers were entitled to receive benefits. 

These two values were multiplied to obtain the total allowable benefit level in a state in a 

given year.  

                                                             
3
 Body mass index data is missing for most unemployed non-high school graduate 

respondents in the ATUS and so it is not used in that analysis. 
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3.2 Empirical strategy 

Neither the BRFSS, nor ATUS datasets contain information on whether unemployed 

individuals actually received UI. However assessing any direct effects of UI receipt on 

physical activity could produce biased results because of key differences between 

individuals who are eligible or ineligible, those who qualify or do not qualify, and those 

who ultimately receive or do not receive UI. Instead, I exploit the wide-variation within 

and across states over time in UI program legislation to estimate effects on physical 

activity in an intention-to-treat study design.  

My primary approach tests the effect of ABP UI eligibility expansion on the probability 

of reporting physical activity. I use two main specifications that take advantage of both 

the state variation in the timing of ABP implementation and the subgroups exposed to 

and affected by the policy. First, I employ a difference-in-difference (DD) approach 

exploiting within-state variation in the timing of ABP implementation, and the fact that 

states introduced the policy at different points over the study period of 8 years (96 

months). For this first specification, I restrict the sample to individuals with less than a 

high school education who became unemployed in the past year, as this group is the most 

likely to be affected by ABP. The treatment group is therefore recently unemployed 

individuals with less than a high school education in a state and time period with ABP 

policy in place, while the control group is recently unemployed individuals with less than 

a high school education when and where ABP has not yet been implemented. A key 

benefit of the DD approach is the ability to reduce selection problems inherent when 

comparing effects of non-random selection into treatment groups. While it is possible that 
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there are changes in the composition of the unemployed population with less than a high 

school degree over time that could bias the results, it is improbable that such 

compositional changes would systematically correlate with ABP implementation over 

time, as there is considerable variation in the year and month of ABP implementation 

across states. The DD model specification is: 

ijmtmtjixjmtijmt MYSXURABPPA   '21  

where PA is a binary indicator of whether an individual reports physical activity, S are 

state fixed effects that control for time invariant state characteristics, Y are year fixed 

effects, M are month fixed effects which capture seasonal variations, UR are state 

monthly unemployment rates, and X is a vector of individual characteristics. ABP is an 

interaction between state and time where ABP=1 beginning in the month following a 

state’s ABP implementation, allowing enough time for ABP eligibility to begin to be 

processed by state programs (Stettner et al., 2005). Using this specification, the 

coefficient on ABP is the average treatment effect of the policy on physically active 

leisure among unemployed individuals, identified for states that implement ABP at some 

point between 2003 and 2010.  

One drawback of this approach is that any other policies or events that correlate with 

state ABP implementation may also produce an observable effect on the outcome 

variable. For example, since ABP policy was a requirement for states to receive ARRA 

UI modernization funds, it is possible that the ABP coefficient may pick up other 

elements of the ARRA program, such as the Supplemental Nutrition Assistance Program, 
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support for Medicaid, or other measures that have broad effects on unemployed residents 

of a state, including but not limited to just the unemployed with less than a high school 

education (Modrek, 2013). Medicaid, for example, affects a wide swath of the US 

population, having almost 70 million enrollees in 2010—nearly 20 percent of the US 

population—which is larger than the total adult population that did not graduate high 

school (approximately 13 percent of the US population) and considerably larger than the 

unemployed non-high school graduate population (Kaiser Family Foundation, 2014, US 

Census Bureau, 2012). The DD approach could inadvertently pick up these 

contemporaneous effects and give an inaccurate estimate of the independent effect of 

ABP. 

To address this, I use difference-in-difference-in-difference (DDD) models, where an 

additional control group assumed to be unaffected by ABP is included. I primarily use the 

recently unemployed who have graduated high school but have received no further 

education, and are unemployed in the same state and time period. This additional control 

group is arguably a reasonable comparator to the unemployed with less than a high 

school education in terms of education level, earnings potential, and eligibility for other 

social programs such as Medicaid as described above, but based on previous research on 

the effects of ABP, is not likely to benefit from ABP policy. I also run models that use 

other control groups—either all of the unemployed who have at least graduated high 

school or the unemployed who have completed some college. Both of these alternative 

control groups are unlikely to be affected by ABP, but are also unlikely to be affected by 

other social programs, and may be less comparable to the non-high school graduate 
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demographic in terms of observable and unobservable characteristics in general. The 

DDD model specification is: 

 tjiixjmtijmt YSEXURABPPA 321 ' 
 

ijmtmitijiim MEYESEABPEM   )*()*()*()*(4  

where E refers to the population eligible for ABP, in this case, the unemployed with less 

than a high school education. I use separate state, year, and month fixed effects for the 

eligible and non-eligible populations, which is a conservative modeling approach. The 

coefficient of interest in this model is ABP*E, which estimates the average effect of ABP 

policy on the target population. 

I conduct many robustness checks, including inclusion of state-specific time trends and 

demographic interactions. I also run the analysis after collapsing the monthly data into 

state-year observations. As an additional sensitivity analysis, I test the effects of ABP on 

the natural log of height, for which there is no reason to expect that variations across 

states and repeated cross-sections will be associated with implementation of ABP policy 

in the short-term.  

One of the key assumptions of DD and DDD is the common trend assumption. This 

stipulates that physical activity participation is essentially indistinguishable between the 

treatment and control groups prior to the implementation of ABP policy. If the 

probability of physical activity among the treatment and control groups had already been 

diverging prior to ABP implementation, the models may inaccurately attribute effects to 
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the policy. This would be the case even after controlling for observable characteristics. 

With nearly half of the 50 states plus Washington DC implementing ABP at various 

points in time over the study period, it is difficult to visually confirm that there is no 

difference in trends prior to ABP. However, prior studies have utilized a test, where a 

bogus policy is created to see whether there is a statistically significant difference 

between treatment and control groups in the time period leading up to the policy (Gregg 

et al., 2012, Bertrand et al., 2004). I use two bogus policies: the 24 months or 36 months 

leading up to the actual implementation of ABP and test these for DD and DDD 

specifications, where a non-significant association validates the common trend 

assumption.  

For the second approach, I exploit variation in the legislated maximum allowable state UI 

benefit level across states and time. Importantly, changes in state laws are presumed 

uncorrelated with state physical activity participation, demographics or other state 

characteristics. Prior research also suggests that changes in unemployment benefit 

generosity are unrelated to changes in the generosity of other state programs (Fishback et 

al, 2010) enabling identification of UI effects through changes in state UI maximum 

allowable benefits. The model specification, similar to the DD model above is: 

ijmtmtjixjmtjtijmt MYSXURMAXUIPA   ')ln( 21

 

where MAXUI is the maximum allowable state UI benefit in a state and year. State fixed 

effects control for all time-invariant differences across states and use only within-state 

variation over time to identify the impact of benefits on physical activity. I use the natural 
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log of benefit levels to calculate the effect of a proportional increase in maximum benefit 

levels. Because low educated job losers are unlikely to be eligible to receive the 

maximum allowable UI benefit level if they have poor work history, I run the analysis 

stratified by education. 

All regressions are linear probability models with standard errors that are robust to 

unobserved heteroscedasticity, allowing for intragroup correlation by clustering at the 

state-year-month level for the ABP analysis (since ABP variation is at that level) and at 

the state-year level for the maximum allowable benefit analysis (since maximum UI 

benefit variation is at that level). Results are comparable using logistic regressions 

instead of linear regression. 

4. RESULTS 

4.1 Descriptive statistics 

The BRFSS contains 9,062 18 to 65 year olds with less than a high school degree who 

had been unemployed for less than one year at the time of survey. 42.3 percent (n=3,833) 

were exposed to ABP policy. For the main DDD models, where unemployed high school 

graduates are the additional control group, 25,812 respondents were recently unemployed 

high school graduates with no further education, with 11,869 of those exposed to ABP 

but whose UI eligibility was not likely affected by the policy. The ATUS contains 1,178 

18 to 65 year olds with less than a high school degree who report being unemployed; 40.8 

percent (n=481) were exposed to ABP.  
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Table 1 contains weighted descriptive statistics from the BRFSS for recently unemployed 

individuals exposed to ABP and not exposed to ABP, disaggregated by those with less 

than a high school degree and those with a high school degree but no further education 

(the control group in the main DDD). The percentages of ABP-exposed unemployed with 

less than a high school education (the treatment group) that were male (61.9%), non-

white (44.0%), or unmarried (62.3%) are slightly higher than the respective percentages 

for the control groups in the main DDD analysis (i.e. the unemployed with less than a 

high school education but not exposed to ABP, unemployed high school graduates 

exposed to but not affected by ABP, and unemployed high school graduates not exposed 

to or affected by ABP).  

ABP-exposed and non-exposed unemployed non-high school graduate respondents in the 

ATUS have similar demographic characteristics to those in the BRFSS. 18.4% of 

unemployed ABP-exposed non-high school graduate respondents reported any minutes of 

all sports activities, 5.0% reported any minutes of walking, 1.7% reported any minutes of 

running and 11.1% reported any minutes of job search; 15.0%, 4.7%, 0.8% and 13.8% of 

the unemployed non-ABP exposed non-high school graduate control group reported 

participation in these activities, respectively.  
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Table 1. Descriptive statistics of ABP vs non-ABP exposed unemployed individuals 

in the BRFSS, sample weighted  

      

Male Age Married White Black Asian 
Other 

race 

Leisure 

physical 

activity 

BMI Height 

Less than 

high 

school 

No 

ABP 

Mean 0.58 33.8 0.48 0.65 0.18 0.01 0.16 0.64 27.53 4.20 

SD 0.49 12.6 0.50 0.48 0.38 0.11 0.36 0.48 5.90 0.11 

            
ABP Mean 0.62 32.8 0.38 0.56 0.24 0.01 0.19 0.66 27.13 4.20 

 
SD 0.49 13.0 0.48 0.50 0.43 0.11 0.39 0.47 5.98 0.08 

            
Total Mean 0.60 33.4 0.44 0.62 0.20 0.01 0.17 0.65 27.39 4.20 

 
SD 0.49 12.7 0.50 0.49 0.40 0.11 0.37 0.48 5.93 0.10 

High 

school 

graduates  

No 

ABP 

Mean 0.59 33.2 0.40 0.66 0.21 0.02 0.12 0.72 27.35 4.21 

SD 0.49 12.8 0.49 0.47 0.41 0.13 0.32 0.45 5.89 0.08 

            
ABP Mean 0.59 34.1 0.42 0.68 0.22 0.01 0.09 0.71 27.41 4.21 

 
SD 0.49 13.1 0.49 0.47 0.41 0.11 0.29 0.45 5.94 0.06 

            
Total Mean 0.59 33.6 0.41 0.67 0.21 0.02 0.11 0.72 27.37 4.21 

 
SD 0.49 12.9 0.49 0.47 0.41 0.12 0.31 0.45 5.91 0.07 

 

 

Note: SD=Standard deviation; height is reported as the natural log of inches.
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Fitted lines in Figure 3 reveal that the share of the unemployed with less than a high 

school education who reported physically active leisure in the BRFSS increased between 

2003 and 2010 (solid line), but that there were no changes of note among unemployed 

high school graduates (dotted line). While this increase in physical activity participation 

among non-high school graduates coincides with the incremental increase over time in 

the number of states implementing ABP, it is not possible to attribute these changes to 

ABP based on this Figure, since I cannot establish whether increased physical activity is 

occurring within states as they implement ABP, or whether something else entirely is 

driving the change.  

Figure 3. Fitted lines of the percentage of unemployed reporting physically active 

leisure in the BRFSS, by US state, 2003 to 2010  
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4.2 Main results 

Before proceeding with the DD and DDD models, I check to ensure that the common 

trend assumption holds using the BRFSS data. To do this, I run the full DD and DDD 

model specifications, but replace ABP with bogus policies covering the 24 or 36 months 

prior to ABP implementation (Table 2, Columns 1 and 2). In all instances, unemployed 

non-high school graduates are not predicted to have statistically significant differences in 

their probability of reporting physical activity leading up to ABP implementation relative 

to the control groups. This provides confirmatory evidence that the treatment and control 

groups had non-diverging physically active leisure trends prior to ABP.  

Table 2. Testing common trend assumptions using bogus policies 24 and 36 months 

prior to ABP implementation, BRFSS  

 

 

Leisure physical activity  Leisure physical activity 

 
DD DDD DD DDD 

 (1) (2) (3) (4) 

 Using 24 months prior as the common trend test 

ABP 24 months prior -0.0327 0.00599 0.0277 0.0336** 

  (0.0325) (0.0268) (0.0315) (0.0171) 

ABP 24 months prior* 

Less than high school 
-0.0301   -0.0109 

  
 

(0.0514)   (0.0315) 

 Using 36 months prior as the common trend test 

ABP 36 months prior 0.00527 0.0124 0.0161 0.0277* 

  (0.0317) (0.0251) (0.0286) (0.0160) 

ABP 36 months prior* 

Less than high school 
0.0248   -0.0155 

    (0.0492)   (0.0291) 
Note: *** p<0.01, ** p<0.05, * p<0.1; Robust standard errors in parentheses. Models include gender, age 

group, marital status, education level, race (white, black, or other), state, year and month, as in other DD 

and DDD specifications. If a coefficient is statistically significant it indicates that there was a trend in the 

outcome variable prior to ABP policy implementation. Data used for columns 1 and 2 is at the individual 

level; data used for columns 3 and 4 are collapsed to the state-year level. 
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DD models reveal the average treatment effect of ABP among the unemployed with less 

than a high school education based on within-state variation in the timing of ABP (Table 

3). The basic model including no controls other than state, year and month fixed effects 

finds that ABP implementation is associated with an increased probability of physical 

activity participation in the BRFSS (Beta=0.0798, p<0.1, Column 1); controlling for state 

monthly unemployment rates slightly increases the magnitude and preciseness of the 

estimate (Beta=0.0851, p<0.05, Column 2). After controlling for all covariates, ABP 

policy implementation remains associated with increased probability of engaging in 

physical activity (Beta=0.085, p<0.05, Column 3). The effect of ABP on the natural log 

of height is not statistically significant in any models (Columns 5-8).  

Table 3. Estimates of the effect of ABP on physical activity and the natural log of 

height, BRFSS 

 

Leisure physical activity  Natural log of height (in inches) 

 

DD DDD DD DDD 

 (1) (2) (3) (4) (5) (6) (7) (8) 

  No controls 
UR control 

only 

Fully 

adjusted 

Fully 

adjusted 
No controls 

UR control 

only 
Fully adjusted Fully adjusted 

  
            

 ABP 0.0798* 0.0851** 0.0850** -0.0103 -0.00957 -0.00904 -0.00787 -0.00239 

 

(0.041) (0.0413) (0.041) (0.0268) (0.00911) (0.00923) (0.00792) (0.00364) 

ABP*Less 

than high 

school 
   

0.0921*   
  

-0.00514 

    

(0.0472)   

  

(0.00835) 

Observations 9,048 9,048 8,854 34,355 9,062 9,062 8,866 34,399 

         

Note: *** p<0.01, ** p<0.05, * p<0.1; Robust standard errors in parentheses. Fully adjusted 

models include gender, age group, marital status, education level, race (white, black, or other), 

state, year and month. 
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As discussed, DD models may produce biased estimates of the effect of ABP if some 

other policy or event that influences physical activity coincides with ABP 

implementation. Using the DDD specification, I find again that unemployed non-high 

school graduates exposed to ABP are at a higher probability of reporting physical activity 

(Column 4). The magnitude of the effect is 0.0921 (p<0.1), comparable in both size and 

preciseness to the DD estimate. There is no discernible effect of ABP on the probability 

of physical activity among the high school graduate control group based on the non-

significant main effect of ABP. There are also no effects on the log of height (Columns 5-

8). 

I run many additional models to test the robustness of these results (Table 4). First, to 

ensure that the DDD estimate is not biased because of the choice of control group, I run 

alternate models where the control group is the entire unemployed population that has at 

least graduated from high school, or where the control group is the unemployed 

population that has completed some college education only (Columns 2 and 3, 

respectively). In both cases, ABP policy is again associated with higher probability of 

physical activity among those with less than a high school degree at p<0.05 (Beta for all 

unemployed model=0.0912; Beta for some college unemployed model=0.103). I next add 

state-specific linear time trends (Column 4) and state-specific quadratic time trends to the 

main DDD model (Column 5), with negligible effect on the ABP coefficient.  
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Table 4. Estimates of the effect of ABP on physical activity, robustness checks I, BRFSS 

 

Testing different control groups for DDD 
Testing inclusion of 

state trends 

 

Main 

DDD 

(Control: 

high 

school 

graduates) 

Alternative 

Control: All 

unemployed 

that have at 

least 

graduated 

high school 

Alternative 

Control: 

Some 

college 

unemployed 

State 

linear 

time 

trends 

State 

quadratic 

time 

trends 

  (1) (2) (3) (4) (5) 

ABP -0.0103 -0.011 -0.0216 -0.0285 -0.0284 

 

(0.0268) (0.0155) (0.0238) (0.0311) (0.0307) 

ABP*Less than high school 0.0921* 0.0912** 0.103** 0.0864* 0.0840* 

 

(0.0472) (0.0427) (0.0479) (0.0466) (0.0464) 

    

  

 Observations 34,355 69,016 27,943 34,316 34,316 

Note: *** p<0.01, ** p<0.05, * p<0.1; robust standard errors in parentheses. Models contain all control 

variables that are included in other DDD models.  

 

Analogous to the Ruhm (2005) study that finds effects of unemployment rates on 

physical activity, I add demographic interactions age*sex, age*race, sex*race, 

sex*marriage, and sex*education to the DDD model (Table 5, Column 1) with no 

material differences in the results.  

Table 5. Estimates of the effect of ABP on physical activity, robustness checks II, BRFSS 

 

Interactions between all 
demographic variables 

included 

BMI as control 
Collapsing to 

weighted state-years 

  (1) (2) (3) 

ABP -0.0115 -0.00706 -0.0457* 

 

(0.0265) (0.0272) (0.0243) 

ABP*Less than high school 0.0920* 0.0813* 0.0864* 

 

(0.0471) (0.0481) (0.0450) 

Body mass index   -0.00333*** 
 

 

  (0.00088) 
 

Observations 34,355 33,042 814 

Note: *** p<0.01, ** p<0.05, * p<0.1; robust standard errors in parentheses. Models contain all control 

variables that are included in other DDD models. 
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To confirm that effects of ABP are not due to differences in BMI across cohorts, I control 

for BMI in the original DDD model (Column 2). While higher BMI is associated with a 

statistically lower probability of engaging in physical activity (p<0.01), the positive effect 

of ABP implementation on physical activity among non-high school graduates remains 

(Beta=0.0813, p<0.1). Lastly, because of the potential for bias due to small numbers of 

observations at the state-year-month level, I collapse the main DDD individual level data 

into state-year level observations. The collapsed state-year data pass the common trend 

tests for unemployed non-high school graduates (Table 2, Columns 3 and 4) and the 

results remain significant for the DDD (Beta=0.0864; p<0.1) (Column 3). 

 Next, I replicate the main DD and DDD model specifications using the ATUS 

unemployed sample. I find that the binary outcome variables of whether any minutes 

were spent walking, running, or engaging in a sporting activity pass both the 24 months 

and 36 months prior common trend tests for both the DD and DDD model specifications, 

however the any minutes spent job searching outcome variable does not (Table 6, 

Columns 1-8). In the 24 and 36 months leading up to ABP, there is a statistically 

significant lower probability of unemployed non-high school graduates spending any 

time job searching (Columns 7 and 8); this prohibits further analysis to compare time-

spent searching for work with time spent engaging in physical activities. 
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Table 6. Testing common trend assumptions using bogus policies 24 and 36 months 

prior to ABP implementation, ATUS  

 

 

Any walking Any running Any sporting activity Any job search 

  DD DDD DD DDD DD 
DD

D 
DD DDD 

  (1) (2) (3) (4) (5) (6) (7) (8) 

Using 24 months prior as the common trend test 

ABP 24 months 

prior 
-0.0000714 -0.00696 -0.00453 -0.00584 0.000644 0.0222 -0.0890** 0.0202 

  (0.0434) (0.0196) (.00558) (.00859) (0.0614) (0.038) (0.0432) (0.0385) 

ABP 24 months 

prior*Less than 

high school 

  0.00706   0.00141   -0.0131   -0.116** 

    (0.0462)   (0.0102)   (0.0693)   (0.0572) 

Using 36 months prior as the common trend test 

ABP 36 months 

prior 
0.00243 -0.00354 -0.0007 -0.00084 -0.0122 0.0183 -0.0990** 0.0234 

  (0.0339) (0.0172) (0.00815) (0.00899) (0.0482) (0.0312) (0.0443) (0.032) 

ABP 36 months 

prior*Less than 

high school 

  0.00637   0.00166   -0.0112   -0.126** 

    (0.0379)   (-0.012)   (0.0557)   (0.0527) 

Note: *** p<0.01, ** p<0.05, * p<0.1; Robust standard errors in parentheses. Models include gender, age 

group, marital status, education level, race (white, black, or other), state, year and month, as in other DD 

and DDD specifications. If a coefficient is statistically significant it indicates that there was a trend in the 

outcome variable prior to ABP policy implementation. All data is at the individual level. 

 

Nevertheless, using the DD approach, I find that based on the point estimates, ABP is 

associated with higher probability of reporting any walking in the ATUS (Table 7, 

Beta=0.0751, Column 1); the effect size is comparable to those found using the BRFSS. 

However, perhaps due to the relatively small number of unemployed respondents that did 

not complete high school (n=848), the estimated confidence intervals are wide. Due to 

this potential small sample size issue, for the DDD I use all unemployed who have at 

least finished high school as the control group, rather than just the unemployed who have 

only graduated high school; this increases the sample size to n=4,306 unemployed 

people. I find that unemployed non-high school graduates exposed to ABP have an 
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increased probability of spending any time walking (Beta=0.107; p<0.1, Column 2). I do 

not find any statistically significant effects of ABP on the probability of engaging in any 

sporting activities overall or on running (Columns 3 and 4). 

Table 7. Estimates of the effect of ABP on any time spent walking, running, and all 

sports participation, ATUS 

 

DD DDD 

  (1) (2) (3) (4) 

VARIABLES Any walking 
Any 

walking 

Any 

running 

Any sports 

participation 

  
      

ABP 0.0751 -0.0364 -0.0111 -0.0449 

 

(0.0534) (0.024) (0.0115) (0.0404) 

ABP*Less than  

high school 
0.107* 0.0129 0.110 

  
(0.0573) (0.019) (0.0878) 

     Observations 848 4,306 4,306 4,306 

Note: *** p<0.01, ** p<0.05, * p<0.1; Robust standard errors in parentheses. Models contain all 

control variables that are included in other DD and DDD models. 

 

Lastly, I investigate whether changes in state UI maximum allowable benefit levels have 

an effect on physical activity. I find that within-state increases in maximum UI benefits 

are associated with a higher probability of reporting physical activity in the BRFSS 

among unemployed high school graduates and unemployed with some college, and lower 

probability among non-high school graduates and college graduates, though confidence 

intervals are wide in all instances (Table 8). This is believable particularly in the case of 

the latter two groups, as non-high school graduates are unlikely to have sufficient work 

history to qualify for maximum UI benefit levels, as mentioned, whereas college 

graduates may not benefit substantially from relatively small changes in maximum UI 
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benefit levels if these replace trivial shares of their prior wages. However combining high 

school graduates and some college into a single group (whilst controlling for educational 

attainment), I find a statistically significant higher probability of physically active leisure 

in Table 8 Column 5 (Beta=0.0282, p<0.1). This is corroborated using the ATUS, where 

this same demographic is predicted to have greater probability of any participation in 

sporting activities as maximum UI benefits increase (Beta=0.0628, p<0.05). I do not find 

statistically significant effects of maximum allowable UI for walking or running in the 

ATUS (not shown). 

Table 8. Estimates of the effect of maximum allowable state UI benefit levels on 

physical activity (BRFSS) and any sports participation (ATUS)  

 
BRFSS ATUS 

 

Physically active leisure 

Any 

participation 

in sporting 

activities 

  (1) (2) (3) (4) (5) (6) 

VARIABLES 

No high 

school 

High 

school 

only 

Some 

college 

College 

graduate 

High 

school 

and 

some 

college 

High school 

and some 

college 

              

Maximum UI benefit (natural 

log) -0.00259 0.0176 0.0424 -0.0153 0.0282* 0.0628** 

 

(0.0306) (0.0219) (0.0319) (0.0324) (0.0157) (0.0298) 

       

Observations 8,843 25,473 19,060 15,547 44,533 2,319 

  

      Note: *** p<0.01, ** p<0.05, * p<0.1; Robust standard errors in parentheses. Models contain all control 

variables that are included in DD models. 
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5. DISCUSSION 

Unemployment benefits have many rationales and effects, but to date, no research has 

examined whether they cause changes in time-consuming health behaviors, such as 

exercise. Although the image of an unemployment benefit-receiving ‘couch potato’ may 

be ubiquitous, this study suggests that UI recipients are likely to spend some of their 

newfound leisure time participating in physical activity. Analysis using two separate 

datasets and two distinct methodological approaches produces consistent estimates that 

are of the same sign and statistical significance.  

Point estimates suggest ABP implementation resulted in an 8-10 percentage point 

increase in the probability of physical activity. While this implies that the effect of the 

ABP treatment on the treated population – actual UI receivers – is quite large, the wide 

confidence intervals prohibit definitive conclusions regarding the precise magnitude of 

effects; 95% confidence intervals from the main DDD model, for example, indicate that 

the increased probability of reporting physically active leisure following ABP adoption 

ranges from near 0 to 18.5%. This lack of precision may be due in part to small numbers 

of individuals in some state-year-month cohorts, resulting in instances where there is 

either 0 or 100% participation in physical activity in an entire state-year-month. However 

as noted, the effect remains positive and significant even after aggregating the data to the 

state-year level (Table 5, Column 7) (Appendix Figure 1). The imprecise estimates may 

also be due to the intention-to-treat study design, which as noted, is used to account for 

possible selection into UI. While unlikely, the estimated effect size could also be large if 

ABP leads to changes in social norms regarding physical activity, which might cause 
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spill-over effects among non-UI recipients within the same low-educated demographic 

(Berkman and Glass 2000).  

Nevertheless, the finding of an analogous relationship using state UI maximum allowable 

benefit levels seems to at least support the estimated direction of effects. Using maximum 

allowable UI benefit levels, the models suggest that a 10% increase in maximum 

allowable benefits increases the probability of physically active leisure by 0.3 percentage 

points in the BRFSS and the probability of any sports participation by 0.6 percentage 

points in the ATUS. Between 2003 and 2010, the median annual change in maximum 

allowable benefit levels was just -2.8%, suggesting in practice that variations in 

maximum benefit levels have a very small absolute effect on physical activity. The 

magnitude of decline in maximum allowable benefits in the median state-year would 

imply a reduction in the probability of reporting physically active leisure of 0.08 

percentage points in the BRFSS and 0.18 percentage points in the ATUS.  

The notion that incremental changes in state maximum benefit levels might have a 

smaller absolute effect on physical activity participation than expansions of UI eligibility 

is not surprising, as the monetary gains afforded to new UI recipients is quite substantial 

in comparison to receiving no UI benefits at all. Additionally, for low wage earners 

impacted by ABP, the amount of labor hours needed during their base period to have high 

enough earnings to qualify for UI is comparatively greater than for higher wage earners. 

This means that for low wage individuals, leisure would have been consumed at a 

premium while employed. The perceived decrease in the cost of leisure associated with 
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joblessness and UI would appear substantial to such an individual and could explain the 

relatively large estimated effects associated with ABP. 

The main underlying mechanism linking UI to physical activity may be either that (1) 

individuals receiving UI benefits feel less pressure to search for work, which gives them 

additional time that can be spent engaging in physical activities or (2) individuals 

receiving UI benefits are able to afford costly physical activities, such as gym 

memberships. I am unable to explore whether individuals substitute physical activity in 

lieu of job search in the main analysis because the outcome variable of whether an 

individual engaged in any job search does not pass the common trend test: in the 24 and 

36 months prior to ABP implementation, non-high school graduates were already 

statistically less likely than the control groups to spend any time searching for a job. 

Nevertheless, given the finding from the ATUS that there is greater probability of time 

spent walking but not of other, potentially more expensive sporting activities, the former 

explanation appears most likely. 

There are a number of limitations to this analysis. As noted, using the BRFSS or ATUS I 

am unable to identify whether individuals actually receive UI. Therefore, I cannot 

observe whether there are changes in UI take-up directly attributable to ABP or whether 

there are variations in the amount of benefits actually received when maximum allowable 

UI benefits are altered. In the case of ABP, I rely on the existing literature to infer the 

effects on UI take-up among a nationally representative sample. The results presented 

would be biased if take-up patterns differed substantially among the BRFSS or ATUS 
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survey samples, although this seems unlikely given the consistency in the estimates 

across the two datasets.  

Additionally, the BRFSS question on leisure time physical activity, though commonly 

used in the literature, is vague and may capture various behaviors or suffer from 

measurement error. However, the alternative, to fit individuals with accelerometers, is not 

feasible on this scale. It is also reassuring that the more objective data from the ATUS 

provide confirmatory results, despite the notably smaller sample size. Other datasets such 

as the National Health and Nutrition Examination Survey (NHANES) that have more 

detailed data on physical activity have too few observations in each state and time period 

to conduct this sort of analysis.  

Finally, I am unable to observe changes in exercise within unemployed individuals over 

time due to the non-panel nature of both the BRFSS and ATUS surveys. Future research 

should assess whether leisure-time subsidies including, but not limited to UI, affect more 

objective measures of physical activity among unemployed individuals with otherwise 

poor access to financial resources, as well as whether such leisure time subsidies have an 

effect on objective health outcome measures.  

Physical inactivity is an important determinant of poor health. The finding that UI 

increases physically active leisure is consistent with theory that reductions in the 

opportunity cost of time will lead individuals to engage in time-consuming leisure 

activities, such as exercise. Possible long-run health effects of leisure time physical 

activity include better weight management, lower risk of chronic disease, and reduced 

risk of death (Warburton et al., 2006, Ruhm, 2005, Chaput et al., 2011, Abu-Omar and 
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Rutten, 2008, Lindstrom et al., 2001, Clays et al., 2014, Johnsen et al., 2013, Naci and 

Ioannidis, 2013). UI also provides workers with an opportunity to increase their health 

capital during periods of unemployment, which has been found to contribute to increases 

in worker productivity upon return to employment (Acemoglu, 2001, Acemoglu and 

Shimer, 2000, Brown and Kaufold, 1988). This is consistent with evidence that job 

applicants who engage in leisure sports activities have higher call-back rates from 

prospective employers as well as higher wages and earnings (Rooth, 2011, Lechner, 

2009). Overall, the evidence suggests that UI can prepare the unemployed to re-enter the 

workforce by increasing their health capital and ultimately contribute to better health.  
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Appendix Figure 1. Distribution of physically active leisure at the state-year level 

among non-high school graduates, BRFSS 
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