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Abstract 
The impact of R&D on growth through spillovers has been a major topic of economic research over 

the last thirty years. A central problem in the literature is that firm performance is affected by two 

countervailing “spillovers”: a positive effect from technology (knowledge) spillovers and negative 

business stealing effects from product market rivals. We develop a general framework incorporating 

these two types of spillovers and implement this model using measures of a firm’s position in 

technology space and product market space. Using panel data on U.S. firms we show that technology 

spillovers quantitatively dominate, so that the gross social returns to R&D are at least twice as high as 

the private returns. We identify the causal effect of R&D spillovers by using changes in Federal and 

state tax incentives for R&D. We also find that smaller firms generate lower social returns to R&D 

because they operate more in technological niches. Finally, we detail the desirable properties of an 

ideal spillover measure and how existing approaches, including our new Mahalanobis measure, 

compare to these criteria. 
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1. Introduction

Research and development (R&D) spillovers have been a major topic in the growth, productiv-

ity and industrial organization literatures for many decades. Theoretical studies have explored

the impact of R&D on the strategic interaction among firms and long run growth.1 While

many empirical studies appear to support the presence of technology spillovers, there remains

a major problem at the heart of the literature. This arises from the fact that R&D generates at

least two distinct types of “spillover” effects. The first is technology (or knowledge) spillovers

which may increase the productivity of other firms that operate in similar technology areas.

The second type of spillover is the product market rivalry effect of R&D. Whereas technology

spillovers are beneficial to other firms, R&D by product market rivals has a negative effect on

a firm’s value due to business stealing. Despite much theoretical research on product market

rivalry effects of R&D (including patent race models), there has been little econometric work

on such effects, in large part because it is difficult to distinguish the two types of spillovers

using existing empirical strategies.

It is important to identify the empirical impact of these two types of spillovers. Econometric

estimates of technology spillovers may be severely contaminated by product market rivalry

effects, and it is difficult to ascertain the direction and magnitude of potential biases without

building a model that incorporates both types of spillovers. Furthermore, we need estimates

of the impact of product market rivalry in order to asses whether there is over-investment

or under-investment in R&D. To do this, we need to compare social and private rates of

return to R&D that appropriately capture both forms of spillovers. If product market rivalry

effects dominate technology spillovers, the conventional wisdom that there is (from a welfare

perspective) under-investment in R&D could be overturned.

This paper develops a methodology to identify the separate effects of technology and

product market spillovers and is based on two main features. First, using a general analytical

framework we develop the implications of technology and product market spillovers for a

range of firm performance indicators (market value, citation-weighted patents, productivity

and R&D). The predictions differ across performance indicators, thus providing identification

for the technology and product market spillover effects. Second, we empirically distinguish

a firm’s position in  space and   space using information on the

distribution of its patenting across technology fields, and its sales activity across different four-

1See, for example, Spence (1984), Grossman and Helpman (1991) or Aghion and Howitt (1992). Keller

(2004) and and Jones (2005) have recent surveys of the literature.
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digit industries. This allows us to construct distinct measures of the distance between firms

in the technology and product market dimensions.2 We show that the significant variation

in these two dimensions allows us to distinguish empirically between technology and product

market spillovers.3 We also develop a methodology for deriving the social and private rates

of return to R&D, measured in terms of the output gains generated by a marginal increase in

R&D over heterogeneous firms. These reflect both the positive technology spillovers (for the

social return) and negative business stealing effects (for the private return), and thus depend

on the position of the firm in both the technology and product market spaces.

Applying this approach to a panel of U.S. firms over the period 1981-2001 we find that

both technology and product market spillovers are present and quantitatively important, but

the technology spillover effects are much larger. As a result we estimate that the (gross) social

rate of return to R&D exceeds the private return, which in our baseline specification are (with

some additional assumptions) calculated as 55% and 21%, respectively. At the aggregate level

this implies under-investment in R&D, with the socially optimal level being over twice as high

as the level of observed R&D.

A central issue in the paper is distinguishing a spillover interpretation from the possibility

that positive interactions are just a reflection of spatially correlated technological opportuni-

ties. If new research opportunities arise exogenously in a given technological area, then all

firms in that area will do more R&D and may improve their productivity, an effect which

may be erroneously picked up by a spillover measure. This issue is an example of the clas-

sic “reflection problem” discussed by Manski (1991). We address this by using changes in

the firm-specific tax price of R&D (exploiting changes in Federal and State-specific rules) to

construct instrumental variables for R&D expenditures and this allows us, in principle, to

estimate the causal impact of R&D spillovers.

We also examine heterogeneity in the effects of spillovers in different industries (computers,

pharmaceuticals and telecommunications) and size classes of firms, finding wide variation in

social and private returns to R&D. Technology spillovers are present in all sectors, but smaller

firms have significantly lower social returns because they tend to operate in technological

2In an earlier study Jaffe (1988) assigned firms to technology and product market space, but did not examine

the distance between firms in both these spaces. In a related paper, Bransetter and Sakakibara (2002) make

an important contribution by empirically examining the effects of technology closeness and product market

overlap on patenting in Japanese research consortia.
3Examples of well-known companies in our sample that illustrate this variation include IBM, Apple, Mo-

torola and Intel, who are all close in technology space (revealed by their patenting and confirmed by their

research joint ventures), but only IBM and Apple compete in the PC market and only Intel and Motorola com-

pete in the semi-conductor market, with little product market competition between the two pairs. Appendix

D has more details on this and other examples.
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“niches” (because few other firms operate in their technology fields, their technology spillovers

are more limited). This suggests that policy-makers should reconsider their strong support for

higher rates of R&D tax credit for smaller firms, at least on the basis of knowledge spillovers.

Of course, there may be other potential justifications for the preferential treatment of smaller

firms, such as liquidity constraints.

Our paper has its antecedents in the empirical literature on knowledge spillovers. The

dominant approach has been to construct a measure of outside R&D (the “spillover pool”)

and include this as an extra term in addition to the firm’s own R&D in a production, cost

or innovation function. The simplest version is to measure the spillover pool as the stock

of knowledge generated by other firms in the industry (e.g. Bernstein and Nadiri, 1989).

This assumes that firms only benefit from R&D by other firms in their industry, and that all

such firms are weighted equally in the construction of the spillover pool. Unfortunately, this

makes identification of the strategic rivalry effect of R&D from technology spillovers impossible

because industry R&D reflects both influences.4

A more sophisticated approach recognizes that a firm is more likely to benefit from the

R&D of other firms that are ‘close’ to it, and models the spillover pool (which we will la-

bel “”) available to firm  as  = Σ 6= where  is some

‘knowledge-weighting matrix’ applied to the R&D stocks () of other firms . All such

approaches impose the assumption that the interaction between firms  and  is propor-

tional to the weights (distance measure) . There are many approaches to constructing

the knowledge-weighting matrix. The best practice is probably the method first used by Jaffe

(1986), exploiting firm-level data on patenting in different technology classes to locate firms in

a multi-dimensional technology space. A weighting matrix is constructed using the uncentered

correlation coefficients between the location vectors of different firms. We build on this idea

but seek to advance the literature by extending it to the product market dimension by using

line of business data for multiproduct firms to construct an analogous distance measure in

product market space.5

While we use the Jaffe measure of distance as the baseline specification, we also extend the

4The same is true for papers that use an industry-specific “distance to the frontier” as a proxy for the

potential size of the technological spillover. In these models the frontier is the same for all firms in a given

industry (e.g. Acemoglu et al. 2007). Other approaches include using international data and weighting

domestic and foreign R&D stocks by measures including imports, exports and FDI (see, for example, Coe et

al. 2008).
5Without this additional variation between firms within industries, the degree of product market closeness

is not identified from industry dummies in the cross section. The extent of knowledge spillovers may also be

influenced by other factors like geographic proximity (e.g. Jaffe et al. 1993), which we investigate in Section

6.
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empirical analysis by estimating the model with a number of alternatives. Most important,

we develop a new Mahalanobis distance measure between firms that exploits the co-location

of patenting technology classes within firms. The idea is that firms internally co-locate in

technology areas that have the greatest knowledge spillovers, and using the observed co-

location of technologies within firms can help to measure technology distances between firms.

Using this Mahalanobis distance measure, we estimate even larger spillover effects. In addition,

we provide (for the first time) economic micro-foundations for the Jaffe measure, and develop

a formal, axiomatic comparison of the leading alternative distance measures, based on a set

of desirable properties which we argue distance measures should possess.

The paper is organized as follows. Section 2 outlines our analytical framework. Section

3 describes the data and proximity measures and Section 4 discusses the main econometric

issues. The core empirical findings are presented in Section 5 with extensions and robustness in

Section 6. Section 7 contains the axiomatic approach to measuring closeness and conclusions

are in Section 8. A series of web Appendices contain details on theory (Appendix A), data

(Appendix B), calculation of the distance measures (Appendix C), examples of firm location

in product and technology space (Appendix D), endogenizing the choice of technology class

(Appendix E), separate econometric analysis of three high tech industries (Appendix F) and

the methodology for calculating the social and private rates of return to R&D (Appendix G).

2. Analytical Framework

We consider the empirical implications of a non-tournament model of R&D with technology

spillovers and strategic interaction in the product market.6 We study a two-stage game. In

stage 1 firms decide their R&D spending and this produces knowledge that is taken as pre-

determined in the second stage (in the empirical analysis we will use patents and total factor

productivity, TFP, as proxies for knowledge). There may be technology spillovers in this first

stage. In stage 2, firms compete in some variable ,  (such as price or quantity), conditional

on knowledge levels, . We do not restrict the form of this competition except to assume

Nash equilibrium. What matters for the analysis is whether there is strategic substitution or

complementarity of the different firms’ knowledge stocks in the reduced form profit function.

6This approach has some similarities to Jones and Williams (1998, 2000) who examine an endogeneous

growth model with business stealing, knowledge spillovers and congestion externalities. Their focus, however,

is on the biases of an aggregate regression of productivity on R&D as a measure of technological spillovers.

Our method, by contrast, seeks to inform micro estimates through separately identifying the business stealing

effect of R&D from technological spillovers. Interestingly, despite these methodological differences we find (like

Jones and Williams) social returns to R&D are about two to four times greater than private returns.
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Even in the absence of technology spillovers, product market interaction would create an

indirect link between the R&D decisions of firms through the anticipated impact of R&D

induced innovation on product market competition in the second stage. There are three firms,

labelled 0,  and Firms 0 and  interact only in technology space (production of innovations,

stage 1) but not in the product market (stage 2); firms 0 and  compete only in the product

market.

Although this is a highly stylized model, it makes our key comparative static predictions

very clear. Appendix A contains several extensions to the basic model. Firstly, we allow

firms to overlap simultaneously in product market and technology space and also allow for

more than three firms in the economy. Secondly, we consider a tournament model of R&D

(rather than the non-tournament model which is the focus of this section). Thirdly, we allow

patenting to be endogenously chosen by firms rather than only as an indicator of knowledge,

 The predictions of the model are shown to be generally robust to all these extensions.7

Stage 2. Firm 00 profit function is given by (0  0)We assume that the function 

is common to all firms. Innovation output 0 may have a direct effect on profits, as well as an

indirect (strategic) effect working through  For example, if 0 increases the demand for firm

0 (e.g. product innovation), its profits would increase for any given level of price or output in

the second stage.8

The best response for firms 0 and  are given by ∗0 = argmax0 (0  0) and ∗ =

argmax ( 0 ) respectively. Solving for second stage Nash decisions yields 
∗
0 =

(0 ) and ∗ = ( 0) where () is our generic term for a function First stage profit

for firm 0 is Π(0 ) = (0 
∗
0 

∗
), and similarly for firm  If there is no strategic

interaction in the product market, (0 
∗
0 

∗
) does not vary with  and thus Π0 do not

depend on We assume that Π(0 ) is increasing in 0, non-increasing in  and concave.
9

Stage 1. Firm 0 produces innovations with its own R&D, possibly benefiting from

7In sub-section 6.1, we also allow firms to choose their activity across technology fields prior to playing the

two-stage game described in this section. In the econometric work, which is based on panel data, we introduce

dynamics explicitly in the form of lagged explanatory and dependent variables. Developing a fully dynamic,

stochastic model of R&D and growth with both technology and product market spillovers is beyond the scope

of this paper. For an example of a theoretical contribution along these lines, see Stokey (1995).
8We assume that innovation by firm  affects firm 00 profits only through . For process innovation,

this assumption is certainly plausible. With product innovation,  could also have a direct (negative) effect

on firm 00 profit. This generalization can easily be introduced without changing the predictions of the model.
9The assumption that Π(0 ) is non-increasing in  is reasonable unless innovation creates a strong

externality through a market expansion effect. In particular, this will hold as long as the products of different

firms are ‘net’ demand substitutes (i.e., when aggregated to the firm level). If competing firms’ products were

demand complements, then Π(0 ) would be increasing in  Certainly at  ' 0 this derivative must be
negative, as monopoly is more profitable than duopoly. In the empirical work, we find that the value function

of a firm is indeed declining in the R&D of its product market competitors.
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spillovers from firms that it is close to in technology space:

0 = (0 ) (2.1)

where 0 is the R&D of firm 0,  is the R&D of firm  and we assume that the knowledge

production function () is non-decreasing and concave in both arguments. This means that

if there are technology spillovers, they are necessarily positive. We assume that the function

() is common to all firms. Firm 0 solves the following problem:

max
0

 0 = Π((0  ) )− 0 (2.2)

Note that  does not involve 0The first order condition is: Π11 − 1 = 0 where the

subscripts denote partial derivatives with respect to the different arguments. We analyze

how exogenous shifts in the R&D of technology and product market rivals ( and ) affect

outcomes for firm 0.10 Comparative statics yield

∗0


= −{Π112 +Π1112}


(2.3)

where  = Π11
2
1 + Π111  0 by the second order conditions. If 12  0 firm 00 R&D

is positively related to the R&D done by firms in the same technology space, as long as

diminishing returns in knowledge production are not ”too strong.” On the other hand, if

12 = 0 or diminishing returns in knowledge production are strong (i.e. Π112  −Π1112)
then R&D is negatively related to the R&D done by firms in the same technology space.

Consequently the marginal effect
∗0


is formally ambiguous. In addition,

∗0


= −Π121


(2.4)

where  is the R&D of firm. Thus firm 00 R&D is an increasing (respectively, decreasing)

function of the R&D done by firms in the same product market if Π12  0 — i.e., if 0 and 

are strategic complements (respectively, substitutes).11 We also obtain:

0


= 2 ≥ 0 (2.5)

10In the empirical work we will use instrumental variables to address the potential endogeneity of the R&D

of technology and product market rivals.
11It is worth noting that most models of patent races embed the assumption of strategic complementarity

because the outcome of the race depends on the gap in R&D spending by competing firms. This observation

applies both to single race models (e.g. Lee and Wilde, 1980) and more recent models of sequential races

(e.g. Aghion et al., 1997). There are patent race models where this is not the case, but they involve a

“discouragement effect” whereby a follower may give up if the R&D gap gets so wide that it does not pay to

invest to catch up (Harris and Vickers, 1987).
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0


= 0 (2.6)

Finally, let  ∗ = Π((∗0 ) ) − ∗0 denote the optimized value of the firm. Using the

above results and the envelope theorem, we obtain:

 ∗


= Π1

0


≥ 0 and  ∗


= Π2




≤ 0

We now discuss the intuition for the basic predictions of the model, which are summarized

in Table 1. In the case where there is neither product market rivalry nor technology spillovers,

R&D by other firms should have no influence on firm 0’s decisions or market value (column

(4) in Table 1). Now consider the effects of R&D by firms that are close in product market

space, without technology spillovers (columns (5) and (6)). First, product market rivals’ R&D

has a direct, negative influence on firm 0’s value, through the business stealing effect. This

can operate through two channels — reducing the firm’s profit margins or market shares, or

both. The reduced form representation of profits, Π(0 ) embeds both channels. Second,

R&D by product market rivals has no effect on the firm’s production of knowledge and thus no

direct effect on patenting or TFP (see equation (2.6)). Thirdly, the relationship between the

firm’s own R&D and the R&D by product market rivals depends on how the latter affects the

marginal profitability of the firm’s R&D — i.e. it depends on the sign ofΠ12 (see equation (2.4)).

As expected, R&D reaction functions slope upwards if 0 and  are strategic complements

and downwards if 0 and  are strategic substitutes. The same results for R&D by product

market rivals also hold when there are technology spillovers (columns (8) and (9)).

Now suppose there are technology spillovers but no product market rivalry (column (7)).

From the knowledge production function (2.1), we see immediately that technology spillovers

() increase the stock of knowledge (patents), 0 conditional on the firm’s own R&D — i.e.

spillovers increase the average product of the firm’s own R&D. This in turn increases the flow

profit, Π(0 ) and thus the market value of the firm.
12 At the same time, the increase

in 0 raises the level of total factor productivity of the firm, given its R&D spending. The

effect of technology spillovers on the firm’s R&D decision, however, is ambiguous because it

depends on how such spillovers affect the marginal (not the average) product of its R&D and

this cannot be signed a priori (see equation (2.3)). The same results also hold when there is

product market rivalry, regardless of whether it takes the form of strategic complements or

substitutes (columns (8) and (9)).

12In the empirical work we use a forward looking measure of firm profitability (market value) as our proxy for

 0 = Π(0 )− 0 Market value should equal the expected present value of the profit stream which, in our

static framework, is simply equal to current profit divided by the interest rate. In the empirical specification

we include year dummies that will capture movements in interest rates as well as other factors.
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Finally, we note one important caveat regarding the absence of an effect of product market

rival R&D on knowledge. Equation (2.6) will only hold if our empirical measure,  purely

reflects knowledge. As we show formally in Appendix A.3, if patents are costly then they will

be endogenously chosen by a firm and equation (2.6) will not hold in general as firms will

tend to patent more (less) if knowledge is a strategic complement (substitute).13 It turns out

there is evidence for this in some of our robustness tests. We also note that, if the measure

of total factor productivity is contaminated by imperfect price deflators, product market rival

R&D could be negatively correlated with productivity because it will depress firm 0’s prices

and therefore measured “revenue” productivity.

Three points about identification from Table 1 should be noted. First, the presence of

spillovers can in principle be identified from the R&D, patents, productivity and value equa-

tions. Using multiple outcomes thus provides a stronger test than we would have from any

single indicator. Second, business stealing is identified only from the value equation. Third,

the empirical identification of strategic complementarity or substitution comes only from the

R&D equation.14

3. Measures of Proximity and Data

In this section we develop some theoretical foundations for the technology proximity measure,

and then briefly describe the construction of our dataset and how we move from the discrete

indicator of proximity in the theory section to a continuous empirical metric. Appendix B

provides details on the data, with the data and estimation files to replicate all results available

on-line.15

3.1. Modelling Technological Proximity Measures

Technological proximity measures are rarely given a clear micro-economic foundation or statis-

tical justification. In Section 7 we consider more formally the desirable properties of spillover

13The intuition is relatively simple. Suppose there is a fixed cost to filing a patent on knowledge. Firms

choose to make this investment depending on the benefits of doing so relative to these costs. In equilibrium,

with strategic complementarity, when rivals increase R&D spending (thus their stock of knowledge), this

increases the marginal profitability of firm 0’s R&D. Since we assume that patenting generates a percentage

increase in innovation rent (‘patent premium’), the profitability of patenting also increases (given the fixed

cost of patenting). Thus R&D by product market rivals raises both R&D spending and the patent propensity

of firm 0. For empirical evidence of strategic patenting behaviour, see Hall and Ziedonis (2001), and Noel and

Schankerman (2006).
14Identification cannot be obtained from the knowledge (patents and productivity) or value equations because

the predictions are the same for both forms of strategic rivalry.
15http://www.stanford.edu/~nbloom/BSV.zip
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measures. In this section we provide some micro-foundations for the well-known Jaffe (1986)

measure of spillovers and our Mahalanobis generalization of it. The basic idea is that knowl-

edge is transferred between firms when the scientists are ‘exposed’ to each other. With each

encounter, a knowledge transfer occurs with a probability that depends on the proximity of

the (possibly different) fields in which the scientists work. The expected knowledge spillover

from one firm to another is the aggregation of these transfers.16

To formalize, consider an economy with  firms. Each firm  ∈ (1 ) has a fixed number
of scientists,  which is equivalent to the R&D effort () discussed in the previous section.

These scientists are allocated across  ∈ (1Υ) technology classes (or “fields”), and we take
this allocation as the exogenous technological profile of the firm (we consider the endogenous

allocation of R&D efforts across fields in sub-section 6.1 below). Let  denote the number

of scientists from firm  in field   and  =

X
=1

 denote the total number of scientists in

the economy (where  =

ΥX
=1

). We assume that when a scientist in technology field 

from firm  is exposed to a scientist from firm  in field  a unit of knowledge is transferred

with probability  To begin we make three assumptions: (i) knowledge transfer occurs

only within a given field, not across fields (we allow for cross-field spillovers later); (ii) the

probability of transfer does not depend on the identity of the scientists involved, and (iii) the

probability of a transfer is the same for each field. To summarize:  =  for  =  and

 = 0 for  6=  Note that learning from an encounter between scientists from firms  and 

occurs symmetrically. An “encounter” could be face to face such as in a conference or coffee

shop or it could be virtual, such as exchanging scientific publications online. The physical

encounter interpretation is pursued when we examine geographic spillovers in sub-section 6.2.

The expected number of encounters between scientists of firms  and  in technology field 

is   and the expected knowledge transferred in field  is   The expected knowledge

transferred from firm  to firm  is therefore:

 = 

ΥX
=1

 = 

ΥX
=1

(







) (3.1)

Define the 1xΥ vector  = (1  Υ)where  =


and similarly for  = (1  Υ)

16A related approach has been developed in the sociology literature to measure ethnic segregation. Lieberson

(1981) proposes a measure of ethnic segregation based on the probability that a randomly drawn member

of one ethnic group would encounter a member of another group. For discussion of alternative measures

of segregation, see Massey and Denton (1986), and White (1986). For recent empirical work applying these

measures to residential segregation and ideological segregation in media see Cutler, Glaeser and Vigdor (1999),

and Gentzkow and Shapiro (2010), respectively.
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We define the “exposure” measure of technological proximity between two firms as 
 =


0
 and the technology spillover “pool” for firm  as:


 = 

X
 6=


 (3.2)

The spillover pool is the weighted sum of the number of scientists of other firms, where the

weights are the “exposure” measure of proximity.

The exposure measure is closely related to the Jaffe measure of proximity. The term 
0
 is

the uncentered covariance between the distributions of scientists across technology fields. We

call this the Jaffe covariance index, −
 and define the corresponding spillover mea-

sure −
 = 

P
 6= 

−
  Note that 


 = 

−


so 
 = 

−
  Since the generic empirical relationships we

will estimate in Section 4 take the log-linear form, estimation using the exposure and Jaffe

covariance measures will be empirically equivalent.

The traditional Jaffe (1986) measure of closeness, 
 =


0


(
0
 )
1
2 (

0
)
1
2
, normalizes the

uncentered covariance in −
 on the standard deviation of the share vectors. This

has the attractive empirical feature that the closeness measure will not automatically rise when

technological fields are aggregated: i.e. 
0
 will increase, but so will (

0
 )

1
2 (

0
)

1
2  Thus

the traditional Jaffe measure is more robust to aggregation across fields (e.g. moving from five

digit classes to four digit classes) than the simple exposure based measures. Appendix C.1

discusses this in detail. For both this reason and in order to be consistent with the existing

literature, we use the traditional Jaffe measures in our baseline results. However, in Section

7 we will discuss the properties of many different measures of proximity in relation to some

ex ante desirable features of proximity indices. We also show ex post the robustness of our

results to many alternative distance metrics in the results section.

3.2. Mahalanobis Extension

The exposure measure treats technology areas as orthogonal to each other in the sense that

knowledge is transferred only if scientists from different firms “meet” in the same technology

field. There are two reasons this is incomplete. First, there is likely to be genuine knowl-

edge complementarity across technology areas, especially in modern high-tech innovation (e.g.

biomedical engineering). Second, from a measurement perspective, the plausibility of the as-

sumption that knowledge transfers do not occur across technology areas obviously depends on

the level of aggregation of fields. For example, if patent office examiners sometimes erroneously
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allocate patents in the class “arithmetic processing calculating” to “processing architectures

and instruction processing”, then we would like a distance metric to recognize these as closer

together (the Mahalanobis measure below does exactly this). In this section, we generalize

the analysis to allow for spillovers across technology fields.

Assume that  ≥ 0 for all    Let Ω = [] denote the ΥΥ matrix that describes the

probability of knowledge transfer when two scientists from technology fields  and  meet.17

In this generalized setup, knowledge transfer occurs as long as   0 Following the earlier

argument, the expected knowledge spillover between firm  and  is given by

 =

ΥX
=1

ΥX
=1

 =

ΥX
=1

ΥX
=1

(







) (3.3)

Using the vectors  = (
1

  Υ


) and  = (

1


 
Υ

) we can write the Mahalanobis

generalization of the exposure measure of proximity, 
 as 

 = Ω
0
Then

the spillover pool for firm  is given by:


 =

X
 6=


  =

X
 6=

Ω
0
 (3.4)

3.3. Extension to Product Market Proximity

With suitable reinterpretation, the preceding micro-foundations for technological proximity

measures can also be applied to measures of product market closeness. The basic idea is that

each ‘encounter’ between two firms in a product market generates a (probabilistic) leakage of

information that can be used by one firm to compete more effectively with the other (inducing

the product market rivalry effect discussed in the theoretical model in Section 1). In this

case, we reinterpret the  as the number of sales agents which we proxy by sales from firm

 in product market . To keep the notation distinct, we use a ‘tilda’ to denote variables for

product market closeness, e.g. ̃ rather than  We define the vector ̃ = (̃1  ̃Υ)

where ̃ =
̃
̃
 as the distribution of firm ’s sales across the different product markets in

which it operates. Following the same argument as before, we obtain the exposure measure

of product market proximity between firms  and , 
 = ̃̃

0
 ̃, and the product market

spillover “pool” for firm :


 = ̃

X
 6=


 ̃ (3.5)

17In the empirical implementation, the elements of Ω are based on the extent of co-location of patenting

across technology fields.
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As before, we can also derive a Mahalanobis version of the product market proximity and

spillover measures. Since this is trivial we skip that derivation for brevity. However, it is

worth reiterating that, as with the technology measure, the exposure measure of product mar-

ket closeness treats product markets as orthogonal to each other. This is unrealistic because

product market information in one area is likely to benefit firms in other, related product

markets.18 In addition, the plausibility of the assumption that product market knowledge

transfers do not occur across product market fields obviously depends on the level of aggre-

gation of these fields. For both reasons, the Mahalanobis generalization is also important for

the product market measures of proximity and spillovers.

3.4. Compustat and Patents Data

We use firm level accounting data (sales, employment, capital, etc.) and market value data

from U.S. Compustat 1980-2001 and match this into the U.S. Patent and Trademark Office

(USPTO) data from the NBER data archive (see Hall, Jaffe and Trajtenberg, 2001). This

contains detailed information on almost three million U.S. patents granted between January

1963 and December 1999 and all citations made to these patents between 1975 and 1999 (Jaffe

and Trajtenberg, 2002). Since our method requires information on patenting, we kept all firms

who patented at least once since 1963 (i.e. firms which had no patents at all in the 37 year

period were dropped), leaving an unbalanced panel of 715 firms with at least four observations

between 1980 and 2001. Since patents can be very heterogeneous in value, our main results

weight patents counts by their future citations so the dependent variable is “citation-weighted

patent counts”19.

The book value of capital is the net stock of property, plant and equipment and employment

is the number of employees. R&D is used to create R&D capital stocks calculated using a

perpetual inventory method with a 15% depreciation rate (following inter alia Hall, Jaffe and

Trajtenberg, 2005). So the R&D stock, , in year  is:  = + (1− )−1 where  is the

R&D flow expenditure in year  and  = 015. We use deflated sales as our output measure but

also compare this with value added specifications. Industry price deflators were taken from

Bartelsman, Becker and Gray (2000) until 1996 and then the BEA four digit NAICS Shipment

18This is especially relevant when these areas represent demand substitutes (as we assume in the theory in

Section 1), since product market rivalry generate profit erosion only if the products in question are substiutes.
19Since later cohorts of patents are less likely to be cited than earlier cohorts it is important that we control

for time dummies. We also show all the results are robust to using simple counts of patents (see Bloom,

Schankerman and Van Reenen, 2007). Finally, the results are robust to more sophisticated normalizations of

the patent citations assuming some parametric form for the citation distribution function (e.g. Hall, Jaffe and

Trajtenberg, 2005)
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Price Deflators thereafter. For Tobin’s Q, firm value is the sum of the values of common stock,

preferred stock and total debt net of current assets. The book value of capital includes net

plant, property and equipment, inventories, investments in unconsolidated subsidiaries and

intangibles other than R&D.

3.5. Calculating Technological Proximity

The technology market information is provided by the allocation of all patents by the USPTO

into 426 different technology classes. We use the average share of patents per firm in each

technology class over the period 1970 to 1999 as our measure of technological activity, defining

the vector  = (1 2 426), where  is the share of patents of firm  in technology class

 .  is the empirical counterpart to  in sub-section 3.1. As noted above, our basic technology

closeness measure is calculated as the uncentered correlation between all firm   pairings,

following Jaffe (1986):

 =
(

0
)

(
0
 )
12(

0
)
12

(3.6)

For notational simplicity, in what follows we simply denote this as  (rather than


) This index ranges between zero and one, depending on the degree of overlap in

technology, and is symmetric to firm ordering so that  = .
20 We construct

the pool of technology spillover R&D for firm  in year ,  as

 = Σ 6= (3.7)

where  is the stock of R&D. The stock of R&D is our empirical analog to the number of

scientists, , discussed in sub-section 3.1.

3.6. Calculating Product Market Proximity

Our main measure of product market closeness uses the Compustat Segment Dataset on each

firm’s sales broken down into four digit industry codes (lines of business). On average each firm

reports sales in 5.2 different four digit industries, spanning 597 industries across the sample.

We use the average share of sales per industry within each firm as our measure of activity

by product market, defining the vector  = (1 2 597), where  is the share of sales

20The main results pool the patent data across the entire sample period, but we also experimented with

sub-samples. Using just a pre-sample period (e.g. 1970-1980) reduces the risk of endogeneity, but increases the

measurement error due to timing mismatch if firms exogenously switch technology areas. Using a period more

closely matched to the data has the opposite problem (i.e. greater risk of endogeneity bias). In the event, the

results were reasonably similar since firms only shift technology area slowly. Using the larger 1963-2001 sample

enabled us to pin down the firm’s position more accurately, so we kept to this as the baseline assumption.
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of firm  in the four digit industry .21  is the empirical counterpart to e in sub-section

3.1. The product market closeness measure for any two different firms  and , , is then

calculated as the uncentered correlation between all firms pairings in an exactly analogous

way to the technology closeness measure:

 =
(

0
)

(
0
)
12(

0
)
12

(3.8)

We construct the pool of product-market R&D for firm  in year   as:

 = Σ 6= (3.9)

To control for industry demand shocks, we use a lagged firm-specific measure of industry

sales that is constructed in the same way as the  variable. We use the same

distance weighting technique, but instead of using other firms’ R&D stocks we used rivals’

sales. This is to mitigate the risk that  simply reflects industry demand shocks.

3.7. The Mahalanobis distance metric

One drawback of the Jaffe (1986) distance metric in equations (3.6) and (3.8) is that it assumes

that spillovers only occur within the same technology class, but rules out spillovers between

different classes. We addressed this concern in the previous discussion of micro-foundations

to proximity measures, where we developed an (Mahalanobis) extension to the Exposure

and Jaffe measures. The empirical implementation of this theoretical metric exploits the

Mahalanobis norm to identify the distance between different technology classes based on the

frequency that patents are taken out in different classes by the same firm (which we refer to

as co-location). The calculation of this Mahalanobis measure of spillovers,  

is notationally quite involved so it presented in Appendix C.2. A similar distance measure

can also be constructed for the distance between firms in product market space, which we call

 . We present results based on both the Jaffe and Mahalanobis distance metrics

in the empirical section.

3.8. Some Issues with the Dataset

Although the Compustat/NBER database is the best publicly available dataset to implement

our framework, there are issues with using it. First, the finance literature has debated the

21The breakdown by four digit industry code was unavailable prior to 1993, so we pool data 1993-2001. This

is a shorter period than for the patent data, but we perform several experiments with different assumptions

over timing of the patent technology distance measure to demonstrate robustness (see below).
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extent to which the breakdown of firm sales into four digit industries from the Compustat

Segment Dataset is reliable.22 We examine this problem using BVD, an alternative firm-level

database to calculate product market closeness in sub-section 6.3.2. Second, Thompson and

Fox-Kean (2005) have argued that the three-digit patent classification may be too crude, so we

will examine the more disaggregated patent sub-class data they use in sub-section 6.3.3. Third,

Compustat only contains firms listed on the stock market, so it excludes smaller firms, but

this is inevitable if one is going to use market value data. Nevertheless, R&D is concentrated

in publicly listed firms, and our dataset covers the bulk of reported R&D in the U.S. economy.

Further, we do not drop firms that exit or those that only operate in one line of business.

Sample selection issues are discussed in more detail in Appendix B.4.

3.9. Descriptive Statistics of  and 

In order to distinguish between the effects of technology spillovers and product market rivalry

we need variation in the distance metrics in technology and product market space. To gauge

this we do several things. First, we calculate the raw correlation between the measures 

and , which is 0.469. Further, after weighting with R&D stocks following equations

(3.7) and (3.9) the correlation between ln() and ln() is 0.422. For

estimation in logarithms with fixed effects and time dummies the relevant correlation in the

change of ln() and ln() is only 0.319. Although these correlations

are all positive and significant at the 1% level they are well below unity, implying substantial

independent variation in the two measures. Second, we plot the distance measure  against

 in Figure 1, from which it is apparent that the positive correlation we observe is caused

by a dispersion across the unit box rather than a few outliers.

Finally, in Appendix D we discuss examples of well-known firms that are close in technology

but distant in product market space, and close in product market but distant in technology

space. For example, in our sample period IBM was technologically close to Intel, Motorola

and Apple ( correlations of 0.76, 0.46 and 0.64, respectively, compared to the sample

average of 0.038), as the technologies IBM uses for computer hardware are closely related to

those used by these other companies. However, while IBM is close to Apple in product market

space ( correlation of 0.65, compared to the sample average of 0.015), due to their direct

22For example, Villalonga (2004) argues that firms engage in strategic reporting to reduce their diversification

discount. It should be noted that this is a far greater problem in the service sector due to the difficulties in

classifying service sector activity, and Villalonga (2004) in fact finds no discount in manufacturing. Since our

sample is manufacturing focused, (81% of our R&D is in manufacturing), this issue is less problematic here.

16



competition in personal computers, IBM is not close to Intel and Motorola ( correlations

of 0.01), reflecting the fact that they produce semi-conductor chips, not computer hardware,

and IBM produces relatively few (high end) semi-conductor chips.

Table 2 provides some basic descriptive statistics. The firms in our sample are large

(median employment is 3,839), but with much heterogeneity in size, R&D intensity, patenting

activity and market valuation. The two spillover measures also differ widely across firms.

4. Econometrics

In the theory discussion summarized in Table 1 there are three key endogenous outcome vari-

ables. Two of these (market value and R&D expenditure) are directly observable, while the

third (knowledge) can be proxied by both citation-weighted patents and also total factor pro-

ductivity, generating four empirical measures.23 We first discuss generic issues of identification

with all four measures, and then turn to specific problems with each.

4.1. Identification

We are interested in investigating the generic relationship:

ln = 1 ln + 2 ln + 3 ln + 4 +  (4.1)

where the outcome variable(s) for firm  at time  is , the main variables of interest are

 and ,  is a vector of controls and the error term is . There are

three issues to address in estimating equation (4.1): unobserved heterogeneity, endogeneity

and dynamics.

First, to deal with unobserved heterogeneity we will assume that the error term is composed

of a correlated firm fixed effect (), a full set of time dummies ( ) and an idiosyncratic

component () that we allow to be heteroskedastic and serially correlated. In all regressions

we will control for fixed effects by including a full set of firm specific dummies, except for the

patents equation where the non-linear count process requires a special treatment explained

below. The time dimension of the company panel is relatively long so the “within groups bias”

on weakly exogenous variables (see Nickell, 1981) is likely to be small.24

Second, we have the issue of the endogeneity due to transitory shocks. To construct

instruments we exploit supply side shocks from tax-induced changes to the user cost of R&D

23For an example of this multiple equation approach to identify the determination of technological change,

see Griliches, Hall and Pakes (1991).
24In the R&D equation, for example, the mean number of observations per firm is eighteen.
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capital. Details are in Appendix B.3, but we sketch the strategy here. The Hall-Jorgenson

user cost of capital for firm ,  , is

 =
(1−)

(1−  )
[ +  − ∆

−1
] (4.2)

where  is the discounted value of tax credits and depreciation allowances,   (shorthand

for  ) is the rate of corporation tax (which has a state as well as a Federal component), 

is the real interest rate,  the depreciation rate of R&D capital and ∆
−1

is the growth of the

R&D asset price. Since [ +  − ∆
−1

] does not vary between firms, we focus on the tax price

component of the user cost,  =
(1−)

(1−) .

Values of  of unity are equivalent to R&D tax neutrality, while values below unity denote

net tax incentives for R&D.  will vary across firms for two reasons. First, different states

have different levels of R&D tax credits and corporation tax, which will differentially affect

firms depending on their cross-state distribution of R&D activity. We use Wilson’s (2008)

estimates of state-specific R&D tax prices, combined with our estimates of the cross-state

distribution of each firm’s R&D, to calculate the “state R&D tax price”.25 Second, we follow

Hall (1992) and construct a firm-specific user cost using the Federal rules. This has a firm-

specific component, in part because the definition of what qualifies as allowable R&D for tax

purposes depends on a firm-specific “base”.26

A concern with using even these tax policy changes as instruments is that they may be

endogenous to shocks to the economic environment. We discuss this in detail in Appendix

B.3. To summarize, the existing literature suggests a large degree of randomness regarding

the introduction and level of R&D tax credits and we could find no statistical evidence that

changes in economic conditions (such as lagged changes in state R&D or GDP) predicted the

R&D policy. We use these tax-policy instruments to predict R&D, and then use these predicted

values weighted up by SIC and TECH distance as instruments for the two spillover variables

in the second stage equations (correcting the standard errors appropriately). Note that the

spillover terms are being instrumented by the values of other firms’ tax prices, weighted by

their distance in technology and product-market space.

Thirdly, although our baseline models are static, we show that the empirical results are

robust to specifications that allow for more flexible dynamic specifications.

25We use the location of a firm’s inventors, identified from the patent database, to estimate the location of

R&D (see Griffith, Harrison and Van Reenen, 2006).
26For example, from 1981 to 1989 the base was a rolling average of the previous three years’ R&D. From

1990 onwards the base was fixed to be the average of the firm’s R&D between 1984 and 1988. See Appendix

B.3 for more details.
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4.2. Market Value equation

We adopt a simple linearization of the value function introduced by Griliches (1981) augmented

with our spillover terms:

ln
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



¶


= ln

µ
1 + 1
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



¶
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(4.3)

where  is the market value of the firm,  is the stock of non-R&D assets,  is the R&D

stock, and the superscript  indicates that the parameter is from the market value equation.

One reason for the deviation of  (“Tobin’s average Q”) from unity is the R&D inten-

sity of different firms. If 1() were “small” we could approximate ln
¡
1 + 1

¡



¢


¢
by

1
¡



¢

 but this will not be a good approximation for many high tech firms, so we approx-

imate ln
¡
1 + 1

¡



¢


¢
by a series expansion with higher order terms (denoted by (


)).27

Empirically, we found that a sixth order series expansion was satisfactory. To mitigate en-

dogeneity we lag the key right hand side variables by one year so the market value equation

is:

ln() = (()−1) + 2 ln−1 + 3 ln−1

+4

 +  +  +  (4.4)

4.3. Patent Equation

We estimate count data models of future citation-weighted patents () using a Negative

Binomial model:

 = exp(1 ln−1+2 ln−1+3 ln−1+4

 + +  +)

(4.5)

We use the “pre-sample mean scaling” method of Blundell, Griffith and Van Reenen (1999)

to control for fixed effects.28 This relaxes the strict exogeneity assumption underlying the

approach of Hausman, Hall and Griliches (1984), but we show that both methods yield qual-

itatively similar results.

27It is more computationally convenient to do the series expansion than estimate by non-linear least squares

because of the fixed effects. We show that results are similar if we estimate by non-linear least squares.
28Essentially, we exploit the fact that we have a long pre-sample history (from 1970 to at least 1980) of

patenting behavior to construct its pre-sample average. This can then be used as an initial condition to proxy

for unobserved heterogeneity under the assumption that the first moments of all the observables are stationary.

Although there will be some finite sample bias, Monte Carlo evidence shows that this pre-sample mean scaling

estimator performs well compared to alternative econometric estimators for dynamic panel data models with

weakly endogenous variables (see Blundell, Griffith and Windmeijer, 2002).
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4.4. Productivity Equation

We estimate a basic R&D augmented Cobb-Douglas production function ( is output):

ln = 1 ln−1 + 2 ln−1 + 3 ln−1 + 4

 +  +  + 

(4.6)

The key variables in 
 are the other inputs into the production function - labor and capital.

If we measured output perfectly then the predictions of the marginal effects of 

and  in equation (4.6) would be qualitatively the same as that in the patent

equation. Technology spillovers improve TFP, whereas R&D in the product market should

have no impact on TFP (conditional on own R&D and other inputs). In practice, however,

we measure output as “real sales” - firm sales divided by an industry price index. Because we

do not have information on firm-specific prices, this induces measurement error (see Foster,

Haltiwanger and Syverson, 2008). If R&D by product market rivals depresses own revenues

(as we would expect), the coefficient on  may be negative and the predictions for

equation (4.6) are the same as those of the market value equation. Controlling for industry

output (as in Klette and Griliches, 1996, or de Loecker, 2011) and fixed effects should go a long

way towards dealing with the problem of firm-specific prices, and we show that the negative

coefficient on  becomes essentially zero once we control for these additional factors.

4.5. R&D equation

We write the R&D intensity equation as:

ln( ) = 2 ln−1 + 3 ln−1 + 4

 +  +  +  (4.7)

This R&D “factor demand” specification could arise from a CES production function with

constant returns to scale in production (see Bloom, Griffith and Van Reenen, 2002), augmented

to allow for spillovers. In this interpretation the user cost of R&D capital is absorbed in the

fixed effects and time dummies, but an alternative is to explicitly model the tax adjusted user

cost as we do when constructing the instrumental variables described above. We also examine

specifications that relax the constant returns assumption, using ln as the dependent variable

and including ln on the right hand side of equation (4.7).
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5. Empirical Results

5.1. Market Value Equation

Table 3 summarizes the results for the market value equation. In this specification without

any firm fixed effects, the product market spillover variable, , has a positive asso-

ciation with market value and  has a negative association with market value.29

These are both contrary to the predictions of the theory. When we allow for fixed effects in

column (2), the estimated coefficients on  and  switch signs and are

consistent with the theory.30 Conditional on technology spillovers, R&D by a firm’s product

market rivals depresses its stock market value, as investors expect that rivals will capture fu-

ture market share and/or depress price-cost margins. A ten percent increase in 

is associated with a 3.8% increase in market value and a ten percent increase in 

is associated with a 0.8% reduction in market value.

It is also worth noting that, in column (3) when  is omitted the coefficient

on  declines. The same bias towards zero is illustrated for  - if we

failed to control for technology spillovers we would find no statistically significant impact of

product market rivalry in column (4). It is only by allowing for both spillovers simultaneously

that we are able to identify their individual impacts.31 In column (5) we re-estimate the

fixed effect specification of column (2) using our Mahalanobis distance measures. We find

that the coefficient on  rises, suggesting that by more accurately weighting

distances between technology fields the Mahalanobis spillover metric has substantially reduced

attenuation bias. The coefficient on  in column (5) is also larger in absolute terms.

In the final column we treat  and  as endogenous and use R&D

tax prices as instrumental variables. The first stage is presented in Appendix Table A2 and

shows that the excluded instruments are strong. The second stage coefficients on the spillover

29The coefficients of the other variables in column (1) were close to those obtained from nonlinear least

squares estimation. Using OLS and just the first order term of , the coefficient on  was 0.266, as

compared to 0.420 under nonlinear least squares. This suggests that a first order approximation is not valid

since  is not “small” - the mean is close to 50% (see Table 2). However, our main results on 

and  are robust to using a first order linear expansion in For example, for our preferred column

(2) specification we find a coefficient (standard error) of 0.391 (0.114 ) and -0.082 (0.032 ) on 

and  respectively.
30The fixed effects are highly jointly significant, with a p-value  0.001. The Hausman test also rejects the

null of random effects vs. fixed effects (p-value = 0.02).
31We also tried an alternative specification that introduces current (not lagged) values of the two spillover

measures, and estimate it by instrumental variables using lagged values as instruments. This produced similar

results. For example, estimating the fixed effects specification in column (2) in this manner (using instruments

from  − 1) yielded a coefficient (standard error) on  of 0.401 (0.119 ) and on  of

-0.094 (0.033 ).
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terms in column (6) of Table 3 are correctly signed and significant with absolute magnitudes

larger than the baseline column (2).

5.2. Patent Equation

Table 4 presents the estimates for citation-weighted patents equation. Column (1) shows that

high R&D firms are more likely to produce patents. More interestingly,  has

a positive and significant association with patenting, indicating the presence of technology

spillovers. By contrast, the product market rivalry term, , has a much smaller

and statistically insignificant coefficient.

In column (2) we control for firm fixed effects by using the Blundell et al (1999) method of

conditioning on the pre-sample, citation-weighted patents. Allowing for fixed effects reduces

the coefficient on  but it remains positive and significant.32 In column (3) we

include a lagged dependent variable. There is strong persistence in patenting behavior, but

 retains a large and significant coefficient. As with Table 3, when we use the

Mahalanobis measures in column (4) the coefficient on technology spillovers increases. Treating

R&D spillovers as endogenous in the final column does not much change the coefficients from

column (2).33The coefficient on  is statistically insignificant and much smaller than

 throughout Table 4, which is consistent with our basic model.

5.3. Productivity Equation

Table 5 contains the results for the production function. The OLS results in column (1)

suggest that we cannot reject constant returns to scale in the firm’s own inputs (the sum of the

coefficients on capital, labor and own R&D is 0.995). The spillover terms are perversely signed,

however, with negative and significant signs on both spillover terms. Including fixed effects

in column (2) changes the results:  is positive and significant and 

becomes insignificant. This pattern is consistent with the theory and the results from the

patents equation where  is also insignificant (although with a positive coefficient).

The significantly negative coefficient on  in column (1) could be due to rival

R&D having a negative effect on prices, and depressing a firm’s revenue. In principle, these

32When using unweighted patent counts the coefficient (standard error) on  was 0.295(0.066 )

and 0.051(0.029 ) on 
33The results are also robust to using the Hausman et al (1984) method of controlling for fixed effects. Using

this method on the specification in column (2), we obtain a coefficient (standard error) of 0.201 (0.064) on

 and 0.009 (0.006 ) on  which compares to 0.271 (0.066 ) on  and

0.081 (0.035 ) on  for the same sample using the Blundell et al (1999) method.
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price effects should be controlled for by the industry price deflator, but if there are firm-

specific prices then the industry deflator will be insufficient. If the deviation between firm

and industry prices is largely time invariant, however, the fixed effects should control for

this bias. This is consistent with what we observe in column (2) - when fixed effects are

included, the negative marginal effect of  disappears. The third column drops

the insignificant  term, and is our preferred specification. In column (4) we re-

estimate the results using the Mahalanobis measure, and observe an increase of the coefficient

on technology spillovers. This coefficient on  in the final column which treats

R&D spillovers as endogenous is similar to the basic specification of column (2).

A concern is heterogeneity across industries in the production function coefficients, so we

investigated allowing all inputs (labor, capital and R&D) to have different coefficients in each

two-digit industry. In this specification,  remained positive and significant at

conventional levels.34 We also experimented with using an estimate of value added instead of

sales as the dependent variable, which led to a similar pattern of results.35

5.4. R&D Equation

Table 6 presents the results for the R&D equation. In column (1) there is a large, positive

and statistically significant coefficient on  which persists when we include fixed

effects. This indicates that own and product market rivals’ R&D are strategic complements.

Similar results are obtained if we use ln(R&D) as the dependent variable and include ln(sales)

as a right hand side variable.36 In column (3) we include a lagged dependent variable37 and

in column (4) we use the Mahalanobis distance measures. In both specifications we find that

 remains positive at the 10% level or greater with a long-run coefficient larger

than in column (2). In column (5) we treat spillovers as endogenous and find that they

34 took a coefficient (standard error) of 0.101(0.046 ) and  remained insignificant

with 0.008(0.012 ). Including a full set of two digit industry time trends also lead to the same findings. In this

specification the coefficient (standard error) on  was 0.093 (0.048 ).
35Using value added as the dependent variable, the coefficient (standard error) on  was

0.188(0.053 ) and on  was -0.023(0.013 ). More generally, using real sales as the dependent variable

and including materials on the right hand side generated a coefficient (standard error) on  of

0.127(0.039 ) and on  of -0.007(0.010 ).
36The coefficient (standard error) on  was 0.082(0.034 ) and on  was 0.121(0.072 ).
37We checked that the results were robust to allowing sales and lagged R&D to be endogenous by re-

estimating the R&D equation using the Blundell and Bond (1998) GMM “system” estimator. The qualitative

results were the same. For example, in the specification of the R&D equation in Table 6 column (3) we obtained

a coefficient (standard error) on the lagged dependent variable of 0.671(0.016 ), on SPILLSIC of 0.050 (0.025 )

and on SPILLTECH of -0.109 (0.034 ). This is reasonably similar to the baseline model where the equivalent

coefficients were 0.681, 0.034 and -0.049 respectively. We could not reject the hypothesis of no first order serial

correlation in the levels of the error term which is a necessary condition for instrument validity (p-value =

0.531).
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are insignificant. Across Table 6, The coefficient on  which is theoretically of

ambiguous sign, is not robust. It is insignificant in columns (2), (3) and (5), positive and

significant in column (1), and negative and (weakly) significant in column (4).

The evidence from Table 6 provides some evidence suggesting that R&D spending of prod-

uct market rivals is a strategic complement of own R&D, as many IO models assume but rarely

test.38 However, treating spillovers as endogenous (as we do in the final column), weakens this

conclusion, which suggests that the positive covariance of own R&D and  may be

driven by common shocks.

5.5. Summary of basic empirical results

Table 7 compares our empirical findings against the predictions of the theoretical model.

Despite its simplicity, our model performs surprisingly well, with all six predictions supported

by the data. R&D by neighbors close in technology space is associated with higher market

value, patenting and TFP. R&D by neighbors close in product market space is associated with

lower market value and no effect on patents or TFP. These results hold true whether we use

the Jaffe or Mahalanobis version of technology and product market distance and whether or

not we treat R&D spillovers as endogenous. If anything, using the Mahalanobis measure or IV

approach tends to produce larger coefficients than the simpler baseline OLS Jaffe results which

is consistent with the view that they suffer from less attenuation bias due to measurement

error.39

6. Extensions and Robustness

In this section we present five major extensions to our empirical investigations. First, we

allow the choice of technology class to be endogenous. Second, we examine the importance of

geographic distance for spillovers. Third, we examine a variety of other measures of spillovers.

Fourth, we look at how the strength of technology spillovers and product market rivalry

varies across sectors. Finally, we analyze the private and social returns to R&D implied by

our parameter estimates in order to shed light on the major policy issue of whether there is

under-investment in R&D.

38We know of only two papers that empirically test for patent races, one on pharmaceuticals and the other on

disk drives (Cockburn and Henderson, 1994; and Lerner, 1997), and the evidence is mixed. However, neither

of these papers allows for both technology spillovers and product market rivalry.
39We also estimated IV versions of the Mahalanobis measures which produced results similar to the OLS

Mahalanobis estimates.
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6.1. Endogenizing firm choice of technology classes

The two stage game of Section 2 took a firm’s distribution of activity across technology classes

as exogenous. We extend this to consider a “stage 0” where a firm chooses in which fields to

focus its R&D efforts. This will define its technological profile and is fixed for the rest of the

game. Considering any pair of firms, we generate a “co-agglomeration” index first suggested

by Ellison and Glaeser (1997) to measure the degree to which industries and firms where

co-located or co-agglomerated in the same geographic areas. We will discuss geographical

concerns explicitly in the next sub-section, but since in our basic model we focused only on

closeness in technology and product markets, we continue to do so in this sub-section. In the

context of technological areas the co-agglomeration index, between a pair of firms,  and

 is:


 =  ≡

P
( −  )( − )

1−P 
2


(6.1)

where  is the proportion of all firm  patents in technology class  and  is the share of

total patents in the technology class  

Appendix E draws upon Ellison, Glaeser and Kerr (2007, 2010) to show that  is the

expected value of spillovers (per unit of R&D) in an explicit model of the choice of technol-

ogy classes. In this model firms choose where to locate their R&D labs across technology

classes. The profits from locating a lab in a particular class depend on the (common to all

firms) technological opportunities in that class, a purely idiosyncratic term and the potential

spillovers from another lab located in the same class. The latter arises because some labs (and

firms) are intrinsically better at learning from each other and will therefore tend to co-locate

in a class: this might be because they both have some previous connection (e.g. the firms’

Chief Technology Officers may both have studied together at university). Under the set of

assumptions in Appendix E, patterns of co-location reveal this spillover potential.

Note that this model is not appropriate for examining product market rivalry. Firms will

endogenously choose to locate in areas where they may obtain technological spillovers which

leads to clustering in certain classes for pairs of firms. But with product market competition,

firms will want to be in different product classes as their products are substitutes.

We implement this idea by replacing our previous measure of proximity,  with


 and reconstructing  Equation (6.1) is obviously closely related to

: the numerator is the same as Jaffe’s except we centre it at the mean of the the

technological profile of all firms (). The denominator is different, however, as we do not
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divide by the variance of each firm’s profile, but rather the overall variance. The empirical

correlation between the two measures of  is 0.731 and highly significant.

Panel B of Table 8 gives the results from our baseline specifications with this new measure.

The qualitative results are similar to those in the baseline results in Panel A. There are

significant technological spillovers in the value equation and production function. Product

market rivalry is indicated by the negative and significant coefficient on  in the

value equation and there are signs of significant strategic complementarity of R&D in column

(4). As in the main results  is insignificant for patents and productivity. The

main difference between Panels A and B is that  is insignificant in the patents

equation. The coefficient is correctly signed (positive) however, and the standard error is

large, encompassing the estimate in Panel A. A more minor point is that the coefficient on

 is much larger in the market value equation than for the Jaffe measure, but

close to the estimates from the Mahalanobis measure and IV estimates (columns (5) and (6)

of Table 3).

Overall then, the alternative more measure of distance (co-agglomeration) delivers quali-

tatively similar conclusions to our baseline measures.

6.2. Geographic spillovers

Until now we have abstracted from explicit geographical considerations, but spatial closeness

may have an effect on technology spillovers and product market rivalry. To incorporate the

impact of geographic distance on technological spillovers we start with the state of location

of the first inventor on every patent, or foreign country for non-US based inventors. For each

firm we then define the vector 
 = (


1 


2 


136), where 


 is the share of patents of firm

 in location , which runs from 1 to 136 reflecting the 50 different US states and 86 foreign

countries across which we observe the distribution of patents. The geographical technological

closeness measure, 
 ( 6= ), is calculated as the uncentered correlation between all

firm   pairings:


 =

(
 

 0
 )

(
 

 0
 )

12(
 

 0
 )

12
(6.2)

We perform a similar exercise for product markets using the regional breakdown of sales in

companies’ accounts. Because this is not always reported at the same level of aggregation - for

example a firm may report 50% of sales being in any of “England”, “Britain” or “Europe” -

we aggregate this by nine geographic regions (Africa, Asia, Australasia, Europe, Middle East,

Non-U.S. North America, South America, Ex-Soviet Block and the U.S.). Using this data we
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can define a vector of a firm’s location of sales, 
 = (


1 


2 


9) and a geographical sales

closeness measure, 
 ( 6= ):


 =

(
 

0
 )

(
 

0
 )

12(
 

0
 )

12
(6.3)

With these two measures we can then define geographically distance weighted technology

and product market spillover measures


 = Σ 6= ×

 ×


 = Σ 6= ×

 × (6.4)

Finally, we include these measures into our baseline regressions alongside our standard mea-

sures of technology and product market spillovers. If geographic distance matters then we

would expect our geographically weighted measures to empirically dominate, while if geo-

graphic distances is unimportant for spillovers then the basic measure should dominate.

Panel C of Table 8 reports the results. In the first three columns the coefficient on ge-

ographically weighted technology spillovers (
 ) has the expected positive

sign and is significant (at the 10% level or greater) for both market value and productiv-

ity. This suggests some benefits to being geographically close in order to capture knowledge

spillovers as in Jaffe et. al. (1993). By contrast, our geographically weighted product market

spillovers are always insignificant suggesting that product market interactions are not that

sensitive to regional interactions. This is consistent with the idea that the firms in our sam-

ple (large publicly listed US firms) operate in mainly quite globalized product market where

physical distance is relatively unimportant.40 Lychagin et al (2010) implement a related but

distinct method of examining geographical R&D spillovers (using more disaggregated county-

level data) in the presence of technological spillovers and product market rivalry. They also

find that they are important in increasing productivity.

6.3. Other Alternative distance measures

There are many ways to construct spillover models - Section 7 has a formal comparison. In

this sub-section we show that our results are robust to different possible measures.41

40Of course, given the coarseness of our measure of product-market geography another interpretation is our

geographic market closeness measure is too noisy to get a significant interaction. This is certainly possible,

although would still expect to see some muted results on the interaction if geographic distance really mattered

for product market interactions. The robust zero effect across all columns suggests it does not.
41As another robustness test we also reset the  and  distance measure to 0 for any firm pairs

with both  and  above 0.1. This allows us to estimate results identifying only from firm pairs for
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6.3.1. Jaffe-Covariance and Exposure based Measures of spillovers

In sub-section 3.1 we discussed the theoretical basis of the Jaffe (1986) distance based measure

of spillovers and also derived two alternative measures that we labelled the Jaffe-Covariance

and Exposure measures. Although closer to the formal model, these measure had some statisti-

cally unattractive properties such as lack of robustness to arbitrary aggregations of technology

classes, which is why we preferred the conventional Jaffe measure as our baseline. Panel D of

Table 8 shows what happens to our results if we use these measures instead (for both tech-

nology and product market spillover measures). Only one set of results are reported because

as noted in sub-section 3.1 our log-linear specifications including firm R&D means the Jaffe-

Covariance and Exposure measures are empirically identical. Reassuringly, we find the results

are quite stable illustrating that it is the numerator of the distance metric which is driving

our results rather than the normalization. The only slight difference is that the 

coefficient is significant in the patents equation whereas it was insignificant in the baseline re-

sults. In Appendix A3 we present an extended model where patents are endogenously chosen

that may rationalize such a positive effect.

6.3.2. An alternative to the Compustat Segment Data: the BVD Dataset

The finance literature has debated the extent to which the breakdown of firm sales into four

digit industries from the Compustat Segment Dataset is reliable. To address this concern,

we used an alternative data source, the BVD (Bureau Van Dijk ) database. This contains

information on the size, industry and global ultimate owner of about ten million establishments

in North America and Europe. We match these to Compustat creating company trees: a

breakdown of each parent firm’s activity according to the activity and size of its subsidiaries.

The correlation between the Compustat Segment and BVD Dataset measures is high (e.g.

within-firm correlation of ln() is 0.737). The empirical results (Panel B in Table

A3) are also similar to the earlier tables, confirming the key findings of technology spillovers,

product market rivalry and strategic complementarity of R&D.

6.3.3. Disaggregating Patent Classes

Thompson and Fox-Kean (2005) have suggested that the three digit patent class may be too

coarse and a finer disaggregation is better for measuring spillovers. As Henderson, Jaffe and

which firms are either close in technology space or product space but not both. Doing this we find that first

 and  have a correlation of -0.024 (so are now orthogonalized in the data), and second that our

main results are robust (see Table A3 Panel D).
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Trajtenberg (2005) point out, finer disaggregation of patents classes is not necessarily superior

as the classification is subject to a greater degree of measurement error.42 Nonetheless, to check

robustness, we reconstructed the (Jaffe) distance metric using six digit patent classes and then

used that measure to construct a new pool of technology spillovers The empirical results are

robust for all four equations (Panel C in Table A3).

6.4. Econometric results for three high-tech industries

We used both the cross-firm and cross-industry variation (over time) to identify our two

spillover effects. A straightforward extension of the methodology is to examine particular

industries. This is difficult to do for every sector given the size of our dataset. Nevertheless, it

would be worrying if the basic theory was contradicted in the high-tech sectors, as this would

suggest our results might be due to biases induced by pooling across heterogenous sectors.

We examine in more detail the three most R&D intensive sectors where we have a sufficient

number of firms to estimate our key equations: computer hardware, pharmaceuticals, and

telecommunications equipment (see Appendix F for details). Overall, the qualitative results

are robust: significant technology spillovers are found in all three sectors, with larger coef-

ficients than in the pooled results and the coefficient on the product market rivalry term is

always negative in the value equation. However, there is also some interesting heterogeneity.

First, the magnitude of the technology spillover and product market rivalry effects vary. Sec-

ond, we find statistically significant product market rivalry effects of R&D on market value in

only two of the three industries studied (they are not present in telecommunications). Finally,

there is evidence of strategic complementarity in R&D for computers and pharma, but not for

telecommunications.

6.5. Estimates of the Private and Social Returns to R&D

6.5.1. Methodology

In this sub-section we use our coefficient estimates to calculate the private and social rates of

return to R&D for the whole sample and for different sub-groups of firms. In doing this, we

are making the stronger assumption that the coefficients we estimated in the empirical work

have a structural interpretation and can be used for policy purposes. This goes beyond the

simple qualitative predictions of the model which we tested in the empirical work. We are

assuming here that the functional forms are correct, the distance metrics can be interpreted

42The information is only available from 1976 (compared to 1963 for all patents), has more missing values

and contains a greater degree of arbitrary allocation by the patent examiners.
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quantitatively, and the estimated coefficients are causal. For all these reasons, this discussion

is inherently more speculative.

With these caveats in mind, we define the marginal social return () to R&D for firm

 as the increase in aggregate output generated by a marginal increase in firm ’s R&D stock

(taking into account the induced changes in R&D by other firms).43 The marginal private

return () is defined as the increase in firm ’s output generated by a marginal increase in

its R&D stock. Both the and refer to gross rates of return, prior to netting out the

depreciation of R&D knowledge. Appendix G provides a detailed discussion of how to calculate

these rates of return for individual firms within our analytical framework. In the general case,

the rates of return for individual firms depend on the details of their linkages to other firms in

both the technology and product market spaces. Although we will use the general formulae

to compute the returns presented in this sub-section, much of the intuition can be understood

by examining the special case where all firms are fully symmetric and we abstract from the

“amplification” effects arising from mechanisms like strategic complementarity in R&D. What

we mean by fully symmetric is that all firms are the same size in sales and R&D stocks, and

are identically linked with other firms in both the technology and product market spaces. In

this special case, the marginal social return can be written simply as:

 = (



)(1 + 2) (6.5)

where 1 and 2 are the coefficients (output elasticities) of the own R&D stock () and

the pool of technology spillovers () in the production function, respectively,

and  is the ratio of output to the R&D stock.44 In this formulation the  can be

interpreted as a marginal product of a firm’s R&D, which reflects both the direct contribution

to the firm’s own R&D stock (1) and the indirect effect it has by augmenting the stock of

technology spillovers enjoyed by all other firms (2). Own R&D increases productivity so

obviously will affect both the the private return and social return. R&D by other firms will

affect the social return but not the private return. Thus, the  is larger the stronger is

the impact of the technology spillovers generated by the firm.

43This is the conventional definition adopted by researchers using a production function framework. Nonethe-

less, it is worth pointing out that this definition does not fully capture consumer surplus, and thus underesti-

mates the full social return from R&D. The extent of this underestimation depends on how much of the surplus

firms can capture and on the price deflators used to convert observed revenues into real output measures, which

may vary across different types of firms and industries (Griliches, 1979).
44In computing the social returns, it is important to use the elasticity of R&D stock from the production

function, 2 rather than from the value equation, 2. The R&D elasticity in the value function should be

larger because it captures both the pure productivity shift due to R&D and the increase in the levels of other

variable inputs such as employment, whereas the production function elasticity captures only the productivity

effect. This is confirmed by our econometric estimates.
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Continuing with the special case, the marginal private return can be expressed as:

 = (



)(1 − 3) (6.6)

In equation (6.6) we still include the effect of own R&D on productivity (1) as in the ,

but now there is also a term in 3 the coefficient on  in the market value equation.

Recall that this reflects R&D spending by a firm’s rivals in the product market. Since 3  0

the  is larger than simply its contribution to the firm’s own R&D stock because of the

business stealing effect inherent in oligopoly models. This effect increases the private incentive

to invest in R&D by redistributing output between firms, but does not enter the social return

calculus and thus is absent from the . The 3 coefficient is multiplied by a parameter

 which represents the proportion of the fall in market value from a rival’s R&D that comes

from reduction in its level of output (this is redistributed to the rival firms) rather than an

induced decline in price (which does not benefit rival firms). For the calculations here, we set

 = 1
2
45

In this symmetric case with no amplification of R&D, the wedge between the social and

private returns depends upon the importance of technology spillovers in the production func-

tion (2) relative to rivalry effects in the market value equation (3). The social rate return to

R&D can be either larger or smaller than the private rate of return, depending on the relative

magnitudes of 2 and |3|. Intuitively, the more important is  relative to

, the more likely it is that the positive effects of R&D will dominate the negative

ones from a social perspective.

In the general case derived in Appendix G and empirically implemented below, the relative

returns also depend on the position of all firms in both the technology and product market

spaces, but the result continues to hold that the social return to R&D can either be either

larger or smaller than the private return.

6.5.2. Results for the Private and Social Return to R&D

Using our baseline parameter estimates, assuming symmetric firms and no amplification, and

evaluating these expressions at the median value of 

(which is 2.48) we obtain an estimate

45We need an assumption on the parameter  in order to back out the implied output redistribution from

our estimates of the business stealing effect in the market value equation, which includes both the output and

price effects of rivalry. Different oligopoly models will generate different precise values of the scaling parameter,

. Most oligopoly models we have examined, with standard isoelastic demand and constant marginal cost,

generate values of  less than 1
2
We argue in Appendix G that a value of  = 1

2
is conservative, in that it leads

us to over-estimate the private return and thus under-estimate the wedge between private and social returns

to R&D.
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of the  of 58% (= 248 ∗ (0043 + 0191), and an estimate of the  of 20.8% (=

248∗ (0043+0042)) This calculation shows that, for the sample of firms taken together, the
marginal social returns are between two to three times the private returns, indicating under-

investment in R&D. The estimated wedge between the social and private return rises from

29.2% ( = 58% - 20.8%) to 39.4% (= 58% - 10.6%) if we ignore the product market rivalry

effect. We can use our estimates of the private and social returns to infer the gap between

the observed and socially optimal level of R&D. To do this we need an assumption about the

price elasticity of the demand for R&D. Using a price elasticity of unity,46 and the ratio of

 to of 2.76, we find that the socially optimal level of R&D is about three times as

large as the observed level.

The results for the full calculations of private and social returns, allowing for asymmetric

firms and amplification effects, are presented in Table 9. Several important results emerge from

this table. First, in the full calculations given in row 1, we find that the gross social returns

are estimated at 55% and the gross private returns at 20.7%, again indicating a substantial

divergence between social and private returns of 34.3 percentage points. This is surprisingly

similar to the results for the symmetric no amplification case discussed above, suggesting that

the simple case is not misleading when considering the aggregate effects. Second, row 2 in

Table 9 shows the results from using the Mahalanobis distance metric, in which gross social

returns are shown to be 46.1 percentage points above private returns. Row 3 shows the IV

results which shows the smallest gap between private and social returns, but even here social

returns are almost twice as big as private returns.

To calculate an optimal subsidy level, we need to compare the net social and private returns,

rather than gross returns, i.e. to net out appropriate R&D depreciation. One approach is to

assume social and private returns both have the same depreciation rate, for example, the 15%

value we use to calculate the empirical R&D stock, in which case the gap between net social

and private returns is the same as the gap between gross returns. However, as Griliches (1979)

and Pakes and Schankerman (1984) argue, the social depreciation rate of R&D is likely to be

lower than the private rate because private depreciation includes the redistribution of rents

across firms, which is not a social loss. If this is so, our estimate of the gap between private

and social returns is probably a lower bound to the true gap net of depreciation.

46Our estimated coefficients on the tax credit variables from the first stage IV regression (column (3), Table

A2), evaluated at the sample means, imply a price elasticity of -0.70 and -2.0 for the federal and state tax

credits respectively, while Bloom, Griffith and Van Reenen (2002) find a long-run value of -1.1 estimating

using cross-country and time variation in R&D tax credits and report similar values of around unity for other

papers in the literature.
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Second, in rows 4-7 we split firms by their quartiles of size. We find that larger firms have a

larger gap between social and private returns. The reason is that larger firms tend to operate

in more populated technology fields, and thus have a higher level of connectivity with other

firms in technology space (shown by their higher average  values: 0.054 in the largest

quartile). For this reason they generate more spillovers at the margin. Smaller firms tend

to operate more in technology niches (shown by their lower average  values: 0.029 in

the lowest quartile) and so generate fewer spillovers. Taken at face value, this result would

suggest that larger firms should receive more generous R&D subsidies. Of course, technology

spillovers are not the only possible justification for government intervention. Other factors —

most notably, imperfect capital markets — may argue for a larger subsidy for smaller (or perhaps

more reasonably, younger) firms who are likely to be more severely liquidity-constrained. Our

Compustat sample has very few observations from small firms and thus is not informative

on this issue.47 But our finding here does, at least, suggests a reconsideration of the more

generous tax credits for smaller firms that are standard in many countries.

7. A Comparison of Spillover Measures

In this paper we have developed and applied a variety of technology spillover measures based on

different measures of proximity between firms. We do this primarily to establish the robustness

of our main empirical findings, but it is of independent interest to compare the strengths and

weaknesses of these measures. To do this, we propose a series of desirable properties (‘axioms’)

and then evaluate the measures based on these properties.48 To our knowledge this is the first

attempt to give an ‘axiomatic’ basis for evaluating different measures of technology (and

product market) proximity and spillovers.

We propose the following properties for evaluating proximity (and their associated spillover)

measures.

1. EMF : The index has an economic micro-foundation. This property is self-evidently

47In the data 13% of the observations come from firms with less than 500 employees, the formal cut-off

for smaller and medium sized enterprises. These firms of course will be a selected sample given they are all

publicly quoted.
48There is a related approach in the sociology literature on segregation measures. In an influential paper,

Massey and Denton (1986) identify five dimensions of (geographic) segregation, relate the various existing

measures of segregation in the sociology literature to these different dimensions, and then construct a synthetic

measure using factor analysis. The five dimensions are: eveness, exposure, concentration, centralisation, and

clustering (contiguity). Of these, only exposure and clustering apply to measuring knowledge spillovers.

Clustering has been given an economic microfoundation by Ellison and Glaeser, which we discuss in sub-

section 6.1 and Appendix E. Exposure relates to the probability that different members of distinct groups

(firms in our context) come into contact with each other, which we developed in sub-sections 3.1-3.3.
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desirable.

2. SCALE : The index is invariant (up to a proportionality factor) to re-scaling the number

of units. If Property 2 did not hold, rankings of firm pairs in terms of proximity depend

on the units in which we measure R&D.

3. WFO: The index increases in the degree of R&D overlap within a technology field

(within-field overlap). Property 3 says that, holding constant the share of firm’s ’s

R&D in technology field   firm  is more likely to enjoy a knowledge spillover from

firm  the larger is the share of firm ’s R&D in field   Formally,  is strictly

increasing in . This is the basic assumption underlying the empirical literature on

measuring R&D spillovers.

4. BFO: The index increases in the degree of R&D overlap in technologically related

fields (between-field overlap). Property 4 extends Property 3 to cross-technology field

spillovers. For a given share of firm ’s R&D in technology field   firm  is more likely to

enjoy a knowledge spillover from firm  in field  if it does more R&D in field  whenever

fields  and  are technologically related (  0).

5. NOF : The index is invariant to the allocation of R&D by firm  in fields where firm

 does no R&D and which are not technologically related to those in which firm  is

active (non-overlapping fields). Property 5 says that the technological proximity be-

tween two firms should depend only on the extent to which their R&D overlaps (i.e.

occurs in fields where   0). Formally, let 1 denote the set of technology fields

in which at least one of the firms  and  is active and where   0 for (  ) ∈ 1

and 2 denote the complementary set. Let 
1
 and  2

 denote the allocation of

firm 0 R&D across fields in the set 1 and 2, respectively. Property 5 requires

that (
1
   1

   2
   2

 ) = (
1
   1

 ) for any allocations  2


and  2
 

6. AGG: The index is invariant to aggregation of technology fields in which neither firm 

nor  does R&D. Property 6 states that, if neither firm  nor  has R&D activity in a

subset of technology fields, their proximity index should be invariant to any aggregation

of those fields. Formally, let 1 denote the set of technology fields in which at least one of

the firms  and  is active and where   0 for (  ) ∈ 1and 2 denote the set com-

plementary to 1 Let 

2 ⊂ 2 denote a set in which some fields in 2 are aggregated,
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and (1 2) and (1 

2) be the proximity measure based, respec-

tively, on the set (1 2) and (1 

2). Then (1 2) = (1 


2)

Property 5 implies Property 6, but not vice versa.

7. ROB: The index is robust to the aggregation of technology fields in which either firm 

or  does R&D. Property 7 says that an index is preferred if it is less sensitive to how

technology fields are defined (see the discussion in sub-section 3.1 and Appendix C.1).

Formally, let (1) denote a proximity index based on the set of technology fields

1 Let 2 denote a new set of fields in which some subsets 

1 ⊂ 1 are aggregated, and

where at least one of the firms ( ) is engaged in the fields 
1  Then an index 

is preferred the smaller is the value | (2)

(1)
− 1 |.

In Table 10 we compare five proximity measures: (1) the standard Jaffe index, (2) Maha-

lanobis generalization of the Jaffe index, (3) Jaffe covariance index, (4) Exposure index and

(5) Ellison-Glaeser co-agglomeration index. An ‘’ denotes that the proximity index in that

row has the property designated in the column. On the basis of Properties 1-7 in Table 10

we draw two main conclusions. First, the Jaffe measure which has been the benchmark for

empirical spillover research for almost two decades is strictly dominated by the Mahalanobis

measure. The Mahalanobis measure has the additional desirable property of allowing for be-

tween field overlap (), which is important as technology spillovers almost certainly occur

across (as well as within) technology classes, for example in biomedical engineering. Indeed,

we find empirically that the Mahalanobis metric out-performs the Jaffe measure.

Second, no proximity index dominates every other measure. In particular, while the Ma-

halanobis measure dominates the Jaffe measure because of its ability to allow for between field

overlap, it is not invariant with respect to non-overlapping fields ( ) which the Exposure

measure is. The conclusion that no single index dominates in terms of these properties is

important, and suggests the choice for empirical researchers will turn on the weight they put

on these properties, which in turn depends on their particular research question.

8. Conclusions

Firm performance is affected by two countervailing R&D spillovers: positive effects from

technology spillovers and negative business stealing effects from R&D by product market

rivals. We develop a general framework showing that technology and product market spillovers

have testable implications for a range of performance indicators, and then exploit these using
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distinct measures of a firm’s position in  space and   space. Using

panel data on U.S. firms over a twenty year period we show that both technology and product

market spillovers operate but, despite the business stealing effect, we calculate that the social

rate of return is much larger than the the private return. At the aggregate level this implies

under-investment in R&D, with the socially optimal level being between two to three times

as high as the observed level of R&D. Our findings are robust to alternative definitions of the

distance metric (including our new Mahalanobis measure) and the use of R&D tax credits to

provide exogenous variation in R&D expenditure.

Using the model and the parameter estimates, we find that the social return to R&D by

smaller firms is lower for larger firms, essentially because smaller firms tend to operate more in

technological “niches” — being less connected to other firms in technology space, they generate

smaller positive spillovers. This finding suggests that R&D policies tilted towards smaller

firms may be unwise if the objective is to redress market failures associated with technology

spillovers. Of course, there may be other reasons to support smaller firms such as liquidity

constraints or perhaps a lesser capacity to appropriate the returns from their own R&D.

There are various extensions to this line of research. First, we make some inroads into

industry heterogeneity by examining three high-tech sectors, but much more could be done

within our framework to study how technology spillovers and business stealing vary across

sectors and the factors that determine them. Second, it is possible to exploit more detailed

industry-specific datasets to study this phenomenon in the context of a more explicit structural

model. Thirdly, it would be interesting to investigate in greater detail how other mechanisms

of knowledge transfer potentially shape both technology and product market spillovers such

as trade (e.g. Keller, 1998, 2009), supply chains and personnel movements (e.g. Stoyanov

and Zubanov, 2012). Finally, we have confined our analysis to the US but there is no reason

why the same techniques cannot be extended to examine geographical areas outside the US

(using other nation’s technological policies to generate quasi-exogenous variation in the R&D

tax price).

Despite the need for these extensions, we believe that the methodology offered in this paper

offers a fruitful way to analyze the existence of these two distinct types of R&D spillovers that

are much discussed in the growth, productivity and industrial organization literature, but is

rarely subjected to rigorous empirical testing.
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Not for publication (unless requested by ref-
erees/editor)
Appendices
Given the large number of appendices, there is an unusually heavy demand on mathemat-

ical notation in this paper. As a guide for the reader, we follow three rules. First, within

the body of the text, we use a consistent set of symbols. Second, when the text draws from

an appendix, we ensure that the notation is the same in that appendix and the text. Third,

within each appendix we use a consistent set of notation. However, some of the same symbols

may be used in different appendices, subject to the constraint imposed by the second rule.

A. Generalizations of the Theoretical Model

In this Appendix we describe three generalizations of the simple model presented in Section

2. First, we allow for a more general form of interaction between firms in technology and

product market space (where there can be overlap) and also consider the -firm case (rather

than three firm case). Second, we examine tournament models of R&D (rather than the non-

tournament model in the baseline case). We show, with light modifications, that the essential

insights of our simply model carry through to these more complex settings. Third, we allow the

patenting decision to be an endogenous choice for the firm (rather than simply having patents

as simply an empirical indicator of successfully produced knowledge from R&D). Although

our main model predictions are robust, the extension to endogenous patenting implies that

the partial derivative of patenting with respect to product market rivals’ R&D ()

will be non-zero (it is zero in the basic model).

A.1. General form of interactions in technology and product market space

We begin with the general expression for flow profit

 = ∗( −) (A.1)

where − is the vector of R&D for all firms other than  In this formulation, the elements of −
captures both technology and product market spillover effects. To separate these components,

we assume that (A.1) can be expressed as

 = (  ) (A.2)

where

 =
X
 6=

 (A.3)

 =
X
 6=

 (A.4)

and the partial derivatives are 1  0 2 ≥ 0 3 ≤ 0 12 ≷ 0 13 ≷ 0and 23 ≷ 0The

technology spillover effect is 2 ≥ 0 and the business stealing effect is 3 ≤ 0 We do not
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constrain the effect of technology and product market spillovers on the marginal profitability

of own R&D. Note that own R&D and product market spillovers are strategic substitutes if

13  0 and strategic complements if 13  0

Equation (A.2) imposes constraints on (A.1) by partitioning the total effect of the R&D

by each firm  6=  into technology spillovers  and product market rivalry spillovers 
and by assuming that the marginal contribution of firm  to each pool is proportional to its

‘distance’ in technology and product market space, as summarized by  and  (i.e.

we assume that ∗

can be summarized in the form 2 + 3 for each  6= )

Firm  chooses R&D to maximize net value

max


  = (  )− 

Optimal R&D ∗ satisfies the first order condition

1(
∗
   )− 1 = 0 (A.5)

We want to study how (exogenous) variations in   and  affect optimal R&D. To do

this we choose an arbitrary subset of firms,  and make compensating changes in their R&D

such that either  or  is held constant. This allows to to isolate the impact of the spillover

pool we are interested in. Consider a subset of firms denoted by  ∈  where  6= , and a set

of changes in their R&D levels, {} that satisfy the constraint  =
P

∈  = 0

These changes imply some change in the technology spillovers  =
P
∈

, which

in general will differ from zero (it can be either positive or negative depending on the 

and  weights). Now totally differentiate the first order condition, allowing only  for

 ∈  to change.49 This gives

11 + 12
P
∈

 + 13
P
∈

 = 0

But the third summation is zero by construction ( = 0) and the second summation is

just   So we get
∗


= −12
11

(A.6)

By similar derivation we obtain
∗


= −13
11

(A.7)

Equation (A.6) says that if we make compensating changes in the R&D such that the

pool of product market spillovers is constant, the effect of the resulting change in technology

spillovers has the same sign as 12This can be either positive or negative depending on how

technology spillovers affect the marginal productivity of own R&D. Equation (A.7) says that

if we make compensating changes in the R&D such that the pool of technology spillovers is

constant, the effect of the resulting change in product market spillovers has the same sign as

13− the sign depends on whether R&D by product market rivals is a strategic substitute or
complement for the firm’s own R&D.

49We assume that the changes in R&D do not violate the restriction  ≥ 0
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Using the envelope theorem, the effects of  and  on the firm’s market value are




= 2 ≥ 0




= 3 ≤ 0

These equations say that an increase in technology spillovers raises the firm’s market value,

and an increase in product market rivals’ R&D reduces it.

One remark is in order. There are multiple (infinite) different ways to change R&D in a

subset of firms so as to ensure the constraint  = 0 is satisfied. Each of the combinations

{} that do this will imply a different value of  =
P
∈

 Thus the discrete

impact of such changes will depend on the precise combination of changes made, but the

marginal impact of a change in  does not depend on that choice.

A.2. Tournament Model of R&D Competition with Technology Spillovers

In this sub-section we analyze a stochastic patent race model with spillovers. We do not

distinguish between competing firms in the technology and product markets because the dis-

tinction does not make sense in a simple patent race (where the winner alone gets profit). For

generality we assume that  firms compete for the patent.

Stage 2

Firm 0 has profit function (0 0 ) As before we allow innovation output 0 to have a

direct effect on profits, as well as an indirect (strategic) effect working through  In stage 1, 

firms compete in a patent race (i.e. there are −1 firms in the set) If firm 0 wins the patent,
0 = 1 otherwise 0 = 0. The best response function is given by 

∗
0 = argmax (0  ).

Thus second stage profit for firm 0 if it wins the patent race, is (∗0 
∗
; 0 = 1) otherwise

it is (∗0 
∗
; 0 = 0)

We can write the second stage Nash decision for firm 0 as ∗0 = (0 ) and first stage

profit as Π(0 ) = (0 
∗
0 

∗
) If there is no strategic interaction in the product market,

 does not vary with  and thus 
∗
 and Π do not depend directly on Recall that in the

context of a patent race, however, only one firm gets the patent: if  = 1 then  = 0

Thus Π depends indirectly on  in this sense. The patent race corresponds to an (extreme)

example where Π( )  0

Stage 1

We consider a symmetric patent race between  firms with a fixed prize (patent value)

∆ = 0((1 0) (0 1); 0 = 1)− 0((0 1) (1 0); 0 = 0) The expected value of firm 1 can

be expressed as

 0(0 ) =
(0 (− 1))∆− 0

(0 (− 1)) + (− 1)( (− 1) + 0) +

where  is the interest rate,  is the R&D spending of each of firm 0
0 rivals, and (0 ) is

the probability that firm 0 gets the patent at each point of time given that it has not done so

before (hazard rate). We assume that (0 ) is increasing and concave in both arguments.

It is rising in  because of spillovers. We also assume that ∆ −  ≥ 0 (expected benefits
per period exceed the opportunity cost of funds).
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The best response is ∗0 = argmax  0(0 ).Using the shorthand 0 = (0 ( − 1))
and subscripts on  to denote partial derivatives, the first order condition for firm 0 is

(1∆− 1){0 + (− 1) +}− (0∆− 1){01 + (− 1)2 } = 0

Imposing symmetry and using comparative statics, we obtain



µ
0



¶
= {12(∆(− 1) + ∆−}+ {1(− 1)(1∆− 1)}
−{22(− 1)(∆−)}− 2{(− 1)2∆− 1}}

We assume 12 ≥ 0 (spillovers do not reduce the marginal product of a firm’s R&D) and
1∆ − 1 ≥ 0 (expected net benefit of own R&D is non-negative). These assumptions imply
that the first three bracketed terms are positive. Thus a sufficient condition for strategic

complementarity in the R&D game ( 0


 0) is that (− 1)2∆− 1 ≤ 0 This requires that
spillovers not be ‘too large’. If firm 0 increases R&D by one unit, this raises the probability

that one of its rivals wins the patent race by (− 1)2 The condition says that the expected
gain for its rivals must be less than the marginal R&D cost to firm 0.

Using the envelope theorem, we get  0


 0 The intuition is that a rise in  increases the

probability that firm  wins the patent. While it may also generate spillovers that raise the

win probability for firm 0, we assume that the direct effect is larger than the spillover effect.

For the same reason,  0


= 0 As in the non-tournament case, 0


 0 and  0


 0The

difference is that with a simple patent race,  0


is zero rather than negative because firms

only race for a single patent.50

A.3. Endogenizing the decision to patent

We generalize the basic non-tournament model to include an endogenous decision to patent.

We study a two-stage game. In stage 1 firms make two decisions: (1) the level of R&D

spending and (2) the ‘propensity to patent’. The firm produces knowledge with its own R&D

and the R&D by technology rivals. The firm also chooses the fraction of this knowledge that

it protects by patenting. Let  ∈ [0 1] denote this patent propensity and  ≥ 1 denote patent
effectiveness — i.e. the rents earned from a given innovation if it is patented relative to the

rents if it is not patented. Thus  − 1 represents the patent premium and  is the rent

associated with knowledge  where  = + (1− ). There is a fixed cost of patenting each

unit of knowledge, 

As in the basic model at stage 2, firms compete in some variable, , conditional on their

knowledge levels . There are three firms, labelled 0,  and  Firms 0 and  interact only in

technology space but not in the product market; firms 0 and  compete only in the product

market.

Stage 2

Firm 00 profit function is (0  00) We assume that the function  is common to

all firms. Innovation output 0 may have a direct effect on profits, as well as an indirect

(strategic) effect working through 

The best response for firms 0 and  are given by ∗0 = argmax (0  00) and ∗ =
argmax ( 0 ) respectively. Solving for second stage Nash decisions yields 

∗
0 =

50In this analysis we have assumed that  = 0 initially, so ex post the winner has  = 1 and the losers  = 0

The same qualitiative results hold if we allow for positive initial 

44



(00 ) and ∗ = ( 00) First stage profit for firm 0 is Π(00 ) =

(00 
∗
0 

∗
), and similarly for firm  If there is no strategic interaction in the product

market, (00 
∗
0 

∗
) does not vary with  and thus Π0 do not depend on  We

assume that Π(00 ) is increasing in 00, decreasing in  and concave.

Stage 1

Firm 00 knowledge production function remains as

0 = (0 ) (A.8)

where we assume that () is non-decreasing and concave in both arguments and common to

all firms. Firm 0 solves the following problem:

max
00

 0 = Π(0(0 ) )− 0 − 0(0  ) (A.9)

The first order conditions are

0 : (Π010 − 0)
0
1 − 1 = 0 (A.10)

0 : Π01
0(− 1)− 0 − 1 = 0 (A.11)

where the subscripts denote partial derivatives and superscripts denote the firm. Comparative

statics on equations (A.10) and (A.11) yield the following results for comparison with the

baseline model:51

∗0


=
000 − 000

− ≷ 0 (A.12)

where 0 ≡ 2
0

etc., and  = 0000 −  2
00

 0 by the second order conditions.

As in the basic model, the sign of
∗0

depends on  {12} and the magnitude of Π11We

also obtain:

∗0


=
000 − 000

− ≷ 0 depending on {Π12} (A.13)

∗0


=
000 − 000

− ≷ 0 depending on {Π12} (A.14)

In signing the above results, we use the fact that 00  0 00  0 00  0 (provided

Π11 is ‘sufficiently small’) and the other cross partials which are: 0 =
12
1
+ 20

0
1
0
2Π11;

0 = 0
0
1


1 Π12 0 = 0; 0 = ( − 1)001Π12; 0 = ( − 1)0002Π11;

0 = (− 1)01 Π12;0 = 0; and 0 = (− 1)2002Π12.
The basic results of the simpler model go through. First, an increase in technology spillovers

() has an ambiguous sign on own R&D spending, (equation (A.12)). Second, after some

algebra we can show that { ∗0

} = { Π12} provided that Π11 is ‘sufficiently small’.

An increase in product market rivals’ R&D raises own R&D if they are strategic complements

(conversely for strategic substitutes) [equation (A.13)]. Third, from the knowledge production

function (A.8), it follows that technology spillovers raise firm 00 knowledge stock, ∗0

≥ 0

and product market rivals’ R&D has no effect on it,
∗0


= 0 Finally, the impacts on the value

51This is not a full list of the comparative statics results.
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of the firm follow immediately by applying the envelope theorem to the value equation (A.9):

namely,
 ∗0

≥ 0 and ∗0


≤ 0

The new result here is that an increase in the R&D by firm 00 product market rivals
will affect the firm’s propensity to patent,

∗0


(equation (A.14). After some algebra, we can

show that 
∗0


= Π12 provided that Π11 is ‘sufficiently small’. Thus, if there is

strategic complementarity (Π12  0), an increase in product market rivals’ R&D raises the

firm’s propensity to patent (the opposite holds for strategic substitution). The intuition is

that, under strategic complementarity, when rivals increase R&D spending (thus their stock of

knowledge), this increases the marginal profitability of firm 0’s R&D and thus the profitability

of patenting (given the fixed cost of doing so). Thus R&D by product market rivals raises

both R&D spending and patent propensity of firm 0.52

B. Data Appendix

B.1. The patents and Compustat databases

The NBER patents database provides detailed patenting and citation information for around

2,500 firms (as described in Hall, Jaffe and Trajtenberg (2005) and Jaffe and Trajtenberg,

2002). We started by using the NBER’s match of the Compustat accounting data to the

USPTO data between 1970 to 199953, and kept only patenting firms leaving a sample size

of 1,865. These firms were then matched into the Compustat Segment (“line of business”)

Dataset keeping only the 795 firms with data on both sales by four digit industry and patents,

although these need not be concurrent. For example, a firm which patented in 1985, 1988 and

1989, had Segment data from 1993 to 1997, and accounting data from 1980 to 1997 would be

kept in our dataset for the period 1985 to 1997. The Compustat Segment Database allocates

firm sales into four digit industries each year using firm’s descriptions of their sales by lines of

business. See Villalonga (2004) for a more detailed description.

Finally, this dataset was cleaned to remove accounting years with extremely large jumps

in sales, employment or capital signalling merger and acquisition activity. When we removed

a year we treat the firm as a new entity and give it a new identifier (and therefore a new fixed

effect) even if the firm identifier (CUSIP reference) in Compustat remained the same. This is

more general than including a full set of firm fixed effects as we are allowing the fixed effect to

change over time. We also removed firms with less than four consecutive years of data. This

left a final sample of 715 firms to estimate the model on with accounting data for at least

some of the period 1980 to 2001 and patenting data for at least some of the period between

1970 and 1999. The panel is unbalanced as we keep new entrants and exiters in the sample.

The main variables we use are as follows (Compustat mnemonics are in parentheses).

The book value of capital is the net stock of property, plant and equipment () and

employment is the number of employees ( ). R&D () is used to create R&D capital

stocks following inter alia Hall, Jaffe and Trajtenberg (2005). This uses a perpetual inventory

method with a depreciation rate () of 15%. So the R&D stock, , in year  is:  =

 + (1 − )−1 where  is the R&D flow expenditure in year  and  = 015 For the first

year we observe a firm we assume it is in steady state so 0 = 0( + ). We use sales as

our output measure () but also compare this with value added specifications. Industry

52Since product market rivals’ R&D does not affect knowledge production by firm 0 this result for the

propensity to patent also applies to the number of patents taken out by firm 0
53We dropped pre-1970 data as being too outdated for our 1980s and 1990s accounts data.
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price deflators were taken from Bartelsman, Becker and Gray (2000) until 1996 and then the

BEA four digit NAICS Shipment Price Deflators thereafter. For Tobin’s Q, firm value is

the sum of the values of common stock, preferred stock and total debt net of current assets

( and  ). The book value of capital includes net plant, property

and equipment, inventories, investments in unconsolidated subsidiaries and intangibles other

than R&D (       and ). Tobin’s Q was winsorized by

setting it to 0.1 for values below 0.1 and at 20 for values above 20 (see Jenny Lanjouw and

Mark Schankerman, 2004).

B.2. Other variables

The construction of the spillover variables is described in Section 3 above in detail. About

80% of the variance of  and  is between firm and 20% is within

firm. When we include fixed effects we are, of course, relying on the time series variation for

identification. Industry sales were constructed from total sales of the Compustat database by

four digit industry code and year, and merged to the firm level in our panel using each firm’s

distribution of sales across four digit industry codes.

B.3. Using the tax treatment of R&D to construct Instrumental Variables

B.3.1. Methodology

To fix ideas, consider our basic model for firm productivity and abstract away from all other

variables except own R&D and the technology spillover term. Similar issues arise for the other

three equations, subject to additional complications noted below.

ln = 1 ln(Σ 6=−1) +  (B.1)

We are concerned that [ ln(Σ 6=−1)] 6= 0 so OLS is inconsistent, and consider
instrumental variable techniques. Note that R&D spillovers are entered lagged at least one

period and that fixed effects and other covariates are also included. Given these considerations,

the existing literature has argued that the bias on a weakly exogenous variable is likely to be

small.

We consider two candidate instrumental variables () based on R&D-specific supply side

shocks: firm and state-wide R&D tax credits. The Hall-Jorgenson user cost of capital for firm

,  is

 =
(1−)

(1−  )
[ +  − ∆

−1
] (B.2)

where  is the discounted value of tax credits and depreciation allowances,   (which is

shorthand for  ) is the rate of corporation tax (which has a state as well as a Federal

component),  is the real interest rate,  the depreciation rate of R&D capital and
∆
−1

is the

growth of the R&D asset price. Since [ + − ∆
−1

] does not vary between firms, we focus on

the tax price component of the user cost,  =
(1−)

(1−) .

We decompose the variation of  into two broad channels: “firm-level”, 

 , based on firm-

level interactions with the Federal tax rules, and “State level” . We use the State by year

R&D tax-price data from Wilson (2009) who quantifies the impact of State-level tax credits,

depreciation allowances and corporation taxes. The firms in our data benefit differentially

from these State-credits depending on which state their R&D is located. Tax credits are
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for R&D performed within the state that can be offset against state-level corporation tax

liabilities. State-level corporation tax liabilities are calculated on total firm profits allocated

across states according to a weighted combination of the location of firm sales, employment

and property. Hence, any firm with an R&D lab within the state is likely to be liable both

for state corporation tax (due to its employees and property in the state) and eligible for

an offsetting R&D tax credit. Hence, inventor location appears to provide a good proxy for

eligibility for state-level R&D tax credits.54

We estimate the spatial distribution of a firm’s inventors from the USPTO patents file.

The state component of the tax-price is therefore

 =
X




 (B.3)

where  is the state level tax price and  is firm ’s 10-year moving average share of inventors

located in state .

The second component of the tax price is based solely on Federal rules () and is con-

structed following Hall (1992) and Bloom, Criscuolo, Hall and Van Reenen (2008). The “Re-

search and Experimentation” tax credit was first introduced in 1981 and has been in continuous

operation and subject to many rule changes. It has a firm-specific component for several rea-

sons. First, the amount of tax credit that can be claimed is based on the difference between

actual R&D and a firm-specific “base”. From 1981 to 1989 the base was the maximum of a

rolling average of the previous three years’ R&D. From 1990 onwards (except 1995-1996 when

the tax credit lapsed) the base was fixed to be the average of the firm’s R&D to sales ratio

between 1984 and 1988, multiplied by current sales (up to a maximum of 16%). Start-ups

were treated differently, initially with a base of 3%, but modified each year. Second, if the

credit exceeds the taxable profits of the firm it cannot be fully claimed and must be carried

forward. With discounting this leads to a lower implicit value of the credit for tax exhausted

firms. Third, these firm-specific components all interact with changes in the aggregate tax

credit rate (25% in 1981, 20% in 1990, 0% in 1995, etc.), deduction rules and corporate tax

rate (which enters the denominator of equation (B.2)).

We implement the IV approach by first projecting the endogenous variable (R&D) on

the instruments in the first stage. Table A2 shows the results from this estimation and

demonstrates that the instruments have considerable power. Column (1) has the basic results,

column (2) adds time dummies and column (3) also adds firm dummies. Even in the most

general regression of the final column of Table A2 that is used in the later stages, the F-

statistics are over 16. From this we calculate the value of R&D predicted by these tax credits,


 , and then generate the stock of this using the standard perpetual inventory method,


 . For each firm we then weight up other firms tax-credit predicted R&D stocks using

 and  to create the distance weighted instruments  and .

For example, for  =
P

 6= 

 . We then use ln() and

ln() as instrumental variables for ln() and ln() in the

final stage regressions as presented in the last columns of Tables 3, 5 and 6. For the citation-

weighted patent regressions we use a Negative Binomial equation, so to allow for endogeneity

54State level R&D tax credits can be generous, and vary differentially over states and time. For example,

the five-largest R&D doing states had the following tax credit histories: California introduced an 8% credit in

1987, raised to 11%, 12% and 15% in 1997, 1999 and 2000 respectively. Massachussetts, New Jersey and Texas

introduced 10%, 10% and 4% rates in 1991, 1994 and 2000 respectively. While Michigan has never introduced

an R&D tax credit.
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we take a control function approach (e.g. Aghion et al, 2005). We estimate the first stages

for ln() and ln() and then include a fifth order series expansions

of each of the residuals from these first stages in the final column of Table 4. We correct the

standard errors using 1,000 bootstrap replications over firms.

We also considered an alternative approach of using  and  weighted  and

 as instrumental variables. However, the unbalanced nature of the panel makes this very

unattractive as the value of the instruments changes as new firms exit and enter the sample.

This generates a positive bias between R&D the user cost of R&D. For example, imagine a

firm  enters a market. Then for some firm  for which   0 there will be a rise in

 since there is now another firm doing R&D in its technology space. But its

 weighted R&D user cost measure will also rise since the values of 

 and 


 for firm

 are zero per entry (since they are missing) but strictly positive post entry.

B.3.2. Exogeneity of R&D tax credit policy changes

A concern is that changes to the R&D tax credit may be endogenous. Could states respond

to falls in R&D by increasing the tax credit rate, for example. One check was to conduct

experiments lagging the tax-credit instruments one and two periods, which led to qualitatively

similar results. But we also investigated this issue further by reviewed the literature on US

state R&D and corporate tax rates. Three facts are clear from this literature:

(1) State level tax credits have been gradually introduced across states over time. The

first state R&D tax credit was introduced in Minnesota in 1982 following the introduction of

the Federal Tax Credit in 1981, with 31 states having introduced credits by the end of 2005

(Wilson, 2005), and 38 states by 2010. The generosity of these credits has also been gradually

trending up over time, rising from 6.25% in 1982 to 7.9% in 2005.

(2) The cross-sectional variation in credit rates is extremely large relative to the mean

and growth rates of the average rate. The cross-sectional standard-deviation of credit rates is

more than twice their mean. For example, the credit-rates range from 2.5% in South Carolina

and Minnesota to 20% in Arizona and Hawaii. These rates also change frequently over time

within states. For example, California changed its rate five times between its introduction in

1987 and 2010.

(3) The level and timing of introduction of the credits — which provides the empirical

identification in our estimation given our firm and time dummies — seems to be uncorrelated

with any observables after controlling for state and year fixed-effects. Papers which have tried

to explain the evolution of state-level corporate tax credits have found that aggregate variables

(such as the Federal credit rate) have some explanatory power, but local economic or political

variables do not seem important (e.g. Chirinko and Wilson, 2008a,b). This partly reflects the

long time delays in passing tax credits through state legislature, and also the fact the costs of

many of these tax credits are small so that their adoption tends not to be strongly driven by

budgetary concerns.

To investigate this issue further, we regressed the rate of the state R&D tax credit on

lagged state R&D expenditures, a full set of state and year dummies, and the lagged value

of the state tax credit (to control for dynamics). Using a variety of specifications with and

without these controls, we could not find any predictive power for lagged state-level R&D

expenditure or GDP per capita (a crude proxy for productivity) on current R&D tax credits.

That is, prior state-level R&D expenditure does not seem to predict current levels of state

R&D tax credits.

In summary, while state-level R&D tax credits have been rising since the early 1980s, this

49



has happened at differential rates and levels across states, with this state-by-year differences

in generosity seemingly uncorrelated with lagged economic or political variables. This sug-

gests that the current level of R&D tax credits provides pseudo-random variation to identify

corporate R&D expenditure in a regression including firm and year fixed effects.

B.4. Sample Selection Issues

To be in the final regression sample a firm has to have at least one patent granted (since

1963) in order to construct our measure of technological closeness (which requires patent

information), so this does screen out firms who never patent. However, we do not require that

a firm has several lines of business, only that it has some data in the Compustat Segment

File (CSF) which contains the breakdown of sales across four-digit industry classes. Note that

some firms operate solely in one class and are recorded as such (and we use their information).

Nearly all firms in Compustat which have a patent are also in the CSF so this is not a source

of sample selection.

The main source of selection is that we use the Compustat database that covers only

publicly listed firms. This is because capital investment, R&D and other important variables

are not required reporting items for privately listed firms. R&D is heavily concentrated on

listed firms, however, so our sample accounts for a large proportion of the entire R&D in the

US. For example, in 1995 the sum of R&D expenditures in our sample was $79bn while the

total industry R&D in the US was estimated as $130bn by the NSF, so we cover about 62%

of the total.

Of course it would be ideal to know the exact R&D of every firm, but this is not necessary

for implementation of our technique. As we show in Appendix A.1 our comparative static

results hold for any triple of firms. All we need is the thought experiment of increasing

 whilst holding  constant (and vice versa).

There could be biases if, for a given firm we omit a relevant spillover. Certainly, the absence

of other R&D performing firms will mean that we underestimate the R&D relevant spillovers

for some firms. In general, it is unclear whether this would bias our estimates systematically in

any one direction. If this generated classical measurement error, with random under-counting

of spillovers, it would cause an attenuation bias towards zero. Thus, as you argue, there is

the possibility that we underestimate the strength of both positive technology and negative

product market spillovers. If this is so, our conclusion that both types of spillovers operate,

one positive and the other negative, is strengthened.

Non-random exit relating to unobservables is very difficult to control for with existing

techniques. Evidence from non-parametric control function techniques to control for selection

in production functions suggests that the main form of bias comes from conditioning on a

balanced panel (e.g. Olley and Pakes, 1996). Since our panel is unbalanced — we keep all

entrants and exiters — this mitigates this problem. Non-random exit in the time series is also

partially controlled for by the fixed effects.

B.5. The Bureau Van Dijk (BVD) Database

As noted in sub-section 6.3.2 the finance literature has debated the extent to which the break-

down of firm sales into four digit industries from the Compustat Segment Dataset is reliable.

To address this concern, we used an alternative data source, the BVD (Bureau Van Dijk)

database.
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B.5.1. Description

The BVD data for the US is obtained from Dun and Bradstreet (D&B), which collects the

data to provide credit ratings and to sell as a marketing database. These credit ratings

are used to open bank accounts, and are also required for corporate clients by most large

companies (e.g. Wal-Mart and General Electric) and the Government, so almost all multi-

person establishments in the US are in the D&B database. Since this data is commercially

used and sold for various financial and marketing purposes it is regularly quality checked by

D&B. In Europe the BVD data comes from the National Registries of companies (such as

Companies House in the UK), which have statutory requirements on reporting for all public

and private firms. We used the primary and secondary four digit industry classes for every

subsidiary within a Compustat firm that could be matched to BVD to calculate distribution of

employment across four digit industries (essentially summing across all the global subsidiaries)

as a proxy for sales by four digit industries.

The US data reports one primary four digit industry code and an ordered set of up to six

secondary four digit industry codes. We allocated employment across sectors for an individual

firm by assuming 75% of activity was in the primary industry code, 75% of the remainder in

the main secondary code, 75% of this remainder in the next secondary industry code and so

on, with the final secondary industry code containing 100% of the ultimate residual. In the

European data firms report one primary industry code and as many secondary industry codes

as they wish (with some firms reporting over 30) but without any ordering. Employment

was allocated assuming that 75% of employees were in the primary industry code and the

remaining 25% was split equally among the secondary industry codes. Finally, employment

was added across all industry codes in every enterprise in Europe and the US owned by the

ultimate Compustat parent to compute a four digit industry activity breakdown.

B.5.2. Matching to Compustat

We successfully matched three quarters of the Compustat firms in the original sample. The

matched firms were larger and more R&D intensive than the non-matched firms. Conse-

quently, these matched firms accounted for 84% of all employment and 95% of all R&D in the

Compustat sample, so that judged by R&D the coverage of the BVD data of the Compustat

sample was very good. The correlation between the Compustat Segment and BVD Dataset

measures is reasonably high. The correlation between the sales share of firm  in industry 

between the two datasets is 0.503. The correlation of ln() across the two measures

is 0.592. The within-firm over-time variation of ln(), which identifies our empirical

results given that we control for fixed effects, reassuringly rises to 0.737. In terms of average

levels both measures are similar, with an average  of 0.0138 using the Compustat measure

and 0.0132 using the BVD measure. The maximum number of four digit industries for one of

our firms, General Electric, is 213.

As an example of the extent of similarity between the two measures the Compustat and

BVD  correlations for the four firms examines in the Case Study discussed in appendix

D below are presented in Table A1. As can be seen the two measures are similar, IBM and

Apple (PC manufacturers) are highly correlated on both measures and Motorola and Intel

(semi-conductor manufacturers) are also highly correlated. But the correlation across these

two pairs is low. There are also some differences, for example the BVD-based measure of

 finds that IBM is closer in sales space with Intel and Motorola ( = 0.07) then the

Compustat-based measure ( = 0.01). This is because IBM uses many of its own semi-
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conductor chips in its own products so this is not included in the sales figures. The BVD

based measure picks these up because IBM’s three chip making subsidiaries are tracked in the

ICARUS data even if their products are wholly used within IBM’s vertically integrated chain.

B.5.3. Coverage

The industry coverage was broader in the BVD data than the Compustat Segment Dataset.

The mean number of distinct four digit industry codes per firm was 13.8 in the BVD data (on

average there were 29.6 enterprises, 18.2 in Europe and 11.4 in the US) compared to 4.6 in

the Compustat Segment files. This confirms Villalonga’s (2004) finding that the Compustat

Segment Dataset underestimates the number of industries that a firm operates in.

C. Alternative Distance Metrics

C.1. Robustness to Aggregation

The standard Jaffe measure,   differs from the Jaffe covariance (and Exposure) mea-

sure, − because it is an (uncentered) correlation, rather than covariance, between

the vectors  and  : 

 =


0


(
0
 )
12(

0
)
12  We now show that this normalization has

the advantage that it makes the index less sensitive to the aggregation of technology fields.

We refer to this property as ‘robustness to aggregation’.

To see this formally, consider the case where technology fields Υ−1 and Υ are aggregated,
and define the 1(Υ− 1) vector  ∗ = (1  Υ−2 Υ−1 + Υ−2) The new −

index can be expressed as

 ∗ 
∗0
 = 

0
 + (Υ−1Υ + Υ−1Υ) ≥ 

0


and strict inequality holds if each firm operates in at least one of the two aggregated fields,

Υ− 1 and Υ This shows that − increases as a consequence of aggregation. This
is an unattractive property. The standard  measure mitigates this aggregation bias

because it normalizes by the standard deviations of the vectors  ∗ and 
∗
 which also increase

(since  ∗ 
∗0
 = 

0
 + 2Υ−1Υ ≥ 

0
 ).

Define  =
Υ−1Υ+Υ−1Υ


0


  =
2Υ−1Υ


0


and  =
2Υ−1Υ


0


 Letting asterisks

denote the index based on the aggregated technology fields, it follows immediately that

 ∗ = 

− ∗ = −

where  =
1+

{(1+)(1+)}12   = 1 +  That is, aggregation leads to a smaller percentage

increase in  than in the − index This is sense in which the Jaffe index is
less sensitive to aggregation than the Jaffe covariance measure.55

Note that it is straightforward to generalize the results in this sub-section to the case

where more than two technology fields are aggregated, and to the case where several subsets

of fields are aggregated. An example of the latter is moving from, say, four-digit to three-digit

classification of fields.

55In general we cannot know whether  ≶ 1 This depends on the specific distributions of firm R&D across

technology fields. It is possible that aggregation reduces the  index. But we can say that, if aggregation

increases that measure, the increase will be proportionately smaller than for the − index.
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C.2. Mahalanobis

To explain the calculation of the Mahalanobis normed measure we need to define some no-

tation. First, we let  = [ 01 
0
2

0
 ] denote the (426 ) matrix where each row contains a

firm’s patent shares in the 426 technological classes. Second, we define a normalized ( 426)

matrix ̃ = [ 01(1
0
1)
12  02(2

0
2)
12 0(

0
)

12], in which each row is simply normal-

ized by the firm’s patent share dot product. Third, we define the () matrix  =

̃ 0̃ . This matrix  is just the standard Jaffe (1986) uncentered correlation measure be-

tween firms  and , in which each element is the measure , exactly as defined in (3.6)

above. Fourth, we define a (426 ) matrix e = [ 0(:1)(
0
(:1)(:1))

12 0(:)(
0
(:)(:))

12]

where (:) is the 
 column of  . This matrix e is similar to e , except it is the normalized

patent class shares across firms rather than firm shares across patent classes. Finally, we can

define the (426 426) matrix Ω = e e 0
in which each element is the standard Jaffe (1986)

uncentered correlation measure between patent classes (rather than between firms). So, for

example, if patent classes  and  coincide frequently within the same firm, then Ω will be

close to 1 (with Ω = 1), while if they never coincide within the same firm Ω will be 0.

The Mahalanobis normed technology closeness measure is defined as  = e 0Ωe .
This measure weights the overlap in patent shares between firms by how close their different

patents shares are to each other. The same patent class in different firms is given a weight of

1, and different patent classes in different firms are given a weight between 0 and 1 depending

on how frequently they overlap within firms across the whole sample. Note that if Ω = , then

 = . Thus, if no patent class overlaps with any other patent class within

the same firm, then the standard Jaffe (1986) measure is identical to the Mahalanobis norm

measure. On the other hand, if some patent classes tend to overlap frequently within firms

- suggesting they have some kind of technological spillover - then the overlap between firms

sharing these patent classes will be higher.

D. Case Studies of Particular Firms

There are numerous case studies in the business literature of how firms can be differently placed

in technology space and product market space. Consider first firms that are close in technology

but sometimes far from each other in product market space (the bottom right hand quadrant of

Figure 1). Table A1 shows IBM, Apple, Motorola and Intel: four high highly innovative firms

in our sample. We show results for  measured both by the Compustat Segment

Database and the BVD Database. These firms are close to each other in technology space as

revealed by their patenting. IBM, for example, has a  correlation of 0.76 with Intel,

0.64 with Apple and 0.46 with Motorola (the overall average  correlation in the whole

sample is 0.038 - see Table 9). The technologies that IBM uses for computer hardware are

closely related to those used by all these other companies. If we examine , the product

market closeness variable, however, there are major differences. IBM and Apple are product

market rivals with a  of 0.65 (the overall average  correlation in the whole sample is

0.015 - see Table 9). They both produced PC desktops and are competing head to head. Both

have presences in other product markets of course (in particular IBM’s consultancy arm is a

major segment of its business) so the product market correlation is not perfect. By contrast

IBM (and Apple) have a very low  correlation with Intel and Motorola (0.01) because

the latter firms mainly produce semi-conductor chips not computer hardware. IBM produces

relatively few semi-conductor chips so is not strongly competing with Intel and Motorola for
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customers. The  correlation between Intel and Motorola is, as expected, rather high

(0.34) because they are both competitors in supplying chips. The picture is very similar when

we look at the measures of  based on BVD instead of Compustat, although there are

some small differences. For example, IBM appears closer to Intel (BVD  = 0.07) because

IBM produces semi-conductor chips for in-house use. This is largely missed in the Compustat

Segment data, but will be picked up by the BVD data (through IBM’s chip-making affiliates).

At the other end of the diagonal (top left hand corner of Figure 1) there are many firms

who are in the same product market but using quite different technologies. One example

from our dataset is Gillette and Valance Technologies who compete in batteries giving them

a product market closeness measure of 0.33. Gillette owned Duracell but did no R&D in this

area (its R&D was focused mainly personal care products such as the Mach 3 razor and Braun

electronic products). Valence Technologies used a new phosphate technology that radically

improved the performance of standard Lithium ion battery technologies. As a consequence

the two companies have little overlap in technology space ( = 0.01).

A third example is the high end of the hard disk market, which are sold to computer

manufacturers. Most firms base their technology on magnetic technologies, such as the market

leader, Segway. Other firms (such as Phillips) offer hard disks based on newer, holographic

technology. These firms draw their technologies from very different areas, yet compete in the

same product market. R&D done by Phillips is likely to pose a competitive threat to Segway,

but it is unlikely to generate useful knowledge spillovers for Segway.

E. Endogenous Choice of Technology Classes

E.1. The Basic Approach

One way to provide a micro-foundation for a distance metric for technological closeness is

to draw explicitly on the economic geography literature. Simple economic geography models

can show how firms may optimally choose the geographic location of their plants to benefit

from potential spillovers and natural advantages leading to agglomeration and coagglomera-

tion patterns. We draw heavily on this work (in particular, Ellison and Glaeser, 1997; Ellison,

Glaeser and Kerr, 2007, 2010) to consider a more micro-founded model of our empirical mea-

sures of . However, rather than choosing which geographical classes to locate in, we

will consider a firm’s choice of which technological areas to locate in and consider co-location

patterns in this dimension.

E.2. Agglomeration and coagglomeration measures

Consider extending the model in Section 2 to allow for a period 0 where each firm  chooses

to direct its R&D across particular technological classes,  = 1 Υ . A firm can choose to

invest in one or more technological classes by establishing some R&D labs (denoted lab ) in

these different classes. Assume that there are a fixed number of R&D employees in each lab,

. When choosing a technological profile a firm will consider a number of factors including

the underlying technological opportunities in the class (common to all firms56), R&D lab ’s

ability in a particular field as well as the other labs who have already located in this area as

there are potentially spillovers.

56Thus the number of potential inventions is higher in some areas like bio-pharmaceuticals than others (like

cement).
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We will model this explicitly below in a firm location model, but we first define some key

indexes. A raw technological concentration measure for firm  is

 =

ΥX
=1

( − )
2

where  is the proportion of all firm ’s R&D employment (or equivalently, the proportion of

R&D labs) in technology area  and  is the share of total R&D employment in the economy

in technology area  Ellison and Glaeser (1997) suggest an agglomeration measure of the form:

 ≡
(1−

P
 

2)−

1−

(E.1)

where  is a “Herfindahl Index” reflecting how concentrated are a firm’s R&D labs
57.

Ellison and Glaeser (1997) also suggest a coagglomeration measure. In our context consider

a group of  firms and  is firm ’s share of the group’s total R&D employment. Let 1  Υ
be the share of R&D employment in the group of  firms in each technology area.  is the raw

geographic concentration for the  firm group ( =
P

( − )
2) and  is the Herfindahl

Index of the -firm group ( =
P


2
). The coagglomeration measure is:

 ≡
 (1−P 

2)− −
X

=1


2
 (1−)

1−
X

=1

2

(E.2)

The particular form of this is motivated by relating the index to an explicit location choice

model.

Proposition E.1. In an  firm probabilistic location choice model, suppose that the indicator

variables {} for whether the -th lab locates in technological area  satisfies ( ) = 

and (  0 ) =
 if labs  and 

0 both belong to firm i

0 if labs  and 
0 belong to different firms

then () = 0
The value of Proposition 1 is that under the given assumptions the coagglomeration in-

dex in equation (E.2) based on empirically observable measures recovers an estimate of the

unobserved “deep parameter”, 0, which is relevant to the spillover effect.

57 =
X


(1 )

2 where  is the employment in lab  in technology class  for firm  Since we have

assumed that all labs are equally sized  =
X


(1)

2 where  is the number of R&D labs owned by firm

. Obviously if a firm has only one R&D lab it will have a high degree of measured agglomeration as it can

only locate in one class, but this is a rather artifical type of specialization and the presence of  in equation

(E.1) corrects for this.
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E.3. A model of the choice of technological class

To simplify notation we focus on the case of two firms so  = 2. In this case the coagglomeration

measure  will be 58:

 ≡
P

 (1 − )(2 − )

1−P 
2


(E.3)

where 1 is the number of labs belonging to firm 1 and 2 the in firm 2. Labs are indexed

by  ∈ 1 ∪2 with 1 being the labs in firm 1 and 2 the labs in firm 2. Firms choose where
to locate labs between Υ technology classes. Spillovers imply that lab ’s profits are a function

of the other labs’ location decisions. If there is a potentially positive spillover between lab 

and 0 they will tend to be located in the same technology class.
We follow Ellison and Glaeser (1997, 2007) in considering “all or nothing” spillovers as

this reduces substantially the problem of multiple equilibria in the lab location game. In

particular, define a partition  of 1 ∪2 to be a correspondence  : 1 ∪2 ⇒ 1 ∪2 such
that  ∈ () for all  and 0 ∈ () =⇒ () = (0). Suppose lab location decisions are the
outcome of a game in which the labs choose technology classes in some exogenously specified

order and lab ’s profits from locating in technology area  are given by:

ln() = ln( ) +
X
0∈()

(0 6= )(−∞) +  (E.4)

The first term on the right hand side of equation (E.4),   is the “fecundity” of the

technology area,  . The middle term reflects spillovers: a spillover exists between labs  and

0 if 0 = () and that when spillovers exist they are sufficiently strong to outweigh all other

factors in a firm’s decision about whether to locate a lab in this technology class. The third

term is  a Weibull distributed random shock that is independent across labs and locations.

Under these conditions it is possible to prove:

Proposition E.2. Consider the model of technological area choice described above:

(a) The Perfect Bayesian Equilibrium (PBE) is unique. In equilibrium each lab  chooses

technology class  that maximizes ln( ) +  if no lab with 0 ∈ () has previously chosen

a technology class, and chooses the same technology class of previously located labs if some

such labs have chosen this location.

(b) If 0 ≤ 0 ≤ 1  

2 or 0 ≤ 0 ≤ 1 


2 and 0 ≤ 0 ≤ min(11 12) then there exist

distributions over the set of possible partitions for which:

Prob(0 ∈ ()) =
 if labs  and 

0 both belong to firm i

0 if labs  and 
0 belong to different firms

(c) If the distribution satisfies the condition in part (b), then in any PBE of the model the

agglomeration and coagglomeration indexes satisfy () = 0 and () =  

Proof. See Ellison et al (2007), Appendix A.

The proposition shows the conditions under which calculation of the coagglomeration in-

dex  is an unbiased estimate of the deep parameter 0 . Thus, it gives some theoretical

foundation of a distance metric that we use in our empirical work. Proposition E2 shows that

the framework developed has a degree of robustness to equilibrium selection.

58Note that this will be specific to any given pair of firms (i.e. 12) but we drop the subscripts for simplicity.
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In our context, equation (E.3) becomes

 ≡
P

( − )( − )

1−P 
2


which is the alternative distance metric used in sub-section 6.1.

E.4. Extensions

The model is obviously specialized, but can be extended in various dimensions. First, the

model can be extended to allow for other reasons for coagglomeration patterns such as “natural

advantage”. It is difficult to separately identify these from spillovers and in general the indexes

will capture elements of both. In the context of our paper, we seek to separate spillovers from

common clusters of technological opportunity by explicitly examining how shocks to a firm’s

R&D differentially effect other firms who are “close neighbors” (as indicated by ) relative

to those who are more distant. If there are genuine spillovers, the close neighbors will be

more affected (e.g. in the productivity) than those who are distant. This would not be the

case were natural advantage (clusters of common technological opportunity) were fixed. If

these changed over time, then the identification problem would reappear. This is why we use

tax-policy changes to R&D as instrumental variables as we argue that these are orthogonal to

such common technology shocks.

A second limitation is that the framework does not allow for product market rivalry.

Section 2 shows how this can be allowed for in later stages of the game. It is harder to

consider a framework for product choice. The Ellison-Glaeser framework is not well adapted

for this as firms will suffer a negative spillover and will want to locate away from where firms

currently are in general, rather than be close as in equation (E.4).

Finally, note that equation (E.4) is quite restrictive. Not only do the errors take an

independent parametric form, we assume all classes are neither complements nor substitutes

so each lab can be seen as making an profit maximizing decision independent of the identity

of the firm who owns the lab. We show how this can be relaxed in our Mahalanobis measure

which allows differential degrees of closeness between technology classes. If these were literally

geographic distances, we could use the actual distance in travel times or miles, as in Duranton

and Overman (2005).

F. Econometric Results for Three High-tech Industries

We used both the cross-firm and cross-industry variation (over time) to identify our two

spillover effects. An interesting extension of the methodology outlined here is to examine

particular industries in much greater detail. This is difficult to do, given the size of our dataset.

Nevertheless, it would be worrying if the basic theory was contradicted in the high-tech sectors,

as this would suggest our results might be due to biases induced by pooling across heterogenous

sectors. To investigate this, we examine in more detail the three most R&D intensive sectors

where we have a sufficient number of firms to estimate our key equations: computer hardware,

pharmaceuticals, and telecommunications equipment. Computer hardware covers SIC 3570

to 3577 (Computer and Office Equipment (3570), Electronic Computers (3571), Computer

Storage Devices (3572), Computer Terminals (3575), Computer Communications Equipment

(3576)and Computer Peripheral Equipment Not Elsewhere classified (3577). Pharmaceuticals

includes Pharmaceutical Preparations (2834) and In Vitro and In Vivo Diagnostic Substances
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(2835). Telecommunications Equipment covers Telephone and Telegraph Apparatus (3661),

Radio and TV Broadcasting and Communications Equipment (3663) and Communications

Equipment not elsewhere classified (3669).

Table A4 summarizes the results from these experiments. The results for computer hard-

ware (Panel A) are qualitatively similar to the pooled results. Despite being estimated on

a much smaller sample,  has a positive and significant association with mar-

ket value and  a negative and significant association. There is also evidence of

technology spillovers in the production function and the patenting equation.  is

positive in the R&D equation indicating strategic complementarity and is not significant in

patents or productivity regressions, as our model predicts.

The pattern in pharmaceuticals is very similar, with the parameters being consistent with

the predicted signs from the theory and statistically significant. Technology spillovers are

also found in the production function and the patents equation and there is also evidence of

strategic complementarity, as indicated by the large coefficient on  in the R&D

equation. We find a much larger, negative coefficient on  in the market value

equation than in the pooled results, indicating substantial business stealing effects in this

sector. We will return to this finding in the next sub-section when we discuss the private and

social returns to R&D.

The results are slightly different in the telecommunications equipment industry. We also

observe significant technology spillover effects in the market value equation and citation-

weighted patents equations, but the coefficient on  is insignificant (although

positive) in the productivity equation. There is no evidence of significant business stealing or

strategic complementarity of R&D in this sector, however.

Like the pooled sample, these findings on technological spillovers and business stealing

are robust to treating R&D as endogenous. For example, in the IV estimation the coefficients

(standard error) on  and  in the market value equation for computer

hardware are 2.314 (0.668 ) and -0.512 (0.243 ) respectively.59

Overall, the qualitative results from these high-tech sectors indicate that our main results

are broadly present in those R&D intensive industries where we would expect our theory to

have most bite. Technology spillovers are found in all three sectors, with larger coefficients than

in the pooled results, as we would expect.60 However, there is also substantial heterogeneity

across the sectors. First, the size of the technology spillover and product market rivalry

effects vary. Second, we find statistically significant product market rivalry effects of R&D

on market value in two of the three industries studied. Finally, there is evidence of strategic

complementarity in R&D for computers and drugs, but not for telecommunications.

59These same coefficients (standard errors) on  and  in the market value equation for

pharmaceuticals and telecommunications equipment are 3.139 (1.456 ) and -1.317 (1.427 ), and 2.500 (0.696 )

and -0.113 (0.540 ) respectively.
60We also examined industry heterogeneity in terms of technology levels, defined as the average ratio of

R&D/Sales ratio in the four digit industry. We interacted this with  and  in each

of the Tobin’s Q, patents, productivity and R&D equations. The coefficients on spillovers tended to be larger

in absolute magnitude, but only one of these eight interactions was significant at the 5% level (

in the productivity equation which had a coefficient (standard error) of 1.035 (0.497 )). This is mild evidence

for the greater importance of spillovers in high tech industries as in Table A4.
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G. Computing Private and Social Returns to R&D

G.1. Roadmap

In this Appendix we show how to compute the private and social returns to R&D in the

analytical framework developed in this paper. Sub-section G.2 provides some basic notation,

following the presentation in the empirical section of the paper, and derives some “reduced

forms” after substituting out all the interactions operating through the spillover terms. The

main results are in sub-section G.3. which calculates the general form of the marginal social

and private returns to R&D to an arbitrary firm.

We define the marginal social return () to R&D for firm  as the increase in aggregate

output generated by a unit increase in firm ’s R&D stock (taking into account the induced

changes in R&D by other firms). The marginal private return () is defined as the increase

in firm ’s output generated by a marginal increase in its R&D stock. In the general case, the

rates of return for individual firms depend on the details of their linkages to other firms in

both the technology and product market spaces. For the computations presented in the text

we use the general formulae developed here, but we also show below that the key intuition can

be understood by examining the special case where all firms are symmetric and there is no

“amplification” effect (due to the presence of product market spillovers in the R&D equation).

In this case, the wedge between the social and private returns can be either positive or negative,

as it depends upon the importance of technology spillovers in the production function (2)

relative to product market rivalry effects in the market value equation (3). Social returns

will be larger when 2 is larger and private returns will be larger as (the absolute value of) 3
rises. Both private and social returns increase in the effect of R&D on output (1).

G.2. Basic Equations

The empirical specification of the model consists of four equations: R&D, Tobin’s Q, produc-

tivity and patents. For purposes of evaluating rates of return to R&D, we do not need the

patent equation because there is no feedback from patents to these other endogenous variables

in our model. Thus for this analysis we use only the R&D, market value and productivity

equations.

We examine the long run effects in the model, setting  =  and  =  for all  and

 =



 where  is the flow of R&D expenditures,  is output,  is the R&D stock and 

is the depreciation rate used to construct  The model can be written as

ln = 2 ln
X
 6=

 + 3 ln
X
 6=

 + 41 + ln (G.1)

ln() = 1 ln() + 2 ln
X
 6=

 + 3 ln
X
 6=

 + 42 (G.2)

ln = 1 ln + 2 ln
X
 6=

 + 3 ln
X
 6=

 + 43 (G.3)

where  is Tobin’s Q, 1 2 and 3 are vectors of control variables (for ease of exposition

we treat them as scalars), and the depreciation rate  gets absorbed by the constant terms in

each of the equations (which we suppress for brevity). We then solve out the cross equation

links with  by substituting equation (G.3) into equations (G.1). This yields a new equation
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for R&D:

ln = 02 ln
X
 6=

 + 03 ln
X
 6=

 + 041 (G.4)

where 01 =
1+1
(1−1)  

0
2 =

2+2
(1−1)  

0
3 =

3+3
(1−1) and 04 =

4+4
(1−1) . The model we use for the

calculations in this Appendix is given by equations (G.4), (G.2) and (G.3).

We take a first order expansion of ln [
P

 6= ] and ln [
P

 6= ], approxi-

mating them in terms of ln around some point, say ln0. Take first   = ln [
P

 6= ] =

ln [
P

 6=  exp(ln)] Approximating this nonlinear function of ln

  ' { ln
X
 6=


0
 −

X
 6=
(


0
P

 6= 
0


) ln0}+
X
 6=
(


0
P

 6= 
0


) ln

≡  +
X
 6=

 ln

where  reflects the terms in large curly brackets and  captures the terms in parentheses

in the last terms.

Now consider the term  = ln [
P

 6= ]By similar steps

 ' { ln
X
 6=


0
 −

X
 6=
[


0
P

 6= 
0


] ln0}+
X
 6=
(


0
P

 6= 
0


) ln

≡  +
X
 6=

 ln

Using these approximations, we can write the R&D equation (G.4)as

ln =  +
X
 6=

 ln + 041

where  = 02 + 03 and  = 02 + 03 Let  ln and  be 1 vectors, and define

the  matrix  =

∙
0 
 0

¸
 Then the R&D equation in matrix form is

ln = Ω−1+ 04Ω
−11 (G.5)

where Ω =  −

By a similar derivation, we can write the production function as

ln =  + 1 ln +
X
 6=

 ln + 043

where  = 2 + 3 and  = 2 + 3 Let  be an 1 vector and define the 

matrix  =

∙
1 
 1

¸
 Then the production function in matrix form is

ln =  + ln+ 
0
43 (G.6)
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Finally, the market value equation can be expressed as

ln() =  − 1 ln + 1 ln +
X
 6=

 ln + 042

where  = 2 + 3 and  = 2 + 3 Letting  be an 1 vector and defining the

 matrix Γ =

∙
1 

 1

¸
 the value equation in matrix form is

ln = − 1 ln+ Γ ln+ 42 (G.7)

The model is summarized by equations (G.5), (G.6) and (G.7).

G.3. Deriving the Private and Social Return to R&D

G.3.1. General Case

To derive the private and social rates of return to R&D, we consider the effect of a one

percent increase in the stock of R&D by firm  Since in steady state the stock is proportional

to the flow of R&D ( = 

) we can capture this effect by setting  ln = 041 = 1

and zero for  6= 61 Using the R&D equation (G.5), the absolute changes in R&D levels,

after amplification, are given by the 1 vector  = Ω
−1∗, where ∗ is an 1 vector

with one in the  position and zeroes elsewhere, and  is an  matrix with  in the

 diagonal position and zeroes elsewhere. From the production function (G.6), this induces

changes in productivity (output, given the levels of labor and capital) which are given by

 = Ω−1∗ where  denotes an  matrix with  in the 
 diagonal position

( = 1  ) and zeroes elsewhere.

This computation of the output effects is correct for the steady state analysis. Recall that

we define the marginal social return () to R&D for firm  as the increase in aggregate

output associated with a unit increase in firm ’s R&D stock (not a unit increase it its R&D

flow), taking into account the induced changes in R&D by other firms. Therefore, we need

to divide the aggregate output gain by the increase in the stock of R&D for firm  and any

other firms whose R&D is induced by the change, which is given by 0 = 1

0where  is

an 1 vector of ones. Thus we can write the  as follows:

 =
 0
0

(G.8)

Note that the  is a scalar.

The marginal private return () is defined as the increase in firm ’s output generated

by a unit increase in its R&D stock (any induced R&D by other firm’s is not relevant to this

computation). The  consists of two parts. The first is the increase in firm 0 output,
given its levels of labor and capital. This increase is given by ∗0where ∗ is an 1 vector

with one in the  position and zeroes elsewhere. In addition, the firm enjoys output gains

through the business stealing effect. This will be reflected in an increase in the level of labor

and capital used by the firm (holding the level of productivity constant). Thus we cannot

compute business stealing gains directly from the effect of R&D in the production function.

61We scale by 100 here — one percent is taken as 1. In the final calculations the change in R&D stock is

divided by 100.
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To compute these gains, we exploit the impact of business stealing in the market value

equation. To isolate the impact of business stealing () on market value, we hold the

productivity level constant by ‘turning off’ the effect of own R&D (1 = 0) and 

(2 = 0). Define the  matrix Γ∗ =

∙
0 ∗
∗ 0

¸
where ∗ = 3 ≤ 0 ( 6= ) From (G.7),

the induced percentage change in market value is

 ln ∗ = Γ∗ ln = Γ∗Ω−1∗

The change in market value associated with the business stealing effect,  ln ∗ can be
decomposed into two parts — a change in the level of output and shifts in the price-cost margin

of the firm. In order to compute the private return to R&D in terms of output gains, we need

to separate the estimated value effect of R&D into these the output and price effects. We

assume that a fraction  of the overall change in market value is due to changes in output (the

case  = 1 corresponds to the case where the price-cost margin is constant — in particular,

not affected by ). We discuss later how we choose the empirical value of  for

the computations. Using this value, we can write the absolute output changes associated with

business stealing as  ∗ =  Γ
∗Ω−1∗62

There is a change in output due to business stealing for each firm. The change for firm

 is distributed to (or from) all other firms in general, and we need to describe what that

depends on. Consistent with the original formulation of , we assume the fraction

of the overall loss by firm  which goes to firm  which we call  depends the closeness of

the two firms, , and on how much firm  changes its R&D, which is what induces the

redistribution,  Following our earlier derivation of the linear approximation to the system,

we use

 =
P
 6= 

As required, these weights add up to one over all recipient firms.

Let ∗∗denote an 1 vector with +1 in the  position and − in the  6=  positions.

Then we can write the total change in firm ’s output as  0∗ +  ∗0∗∗ The first is the
direct gain in output by firm , and the second component is the redistribution of output from

other firms to firm  The marginal private return to R&D is the total output gain by firm 

divided by the increase in the R&D stock by firm  :

 =
 0∗ +  ∗0∗∗

0∗
(G.9)

A comparison of the expressions for and in equations (G.8) and (G.9), shows

that we cannot say which is larger a priori. The  and  differ in three respects: 1)

the  is larger because it includes productivity (output) gains from firms other than 

due to technology spillovers in the numerator, 2) the  is smaller than the because

it also counts the full R&D costs of other firms (if there is amplification) in the denominator,

and 3) the  is also smaller because the  counts output gains for the firm through

the business stealing effects, while the social return excludes them.

62Note that if there is no amplification effect in R&D (Ω = ) then all firms lose output to firm  But when

there is amplification, this need not be true, and in fact even firm  can end up losing output to other firms

whose R&D was increased by amplification. It all depends on the pattern of amplification and firms’ positions

in product space (i.e., on Ω and Γ∗)
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G.3.2. Special Case: No R&D Amplification

Consider the case where there is no R&D amplification effect (Ω = ) and no 

effect on output (3 = 0). In this case the earlier formula for  reduces to:

 =

⎛⎝ 11 121 11
212 12 121
1 2 1

⎞⎠ ∗ =

⎛⎜⎜⎝
11
22
1


⎞⎟⎟⎠
where again ∗ is an 1 vector with one in the  position and zeroes elsewhere. It follows

that  0 = 1 +
P

 6= , so the marginal social return for firm  can be expressed as

= ϕ1




+ϕ2

P
 6= 


The depends on the coefficients of own R&D and technology spillovers in the production

function, and the technology spillover linkages across firms. The term 2


 6= 


captures the

marginal impact of an increase in firm ’s R&D stock on all other firms’ output levels, which

are mediated by the technology linkages between firm  and other firms.

In the fully symmetric case where all firms are identical both in size and technology spillover

linkages ( =  and  =  for all  ) this expression simplifies even further to

 =




(1 + 2) (G.10)

We turn next to the marginal private return. Using the expression above for we get

 0∗ = 1 The second terms involves 
∗which is

 ∗ = 

⎛⎝ 1 0 0

0 2 0

0 0 

⎞⎠⎛⎝ 0 ∗12 ∗1
∗21 0 ∗2
∗1 ∗2 0

⎞⎠ ∗ = 

⎛⎝ ∗11
∗22
∗

⎞⎠
Recalling that ∗∗denotes an 1 vector with +1 in the  position and − in the  6= 

positions, we get  ∗0∗∗ = −P 6= 
∗
 Combining these results and recalling that

∗ = 3, the marginal private return for firm  can be written as

 = 1




− 3

X
 6=








The  depends on the coefficient of own R&D in the production function and the

coefficient of business stealing in the value equation, plus the product market linkages (these

are embedded both in the  and  coefficients). In the fully symmetric case where all firms

are identical in size and product market linkages, this simplifies to

 =




(1 − 3) (G.11)
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In this fully symmetric case, the ratio between the marginal social and private returns is




=

1 + 2
1 − 3

(G.12)

The social return is larger than the private return if the coefficient of technology spillovers in

the production function is larger than the coefficient of business stealing in the value equation

in absolute value, adjusted by  ( 2  |3|) In the general case, however, the relative
returns also depend on the position of the firm in both the technology and product market

spaces.

As we pointed out earlier, in order to compute the private return to R&D in terms of

output gains, we need to separate the estimated value effect of R&D into these the out-

put and price effects. The empirical computations of the private returns to R&D are done

using the value  = 1
2
 That is, we assume that half of the percentage change in the mar-

ket value of a firm is due to changes in output and half to changes in its price-cost mar-

gin. This assumption can be micro-founded. In particular, we analyzed an -firm Cournot

model with asymmetric costs — where firm  has unit cost  and all other firms have unit

cost 0(no cost ranking is assumed). We can show that a marginal increase in R&D by

firm  reduces the profit of all other firms, and that at most half of this reduction is due

to changes in the output levels of those firms. This implies  ≤ 1
2
 The actual breakdown

into changes in output and price-cost margins depends on the number of firms and the elas-

ticity of demand. Using the assumption  = 1
2
is conservative in the sense that it pro-

vides an upper bound to the , and thus a lower bound to the gap between  and

 when that gap is positive (as we find empirically). Further details are available on

http://cep.lse.ac.uk/textonly/_new/research/productivity/BSV_sigma_1March.pdf
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FIGURE 1 – SIC AND TECH CORRELATIONS 

 
 

Notes: This figure plots the pairwise values of SIC (closeness in product market space between two firms) and TECH (closeness in technology 

space) for all pairs of firms in our sample. 



 

TABLE 1: THEORETICAL PREDICTIONS FOR MARKET VALUE, PATENTS AND R&D UNDER DIFFERENT ASSUMPTIONS  

 

Notes: See text for full derivation of these comparative static predictions. Note that the empirical predictions for the (total factor) productivity 

equation are identical to the patents equation. Also note that the no technology spillovers case corresponds to φ2 =0, and technology spillovers 

correspond to φ2 >0. Strategic complementarity or substitutability between rivals’ knowledge stocks is given by the sign of Π12. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

   No Technology Spillovers Technology Spillovers 

Equation 
Comparative 

static prediction 

Empirical  

counterpart 

No Product 

Market Rivalry 

Strategic 

Complements 

Strategic 

Substitutes 

No Product 

Market Rivalry 

Strategic 

Complements 

Strategic 

Substitutes 

Market value  ∂V0/∂rτ  Market value with 

SPILLTECH 

 

Zero Zero Zero Positive Positive Positive 

Market value  ∂V0/∂rm  Market value with 

SPILLSIC 

 

Zero Negative Negative Zero Negative Negative 

Patents (or 

productivity)  

∂k0/∂rτ Patents with 

SPILLTECH 

 

Zero Zero Zero Positive Positive Positive 

Patents (or 

productivity)  

∂k0/∂rm Patents with 

SPILLSIC 

 

Zero Zero Zero Zero Zero Zero 

R&D ∂r0/∂rτ  R&D with 

SPILLTECH 

 

Zero Zero Zero Ambiguous Ambiguous Ambiguous 

R&D ∂r0/∂rm R&D with 

SPILLSIC 

 

Zero Positive Negative Zero Positive Negative 



 

 

TABLE 2:  DESCRIPTIVE STATISTICS 

 

Variable Mnemonic Median Mean Standard 

deviation 

 

Tobin’s Q V/A 1.41 2.36 2.99 

Market value V 412 3,913 16,517 

R&D stock G 28.7 605 2,722 

R&D stock/fixed 

capital 

G/A 0.17 0.47 0.91 

R&D flow R 4.36 104 469 

Technological 

spillovers 

SPILLTECH 20,091 25,312 19,942 

Product market 

rivalry 

SPILLSIC 2,006.8 6,494 10,114 

Patent flow P 1 16.2 75 

Cite weighted 

patents 

 4 116 555 

Sales Y 456 2,879 8,790 

R&D weighted 

Sales/R&D stock 

Y/G 2.48 3.83 19.475 

Fixed capital A 122 1,346 4,720 

Employment N 3,839 18,379 52,826 

     

 

Notes: The means, medians and standard deviations are taken over all non-missing 

observations between 1981 and 2001; values measured in 1996 prices in $million.



 

TABLE 3: COEFFICIENT ESTIMATES FOR TOBIN’S Q EQUATION 

 

 (1) (2) (3) (4) (5) (6) 

Specification: OLS OLS OLS OLS OLS IV 2nd stage 

Distance measure:  Jaffe Jaffe Jaffe Jaffe Mahalanobis Jaffe 

Ln(SPILLTECHt-1) -0.064 

(0.013) 

0.381 

(0.113) 

0.305 

(0.109) 

 0.903 

(0.105) 

1.079 

(0.192) 

Ln(SPILLSICt-1) 0.053 

(0.007) 

-0.083 

(0.032) 

 -0.050 

(0.031) 

-0.136 

(0.031) 

-0.235 

(0.109) 

Ln(R&D Stock/Capital Stock)t -1 0.859 

(0.154) 

0.806 

(0.197) 

0.799 

(0.198) 

0.799 

(0.198) 

0.835 

(0.198) 

0.831 

(0.197) 

      1st stage F-tests 

Ln(SPILLTECHt-1)      112.5 

Ln(SPILLSICt-1)      42.8 

Firm fixed effects  No Yes Yes Yes Yes Yes 

No. Observations 9,944 9,944 9,944 9,944 9,944 9,944 

 

Notes: Dependent variable is Tobin’s Q = V/A is defined as the market value of equity plus debt, divided by the stock of fixed capital. A sixth 

order polynomial in ln(R&D Stock/Capital Stock)t -1 is included but only the first term is shown for brevity. Standard errors in brackets are robust 

to arbitrary heteroskedacity and first order serial correlation using the Newey-West correction. A dummy variable is included for observations 

where lagged R&D stock is zero. All columns include a full set of year dummies and controls for current and lagged industry sales in each firms’ 

output industry. Column (6) uses instrumental variable estimation. “1st stage F-tests” are the joint significance of the excluded tax-based 

instrumental variables (ln(TECHTAX) and ln(SICTAX)) from each first stage of the endogenous variables, ln(SPILLTECH) and ln(SPILLSIC). 

See Appendix B3 for details. In column (6) we also control for the firm’s own R&D federal and state tax credit values.  



 

TABLE 4: COEFFICIENT ESTIMATES FOR THE CITE-WEIGHTED PATENT EQUATION 

 

 

Notes: Estimation is conducted using the Negative Binomial model. Standard errors (in brackets) allow for serial correlation through clustering by 

firm. A full set of time dummies, four digit industry dummies and lagged firm sales are included in all columns. A dummy variable is included for 

observations where lagged R&D stock equals zero (all columns) or where lagged patent stock equals zero (column (3)). Columns (2) to (5) include 

the “pre-sample mean scaling approach” to estimate fixed effects of Blundell, Griffith and Van Reenen (1999). The Negative Binomial IV 

specification in column  (5) implements a control function approach which includes the first five terms of the expansion of the residual for the first 

stage regressions. “1st stage F-tests” are the joint significance of the excluded tax-based instrumental variables (ln(TECHTAX) and ln(SICTAX)) 

from each first stage of the endogenous variables, ln(SPILLTECH) and ln(SPILLSIC). See Appendix B3 for details. 

Dep Var:  Cite weighted Patents (1) (2) (3) (4) (5) 

Specification: Neg. Bin. Neg. Bin. Neg. Bin. Neg. Bin. Neg. Bin. IV 2nd stage 

Distance measure: Jaffe Jaffe Jaffe Mahalanobis Jaffe 

Ln(SPILLTECH)t-1 0.518 

(0.096) 

0.468 

(0.080) 

0.417 

(0.056) 

0.530 

(0.070) 

0.407 

(0.059) 

Ln(SPILLSIC)t-1 0.045 

(0.042) 

0.056 

(0.037) 

0.043 

(0.026) 

0.053 

(0.037) 

0.037 

(0.028) 

Ln(R&D Stock)t-1 0.500 

(0.048) 

0.222 

(0.053) 

0.104 

(0.039) 

0.112 

(0.039) 

0.071 

(0.020) 

Ln(Patents)t-1   0.420 

(0.020) 

0.425 

(0.020) 

0.423 

(0.020) 

Pre-sample fixed effect  0.538 

(0.046) 

0.292 

(0.033) 

0.276 

(0.033) 

0.301 

(0.032) 

     IV 1st stage F-tests 

Ln(SPILLTECH)t-1     55.3 

Ln(SPILLSIC)t-1     15.0 

Firm fixed effects No Yes Yes Yes Yes 

No. Observations 9,023 9,023 9,023 9,023 9,023 



 

TABLE 5: COEFFICIENT ESTIMATES FOR THE PRODUCTION FUNCTION 

 

Dep. Var: Ln(sales) (1) (2) (3) (4) (5) 

Specification: OLS OLS OLS OLS IV 2nd Stage 

Distance measure Jaffe Jaffe Jaffe Mahalanobis Jaffe 

Ln(SPILLTECH)t-1 -0.022 

(0.009) 

0.191 

(0.046) 

0.186 

(0.045) 

0.264 

(0.064) 

0.206 

(0.081) 

Ln(SPILLSIC)t-1 -0.016 

(0.004) 

-0.005 

(0.011) 

 -0.007 

(0.021) 

0.030 

(0.054) 

Ln(Capital)t-1 0.288 

(0.009) 

0.154 

(0.012) 

0.153 

(0.012) 

0.156 

(0.012) 

0.152 

(0.012) 

Ln(Labor)t-1 0.644 

(0.012) 

0.636 

(0.015) 

0.636 

(0.015) 

0.637 

(0.015) 

0.639 

(0.016) 

Ln(R&D Stock)t-1 0.061 

(0.005) 

0.043 

(0.007) 

0.042 

(0.007) 

0.043 

(0.007) 

0.041 

(0.007) 

     

     First Stage F-Statistic 

Ln(SPILLTECH)t-1     112.4 

Ln(SPILLSIC)t-1     51.2 

Firm fixed effects  No Yes Yes Yes Yes 

No. Observations 9,935 9,935 9,935 9,935 9,935 

 

Notes: Dependent variable is ln(sales). Standard errors (in brackets) are robust to arbitrary heteroskedacity and allow for first order serial 

correlation using the Newey-West procedure. Industry price deflators are included and a dummy variable for observations where lagged R&D 

equals to zero. All columns include a full set of year dummies and controls for current and lagged industry sales in each firms’ output industry. 

Column (5) uses instrumental variable estimation. “1st stage F-tests” are the joint significance of the excluded tax-based instrumental variables 

(ln(TECHTAX) and ln(SICTAX)) from each first stage of the endogenous variables, ln(SPILLTECH) and ln(SPILLSIC). See Appendix B3 for 

details. 



 

TABLE 6: COEFFICIENT ESTIMATES FOR THE R&D EQUATION 

 

Dep Var: Ln(R&D/Sales): (1) (2) (3) (4) (5) 

Specification: OLS OLS OLS OLS IV 2nd Stage 

Distance Measure: Jaffe Jaffe Jaffe Mahalanobis Jaffe 

Ln(SPILLTECH)t-1 0.079 

(0.018) 

0.100 

(0.076) 

-0.049 

(0.042) 

-0.176 

(0.101) 

0.138 

(0.122) 

Ln(SPILLSIC)t-1 0.374 

(0.013) 

0.083 

(0.034) 

0.034 

(0.019) 

0.224 

(0.048) 

-0.022 

(0.071) 

Ln(R&D/Sales)t-1   0.681 

(0.015) 

  

     IV 1st stage F-tests 

Ln(SPILLTECH)t-1     190.7 

Ln(SPILLSIC)t-1     38.0 

Firm fixed effects No Yes No Yes Yes 

No. Observations 8,579 8,579 8,387 8,579 8,579 

 

Notes: Dependent variable is Ln(R&D/sales). Standard errors (in brackets) are robust to arbitrary heteroskedacity and serial correlation 

using Newey-West corrected standard errors. All columns include a full set of year dummies and controls for current and lagged industry 

sales in each firms’ output industry. Column (5) uses instrumental variable estimation. “1st stage F-tests” are the joint significance of the 

excluded tax-based instrumental variables (ln(TECHTAX) and ln(SICTAX)) from each first stage of the endogenous variables, 

ln(SPILLTECH) and ln(SPILLSIC). See Appendix B3 for details. In column (5) we also include the firm’s own R&D federal and state tax 

credit values.  



 

TABLE 7:  COMPARISON OF EMPIRICAL RESULTS TO MODEL WITH 

TECHNOLOGICAL SPILLOVERS AND PRODUCT MARKET RIVALRY 

 

 

(1) (2) (3) (4) (5) (6) (7) 

 Partial 

correlation 

 

Theory Empirics 

Jaffe 

Empirics 

Mahalanobis 

Empirics 

Jaffe, IV 

Consistency? 

∂V0/∂rτ Market value with 

SPILLTECH 

 

Positive 0.381** 0.903** 1.079*** Yes 

∂V0/∂rm Market value with 

SPILLSIC 

 

Negative -0.083** -0.136** -0.235** Yes 

∂k0/∂rτ Patents with 

SPILLTECH 

 

Positive 0.417** 0.530*** 0.407*** Yes 

∂k0/∂rm Patents with 

SPILLSIC 

 

Zero 0.043 0.053 0.037 Yes 

∂y0/∂rτ Productivity with 

SPILLTECH 

 

Positive 0.191** 0.264** 0.206** Yes 

∂y0/∂rm Productivity with 

SPILLSIC 

 

Zero -0.005 -0.007 0.030 Yes 

∂r0/∂rτ  R&D with 

SPILLTECH 

 

Ambiguous 0.100 -0.176* 0.138  

∂r0/∂rm R&D with 

SPILLSIC 

Ambiguous 0.083** 0.224** -0.022  

 

 

Notes: The theoretical predictions are for the case of technological spillovers. The empirical 

results are from the static fixed effects specifications for each of the dependent variables. ** 

denotes significance at the 5% level and * denotes significance at the 10% level (note that 

coefficients are as they appear in the relevant tables, not marginal effects).  

 



 

TABLE 8: ALTERNATIVE WAYS OF MEASURING SPILLOVERS 

 

A. Baseline (Summarized from Tables 3-6 above) 

 (1) (2) (3) (4) 

Dependent variable Tobin’s Q Cites  Real Sales R&D/Sales 

Ln(SPILLTECH)t-1 0.381 

(0.113) 

0.468 

(0.080) 

0.191 

(0.046) 

 0.100 

(0.076) 

Ln(SPILLSIC)t-1 -0.083 

(0.032) 

 0.056 

(0.037) 

 -0.005 

(0.011) 

0.083 

(0.034) 

Observations 9,944 9,023 9,935 8,579 

B. Spillovers based on Ellison-Glaeser co-agglomeration method 

Ln(SPILLTECHEG)t-1 0.961 

(0.181) 

0.123 

(0.562) 

0.179 

(0.073) 

-0.082 

(0.109) 

Ln(SPILLSICEG)t-1 -0.087 

(0.031) 

0.066 

(0.042) 

0.005 

(0.012) 

0.107 

(0.033) 

Observations 9,944 9,023 9,935 8,579 

C. Geographically based measure of spillovers  

Ln(SPILLTECHGEOG)t-1 1.314 

(0.176) 

0.037 

(0.053) 

0.117 

(0.066) 

 

Ln(SPILLTECH)t-1 -0.559 

(0.163) 

0.391 

(0.069) 

0.101 

(0.060) 

 

Ln(SPILLSICGEOG)t-1 0.110 

(0.078) 

  -0.041 

(0.094) 

Ln(SPILLSIC)t-1 -0.175 

(0.062) 

  0.135 

(0.086) 

Observations 9,944 9,122 10,018 8,579 

D. Spillovers based on Jaffe Covariance/Exposure distance metrics  

Ln(SPILLTECHJ-COV)t-1 0.282 

(0.102) 

0.470 

(0.084) 

0.142 

(0.041) 

0.096 

(0.068) 

Ln(SPILLSICJ-COV)t-1 -0.078 

(0.032) 

0.047 

(0.026) 

-0.006 

(0.012) 

0.084 

(0.035) 

Observations 9,944 9,023 9,949 8,579 

 

Notes: Panel A gives the baseline results: value equation in column (1) corresponds to Table 3 

column (2); patents equation in column (3) corresponds to Table 4 column (2); productivity 

equation in column (4) corresponds to Table 5 column (2) and R&D equation in column (3) 

corresponds to Table 6 column (2).  In Panel B TECH is measured by the coagglomeration index 

of Ellison and Glaeser (1997). Otherwise all specifications are the same as in Panel A. In Panel C 

the variable SPILLTECHGEOG uses the patenting distance weighting function between firms to 

scale their technology overlap. The variable SPILLSICGEOG uses the sales distance function 

between two firms to scale their product market overlap (see sub-section 6.2). The equations all 

use the preferred specifications from the main tables (i.e. column (1) corresponds to Table 3 

column (2); column (2) corresponds to Table 4 column (2); column (3) corresponds to Table 5 

column (3) and column (4) corresponds to Table 6 column (2). In Panel D we use the same 

specifications as Panel A except we substitute the Jaffe-Covariance index for both technology 

(SPILLTECHJ-COV) and product market spillovers (SPILLSICJ-COV), which is empirically identical 

to using the Exposure in our log-linear specification with ln(R&D) as an explanatory variable.    



 

TABLE 9:  PRIVATE AND SOCIAL RETURNS TO R&D 

 

 (1) (2) (3) (4) (5) (6) (7) 

Group of firms: Closeness 

measure 

Private 

return 

(%) 

Social 

return 

(%) 

Wedge 

Percentage 

points 

Median 

employees 

Avg. 

SIC 

Avg. 

TECH 

Closeness Measures  

1. All Jaffe 20.7 55.0 

 

34.3 3,000 0.015 0.038 

2. All Mahalanobis 27.6 73.7 46.1 3,000 0.030 0.174 

3. All 

Size splits 

Jaffe, IV 39.3 59.4 

 

20.1 3,000 0.015 0.038 

4. Largest size quartile Jaffe 21.1 67.1 46.0 29,700 0.015 0.054 

5. Second size quartile Jaffe 20.5 55.0 34.5 5,900 0.012 0.037 

6. Third size quartile Jaffe 20.7 50.8 30.1 1,680 0.016 0.033 

7. Smallest size quartile 

 

Jaffe 20.6 47.3 26.6 370 0.018 0.029 

 

Notes: Numbers simulated across all firms in our sample with non-zero R&D capital stocks. We 

use our “preferred” systems of equations and coefficients as in Table 7. Details of calculations are 

in Appendix E. Columns (2) and (3) contain the private and social returns to a marginal $ of R&D 

and column (4) contains the absolute difference between columns (2) and (3). Column (5) reports 

the median number of employees in each group, and in the last two columns report the average 

closeness measure between firms in product market space (SIC) and the average closeness 

measure in technology space (TECH). The first row calculates the private and social returns for 

the baseline estimates using exogenous R&D and the Jaffe based measures of distance (column 

(4) Table 7). The second row recalculates this for firms using the Mahalanobis distance measure 

(column (5) Table 7). The third and fourth rows recalculates this using the Jaffe and Mahalanobis 

closeness measures with the tax credit instruments for firm-level R&D (columns (6) and (7) Table 

7). The next four rows recalculate these figures for firms based on their position in the 

employment size quartiles.  



 

 

TABLE 10: DESIRABLE PROPERTIES OF DISTANCE MEASURES 

 

Name Definition of 

TECHij 

Economic 

Micro-

Foundations 

Invariance 

to re-

scaling 

Within 

Field 

Overlap 

Between 

Field 

Overlap 

Non-

Overlapping 

Fields 

Invariance to 

aggregation 

over non-

active fields 

Robustness to 

aggregation of 

active Fields 

  EMF SCALE WFO BFO NOF AGG ROB 

         

Jaffe /

i j

i j

F F

F F
  X X   X X 

         

Mahalanobis /

i j

i j

F F

F F


  X X X  X X 

         

Jaffe – 

Covariance 

/

i jF F   X X  X X  

         

Exposure 
/

i j iF F n  X Xa X  X X  

         

Ellison – 

Glaeser 

coagglomeration 2

( )( )

1

i js x s x

x

   





 






 X X X     

Notes: The table compares the desirable theoretical properties of distance metrics as discussed in Section 7. Note that in constructing SPILLTECH 

the TECH measure is multiplied by the R&D stock of firm j and then summed across all j. Fi denotes the vector of the shares of firm i’s patenting in 

different technology fields, and Ώ is the Mahalanobis matrix summarizing the co-location of technology fields. An “X” denotes that the distance 

measure has the indicated property whereas a blank indicates that it does not. 
a Although the Exposure index does not satisfy SCALE in a levels specifications, it does satisfy SCALE in a log specification (as in this paper). 



 

APPENDIX TABLES 

 

TABLE A1: AN EXAMPLE OF SPILLTEC AND SPILLSIC FOR FOUR MAJOR FIRMS 

 

 Correlation IBM Apple Motorola Intel 

IBM SIC Compustat 

SIC BVD 

TECH  

1 

1 

1 

0.65 

0.55 

0.64 

0.01 

0.02 

0.46 

0.01 

0.07 

0.76 

Apple SIC Compustat 

SIC BVD 

TECH 

 1 

1 

1 

0.02 

0.01 

0.17 

0.00 

0.03 

0.47 

Motorola SIC Compustat 

SIC BVD 

TECH 

  1 

1 

1 

0.34 

0.47 

0.46 

Intel SIC Compustat 

SIC BVD 

TECH 

   1 

1 

1 

 

Notes: The cell entries are the values of SICij = (Si S’j)/[(Si Si’)
1/2(Sj S’ j)

1/2] (in normal script) 

using the Compustat Line of Business sales breakdown (“SIC Compustat”) and the Bureau Van 

Dijk database (“SIC BVD”), and TECHij = (Ti T’j)/[(Ti Ti’)
1/2(Tj T’ j)

1/2] (in bold italics) between 

these pairs of firms. 

 

 

TABLE A2: PREDICTING R&D USING FEDERAL AND STATE R&D TAX CREDITS 

 

 (1) (2) (3) 

Dependent variable: Ln(R&D) Ln(R&D) Ln(R&D) 

    

    

Ln(State Tax Credit component 

 of R&D user costi,t) 

-3.828 

(0.265) 

-4.250 

(0.204) 

-0.398 

(0.174) 

Ln(Federal Tax Credit component 

 of R&D user costi,t) 

-1.672 

(0.231) 

-0.387 

(0.114) 

-0.440 

(0.085) 

    

Firm fixed effects No Yes Yes 

Year dummies No No Yes 

Joint F-test  of the tax credits  137.15 304.56 16.28 

No. Observations 14,971 14,971 14,971 

 

Notes: Standard errors (in brackets) are robust to arbitrary heteroskedacity and allow for first 

order serial correlation using the Newey-West procedure. 



 

TABLE A3: ALTERNATIVE CONSTRUCTION OF SPILLOVER VARIABLES 

A. Baseline (Summarized from Tables 3-6 above) 

 (1) (2) (3) (4) 

Dependent variable Tobin’s Q Cites  Real Sales R&D/Sales 

Ln(SPILLTECH)t-1 0.381 

(0.113) 

0.468 

(0.080) 

0.191 

(0.046) 

 0.100 

(0.076) 

Ln(SPILLSIC)t-1 -0.083 

(0.032) 

 0.056 

(0.037) 

 -0.005 

(0.011) 

0.083 

(0.034) 

Observations 9,944 9,023 9,935 8,579 

B. Constructing SPILLSIC based on BVD industries instead of Compustat
 

Ln(SPILLTECH)t-1 0.313 

(0.108) 

0.482 

(0.093) 

0.100 

(0.052) 

0.056 

(0.078) 

Ln(SPILLSIC)t-1 -0.063 

(0.034) 

0.057 

(0.029) 

0.000 

(0.014) 

0.142 

(0.034) 

Observations 7,269 6,696 7,364 6,445 

C. Alternative Based on SPILLTECH
  
(see Thompson and Fox-Kean, 2005) 

Ln(SPILLTECH)t-1 0.105 

(0.062) 

0.434 

(0.054) 

0.059 

(0.025) 

 0.023 

(0.029) 

Ln(SPILLSIC)t-1 -0.063 

(0.033) 

 0.028 

(0.039) 

 0.002 

(0.013) 

0.021 

(0.019) 

Observations 9,848 8,932 9,913 8,386 

D. Using firm pairs with (SIC<0.1 and/or TEC<0.1) 

Ln(SPILLTECH
*
)t-1 0.135 

(0.109) 

0.416 

(0.070) 

0.108 

(0.044) 

0.044 

(0.073) 

Ln(SPILLSIC
*
)t-1 -0.060 

(0.032) 

0.054 

(0.036) 

0.004 

(0.012) 

0.093 

(0.033) 

Observations 9,944 9,023 9,935 8,579 

Notes: Value equation in column (1) corresponds to Table 3 column (2); the patents equation in column (2) corresponds to the Table 4 column (2); 

the productivity equation in column (4) corresponds to Table 5 column (2) and the R&D equation in column (3) corresponds to the Table 6 column 

(2).  Panel A summarizes results in Tables 3-6. Panel B uses the alternative method of constructing SPILLSIC based on BVD data (see Appendix 

B.5).  Panel C uses a more disaggregated version of technology classes, SPILLTECH
TFK

, as suggested by Thompson and Fox-Kean, 

2005). In Panel D TECH and SIC are replaced with the value 0 for any pair of firms in which both TECH and SIC are above 0.1. 
Otherwise all specifications are the same as in Panel A.  



 

TABLE A4: ECONOMETRIC RESULTS FOR SPECIFIC HIGH TECH INDUSTRIES 

 

A. Computer Hardware  

 (1) (2) (3) (4) 

Dependent variable Tobin’s Q Cite-weighted patents Real Sales R&D/Sales 

Ln(SPILLTECH)t-1 1.884 

(0.623) 

0.588 

(0.300) 

0.398 

(0.221) 

-0.462 

(0.220) 

Ln(SPILLSIC)t-1 -0.471 

(0.157) 

0.055 

(0.813) 

-0.000 

(0.111) 

0.317 

(0.107) 

Observations 358 277 343 395 

 

B. Pharmaceuticals 

 (1) (2) (3) (4) 

Dependent variable Tobin’s Q Cite-weighted patents Real Sales R&D/Sales 

Ln(SPILLTECH)t-1 2.126 

(0.735) 

1.833 

(0.861) 

0.981 

(0.273) 

-0.733 

(0.448) 

Ln(SPILLSIC)t-1 -1.615 

(0.649) 

-0.050 

(0.312) 

-0.669 

(0.329) 

 1.266 

(0.567) 

Observations 334 265 313 381 

   

C. Telecommunication Equipment  

 (1) (2) (3) (4) 

Dependent variable Tobin’s Q Cite-weighted patents Real Sales R&D/Sales 

Ln(SPILLTECH)t-1 1.509 

(0.840) 

1.401 

(0.666) 

0.789 

(0.292) 

0.721 

(0.327) 

Ln(SPILLSIC)t-1 -0.125 

(0.456) 

0.016 

(0.378) 

0.095 

(0.169) 

-0.006 

(0.128) 

Observations 405 353 390 450 

Notes: Each Panel (A, B, C) contains the results from estimating the model on the specified separate industries (see Appendix B for exact details). 

Each column corresponds to a separate equation for the industries specified. The regression specification is the most general one used in the 

pooled regressions. Tobin’s Q (column (1)) corresponds to the specification in column (2) of Table 3; Cite-weighted patents (column (2)) 

correspond to column (2) of Table 4; real sales in column (3) corresponds to column (2) of Table 5; R&D/Sales (column (4)) corresponds to 

column (2) of Table 6.  
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