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A New Multivariate Nonlinear Time Series Model for Portfolio Risk

Measurement: The Threshold Copula-Based TAR Approach

Shiu Fung Wong∗a, Howell Tongb, Tak Kuen Siua, and Zudi Luc

aMacquarie University, Sydney, Australia
bUniversity of Electronic Science and Technology, Chengdu, China. London School of Economics

and Political Science, London, UK
cUniversity of Southampton, Southampton, UK

We propose a threshold-copula-based nonlinear time series model for evaluating quantitative risk measures for �nancial
portfolios with a �exible structure to incorporate nonlinearities in both univariate (component) time series and their
dependent structure. We incorporate di�erent dependent structures of asset returns over di�erent market regimes,
which are manifested in their price levels. We estimate the model parameters by a two-stage maximum likelihood
method. Real �nancial data and appropriate statistical tests are used to illustrate the e�cacy of the proposed model.
Simulated Results for sampling distribution of parameters estimates are given. Empirical results suggest that the
proposed model leads to signi�cant improvement of the accuracy of Value-at-Risk forecasts at the portfolio level.
Keywords: Quantitative Risk Measures; Copulas; Multivariate Nonlinear Time Series;Threshold Principle.
JEL : C10 C32 C51 G32

1 Introduction

The global �nancial crisis (GFC) of 2008-2009 provides a practical motivation to reappraise the current market practice
of �nancial risk management. Indeed, some quantitative methods for risk management have been questioned. Some
pricing and hedging formulae for sophisticated credit derivatives involving dependent risk such as multi-name credit
default swaps (CDSs) and collateralised debt obligations (CDOs), which were developed based on Gaussian copulas,
have been criticised.

What's wrong with the use of Gaussian copulas in �nancial markets? We believe that there are two major
limitations of Gaussian copulas. Firstly, Gaussian copulas are static in nature. It fails to incorporate the situation
where the dependent structure changes dynamically over time according to changing market conditions. Secondly,
Gaussian copulas cannot capture �extreme� dependent structures attributed to extreme market moves. In particular,
during periods of market crash or �nancial crisis, returns from �nancial assets tend to drop together. Gaussian copulas
cannot describe this extreme dependent structure of asset returns. This will lead to signi�cant underestimation of
dependent risk or systemic risk and has important consequences for the stability of �nancial markets and the whole
economy. Indeed, some of the shortcomings of Gaussian copulas may be shared with other popular copula functions
used in practice. In fact, before the GFC, some researchers have already started addressing these shortcomings of
Gaussian copulas or copulas in general. Unfortunately, it appears that their ideas and methods were not properly
appreciated in the �nance industry.

To articulate the problem arising from the static nature of copulas, the notion of dynamic copulas has been
introduced with a view to modelling dependent structures in multivariate �nancial time series models. Patton (2002,
2009) de�ned the concept of conditional copulas with a view to developing a copula-based multivariate time series
model. Chen and Fan (2006) developed a copula-based semi-parametric time series model. Dias and Embrechts (2003)
employed a dynamic copula approach to develop a multivariate GARCH-type model for modelling high-frequency
�nancial data. Lee et al. (2006) proposed a copula-based multivariate GARCH model with uncorrelated dependent and
asymmetrically distributed innovations. These works mainly focus on the application of copulas to build multivariate
conditional heteroscedastic time series models, such as the multivariate GARCH models. Some attention has been
paid to model the impact of structural changes in hidden economic conditions, i.e. the regime-switching e�ect, on
dependent structures using copulas. Chollete (2005) introduced a hidden Markov-modulated copula modelling of
multivariate time series to explain the dynamic clustering of correlations attributed to transitions of turbulent and
quiescent periods in international markets. However, the presence of the hidden factors apparently makes the model
not easy to implement in a multivariate setting. da Silva Filho et al. (2012) modelled the dependence dynamics
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using copulas with regime switching under hidden Markov chain and use block bootstrapping in estimating covariance
matrix. It appears that relatively little attention has been paid to the application of copulas to describe dynamic
nonlinear dependent structures in the conditional mean functions of multivariate nonlinear time series models.

In this paper, we introduce a threshold copula-based nonlinear time series model with a view to estimating or
forecasting quantitative risk measures of �nancial portfolios. Our aim is to provide a reasonably �exible structure
to incorporate nonlinearities in both the univariate time series and their inter-dependence. The key idea of the
proposed threshold copula-based approach is the threshold principle which was introduced to nonlinear time series
analysis by one of us in the late 1970s. See, for example, Tong (1977, 1978, 1980, 1983) and Tong and Lim (1980).
We develop a threshold copula-based multivariate self-exciting threshold autoregressive model, or in short Copula-
Threshold Autoregression (Copula-TAR). This model is a natural extension of the self-exciting threshold autoregressive
(SETAR) model introduced by Tong (op. cit.), which is possibly the oldest parametric nonlinear time series model
still in active service. The Copula-TAR model has two levels of threshold structure, one for the univariate time series
components and the other for the dependent structure of these components, which is modeled by the threshold copulas.
The threshold structure for the univariate time series coincides with that of the univariate SETAR models, where the
regimes in the threshold structure are determined by threshold parameters dividing the state space according to some
past value of the univariate time series. A new ingredient is introduced to model the dependence among the time series
components via some appropriate thresholding. Speci�cally, in the Copula-TAR approach, we allow both the functional
form of the copula function and the parameters to vary across di�erent regimes. An interesting particular case of the
proposed model, namely the piecewise, or local, copula is considered. The proposed structure can address the two
major limitations of Gaussian copulas and possibly other commonly used copula functions as discussed above. It can
additionally incorporate the dynamic nonlinear dependent structure in the conditional mean functions of multivariate
time series models. We propose a two-stage maximum likelihood estimation method. We demonstrate the e�ectiveness
of the estimation method by simulation examples. Real �nancial data and appropriate statistical tests are used to
illustrate the e�cacy and practical utility of the proposed model in quantitative risk measurement at a portfolio level.

The rest of this paper is structured as follows. The next section presents the proposed Copula-TAR model and
gives some practical examples in �nance to illustrate the main idea of the model. We also discuss the rationale of the
Copula-TAR model and compare it to some major existing approaches. Section 3 discusses the estimation method.
Section 4 conducts simulation studies to illustrate the qualitative behaviour of the proposed model as well as to
demonstrate the e�cacy of the estimation method. In Section 5, using real �nancial data, we compute a popular risk
metric in the �nance and insurance industries, namely Value at Risk (VaR), based on the proposed model. Backtesting
using a binomial test is conducted to evaluate the performance of the proposed model in VaR forecasts. The �nal
section gives concluding remarks.

2 The Copula-TAR Model

In this section, we present the main idea of the threshold copula-based multivariate SETAR, (Copula-TAR), model
by considering two �nancial time series X := {Xt|t = 1, 2, · · · , T} and Y := {Yt|t = 1, 2, · · · , T}. The generalisation
to the multivariate setting follows immediately. For illustration, we �rst assume that the marginal distributions of
the two �nancial time series X and Y are speci�ed by two di�erent self-exciting threshold autoregressive, (SETAR),
models. In general, one may consider some second-generation nonlinear time series models, such as SETAR-GARCH
models, as described in Tong (1990) as the marginal time series models. Conditional on this parametrisation, we
introduce the dependent structure between X and Y using a bivariate self-exciting threshold copula.

Firstly, we suppose that X and Y are governed by the following two k regimes SETAR models with delay parameter
being one:

Xt =

k∑
i=1

(
α

(i)
0 +G(i)(L)Xt + σ(i)εt

)
I{rXi−1<Xt−1≤rXi } ,

εt|IXt−1 ∼ D1(0, 1) ,

Yt =

k∑
i=1

(
β

(i)
0 +H(i)(L)Yt + φ(i)ηt

)
I{rYi−1<Yt−1≤rYi } ,

ηt|IYt−1 ∼ D2(0, 1) ,

(1)

where

1. The composite operators G(i) and H(i) specify the autoregressive model for X and Y in regime i. Here L is the

lag operator, LXt = Xt−1, e.g. if X is of m(i)-th order in regime i, G(i)(L) = α
(i)
1 L+ α

(i)
2 L2 + · · ·+ α

(i)
m(i)L

m(i);

2. εt and ηt are random error terms following continuous distributions with zero mean and unit variance, denoted
by D1(0, 1) and D2(0, 1), respectively;
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3. IXt−1 and IYt−1 are de�ned as the σ-�elds generated by the random variables {X1, X2, . . . , Xt−1} and {Y1, Y2, . . . , Yt−1}
respectively;

4. rXi and rYi , i = 0, 1, · · · , k, are the threshold parameters for X and Y , respectively; these parameters satisfy the
following constraints:

−∞ = rX0 < rX1 < · · · < rXk−1 < rXk =∞ ,

−∞ = rY0 < rY1 < · · · < rYk−1 < rYk =∞ ,

however, the numbers of regimes are not limited to be the same in X and Y ;

5. IE is the indicator function of an event E;

6. for each i = 1, 2, · · · , k, α(i)
0 , α

(i)
1 , . . . , α

(i)
m(i) and σ

(i) are the parameters in the autoregressive model for X in

the ith-regime, while β
(i)
0 , β

(i)
1 , . . . , β

(i)
n(i) and φ

(i) are the parameters in the autoregressive model for Y in the

ith-regime;

7. We assume the marginal time series of X and Y follow univariate SETAR model. Series depends on the past of
another series falls into the category of vector SETAR models which is beyond of the scope of this paper.

We now present the main idea of the self-exciting threshold copula. Let FXt (x|IXt−1) and FYt (y|IYt−1) be the
conditional cumulative distribution functions of Xt and Yt given IXt−1 and IYt−1, respectively. That is,

FXt (x|IXt−1) = P [Xt ≤ x|IXt−1] ,

FYt (y|IYt−1) = P [Yt ≤ y|IYt−1] .

Let Ut := FXt (Xt|IXt−1) and Vt := FYt (Yt|IYt−1), for each t = 1, 2, · · · , T . Note that Ut and Vt are IXt -measurable and
IYt -measurable respectively. Then conditional on IXt−1 and IYt−1, Ut and Vt are continuous uniform random variables

on (0, 1) respectively. For each i = 1, 2, · · · , k and j = 1, 2, · · · , k, let Ci,jθi,j : [0, 1]2 → [0, 1] be a bivariate copula

function indexed by the parameter θi,j . For each t = 1, 2, · · · , T , let {rUi,t−1|i = 0, 1, · · · , k} and {rVj,t−1|j = 0, 1, · · · , k}
be the sets of threshold parameters dividing the state spaces of Ut−1 and Vt−1, respectively. We suppose that for
each t = 1, 2, · · · , T , rUi,t−1 and rVi,t−1 are IXt−1-measurable and IYt−1-measurable respectively and that the threshold
parameters satisfy the following constraints:

0 = rU0,t−1 < rU1,t−1 < · · · < rUk−1,t−1 < rUk,t−1 = 1 ,

0 = rV0,t−1 < rV1,t−1 < · · · < rVk−1,t−1 < rVk,t−1 = 1 .

Here It denotes the minimal σ-�eld containing both the σ-�elds IXt and IYt . Note that the threshold parameters
of U and V are time varying such that the regime can be matched with the original series. See Example 2.1 for a
canonical threshold principle.

We de�ne a conditional bivariate copula function Ct(·, ·|It−1) given It−1 as follows:

Ct(u, v|It−1) =

k∑
i=1

k∑
j=1

Ci,jθi,j (u, v)I{(Ut−1,Vt−1)∈(rUi−1,t−1,r
U
i,t−1)×(rVj−1,t−1,r

V
j,t−1)} . (2)

We call this a self-exciting threshold copula function. The key idea is that we divide the squared region [0, 1]2 into
sub-rectangular regions which we call regimes, therefore the indicator function become a selector from the product
space of U and V . In each regime, the conditional dependent structure between Xt and Yt given It−1 is described
by the copula function Ci,jθi,j (u, v). Here the delay parameter d = 1. In general, we can consider the pair of random

variables (Ut−d, Vt−d) ∈ (rUi−1,t−d, r
U
i,t−d)× (rVi−1,t−d, r

V
i,t−d) in the indicator function.

We now specify the probability law of the Copula-TAR model by the following conditional joint cumulative distri-
bution function of Xt and Yt given It−1.

FX,Yt (x, y|It−1)

=

k∑
i=1

k∑
j=1

Ci,jθi,j (FXt (x|IXt−1), FYt (y|IYt−1))I{(Ut−1,Vt−1)∈(rUi−1,t−1,r
U
i,t−1)×(rVj−1,t−1,r

V
j,t−1)} .

(3)

This is based on an extended version of Sklar's theorem in a �dynamic� environment. For Sklar's theorem, one may
refer to Joe (2015).

Now, we discuss some particular cases of the Copula-TAR model in the following examples. These examples are
motivated from nonlinear time series modelling and �nancial applications.
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Example 2.1 A Canonical Threshold Principle
Suppose, for each i, j = 0, 1, · · · , k,

rUit := FXt (rXi |IXt−1) , rVjt := FYt (rYi |IYt−1) ,

so rU0t = rV0t = 0 and rUkt = rVkt = 1.
In this case, we consider the situation that the thresholds in the self-exciting threshold copula function come up

naturally from the probability levels of the thresholds of the univariate SETAR models. In other words, the thresholds
of the copula function are determined completely by those of the univariate SETAR models. That means there is no
necessity to evaluate the threshold parameters of U and V because the regimes of U and V are solely determined by
the regimes of X and Y respectively. We call this a canonical, or natural, threshold principle. The canonical threshold
principle apparently provides a neat way to partition a high dimensional space arising from a multivariate nonlinear
time series.

Example 2.2 A Copula-TAR Extension of the Merton Structural Model for Firm Values
We consider a multivariate extension of the Merton Structural Model for Firm Values based on the proposed

Copula-TAR model in a discrete-time economy. The idea is to incorporate the tail dependence of market values
of �rms in structural model for credit risk. In particular, we allow di�erent levels of the lower tail and upper tail
dependence of the �rms' values. Firstly, let Xt and Yt be the market values of two �rms at time t. We assume that
X := {Xt|t = 1, 2, · · · , T} and Y := {Yt|t = 1, 2, · · · , T} follow the univariate SETAR models.

Consider the following threshold parameters dividing the state spaces of U and V :

0 = rU0,t−1 < rU1,t−1 < rU2,t−1 < rU3,t−1 = 1 ,

0 = rV0,t−1 < rV1,t−1 < rV2,t−1 < rV3,t−1 = 1 .

We suppose that these threshold parameters are determined by the conditional distributions of Xt and Yt given It−1

as in Example 2.2.
Let CCl

θ̄1
(u1, u2), CGa

θ̄2
(u1, u2) and CGu

θ̄3
(u1, u2) be the bivariate Clayton, Gaussian and Gumbel copulas with param-

eters θ̄1, θ̄2 and θ̄3, respectively. That is,

CClθ̄1 (u1, u2) := (u−θ̄11 + u−θ̄12 − 1)−1/θ̄1 ,

CGaθ̄2 (u1, u2)

:=

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π(1− θ̄2
2)1/2

exp

{
− (a2

t − 2θ̄2atbt + b2t )

2(1− θ̄2
2)

}
datdbt ,

and

CGuθ̄3 (u1, u2) := exp{−[(− lnu1)θ̄3 + (− lnu2)θ̄3 ]1/θ̄3} ,

where θ̄1 ∈ (0,∞), θ̄2 ∈ (−1, 1) and θ̄3 ∈ [1,∞). Φ(·) is the cumulative distribution function of a standard normal
distribution.

Write S3 := {(i, j)|i, j = 1, 2, 3} and S̄3 := S3\{(1, 1), (3, 3)}. We set θ̄1 = θ1,1, θ̄3 = θ3,3, θ̄2 = θi,j, for all
(i, j) ∈ S̄3. Then the self-exciting threshold copula function becomes:

Ct(Ut, Vt|It−1) = CClθ̄1 (Ut, Vt)I{(Ut−1,Vt−1)∈(rU0,t−1,r
U
1,t−1)×(rV0,t−1,r

V
1,t−1)}

+
∑

(i,j)∈S̄3

CGaθ̄2 (Ut, Vt)I{(Ut−1,Vt−1)∈(rUi−1,t−1,r
U
i,t−1)×(rVj−1,t−1,r

V
j,t−1)}

+CGuθ̄3 (Ut, Vt)I{(Ut−1,Vt−1)∈(rU2,t−1,r
U
3,t−1)×(rV2,t−1,r

V
3,t−1)} .

Consequently, in the lower tail part where the market values of the two �rms are small, the lower tail dependence is
described by the bivariate Clayton copula CCl

θ̄1
(u1, u2). In the upper tail part where the market values of the two �rms

are high, the upper tail dependence is described by the bivariate Gumbel copula. In other parts, the dependence of the
market values of the two �rms is described by the Gaussian copula. Of course, in practice, the market values of the
�rms are not directly observed. One may need to infer these values from equity prices of the �rms.
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Example 2.3 A Gaussian Mixture Copula Function
We consider a Gaussian mixture copula function, which has a Gaussian copula function in each regime, in the state

space of (Ut−1, Vt−1) introduced via the threshold principle. The rationale is to approximate a general copula function
locally using a Gaussian copula function. By noting the relationship between Gaussianity and linearity, the idea of the
Gaussian mixture copula function is not unlike that of the SETAR model which gives a piecewise linear approximation
to a nonlinear autoregressive model.

In this case, we consider a set of threshold parameters satisfying the following constraints:

0 = rU0,t−1 < rU1,t−1 < · · · < rUk−1,t−1 < rUk,t−1 = 1 ,

0 = rV0,t−1 < rV1,t−1 < · · · < rVk−1,t−1 < rVk,t−1 = 1 .

As before, we assume that for each i = 0, 1, · · · ,m, j = 0, 1, · · · , n and t = 1, 2, · · · , T , rUi,t−1 and rVj,t−1 are IXt−1 and

IYt−1-measurable respectively.
For each i = 0, 1, · · · , k and j = 0, 1, · · · , k, we consider the following Gaussian copula function CGaθi,j (Ut, Vt) with

parameter θi,j.

CGaθi,j (u1, u2)

:=

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π(1− θ2
i,j)

1/2
exp

{
− (a2

t − 2θi,jatbt + b2t )

2(1− θ2
i,j)

}
datdbt ,

Then the self-exciting threshold copula function is given by:

Ct(Ut, Vt|It−1) =

k∑
i=1

k∑
j=1

CGaθi,j (Ut, Vt)I{(Ut−1,Vt−1)∈(rUi−1,t−1,r
U
i,t−1)×(rVj−1,t−1,r

V
j,t−1)} .

There are di�erent approaches to extend the SETAR model to the multivariate case. Lewis and Ray (1993)
adopted a multivariate adaptive regression spline �tting methodology (MARS) originated from Friedman (1991) to
model multivariate nonlinear time series. The MARS may be regarded as a generalisation of a recursive partitioning
(RP) strategy considered in Morgan and Sonquist (1963) and Breiman et al. (1984). The RP strategy adopts spline
�tting for an additive nonlinear regression model. The main advantage of the MARS approach is that it can incorporate
long-range dependence and allow the inclusion of categorical predictor series. However, models �tted by the MARS
algorithm are not always easy to interpret. Moreover, being essentially a nonparametric approach, it inherits all its
weaknesses, to which we shall return later.

The Copula-TAR approach provides an intuitive way to incorporate structural changes in the dependent structure
of �nancial time series that may be attributed to �nancial crises or asset bubbles. Empirical studies reveal that there
is a signi�cantly higher level of correlation, (or, in general, dependence), among �nancial prices during the crisis
period than the normal period. See, for example, Bertero and Mayer (1990), King and Wadhwani (1990), Calvo and
Reinhardt (1996) and Baig and Goldfajn (1999). This structural shift in correlation is referred to as �correlation
breakdown�. The linear correlation and Gaussian copulas cannot produce a su�ciently high level of dependency
experienced in a crisis period, nor can they incorporate structural shifts in the dependent relationship. In contrast,
we shall see that the self-exciting threshold copula function provides a �exible way to describe di�erent levels of
dependence based on regimes introduced by the threshold principle. It can also provide a �exible and convenient
way to incorporate various cross-sectional dependent structures among constituent time series as well as temporally
dependent structures among them. The key behind the �exibility is the convenience of separating, via thresholds, the
cross-sectional dependent structure of the multivariate nonlinear time series and the temporal dependent structure
of the marginal time series. Consequently, the modelling of each type of dependent structures does not impose any
restriction on the other. A distinct disadvantage of the MARS approach lies in its inability to do so. Further, being
nonparametric, the MARS approach cannot escape from the problem of curse of dimensionality, a problem not su�ered
by the Copula-TAR approach as it is a parametric approach. The statistical identi�cation of the Copula-TAR model
is not signi�cantly di�erent from that of the univariate SETAR model. It is quite intuitive and easy to implement,
requiring no complicated recursive partitioning strategy or machine-learning procedure which may be required in the
nonparametric MARS model.

There are a few models that consider separating regimes in dependent structures of multivariate time series. In a
recent paper by Lai et al. (2009), a copula-threshold GARCH model was considered. Our approach with the Copula-
TAR model is di�erent from that in Lai et al. in at least two major aspects. Firstly, we attend to the threshold e�ects
in both the conditional means and the volatilities (i.e. the conditional variances), while Lai et al. is only concerned
with threshold e�ects in the conditional variances. Secondly, we introduce threshold e�ects in the copula function.
Lai et al. considered threshold e�ects in the univariate time series only. Next, Jondeau and Rockinger (2006) uses a
gridded dependence structure to model the marginal of a GARCH model with conditional skewness and kurtosis. The
choices of grid / threshold of regimes is arbitrary. However in Copula-TAR, we separate the regimes in a natural and
intuitive way as demonstrated in Example 2.2, which yields easily interpreted results.
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We would stress that the Copula-TAR model is quite �exible in that it also covers volatility as well as the conditional
mean function. A recent paper by Chan et al. (2014) justi�ed this claim. In particular, they argued that, as a
dynamic mixing of white noise, the GARCH approach is not so natural because a square-root mixing function is hard
to interpret and often quite restrictive in its parameter admissibility. In contrast, the copula-TAR uses a piecewise
constant mixing function as in T-CHARM in Chan et al. (2014) for which only very mild conditions are required on
the model parameters.

From an economic perspective, the Copula-TAR model provides a particularly convenient way to modelling mul-
tivariate time series which partitions the economy into di�erent regimes by the levels of observed time series. The
self-exciting threshold copula function may be regarded as a more general concept than the threshold co-integration in
the sense that the former incorporates the threshold e�ect in modelling nonlinear dependence among univariate time
series and the latter only describes the threshold e�ect in modelling linear associations among univariate time series.

The Copula-TAR model targets data with dependent structures governed by the levels of observed data. Its regimes
often have clear interpretation; for example, high/low levels of stock returns can be interpreted as bull/bear markets,
di�erent foreign exchange rate levels can be interpreted as di�erent policy regimes, and so on. Furthermore, the use
of the threshold principle provides a way to distinguish market regimes based on observed market data. The facility is
provided by the fact that the number of regimes is data driven. Real data analysis in Section 5 shows that a two-regime
linear marginal model provides reasonably accurate estimates of Value-at-Risk. The principle of separating regimes
by data value levels can be applied to more sophisticated marginal models to describe conditional heteroscedasticity.

3 Estimation

In this section, we present two methodologies of maximum likelihood estimation based on partial and full information,
respectively.

First, we introduce some notation. De�ne the vectors of the unknown parameters in the two marginal SETAR
models and the self-exciting threshold copula function as:

ΘX := (Θ′X,1,Θ
′
X,2)′, with

ΘX,1 = (α
(1)
0 , α

(1)
1 , · · · , α(1)

m(1), · · · , α
(k)
0 , α

(k)
1 , · · · , α(k)

m(k), σ
(1), σ(2), · · · , σ(k))′,

ΘX,2 = (rX1 , r
X
2 , · · · , rXk−1)′ ;

ΘY := (Θ′Y,1,Θ
′
Y,2)′, with

ΘY,1 = (β
(1)
0 , β

(1)
1 , · · · , β(1)

n(1), · · · , β
(k)
0 , β

(k)
1 , · · · , β(k)

n(k), φ
(1), φ(2) · · · , φ(k))′,

ΘY,2 = (rY1 , r
Y
2 , · · · , rYk−1)′ ;

ΘC := (θ1,1, θ1,2, · · · , θm,n)′ . (4)

Assume each component univariate time series to be stationary, we write the marginal conditional distributions of Xt

and Yt given IXt−1 and IYt−1 and the self-exciting copula function given It−1 as functions of the unknown parameters
ΘX , ΘY and ΘC as follows:

FXt (x|IXt−1) := FXt (x|IXt−1,ΘX) ,

FYt (y|IYt−1) := FYt (y|IYt−1,ΘY ) ,

Ct(ut, vt|It−1) := Ct(ut, vt|It−1,ΘC) .

Here note that ut = ut(ΘX) = FXt (xt|IXt−1,ΘX) and vt = vt(ΘY ) = FYt (yt|IYt−1,ΘY ). For a general discussion of
stationarity of nonlinear time series, see, e.g., Chan (2009). For the important special case with m(i) = 1, for all i,

the condition max{|α(1)
1 |, |α

(k)
1 |} < 1 and max{|β(1)

1 |, |β
(k)
1 |} < 1 su�ces. For details, we refer to Chan et al. (1985)

and Lu (1998).
Suppose that FXt , FYt and Ct are di�erentiable functions with respect to x, y and (ut, vt), respectively. Denote

their derivatives as follows:

fXt (x|IXt−1,ΘX) :=
∂FXt
∂x

(x|IXt−1,ΘX) ,

fYt (y|IYt−1,ΘY ) :=
∂FYt
∂y

(y|IYt−1,ΘY ) ,

ct(ut, vt|It−1,ΘC) :=
∂2Ct
∂u∂v

(ut, vt|It−1,ΘC) .
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Then the conditional joint density function of Xt and Yt given It−1 exists and is given by:

fX,Yt (xt, yt|It−1,ΘX ,ΘY ,ΘC)

= ct(F
X
t (xt|IXt−1,ΘX), FYt (yt|IYt−1,ΘY )|It−1,ΘC)× fXt (xt|IXt−1,ΘX)× fYt (yt|IYt−1,ΘY )

= ct(ut, vt|It−1,ΘC)× fXt (xt|IXt−1,ΘX)× fYt (yt|IYt−1,ΘY ) .

The log-likelihood function from the t-th observation is then given by:

ln fX,Yt (xt, yt|It−1,ΘX ,ΘY ,ΘC)

= ln ct(ut, vt|It−1,ΘC) + ln fXt (xt|IXt−1,ΘX) + ln fYt (yt|IYt−1,ΘY ) .

Let Θ := (ΘX ,ΘY ,ΘC). Write

lxt,yt(Θ) = ln fX,Yt (xt, yt|It−1,Θ) ,

lut,vt(ΘC) := ln ct(ut, vt|It−1,ΘC) ,

lxt
(ΘX) := ln fXt (xt|IXt−1,ΘX) ,

lyt(ΘY ) := ln fYt (yt|IYt−1,ΘY ) .

Then

lxt,yt(Θ) = lut,vt(ΘC) + lxt
(ΘX) + lyt(ΘY ) . (5)

Now, suppose {x1, x2, · · · , xT } and {y1, y2, · · · , yT } are observations of the time series X and Y , respectively. To
simplify the notation, we consider the situation that both the univariate SETAR models and the self-exciting threshold
copula function have two regimes. The same principle applies to general cases with more than two regimes. However,
the likelihood maximisation on the threshold parameters will become a higher dimension optimisation problem. In
this case, let rX , rY and rUt−1 and rVt−1 be the threshold parameters dividing the state spaces of Xt−1, Yt−1, Ut−1 and
Vt−1, respectively.

3.1 Two-Stage Estimation

In this subsection, we discuss a two-stage estimation method to estimate the Copula-TAR model introduced in the
last section. The two-stage estimation method was introduced by Joe and Xu (1996). This method is also named
as inference for the margins (IFM). The main idea of the method is to separate the estimation of the marginal
densities from the copula density. It is an computationally e�cient estimation method for multivariate models,
especially when the dimension is large. It lowers the number of parameters to be estimated in each steps by breaking
a high dimensional maximum likelihood estimation problem into multiple steps. This can maintain a high degree of
computation feasibility in estimation when the number of regimes is large. The IFM method is also easy to implement
in practice. It is much more computation e�cient than standard maximum likelihood estimation. Model selection
using di�erent statistical principles, such as Akaike's information criterion (AIC), Bayesian information criterion (BIC)
or Generalised information criterion (GIC), can be used at this stage. However, attention should be paid to the penalty
function that the number of parameters changes when di�erent orders or number of regimes are chosen.1 In our current
context, we have to modify the IFM method to estimate the Copula-TAR model. Speci�cally, at the �rst stage, we
use the maximum likelihood method to estimate the marginal SETAR models (e.g. Tong (1983, 1990)). We select
the threshold parameters and model parameters that maximise the likelihood function. At the second stage, we again
use the maximum likelihood method to select the individual copula parameters and the threshold parameters of the
self-exciting threshold copula functions. We can select the copula function in each regime using the information criteria
in the �rst stage. The discussion on which criteria should be used in selecting SETAR models and copula models is
beyond the scope of this paper. In what follows, we present the main idea of the IFM method adapted to our current
model set-up.

At the �rst estimation stage, we estimate the parameters of the univariate SETAR model for the time series X
using the maximum likelihood estimation. Suppose we are estimating a SETAR model with two regimes. Firstly,
we assume that the possible values taken by the threshold parameter rX are given by {r̃X1 , r̃X2 , · · · , r̃Xl }. For each
possible values of threshold parameter, r̃Xj where j = 1, · · · , l, the samples are split into two sub-samples, in which

one contains observations less than or equal to r̃Xj , while the second sub-sample contains observations greater than

r̃Xj . We estimate the marginal SETAR model via maximum likelihood as:

θ̂
(1)
X = arg max

θ
(1)
X

T∑
τ=1

ln f
(1)

X̃
(xτ |IXτ−1, θ

(1)
X )I{xτ−1 ≤ r̃Xj } ,

1The problem of determining number of regime is non-standard, in that the number of independently adjusted parameters is

not equal to the nominal number of parameters. This problem may be circumvented by increasing the penalty term from 2 ×
(the nominal number of parameters) to K × (the nominal number of parameters), where K is likely to be much greater than 2. The

appropriate choice of K is beyond the scope of the present paper.
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and

θ̂
(2)
X = arg max

θ
(2)
X

T∑
τ=1

ln f
(2)

X̃
(xτ |IXτ−1, θ

(2)
X )I{xτ−1 > r̃Xj } ,

where θ(1) = (α
(1)
0 , α

(1)
1 , · · · , α(1)

k , σ(1)) and θ(2) = (α
(2)
0 , α

(2)
1 , · · · , α(2)

k , σ(2)) are the parameters of the marginal uni-

variate SETAR model for X in the �rst and second regime respectively, and f
(1)

X̃
and f

(2)

X̃
are the transition probability

densities of X to the next time step in the �rst and second regimes respectively. The density functions can be
approximated by normal distributions when the sample size is su�ciently large.

We repeat the above procedure for other possible values of r̃Xj 's and compute the likelihood of the estimated model.

The estimate of rX is given by the value of r̃Xj which maximises the likelihood. The estimate Θ̂X of ΘX is then given
by the estimated parameters which give the maximum likelihood.

For the estimation of the univariate SETAR model for Y , we follow the same procedure as above. We now discuss
the estimation of the self-exciting threshold copula in the second stage of the estimation procedure.

In the second stage, we �rst evaluate the estimated sample values of the continuous uniform random variables Ut
and Vt from the observations {x1, x2, · · · , xT } and {y1, y2, · · · , yT } of the time series X and Y , respectively, as follows:

ut := FXt (xt|IXt−1, Θ̂X) ,

vt := FYt (yt|IYt−1, Θ̂Y ) , t = 1, 2, · · · , T ,

where Θ̂X and Θ̂Y are the estimates of ΘX and ΘY , respectively, from the �rst stage of the estimation procedure.
We then assume that the threshold parameters rU and rV can take the following possible values {r̃U1,t−1, r̃

U
2,t−1, · · · , r̃Up,t−1}

and {r̃V1,t−1, r̃
V
2,t−1, · · · , r̃Vq,t−1}, respectively, at time t−1. If we use the canonical threshold principle on choosing thresh-

old parameters of self-exciting threshold copula function, these threshold parameters are determined endogenously by
the thresholds of the time series X and Y by

r̃Ut := FXt (rX |IXt−1, Θ̂X) , t = 1, 2, · · · , T − 1

r̃Vt := FYt (rY |IYt−1, Θ̂Y ) , t = 1, 2, · · · , T − 1

where Θ̂X and Θ̂Y are the estimates of ΘX and ΘY , respectively, from the �rst stage of the estimation proce-
dure. Otherwise, maximum likelihood method , similar to the one used in the �rst stage estimation of the threshold
parameters of the time series X and Y but in higher dimension, can be used to determine the threshold parameters.

To illustrate the estimation method, we consider the model with only a pair of threshold parameters determined
by the canonical threshold principle. The method demonstrated here can be extended to any numbers of threshold
parameters in which the estimation method in each regime is the same though the computation becomes more complex.
For a pair of threshold parameters, the sample space of (Ut, Vt) is split into four regimes. Then the estimates θ̂1,1,

θ̂1,2, θ̂2,1 and θ̂2,2 of θ1,1, θ1,2, θ2,1 and θ2,2, respectively, are obtained from maximum likelihood as

θ̂1,1 = arg max
θ1,1

T∑
t=1

ln c1,1(ut, vt|θ1,1)I{ut ≤ r̃Ut , vt ≤ r̃Vt } ,

θ̂1,2 = arg max
θ1,2

T∑
t=1

ln c1,2(ut, vt|θ1,2)I{ut ≤ r̃Ut , vt > r̃Vt } ,

θ̂2,1 = arg max
θ2,1

T∑
t=1

ln c2,1(ut, vt|θ2,1)I{ut > r̃Ut , vt ≤ r̃Vt } ,

and

θ̂2,2 = arg max
θ2,2

T∑
t=1

ln c2,2(ut, vt|θ2,2)I{ut > r̃Ut , vt > r̃Vt } .

In practice, we do not need to evaluate r̃Ut and r̃Vt because the regime selectors, i.e. indication function, are
equivalent to the regime selectors in the original series, such that,

I{ut ≤ r̃Ut , vt ≤ r̃Vt } = I{Xt−1 ≤ r̃X , Yt−1 ≤ r̃Y } ,
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I{ut ≤ r̃Ut , vt > r̃Vt } = I{Xt−1 ≤ r̃X , Yt−1 > r̃Y } ,

I{ut > r̃Ut , vt ≤ r̃Vt } = I{Xt−1 > r̃X , Yt−1 ≤ r̃Y } ,

and

I{ut > r̃Ut , vt > r̃Vt } = I{Xt−1 > r̃X , Yt−1 > r̃Y } .

It is possible to extend the method to more threshold states by taking more threshold parameter values. However,
the search of threshold parameters will become an optimisation problem on an extended set, e.g. in three-regime case
(two threshold parameter), the �candidates� of (rX1 , r

X
2 ) are selected from {r̃X1 , r̃X2 , · · · , r̃Xl }×{r̃X1 , r̃X2 , · · · , r̃Xl } where

rX1 < rX2 . The estimations of copula functions are done separately in each subregion divided by threshold parameters.
Chan (1993) discusses the asymptotic properties of the two-step estimation method in which a proof for the case

with two regimes is provided. When the sample size is large, the proportion of the mis-split sample size among the
whole sample is small. This proportion tends to zero when the number of sample size tends to in�nity. The estimators
of parameters of the individual time series models are shown to be strongly consistent and asymptotically normal.
The numerical results in later sections lend support to this conclusion. Asymptotic results for the case with more than
one threshold are scanty if available. This will be the topic of further research to broaden the theoretical base of the
estimation.

3.2 Full-Information Likelihood Estimation

The two-stage estimation method is convenient in computation. However, the estimation of ΘX and ΘY is based on
partial information about the series X and Y , respectively. Although our simulation studies to be presented in the
next section will reveal that the partial information method provides accurate estimation results for the parameters,
we wish to give some remarks for the full-information likelihood estimation method here for the sake of completeness.

As noticed in the above, in (5), ut = ut(ΘX) and vt = vt(ΘY ). Consequently, the full log likelihood is given by:

`(Θ) =

T∑
t=1

lxt,yt(Θ) =

T∑
t=1

lut(ΘX),vt(ΘY )(ΘC) +

T∑
t=1

lxt
(ΘX) +

T∑
t=1

lyt(ΘY ) . (6)

Then the full-information-based maximum likelihood estimate is de�ned by:

Θ̃ = (Θ̃C , Θ̃X , Θ̃Y ) = arg max
Θ

`(Θ).

It is worth noting that this likelihood function cannot be optimised by the maximising algorithm which requires
di�erentiability of the target function since the likelihood function is not di�erentiable with respect to the threshold
parameters, namely, ΘX,2 and ΘY,2. There are several heuristic algorithms which do not require di�erentiability of
the target function. One practical approach is the di�erential evolution method considered in Price et al. (2005).
However, the accuracy of the optimisation in the di�erential evolution method very much depends on the algorithm
chosen.

4 Simulation Studies

This section has two aims. Firstly, we perform simulation studies for the Copula-TAR model with a view to inves-
tigating key dependent structures that can be generated from the model. We exhibit di�erent dependent structures
that can be included by the Copula-TAR model. Secondly, we investigate the accuracy of the estimation method
using simulated data. For illustration, we consider di�erent piecewise copula functions in di�erent regimes with the
canonical threshold principle. We illustrate the e�ect of regime switching described by the threshold principle by
comparing the dependent structure from piecewise copula functions with that from the Gaussian and Archimedean
copula functions.

4.1 Simulation Studies for Dependent Structures

Here we consider the dependent structure of a two-regime, self-exciting threshold copula with Gaussian and Archimedean
copula functions, including Gumbel copula, Frank copula and Clayton copula. This two-regime, self-exciting threshold
copula model is taken as

Xt = (α
(1)
0 + α

(1)
1 Xt−1 + σ(1)εt)I{Xt−1≤rX} + (α

(2)
0 + α

(2)
1 Xt−1 + σ(2)εt)I{Xt−1>rX} ,

εt|IXt−1 ∼ N(0, 1) ,

Yt = (β
(1)
0 + β

(1)
1 Yt−1 + φ(1)ηt)I{Yt−1≤rY } + (β

(2)
0 + β

(2)
1 Yt−1 + φ(2)ηt)I{Yt−1>rY } ,

ηt|IYt−1 ∼ N(0, 1) .
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To perform the simulation study, we consider the following hypothetical parameter values:

X0 = Y0 = 0;

α
(1)
0 = −0.007;α

(1)
1 = 0.3;σ(1) = 0.025;

α
(2)
0 = −0.027;α

(2)
1 = 0.1;σ(2) = 0.015;

β
(1)
0 = 0.004;β

(1)
1 = 0.6;φ(1) = 0.02;

β
(2)
0 = −0.004;β

(2)
1 = 0.2;φ(2) = 0.01;

θ1,1 = 1.5(Gumbel); θ1,2 = 3(Frank);

θ2,1 = 1.5(Clayton); θ2,2 = 0.7(Gaussian);

rX = −0.025; rY = −0.005.

This set of parameters satis�es the conditions for the piecewise stationary AR(1) in each regime. It also satis�es
the conditions for the global stationarity of the TAR models in marginal cases. We choose these values of the
parameters because the magnitudes of the simulated results are similar to those observed in real �nancial data except
for the copula functions which are chosen to describe relatively extreme dependent structures. The two regimes in
the bivariate threshold autoregressive time series model divide the two-dimensional state space into four sub-regions,
namely, Regime (1,1), Regime (1,2), Regime (2,1) and Regime (2,2). The representation of these four regimes is shown
in Table 1. The two-regime, self-exciting threshold copula function considered in the simulation example is given as
follows:

Ct(Ut, Vt|It−1) = CGbθ1,1(Ut, Vt)I{Ut−1≤rUt−1,Vt−1≤rVt−1} + CFθ1,2(Ut, Vt)I{Ut−1≤rUt−1,Vt−1>rVt−1}

+CCtθ2,1(Ut, Vt)I{Ut−1>rUt−1,Vt−1≤rVt−1} + CGaθ2,2(Ut, Vt)I{Ut−1>rUt−1,Vt−1>rVt−1} ,

where

1. (rUt−1, r
V
t−1) is a pair of the threshold parameters for (U, V ) at time t− 1;

2. CGbθ1,1 is the Gumbel copula function with parameter θ1,1;

3. CFθ1,2 is the Frank copula function with parameter θ1,2;

4. CCtθ2,1 is the Clayton copula function with parameter θ2,1;

5. CGaθ2,2 is the Gaussian copula function with parameter θ2,2.

We simulated 1,000 bivariate data points using the aforementioned parameters. The original simulated data points of
the time series and their corresponding (U, V ) in di�erent regimes are plotted on Figure 1 and 2. The XY -plots of the
simulated time series and the corresponding (U, V ) from the �rst order autoregression are showed in Figures 3 and 4
respectively. From Figures 1 and 2, we see that there is a higher level of dependence between X and Y in Regimes
(2,1) and (2,2) than in Regimes (1,1) and (1,2). From Figures 3 and 4, we see that the higher level of dependence
between U and V in Regimes (2,1) and (2,2) are inherited from that of X and Y in Regimes (2,1) and (2,2).

We �tted the simulated data without consideration of threshold to see whether there are any hints in regime
switching. The copula functions used in estimation are Gaussian copula, Clayton copula, Gumbel copula and Frank
copula. Because all copulas here have only one model parameters, we can compare the �tting performance by solely
looking at the sum of log likelihood or by information criterion (AIC, BIC) approach. The corresponding log likelihoods
and model parameters are reported in Table 2 and 3. We can see Gaussian copula has the highest log likelihood with
parameter value 0.5069. It appears that the dependent structures implied by the copulas in di�erent regimes cannot
be explained or detected without the threshold treatment.

Regime Representation
1, 1 Xt ≤ rX and Yt ≤ rY
1, 2 Xt ≤ rX and Yt > rY

2, 1 Xt > rX and Yt ≤ rY
2, 2 Xt > rX and Yt > rY

Table 1: Representation of regimes
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Copula Gaussian Clayton Gumbel Frank
Log-like 141.9* 101.7 133.5 140.9

Table 2: Sum of log likelihood of di�erent copula functions from simulated data (Highest value is marked with *)

Copula Gaussian Clayton Gumbel Frank
θ 0.5069 0.6821 1.4685 3.5404

Table 3: Estimated parameters of di�erent copula functions from simulated data

−0.10 −0.05 0.00 0.05

−
0.

05
0.

00
0.

05

Regime 1,1

X

Y

−0.10 −0.05 0.00 0.05

−
0.

05
0.

00
0.

05

Regime 1,2

X

Y

−0.10 −0.05 0.00 0.05

−
0.

05
0.

00
0.

05

Regime 2,1

X

Y

−0.10 −0.05 0.00 0.05

−
0.

05
0.

00
0.

05

Regime 2,2

X

Y

Figure 1: X and Y pairwise scatter plot of 1000 simulated points from two-regime switching threshold copula
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Figure 2: U and V pairwise scatter plot of 1000 simulated points from two-regime switching threshold copula
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Figure 3: X and Y pairwise scatter plot of 1000 simulated points from two-regime switching threshold copula view as
if no regime considered
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Figure 4: U and V pairwise scatter plot of 1000 simulated points from two-regime switching threshold copula view as
if no regime considered

4.2 Simulation Studies for the Estimation Method

We performed the estimation method discussed in Section 3.1 to estimate the parameters of the simulated data from
Section 4.1. In the �rst stage of estimation, we used 20 equally spaced quantiles of simulated values as the �candidate�
points of the threshold parameter to �t the Copula-TAR model with �rst order autoregressive marginals and canonical
threshold copula. The value of the threshold parameter with the largest likelihood is then chosen and used for the
second stage of estimation for the copulas in di�erent regimes. The copula function of each regime is chosen from the
maximum likelihood of Gaussian copula, Clayton copula, Gumbel copula and Frank copula. The sums of log likelihood
of copulas in each regime are reported in Table 4. The copula functions which agree with the simulation setup have
the largest sum of log likelihood in their corresponding regime. The estimated copula parameters are reported in
Table 5. Taking advantage of the availability of closed form formula in maximum likelihood estimation of marginal
autoregressive model parameters, the estimation of the model parameters using the above setting takes 3.8 seconds on
a Intel i7 2.2GHz CPU. (If 10000 data points are used, the computation time goes up to 20.3 seconds using the same
setup.)

The XY -plots of estimated time series and the corresponding (U, V ) in di�erent regimes are shown in Figures 5 and
6 respectively. Comparing to the estimation result without regime consideration in the previous sub-section, extreme
hidden dependent structures can be overlooked as simple Gaussian copula if no regime switching is considered.

Copula Gaussian Clayton Gumbel Frank
Log-like(1, 1) 52.9 24.5 59.2* 46.2
Log-like(1, 2) 27.1 21.7 21.1 27.7*
Log-like(2, 1) 23.0 31.3* 14.4 19.9
Log-like(2, 2) 105.3* 64.3 98.8 95.8

Table 4: Sum of log likelihood of di�erent copula functions from simulated data in each regime (Highest value is
marked with *)

We repeated the simulation and estimation for 1,000 times to study the estimation results and biases. The
estimation results are shown in Tables 6, 7, 8 and 9. All of the model parameters in the individual time series and
the copulas are estimated with a considerably high degree of accuracy. We also see that, except the two threshold
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Copula Gaussian Clayton Gumbel Frank
θ1,1 0.5098 0.6079 1.5890 3.7012
θ1,2 0.4943 0.7279 1.4274 3.4768
θ2,1 0.5227 1.1643 1.4177 3.4313
θ2,2 0.6674 0.9632 1.7780 5.0386

Table 5: Estimated parameters of di�erent copula functions from simulated data in each regime

Estimation
Parameter True Value Mean Std. Dev. Skewness Kurtosis

α
(1)
0 -0.007 -0.0086 0.0041 -0.0251 3.0147

α
(1)
1 0.300 0.2658 0.0976 -0.1000 2.9402
σ(1) 0.025 0.0249 0.0008 0.0983 3.1091

α
(2)
0 -0.027 -0.0270 0.0007 -0.1267 2.9073

α
(2)
1 0.100 0.0963 0.0462 0.0190 3.0773
σ(2) 0.015 0.0150 0.0005 -0.1525 2.7847
rX -0.025 -0.0246 0.0007 -0.0207 3.7391

Table 6: Estimation of model parameters of time series X

Estimation
Parameter True Value Mean Std. Dev. Skewness Kurtosis

β
(1)
0 0.004 0.0035 0.0017 0.1193 2.8619

β
(1)
1 0.600 0.5738 0.0815 -0.1736 2.7990
φ(1) 0.020 0.0198 0.0006 -0.0086 2.8166

β
(2)
0 -0.004 -0.0040 0.0006 -0.0097 2.9152

β
(2)
1 0.200 0.1985 0.0444 -0.1146 3.1664
φ(2) 0.010 0.0100 0.0003 -0.0013 2.9893
rY -0.005 -0.0046 0.0006 -0.0529 2.3278

Table 7: Estimation of model parameters of time series Y

Estimation
Parameter True Value Mean Std. Dev. Skewness Kurtosis
θ1,1(Gumbel) 1.5 1.5070 0.0758 0.2417 3.1915
θ1,2(Frank) 3.0 3.0567 0.5421 0.1811 3.0524
θ2,1(Clayton) 1.5 1.5109 0.2669 0.2475 3.0487
θ2,2(Gaussian) 0.7 0.6984 0.0281 -0.3341 3.3031

Table 8: Estimation of piecewise copula parameters

Regime True Number of Samples Estimated Number of Samples (Misclassi�ed)
(1,1) 300 300 (0)
(1,2) 179 185 (6)
(2,1) 146 146 (0)
(2,2) 374 368 (0)

Table 9: Estimation accuracy on regime thresholds
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Figure 5: X and Y pairwise scatter plot of estimated points from two-regime switching threshold copula
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Figure 6: U and V pairwise scatter plot of estimated points from two-regime switching threshold copula
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parameters, the skewness and kurtosis of each parameter are close to 0 and 3 respectively. This indicates that the
sampling distributions of the estimates, except the threshold parameters, may be well approximated by a normal
distribution. It is worth noting that the threshold parameters generally have non-standard limiting distribution; see
Chan (1993). Nevertheless, the estimation accuracy of classi�cation is very high that only 6 misclassi�cations in
Regime (1,2) are found. The simulation study of the estimation method provides strong support for the proposed
two-stage estimation method. It is expected that if a larger data set is used, the overall accuracy can be further
improved.

5 An Application to Portfolio Risk Measurement

In this section we adopt the Copula-TAR model to forecast Value at Risk for �nancial portfolios using real data.
We also compare the performances of VaR forecasts from baseline model (Gaussian copula) and conditional variance
model (Dias and Embrechts (2003)) by backtesting based on a binomial test which is widely used in practice.

Daily close values of FTSE and S&P 500 from Apr-2007 to Apr-2009, were obtained from Yahoo! Finance. The �rst
300 data points, Apr-2007 to Jul-2008 is used as a training data set for model parameter estimation. The remaining
200 data points, Aug-2008 to Apr-2009, which include the period of the global �nancial crisis (GFC) of 2008, is used
for backtesting ex-post Value at Risk forecasts. We �t the daily returns of the training samples to the following three
di�erent models:

1. Copula-TAR model with two self excited regimes AR(1) marginal time-series and four regimes in the copula
(Copula-TAR);

2. Bivariate AR(1) model with a simple correlation structure (Gaussian Copula) (AR).

3. Bivariate conditional Variance model with marginal AR(1)-GARCH(1,1) and single copula function (AR-GARCH).

The copula regimes in Copula-TAR are based on the price levels of the indices. The copula functions in Copula-
TAR and AR-GARCH are selected by maximum likelihood among Gaussian, Clayton, Gumbel and Frank copula each
of which have only one parameter. Table 10 displays the estimation of the model parameters of di�erent models using
the training samples. The results suggest that the Copula-TAR model can separate high volatility and low volatility
regimes by index levels, with the standard errors in the lower regimes being higher. It also shows high correlation
between the returns of the two indices when they are both above or both below the their marginal threshold, i.e.
regime (1,1) and (2,2). We can identify the time of GFC of 2008 is included in regime (2,2) which has the highest
correlation among all regimes. Copula-TAR also suggests a low correlation regime in (2,1) which is much lower than
the correlation when no regime is considered in AR model.

Copula-TAR CPU time = 3.1sec

FTSE α
(1)
0 α

(1)
1 σ(1) α

(2)
0 α

(2)
1 σ(2) rX

-0.0005 -0.1994 0.0148 -0.0008 -0.0106 0.0089 6449.2

S&P 500 β
(1)
0 β

(1)
1 φ(1) β

(2)
0 β

(2)
1 φ(2) rX

-0.0003 -0.1811 0.0134 -0.0012 -0.1874 0.0091 1486.3
Copula θ1,1=0.5503(Gaussian) θ1,2=3.1856(Gumbel)

θ2,1=0.2409(Gaussian) θ2,2=0.6064(Gaussian)

AR CPU time = 2.4sec
FTSE S&P 500

α0 α1 σ β0 β1 φ θ
-0.0007 -0.1685 0.0130 -0.0006 -0.1812 0.0120 0.5763

AR-GARCH CPU time = 8.1sec
AR(1) GARCH(1,1)

α0 α1 α0 α1 β1 Copula
FTSE -0.0007 -0.1685 0.0000 0.1452 0.8228

θ=4.62(Frank)
S&P 500 -0.0006 -0.1812 0.0000 0.0500 0.9000

Table 10: Estimated parameters and CPU time of Copula-TAR, AR and AR-GARCH of daily returns of FTSE and
S&P 500 in Apr-2007 to Jul-2008
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5.1 Application on evaluating Value at Risk (VaR)

Now, we wish to apply the estimated models in �nancial risk measurement. Value at Risk (VaR) has emerged as
a popular risk metrics in both the �nance and insurance industries. Its use in �nancial risk management has been
recommended by regulators and central bankers. Informally speaking, VaR is an estimate of the maximum loss of a
risky portfolio that will incur at a certain probability level in a given time horizon. This provides a useful summary
for a risky pro�le.

Here we estimate the 95% daily VaR using the three estimated models statically and dynamically. The portfolio
we consider in the VaR estimation is constructed by FTSE and S&P 500 in equal weightings. The backtesting period
covers the GFC of 2008 and the following huge drops in global �nancial indices.

In the static analysis, we use the estimated parameters in the previous section to calculate the 95% daily VaR
of the testing samples. This means that the model parameters are estimated at the start of the testing period and
kept constant through out that period. The training data window size used is 300. The size is chosen in such a way
that the number of data points in each regime is larger than 40. The number of days that daily loss excesses VaR
(violations) is recorded. We proceed to perform Kupiec's (1995) backtesting procedure for VaR models. This test
is essentially a binomial test used to determine whether the observed frequency of violations is consistent with the
frequency of expected violations predicted by the VaR model, which is 5% in our setting. The null hypothesis is that
the model is �correct�, meaning violations occurred in 5% of the days in the testing period. In this case, under the
null hypothesis and the assumption of independence, the number of violation days follows a binomial distribution. If
the p-value of the test is greater than the desired �null� signi�cance level, we accept the model. Otherwise, we reject
the the model. The number of days that the VaR is being violated and binomial test results are reported in Table 11.
It can be seen that the results of Copula-TAR and AR are quite similar, while AR-GARCH shows lower numbers of
violation days. Rejected results with signi�cance level of 5% are marked with * in the table. Among all results, only
FTSE from AR-GARCH is not rejected at up to the 1% signi�cance level in the binomial test. All models are rejected
at the signi�cance level of 5% during the �nancial crisis period.

Next, we evaluate the model parameters dynamically. The models are estimated everyday in the training period
using moving windows and the daily estimations are used to evaluate the VaR of the next day. Table 12 reports the
binomial test results and the number of days on which the VaR forecast is violated. At the 5% level of signi�cance, no
results for the Copula-TAR case are rejected, while all results for the AR case are rejected. One result in AR-GARCH
is not rejected. The results reveal that VaR forecasts produced by Copula-TAR are more adaptive to changing market
regimes than those obtained from the other two multivariate time series models. The estimation of Copula-TAR is
computationally e�cient. It may not be unreasonable to believe that daily VaR forecasts for large portfolios can be
performed e�ciently using Copula-TAR model.

FTSE p-value S&P 500 p-value Portfolio p-value
Copula-TAR 29* 0.0000 45* 0.0000 41* 0.0000

AR 36* 0.0000 49* 0.0000 41* 0.0000
AR-GARCH 17* 0.0121 25* 0.0000 22* 0.0002
Number of testing days = 200

Table 11: Number of days that model Value at Risk are violated and binomial test results when static model parameters
are used. Results marked * are rejected at 5% signi�cance.

FTSE p-value S&P 500 p-value Portfolio p-value
Copula-TAR 9 0.5453 8 0.6730 6 0.8763

AR 20* 0.0012 24* 0.0000 25* 0.0000
AR-GARCH 14 0.0781 17* 0.0121 16* 0.0238
Number of testing days = 200

Table 12: Number of days that model Value at Risk are violated and binomial test results when model parameters
are re-estimated daily. Results marked * are rejected at 5% signi�cance.

6 Conclusion

We have introduced a threshold-copula-based SETAR model with a view to improving the standard Gaussian copulas
in current practice of �nancial risk management. We have proposed a simple and practical two-step estimation method
for the model. Simulation studies indicate a high level of accuracy is achieved by the two-stage estimation method. We
have used the FTSE and S&P 500 daily returns data to illustrate how the proposed model can signi�cantly improve
the performance of portfolio VaR forecasts. Backtesting results based on a binomial test have revealed that the
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incorporation of the threshold e�ect in both the copula function and the individual time series has led to a signi�cant
improvement on portfolio VaR forecasts. Since FTSE and S&P 500 have di�erent trading hours, there may be lead-lag
e�ects between the two returns series.

While we do not claim that the proposed model can describe fully all of the dependent structures appearing in the
real world, we believe that the proposed model can provide a substantial improvement on single parameter copula time
series models by incorporating the risk associated with individual �nancial assets under di�erent market conditions.

Threshold-copula-based SETAR model provides a new way to tackle correlation structures in regime switching
multivariate data. Forecasting VaR is just one example given in this paper. We do believe the use of the model is
much broader than the examples given in this paper. Further studies could be directed at diagnostics and gaining
deeper insights through more real applications.
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