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ABSTRACT

The paper considers nonparametric estimation of absolutely continuous distribution functions of in-

dependent lifetimes of non-identical components in k-out-of-n systems, 2 ≤ k ≤ n, from the observed

“autopsy” data. In economics, ascending “button” or “clock” auctions with n heterogeneous bidders with

independent private values present 2-out-of-n systems. Classical competing risks models are examples

of n-out-of-n systems. Under weak conditions on the underlying distributions the estimation problem

is shown to be well posed and the suggested extremum sieve estimator is proven to be consistent. The

paper considers sieve spaces of Bernstein polynomials which allow to easily implement constraints on the

monotonicity of estimated distribution functions.
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1 Introduction

The paper considers nonparametric estimation of absolutely continuous distribution func-

tions of independent lifetimes in k-out-of-n systems for 2 ≤ k ≤ n. Such a system is “alive”

if and only if at least k of its components are alive. k-out-of-n systems are often encoun-

tered in practice. In economics, ascending “button” or “clock” auctions with n bidders

present 2-out-of-n systems. Classical competing risks models are examples of n-out-of-n

systems. This paper considers general situations of heterogeneous components – that is,

when the lifetimes of different components can have different distributions. However, it

is assumed that the distributions of lifetimes have the same (and known) lower support

point. The only available data are the “autopsy” data, which give information only on the

lifetime of the system and the corresponding fatal set of n− k + 1 components.

One way to approach the estimation problem would be to impose parametric assump-

tions on the underlying distributions of components’ lifetimes. For instance, the assumption

that these distributions are exponential would bring down the estimation task to the task

of learning n scalar parameters for n exponential distributions. However, if the underlying

distributions are not exponential, then the inference based on the obtained estimates would

not be reliable. Such a parametric approach is exploited, for instance, in Meilijson (1994),

among many others.

This paper does not make any parametric assumptions and suggests nonparametric es-

timators of the CDFs of components’ lifetimes that are consistent in the uniform metric.

The first step in this approach is to write down the system of integral-differential equations

that describes the relations between the underlying unknown CDFs of components’ life-

times and the observables. This system is given in (IDE) in section 2. In the second step

the distributions of observables are estimated consistently from a given sample. The third

step constructs an objective function that represents a distance between the left-hand side

and the right-hand in (IDE). Finally, this objective function is minimized when unknown

CDFs are represented as unknown functions from a chosen sieve space. It is proven that

the operator that maps observable functions into underlying CDFs of components’s life-

times is continuous. This guarantees the well-posedness of the estimation problem and the
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consistency of described extremum sieve estimators. It is worth noting that this approach

works for any 2 ≤ k ≤ n and is easy to implement in practice.

The paper considers spaces of Bernstein polynomials as sieve spaces. In these spaces it is

easy to formulate and use the constraints that represent necessary and sufficient conditions

for the monotonicity of a function. Monotonicity is of course a desirable property for an

estimator of CDF. For a detailed review of sieve estimation methods in econometrics see

Chen (2007). Chen (2008) focuses specifically on extremum sieve estimation.

The rest of this paper is organized as follows. Section 2 discusses nonparametric identifi-

cation of the distributions of components’ lifetimes in k-out-of-n systems, 2 ≤ k ≤ n, from

“autopsy” data. It reviews the identification result from Meilijson (1981) and also shows

how to extend the identification result for 2-out-of-n systems established in Komarova

(2013) to k-out-of-n systems for any 2 ≤ k ≤ n. Section 3 establishes that when the

space of underlying distributions of components’ lifetimes and the space of distributions

of observables are endowed with the uniform metric, the problem of estimating underlying

distributions from observables is well-posed. The section also suggests an extremum sieve

estimator and proves its consistency. Section 4 illustrates the suggested sieve estimation

method in an ascending auction framework by performing estimation in two Monte Carlo

experiments. Proofs of propositions, lemmas and theorems are collected in the Appendix.

It is worth mentioning that even though this paper focuses on k-out-of-n systems, this

is done mostly for the sake of technical and notational convenience and the presented sieve

estimation approach can be extended to a much more general class of coherent systems.

The main requirements for such an extension would be the rank condition on the incidence

matrix of the coherent system as in Meilijson (1981) together with some convergence and

local integrability conditions on some functions of primitives (or, equivalently, of observ-

ables) as discussed in section 4 in Komarova (2013).

Related literature

Nonparametric estimation methods of heterogeneous independent lifetimes from autopsy

data are considered in Watelet (1990) and Doss, Huffer and Lawson (1997). Watelet’s ap-

proach is based on rewriting the mathematical model that describes the relation between
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the unknown underlying CDFs of components’ lifetimes and the observable joint distribu-

tion of system’s lifetime and the fatal set in a form that contains unknown distributions

on the left-hand side and some integral expressions on the right-hand side. Then Watelet

uses an iterative method to estimate unknown distributions. Importantly, Watelet explores

such a procedure only in the simplest case of k = n, which is the case of classical competing

risks. It is also worth noting that for 2 < k < n this procedure cannot work in general.

Doss, Huffer and Lawson (1997) suggest a nonparametric Bayesian procedure, which uses

mixtures of Dirichlets as priors on the distributions of components’ lifetimes.

There is a literature within econometrics and statistics that looks at the classical com-

peting risks models (Roy models) and related models and analyzes the possibility to obtain

identification using covariates while allowing for errors to be correlated across risks. E.g.,

Heckman and Honore (1989) establish under which conditions access to regressors guar-

antees identifiability for proportional and accelerated failure time models, thus effectively

reversing the non-identifiability results in Cox (1962) and Tsiatis (1975). Abbring and

Van den Berg (2003) consider identification in the mixed proportional hazards competing

risks model under conditions weaker those in Heckman and Honore (1989). Lee and Lew-

bel (2013) show identification of accelerated failure time competing risks models identified

when covariates are independent of latent errors and a certain rank condition is satisfied.

This paper does not take that approach by considering models without covariates and with

independent risks.

2 Review of identifiability

Consider a system that consists of n components whose lifetimes are mutually independent

random variables Xi with distribution functions F ∗i , i = 1, . . . , n. The distribution of i’s

component is absolutely continuous with respect to the Lebesgue measure, that is,

F ∗i is absolutely continuous, i = 1, . . . , n. (C1)
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Let t0 denote the common lower support point for the distributions of the lifetimes: that

is,

F ∗i (t0) = 0 and F ∗i (t) > 0 for t > t0, i = 1, . . . , n. (C2)

Let ti stand for the upper support point of the distribution of Xi: that is,

F ∗i (ti) = 1 and F ∗i (t) < 1 for t < ti, i = 1, . . . , n. (C3)

Suppose this is a k-out-of-n system, that is, it works as long as at least k of its compo-

nents are working. The lifetime of this system can be characterized by the so-called fatal

sets. In reliability literature a fatal set is a subset of components such that the failure of all

the components in the subset causes the failure of the system. For a k-out-of-n system with

non-atomic component lifetime distributions the collection of fatal sets is the collection of

all (n− k + 1)-element subsets of {1, . . . , n}. Denote this collection as A.

This paper considers the case when the only data are observed after the failure of the

system and pertain to the system’s lifetime Z and a diagnostic set, which is the set of

components that have failed by time Z and which is revealed during the autopsy. Clearly,

A is the collection of all possible diagnostic sets. To summarize, the following M ≡
(

n
n−k+1

)
sub-distribution functions are observed: for each A ∈ A,

G∗A(t) = P (Z ≤ t, A – diagnostic set), t ≥ t0.

A more detailed discussion of such systems (and coherent systems in general) can be found,

for instance, in Barlow and Proschan (1975).

For convenience let us assign an order to sets in A and write this collection as

A = {A1, A2, . . . , AM−1, AM} .

Then the collection of observable functions can be written as

G∗m(t) = P (Z ≤ t, Am – diagnostic set), t ≥ t0,
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where m = 1, . . . ,M . Note that for t ≥ maxi∈Am ti function Gm is constant:

G∗m(t) = P (Am – diagnostic set), t ≥ max
i∈Am

ti.

Unknown underlying distributions F ∗i , i = 1, . . . , n, and observable sub-distributions

G∗m, m = 1, . . . ,M , are related by the following system of M integral-differential equations:

G∗m(t) =

∫ t

t0

(∏
i∈Am

F ∗i (s)

)′ ∏
i∈Acm

(1− F ∗i (s)) ds, t ≥ t0, m = 1, . . . ,M, (IDE)

where Acm = {1, . . . , n}\Am. Indeed,

G∗m(t) = P

(
max
i∈Am

Xi ≤ t,max
i∈Am

Xi ≤ min
i∈Acm

Xi

)
= P

(
max
i∈Am

Xi ≤ t, min
i∈Acm

Xi > t

)
+ P

(
max
i∈Am

Xi ≤ min
i∈Acm

Xi, min
i∈Acm

Xi ≤ t

)
.

Since the value of the density of mini∈Acm Xi at t is equal to −
(∏

i∈Acm
(1− F ∗i (t))

)′
, then

G∗m(t) =
∏
i∈Am

F ∗i (t)
∏
i∈Acm

(1− F ∗i (t))−
∫ t

t0

∏
i∈Am

F ∗i (s)

∏
i∈Acm

(1− F ∗i (s))

′ ds
=

∫ t

t0

(∏
i∈Am

F ∗i (s)

)′ ∏
i∈Acm

(1− F ∗i (s)) ds, t ≥ t0.

The question of identifying marginal distributions of components’ lifetimes in coher-

ent systems from the joint distribution of observed “autopsy” data, which is comprised of

the lifetime of the system and a diagnostic set, is raised in Meilijson (1981). In Meilij-

son, under certain restrictions on a coherent system’s structure (namely, on the rank of

the incidence matrix), the distributions of the components’ lifetimes are identified in the

case of independent and non-atomic lifetimes that possess the same essential infimum and

supremum.

The 1-out-of-n system only discloses the marginal distribution of the maximum of all the

components’ lifetimes, so the individual marginal distributions cannot be identified. For
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k-out-of-n systems with 2 ≤ k ≤ n, applying the same techniques as the ones for 2-out-of-n

systems in Komarova (2013), one can establish the following identifiability result.

Proposition 2.1. If 2 ≤ k ≤ n, the distribution functions F ∗i , i = 1, . . . , n, that satisfy

conditions (C1) and (C2) are identifiable on [t0, T ], where T is the (n − k + 1)-th order

statistic of {t1, . . . , tn}, from observable functions G∗m, m = 1, . . . ,M , if the following

condition holds:

For each m = 1, . . . ,M , the function

(∑
A∈A

1∏
i∈A F

∗
i (t)

)
·

(∏
i∈Am

F ∗i (t)

)′
·
∑
i∈Acm

F ∗i (t) (C4)

has a finite Lebesgue integral in a right neighborhood of t0.

The mathematical technique of this identification result is based on establishing that

if distribution functions Fi satisfy conditions (C1), (C2) and (C4), then the system of

integral-differential equations (IDE) together with the initial conditions

F ∗i (t0) = 0, i = 1, . . . , n, (IC)

has a unique positive solution in a right-hand side neighborhood of t0.

Let Ci denote the collection of fatal sets containing i and let C−i stand for the collection

of fatal sets not containing i:

Ci = {A ∈ A | i ∈ A} ,

C−i = {A ∈ A | i ∈ Ac} .

Remark 2.2. Applying techniques similar to those for 2-out-of-n systems in Komarova

(2013), it can be shown that conditions (C1) and (C2) imply the following conditions on

observable functions:

1. G∗m is absolutely continuous, m = 1, . . . ,M .
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2. G∗m(t0) = 0 and G∗m(t) > 0 for t > t0, m = 1, . . . ,M .

3. If 2 ≤ k ≤ n, then for any i = 1, . . . , n,

lim
t↓t0

∏
A∈Ci

G∗A(t) ·
∏
A∈C−i

G∗A(t)−
n−k
k−1 = 0. (2.1)

The first two of these conditions are obvious. As for the third one, (IDE) implies in

the case of 2 ≤ k ≤ n that for any i = 1, . . . , n,

lim
t↓t0

∏
A∈Ci G

∗
A(t) ·

∏
A∈C−i G

∗
A(t)−

n−k
k−1

F ∗i (t)(
n−1
n−k)

= 1.

Using (C1) and (C2), we obtain (2.1).

Also, it can be shown that condition (C4) can be equivalently written in terms of

observable functions:

For each m = 1, . . . ,M , the function

(∑
A∈A

1

G∗A(t)

)
· gm(t) ·

∑
i∈Acm

∏
A∈Ci

G∗A(t) ·
∏
A∈C−i

G∗A(t)−
n−k
k−1

(n−1
n−k)

−1

has a finite Lebesgue integral in a right neighborhood of t0.

3 Sieve estimation

Throughout this section it is assumed that 2 ≤ k ≤ n. This section presents an approach

to estimating functions F ∗i from a random sample. First, an operator B is defined that

maps F ∗i to observable functions G∗m. It is shown that this operator is Lipschitz and that

under weak conditions on the set of possible distributions F = (F1, . . . , Fn), its inverse

operator B−1 is continuous. Sieve estimators of F ∗i are then derived and proved consistent

using the properties of B.
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3.1 Operator B

Here and throughout the paper T will stand for the (n − k + 1)-th order statistic of

{t1, . . . , tn}.

For an absolutely continuous function F = (F1, . . . , Fn)tr with domain [t0, T ] define the

M -dimensional vector function

B(F ) = (B(F )1, B(F )2, . . . , B(F )M−1, B(F )M)tr

as follows:

B(F )m(t) =

∫ t

t0

(∏
i∈Am

Fi(s)

)′ ∏
i∈Acm

(1− Fi(s)) ds, t ∈ [t0, T ] (3.1)

for m = 1, . . . ,M .

Let Λ be the set of vector functions F = (F1, . . . , Fn)tr with domain [t0, T ] satisfying

the following conditions:

Conditions (I).

(i) Fi is absolutely continuous on [t0, T ], i = 1, . . . , n.

(ii) Fi is increasing on [t0, T ],

(iii) Fi(t0) = 0 and Fi(t) > 0 for t ∈ (t0, T ], i = 1, . . . , n.

(iv) Fi(T ) ≤ 1, i = 1, . . . , n.

(v) For each m = 1, . . . ,M , the function

(∑
A∈A

1∏
i∈A Fi(t)

)
·

(∏
i∈Am

Fi(t)

)′
·
∑
i∈Acm

Fi(t)

has a finite Lebesgue integral in a right neighborhood of t0.

Let B be defined on Λ. Properties of the image B(Λ) are easily deduced from conditions

(I): each function B(F )m is absolutely continuous and increasing on [t0, T ], B(F )m(t0) = 0
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and B(F )m(t) > 0 for t ∈ (t0, T ]. The identification result in Proposition 2.1 means that

there exists the inverse operator B−1 : B(Λ)→ Λ.

Endow the domain Λ and its image B(Λ) with the following uniform metric spaces3:

d(F, F̃ ) = sup
t∈[t0,T ]

√
(F (t)− F̃ (t))tr(F (t)− F̃ (t)),

d(B(F ), B(F̃ )) = sup
t∈[t0,T ]

√
(B(F )(t)−B(F̃ )(t))tr(B(F )(t)−B(F̃ )(t)).

Properties of B are important for proving the consistency of the estimators introduced

later in this section. Usually, it is easier to obtain desirable properties of B and establish

consistency when the space of unknown functions is compact. Compactify Λ by bounding

density functions F ′i by the same Lebesgue integrable function:

Condition (II).

F ′i (t) ≤ φ′(t) a.e. [t0, T ], i = 1, . . . , n,

where φ is some absolutely continuous increasing function on [t0, T ].

Let Λφ be the subset of Λ such that all functions F from Λφ satisfy condition (II). This

condition guarantees that Λφ is relatively compact under the uniform metric. Indeed, for

any F ∈ Λφ and t, τ ∈ [t0, T ],

|Fi(t)− Fi(τ)| =
∣∣∣∣∫ t

τ

F ′i (s)ds

∣∣∣∣ ≤ |φ(t)− φ(τ)|, i = 1, . . . , n.

Because φ is absolutely continuous, the last inequality implies that Λφ is equicontinuous.

It is also uniformly bounded because the values of Fi do not exceed 1. According to the

Arzela-Ascoli theorem, Λφ is relatively compact in metric d(·, ·).

Note that if F ∈ Λφ, then each function B(F )m, satisfies the following condition:

B(F )′m(t) ≤ kφ′(t) a.e. [t0, T ], m = 1, . . . ,M.

3d(F, F̃ ) and d(B(F ), B(F̃ )) are the compositions of the sup metric in the function space and the
Euclidean metric in Rn and RM , respectively. Therefore, all the axioms in the definition of a metric are
satisfied for d(F, F̃ ) and d(B(F ), B(F̃ )).
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Let Λφ stand for the closure of Λφ under metric d(·, ·). Because Λφ is relatively compact,

Λφ is a compact set. To consider operator B on Λφ, we first need to show that B is defined

for functions in Λφ\Λφ. The proposition below establishes that all functions in Λφ satisfy

conditions (I)(i), (I)(ii), (I)(iv), (I)(v) and a slightly modified condition (I)(iii), and also

satisfy condition (II).

Proposition 3.1. If F = (F1, . . . , Fn)tr ∈ Λφ, then each Fi, i = 1, . . . , n, is absolutely

continuous, increasing on [t0, T ], satisfies Fi(t0) = 0, Fi(T ) ≤ 1 and is such that F ′i (t) ≤

φ′(t) a.e. on [t0, T ].

The proof of Proposition 3.1 is in Appendix.

Functions that are in Λφ but not in Λφ are, for instance, those that are equal to 0 in a

small right-hand side neighborhood of t0.

Because all functions in Λφ are absolutely continuous, operator B can be extended from

Λφ to Λφ\Λφ by applying (3.1) to each F ∈ Λφ\Λφ.

The next proposition implies that B is continuous in metric d(·, ·) on Λφ.

Proposition 3.2. For any F, F̃ ∈ Λφ,

d(B(F ), B(F̃ )) ≤M
√
n d(F, F̃ ). (3.2)

that is, operator B is Lipschitz on Λφ.

The proof of Proposition 3.2 is in Appendix.

Finally, the continuity property of B and the compactness of B(Λφ) are used to establish

the continuity of B−1 on B(Λφ).

Proposition 3.3. B−1 is continuous on B(Λφ).

The proof of Proposition 3.3 is in Appendix.

3.2 Estimator

This subsection defines sieve estimators of distribution functions F ∗i and proves their con-

sistency.
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Note that G∗ = B(F ∗), where F ∗ = (F ∗1 , . . . , F
∗
n)tr and G∗ = (G∗1, . . . , G

∗
M)tr. Let us

choose φ in such a way that F ∗ ∈ Λφ.4

The next lemma introduces an objective function Q defined at each F ∈ Λφ and uses

the identification result from section 2 to show that it is uniquely minimized at F = F ∗.

Lemma 3.4. F ∗ is the unique minimizer of

Q(F ) =

∫ T

t0

(G∗(t)−B(F )(t))tr(G∗(t)−B(F )(t))

∑M
m=1 G

∗′
m(t)∑M

m=1G
∗
m(T )

dt

on Λφ.

The proof of Lemma 3.4 is in Appendix.

Note that
∑M
m=1G

∗′
m(t)∑M

m=1G
∗
m(T )

is the probability density function of the lifetime of the system

on [t0, T ].

The idea of sieve estimation here is to use the sample analog of Q and approximate Λφ

with finite-dimensional spaces. For instance, for each r = 1, 2, . . ., choose base functions

p1,r, . . . , pγ(r),r (for example, B-splines with uniform knots or basic Bernstein polynomials)

and introduce the set of linear combinations of these functions:

Γr = {(F1, . . . , Fn)tr : Fi(t) =

γ(r)∑
l=1

αilpl,r(t), t ∈ [t0, T ]}.

In this set of functions, consider only those functions that are in Λφ:

Σr = Λφ ∩ Γr.

Set Σr consists of functions from Γr with certain restrictions on coefficients αil. It is

relatively compact and, hence, its closure Σr is compact, and Σr ⊂ Λφ.

Consider a random sample of N observations {(zj, aj)}Nj=1, where zj is the observed

lifetime of the system and aj is the diagnostic set in j’s round. Without a loss of generality,

assume that zj ≤ zj+1, j = 1, . . . , N−1. From the sample, find consistent estimators Ĝm,N

4For instance, we can assume that φ′(t) ≥
∑n

i=1 F
∗
i
′(t).
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of Gm, for instance, empirical sub-distribution functions on [t0, T ]:

Ĝm,N(t) =
1

N

N∑
j=1

1(zj ≤ t)1(aj = Am), m = 1, . . . ,M.

The sample objective function is

Q̂N(F ) =
1

N

N∑
j=1

(ĜN(zj)−B(F )(zj))
tr(ĜN(zj)−B(F )(zj)),

where ĜN = (Ĝ1,N , . . . , ĜM,N)tr. Note that since the lifetime of the system cannot be

strictly greater than T , then all zj belong to [t0, T ] and {(zj)}Nj=1 is a random sample from

the distribution with density function
∑M
m=1G

∗′
m(t)∑M

m=1G
∗
m(T )

.

Let r = r(N), and define the following estimator of F ∗:

F̂N = argmin
F∈Σr(N)

Q̂N(F ).

Theorem 3.5 below establishes the consistency of estimator F̂N when sets Σr well approx-

imate set Λφ.

Theorem 3.5. If

∀(F ∈ Λφ)∃(F̃ ∈ Σr) such that d(F, F̃ )
p→ 0 as r = r(N)→∞, (3.3)

then estimator F̂N is consistent:

d(F̂N , F
∗)

p→ 0 as N →∞.

Condition (3.3) holds if approximating sets are chosen properly – e.g., if base functions

p1,r, . . . , pγ(r),r are B-splines with uniform knots, Bernstein polynomials or truncated power

series.

The proof of Theorem 3.5 is in Appendix.

The next natural question is the rate of convergence of the proposed estimator. It is
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a difficult question to answer and is left for future research. Most of the results available

in the literature relate to convergence rates of M -estimators, usually in the L2-metric

(e.g., see Chen (2007)). The sieve estimator proposed in this paper is of MD-type. One

potential approach to finding the rate of convergence of this estimator is to apply results

and techniques from Van der Vaart and Wellner (1996) for Z-estimators. In particular, this

would require analyzing properties of Fréchet derivatives of Q and QN at both F ∗ and F̂N

(in the sup metric d(·, ·)). Another important factor would be the quality of the projection

of continuous functions on chosen sieve spaces for a given N . It would be determined by

the type of the chosen sieve space and the rate of r(N) as N → ∞. Overall, the rate of

convergence in the sup metric d(·, ·) results would rely on properties of empirical processes.

4 Monte-Carlo experiment

This section illustrates the suggested sieve estimation method for 2-out-of-3 systems. Sup-

pose that the lifetimes of all three components are distributed on the support [0, 1]. Con-

sider two Monte-Carlo scenarios.

Scenario 1. For t ∈ [0, 1],

F ∗1 (t) = t
1
2 , F ∗2 (t) = t

2
3 , F ∗3 (t) = t

3
4 .

All these functions are strictly concave and their derivatives approach ∞ as t ↓ 0. In some

sense these functions are not very different in their behavior around t = 0.

Scenario 2. For t ∈ [0, 1],

F ∗1 (t) =

 t
1
2 if t ∈

[
0, 1

2

]
,

1− (
√

2− 1)(1− t) 1
2 if t ∈

(
1
2
, 1
]
.

F ∗2 (t) =
et − 1

e− 1
, F ∗3 (t) = t.

The behavior of F ∗1 on [0, 1] is different from that of F ∗2 or F ∗3 . The derivative of F ∗1
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approaches ∞ as t ↓ 0 or t ↑ 1. Functions F ∗2 and F ∗3 are infinitely differentiable on [0, 1].

Bernstein polynomials. As sieve spaces, consider spaces of Bernstein polynomials.

Namely, consider linear sieve spaces with the basic Bernstein polynomials as the base

functions. The basic Bernstein polynomials of power r on [0, 1] are the following r + 1

functions:

pl,r(t) =

(
r

l

)
tl(1− t)r−l, l = 0, . . . , r.

The corresponding sieve space is

Γr =

{
(F1, F2, F3)tr : Fi(t) =

r∑
l=0

αil pl,r(t), t ∈ [0, 1]

}
.

An important property of Bernstein polynomials5 says that for a continuous function f on

[0, 1], the relation

lim
r→∞

r∑
l=0

f

(
l

r

)(
r

l

)
tl(1− t)r−l = f(t)

holds uniformly on [0, 1]. This property implies that the constraints

αi0 ≤ αi1 ≤ . . . ≤ αir−1 ≤ αir

imposed for each i = 1, 2, 3 guarantee that functions in Γr are increasing. Conditions

αi0 = 0 and αir = 1

guarantee that Fi(0) = 0 and Fi(1) = 1, respectively.

Scenario 1. N = 500.

Table 1 is constructed based on the simulations of outcomes in 500 runs of the system.

It shows how often each of the subsets A1 = {2, 3} A2 = {1, 3} and A3 = {1, 2} happens

to be the set responsible for the failure of system, or in other words, is the diagnostic set

which is discovered during the autopsy. The table also shows the minimum, the maximum

5See Lorentz (1986).
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and the average lifetime of the system in each of these situations.

diagnostic minZ maxZ Zav

A1 = {2, 3} 125 (25%) 0.0146 0.8756 0.3867

A2 = {1, 3} 181 (36.6%) 0.0033 0.9438 0.3665

A3 = {1, 2} 194 (38.8%) 0.0114 0.9461 0.3553

Table 1. Monte Carlo experiment for Scenario 1 with N = 500 rounds. Number of rounds in
which each Am is the diagnostic set discovered during autopsy (diagnostic), the minimum
lifetime (minZ), the maximum lifetime (maxZ), the average lifetime (Zav).

We can think about our 2-out-of-3 system as an observed open ascending auction with

three bidders having independent private values. In this auction, bidders hold down a

button as the auctioneer raises the price. When the price gets too high for a bidder, she

drops out by releasing the button. The auction ends when only one bidder remains. This

person wins the object and pays the price at which the auction stopped. The distribution

of the lifetime of component i corresponds to the distribution of bidder i’s private value.

Observing A1 = {2, 3} as a diagnostic set after the failure of the system is equivalent to the

case of bidder 3 winning the auction. Analogously, observing A2 = {1, 3} as a diagnostic

set is equivalent to the case of bidder 2 winning the auction, and observing A1 = {2, 3} as

a diagnostic set is equivalent to the case of bidder 1 winning the auction. The observed

lifetime of the system corresponds to the observed transaction price.

From Table 1, the highest observed transaction price in the simulated data is approxi-

mately 0.9461 (when bidder 3 wins the auction) and the lowest observed transaction price

is 0.0033 (when bidder 2 wins the auction). As we see, bidder 3 wins the auction most

often which stems from the fact that the distribution of private value of bidder 3 first-order

stochastically dominates that of bidder 1 and that of bidder 2. Bidder 1 wins the auction

least often because the distribution of private value of bidder 1 is first-order stochastically

dominated by that of bidder 2 and that of bidder 3.

Sieve estimation uses Bernstein polynomials of order 4 with the constraints on the

coefficients that guarantee the monotonicity of sieve estimators for F ∗1 , F ∗2 and F ∗3 . These
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estimators are depicted in Figure 1.

Scenario 2. N = 500.

diagnostic minZ maxZ Zav

A1 = {2, 3} 98 (19.6%) 0.0857 0.9635 0.5832

A2 = {1, 3} 213 (42.6%) 0.0216 0.9848 0.4467

A3 = {1, 2} 189 (37.8%) 0.0288 0.9187 0.4599

Table 2. Monte Carlo experiment for Scenario 2 with N = 500 rounds. Number of rounds in
which each Am is the diagnostic set discovered during autopsy (diagnostic), the minimum
lifetime (minZ), the maximum lifetime (maxZ), the average lifetime (Zav).

The distribution of private value of bidder 2 first-order stochastically dominates that of

bidder 2. Also, there is no first-order stochastic relationship between the distribution of

private value of bidder 1 and those of bidders 2 and 3.

Figure 2 shows the results of sieve estimation of F ∗i , i = 1, 2, 3, by Bernstein polynomials

of order 4 with monotonicity constraints. As can be seen, the sieve estimator for F ∗1 provides

a worse approximation of this function around t = 0 and t = 1 than on the rest of the

support because F ∗1 has infinite derivative from the right at t = 0 and infinite derivative

from the left at t = 1.

5 Appendix

Proof of Proposition 3.1. Let us start by establishing absolute continuity. Because F ∈ Λφ,

then there exists a sequence Fq ∈ Λφ such that d(Fq, F ) → 0 as q → ∞. Take any two points

t1, t2 ∈ [t0, T ]. Convergence in metric d(·, ·) implies point-wise convergence. Therefore, for any

i = 1, . . . , n,

|Fi(t1)− Fi(t2)| = lim
q→∞

|Fq,i(t1)− Fq,i(t2)| ≤ |φ(t1)− φ(t2)|.

The last inequality and the absolute continuity of φ imply that each Fi is absolutely continuous.

Because functions Fq,i are increasing and converge to Fi point-wise, then Fi is increasing.
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Because the values of Fq,i(t0) converge to Fi(t0), then Fi(t0) = 0.

Because Fq,i(T ) ≤ 1 and Fq,i converge to Fi point-wise, then Fi(T ) ≤ 1.

Because Fi is absolutely continuous, it can differentiated a.e. on [t0, T ]. Let t be a point at

which both Fi and φ have derivatives. For any fixed h,

Fi(t+ h)− Fi(t)
h

= lim
q→∞

Fq,i(t+ h)− Fq,i(t)
h

≤ φ(t+ h)− φ(t)

h
.

Taking the limit as h→ 0, we obtain that F ′i (t) ≤ φ′(t).

Proof of Proposition 3.2. Let F , F̃ ∈ Λφ. For convenience, let us temporarily use the

following metric:

d1(F, F̃ ) = sup
t∈[t0,T ]

n∑
i=1

|Fi(t)− F̃i(t)|,

d1(B(F ), B(F̃ )) = sup
t∈[t0,T ]

M∑
m=1

|B(F )m(t)−B(F̃ )m(t)|.

From the definition of B,

B(F )m(t)−B(F̃ )m(t) =

∫ t

t0

( ∏
i∈Am

Fi(s)−
∏
i∈Am

F̃i(s)

)′ ∏
i∈Acm

(1− Fi(s)) ds

+

∫ t

t0

( ∏
i∈Am

F̃i(s)

)′ ∏
i∈Acm

(1− Fi(s))−
∏
i∈Acm

(
1− F̃i(s)

) ds.

Integration by parts gives that

∫ t

t0

( ∏
i∈Am

Fi(s)−
∏
i∈Am

F̃i(s)

)′ ∏
i∈Acm

(1− Fi(s)) ds =

( ∏
i∈Am

Fi(t)−
∏
i∈Am

F̃i(t)

) ∏
i∈Acm

(1− Fi(t))

+

∫ t

t0

( ∏
i∈Am

Fi(s)−
∏
i∈Am

F̃i(s)

)− ∏
i∈Acm

(1− Fi(s))

′ ds,
and thus,

∣∣∣∣∣∣
∫ t

t0

( ∏
i∈Am

Fi(s)−
∏
i∈Am

F̃i(s)

)′ ∏
i∈Acm

(1− Fi(s)) ds

∣∣∣∣∣∣ ≤ sup
t∈[t0,T ]

∣∣∣∣∣ ∏
i∈Am

Fi(t)−
∏
i∈Am

F̃i(t)

∣∣∣∣∣
≤ sup

t∈[t0,T ]

∑
i∈Am

|Fi(t)− F̃i(t)|.
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Also note that∣∣∣∣∣∣
∫ t

t0

( ∏
i∈Am

F̃i(s)

)′ ∏
i∈Acm

(1− Fi(s))−
∏
i∈Acm

(
1− F̃i(s)

) ds

∣∣∣∣∣∣ ≤ sup
t∈[t0,T ]

∣∣∣∣∣∣
∏
i∈Acm

(1− Fi(t))−
∏
i∈Acm

(
1− F̃i(t)

)∣∣∣∣∣∣
≤ sup

t∈[t0,T ]

∑
i∈Acm

|Fi(t)− F̃i(t)|.

To summarize,

∣∣∣B(F )m(t)−B(F̃ )m(t)
∣∣∣ ≤ sup

t∈[t0,T ]

n∑
i=1

|Fi(t)− F̃i(t)| = d1(F, F̃ ),

which implies that

d1(B(F ), B(F̃ )) ≤M d1(F, F̃ ).

Because

d1(F, F̃ ) ≤
√
n d(F, F̃ ) and d1(B(F ), B(F̃ )) ≥ d(B(F ), B(F̃ )), (5.1)

then

d(B(F ), B(F̃ )) ≤M
√
n d(F, F̃ ).

Proof of Proposition 3.3. Essentially, the statement of this proposition follows from the fact

that if a continuous operator is defined on a compact set and the inverse operator is defined on

the image of that set, then the inverse operator is continuous. This result cannot be applied here

directly however because even though the inverse operator B−1 is clearly defined on B(Λφ) it is

not defined on the larger set B(Λφ).

Let G0 ∈ B(Λφ) and d(Gq, G0) → 0 as q → ∞ for Gq ∈ B(Λφ). Denote F0 = B−1(G0),

Fq = B−1(Gq). Clearly, F0, Fq ∈ Λφ. I want to show that d(Fq, F0)→ 0 as q →∞. Suppose this

is not so and for some ε > 0 there exists a subsequence Fql such that

d (Fql , F0) > ε for all l = 1, 2, . . . . (5.2)
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Notice that the subsequence Fql is equicontinuous because all functions in it are bounded and

|Fql(t1)− Fql(t2)| ≤ |φ(t1)− φ(t2)|

for any t1, t2 ∈ [t0, T ]. According to the Arzela-Ascoli theorem, there is a convergent subsequence

Fqlj . Let F̃ be the limit of Fqlj . Because F̃ ∈ Λφ and B is continuous on Λφ, then

d(B(Fqlj ), B(F̃ ))→ 0.

Thus, B(F̃ ) = G0. Given that on B(Λφ) the inverse operator B−1 is defined, conclude that

F̃ = F0. Thus, we obtain that d(Fqlj , F0)→ 0, contradicting (5.2). Therefore, d(Fq, F0)→ 0.

Proof of Lemma 3.4. Note that Q(F ∗) = 0. Because the inverse operator B−1 exists on B(Λφ),

then B(F ) 6= G∗ and, hence, Q(F ) > 0 for any F ∈ Λφ such that F 6= F ∗.

Now consider F ∈ Λφ\Λφ. Since F /∈ Λφ, then some Fi takes value 0 in a right neighborhood of

t0. Without loss of generality assume that F1(t) = 0, t ∈ [t0, t0+ω). Then for every m = 1, . . . ,M ,

such that 1 ∈ Acm, we have B(F )m(t) = 0, t ∈ [t0, t0 + ω). Because G∗m(t) > 0 for t > t0,

m = 1, . . . ,M (see Remark 2.2), then obviously B(F ) 6= G∗.

Proof of Theorem 3.5. To prove this theorem, use lemmas A1 and A2 from Newey and Powell

(2003).6 Consistency will hold if all conditions in Lemma A1 are satisfied. Below these conditions

are divided into three groups, as in Newey and Powell (2003).

(i) According to Lemma 3.4, F ∗ is the unique minimizer of Q on Λφ.

(ii) Set Λφ is compact. Let me show that Q and Q̂N are continuous on Λφ and

sup
F∈Λφ

|Q̂N (F )−Q(F )| p→ 0. (5.3)

The continuity of Q and Q̂N will follow from the properties of B on Λφ. First, consider Q.

6Some theorems from Chen (2007) can also be used to prove this result.
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For any F , F̃ ∈ Λφ

|Q(F )−Q(F̃ )| =

∣∣∣∣∣
∫ T

t0

[
(G∗ −B(F ))tr(G∗ −B(F ))− (G∗ −B(F̃ ))tr(G∗ −B(F̃ ))

] ∑M
m=1G

∗′
m(t)∑M

m=1G
∗
m(T )

dt

∣∣∣∣∣ =

=

∣∣∣∣∣
∫ T

t0

[
M∑
m=1

(B(F̃ )m −B(F )m)(2G∗m −B(F )m −B(F̃ )m)

] ∑M
m=1G

∗′
m(t)∑M

m=1G
∗
m(T )

dt

∣∣∣∣∣ .
For any t ∈ [t0, T ], B(F )m(t) ≤ 1 and G∗m(t) ≤ 1, m = 1, . . . ,M , therefore

|Q(F )−Q(F̃ )| ≤ 4

∫ T

t0

[
M∑
m=1

|B(F̃ )m −B(F )m|

] ∑M
m=1G

∗′
m(t)∑M

m=1G
∗
m(T )

dt.

Applying the Cauchy-Schwartz inequality and (3.2),

|Q(F )−Q(F̃ )| ≤ 4
√
M

∫ T

t0

[√
(B(F̃ )−B(F ))tr(B(F̃ )−B(F ))

] ∑M
m=1G

∗′
m(t)∑M

m=1G
∗
m(T )

dt

≤ 4
√
M d(B(F ), B(F̃ )) ≤ 4M

√
Mn d(F, F̃ ).

Thus, function Q is Lipschitz and therefore continuous.

Now consider function Q̂N . Similar to the methods described above,

|Q̂N (F )− Q̂N (F̃ )| ≤ 1

N

N∑
j=1

M∑
m=1

|(ĜN,m(zj)−B(F )m(zj))
2 − (ĜN,m(zj)−B(F̃ )m(zj))

2| =

=
1

N

N∑
j=1

M∑
m=1

|(B(F̃ )m(zj)−B(F )m(zj))(2ĜN,m(zj)−B(F̃ )m(zj)−B(F )m(zj))| ≤

≤ 4
√
M

N

N∑
j=1

√
(B(F̃ )(zj)−B(F )(zj))tr(B(F̃ )(zj)−B(F )(zj)) ≤

≤ 4
√
M d(B(F ), B(F̃ )) ≤ 4M

√
Mn d(F, F̃ ). (5.4)

Property (5.3) will follow from Lemma A2 in Newey and Powell (2003). Indeed, it is clear that

∀(F ∈ Λφ) Q̂N (F )
p→ Q(F ).

This fact combined with (5.4) implies (5.3).

(iii) This condition follows from assumption (3.3).

Conditions (i)-(iii) imply the consistency property (3.5).
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0 1

1

Scenario 1: F ∗1 (solid line) and its sieve estimator (dashed line).

0 1

1

Scenario 1: F ∗2 (solid line) and its sieve estimator (dashed line).

0 1

1

Scenario 1: F ∗3 (solid line) and its sieve estimator (dashed line).

Figure 1. Scenario 1: CDFs F ∗i , i = 1, 2, 3, and their sieve estimators by Bernstein polynomials.
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0 1

1

Scenario 2: F ∗1 (solid line) and its sieve estimator (dashed line).

0 1

1

Scenario 2: F ∗2 (solid line) and its sieve estimator (dashed line).

0 1

1

Scenario 2: F ∗3 (solid line) and its sieve estimator (dashed line).

Figure 2. Scenario 2: CDFs F ∗i , i = 1, 2, 3, and their sieve estimators by Bernstein polynomials.
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