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Abstract

Epidemic data often possess certain characteristics, such as the
presence of many zeros, the spatial nature of the disease spread mech-
anism, environmental noise, serial correlation and dependence on time
varying factors. This paper addresses these issues via suitable Bayesian
modelling. In doing so we utilise a general class of stochastic regres-
sion models appropriate for spatio-temporal count data with an excess
number of zeros. The developed regression framework does incorpo-
rate serial correlation and time varying covariates through an Ornstein
Uhlenbeck process formulation. In addition, we explore the effect of
different priors, including default options and variations of mixtures
of g-priors. The effect of different distance kernels for the epidemic
model component is investigated. We proceed by developing branch-
ing process-based methods for testing scenarios for disease control,
thus linking traditional epidemiological models with stochastic epi-
demic processes, useful in policy-focused decision making. The ap-
proach is illustrated with an application to a sheep pox dataset from
the Evros region, Greece.
Keywords: Bayesian modelling; Bayesian variable selection; Branch-
ing process; Epidemic Extinction; g-prior; Spatial kernel; Disease con-
trol.

1 Introduction

Infectious disease outbreaks can have devastating consequences both from
the societal and economic perspective. In the present paper we develop
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suitable methodology for epidemic spatio-temporal data. Specifically, we
extend previous analyses (e.g. [1]), by addressing several important aspects
of epidemic modelling. In addition, we provide an epidemic interpretation of
our modelling approach, thus linking epidemiological models with stochastic
epidemic processes, useful in policy-focused decision making.

Our modelling framework accommodates a number of features: First,
we make use of spatial information related to the location of the infected
premises. Specifically, we incorporate the spatial coordinates of each infected
farm, allowing for the probability of infection between farms to depend upon
their distance. A number of spatial transmission kernels are fitted to the
spatio-temporal data using Bayesian methods and an extended investigation
of their relative importance is performed. Second, we model the inherent
serial correlation of the data generating mechanism via a latent Ornstein
Uhlenbeck (OU) process evolving around a mean which is regressed upon a
number of covariates, including the spatial transmission kernels. The mean of
the OU process is allowed to vary across time, adapting to the changes of its
predictors. Third, we investigate one of the basic model selection problems
in Bayesian regression-type modeling, namely the one of covariate selection.
Various methods have been proposed in order to deal with this task. Here
we tackle this issue by implementing recently developed variable selection
approaches based on hyper-g prior distributions [2] using Gibbs-based vari-
able selection (e.g. [3]). The covariate selection component appears to have
received limited attention in the infectious disease literature. In addition to
proposing a flexible continuous-time model, suitable for a wide variety of real
surveillance data, we describe a simulation-based estimate of the extinction
probability which could be of direct use to policy makers. For inference pur-
poses, we generally resort to Markov chain Monte Carlo (MCMC) simulation
methods which offer flexibility in the ability to fit complex models of the kind
entertained in this paper.

Sheep pox is a highly contagious viral infection that can have devastating
consequences [4]. The proposed methodology is applied to a historical dataset
described in detail in section 4. To avoid uncertainties related to the exact
day of infection - estimated by the local authorities from the clinical signs
of the disease - we analyze the aggregated weekly counts of infection. The
latter approach shares certain advantages;

a) We avoid part of the measurement error.

b) By creating the (artificial) extra zeros we can infer which factors (e.g.
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environmental) assist in creating a disease-free environment through
the covariates linked to the excess zeros.

c) Our model may be of use in a number of instances since data of this
type are commonplace, for instance in typical surveillance systems.

Note however that the modeling framework provided in this paper is spec-
ified in continuous time and can be used even if the data are not aggregated.
The continuous time formulation provides additional advantages such as the
ability to forecast, interpret and aggregate on different time scales, utilise in-
formation observed at different frequencies, allow for delayed impact of time
varying covariates etc. Moreover, for the specific application considered here
and the case of aggregated counts, it is possible to extract a discrete-time
model with complexity that is comparable to standard time series models.
Details are provided in the next section.

The data are presented in detail in [5] where a preliminary analysis showed
strong support for the Poisson and zero inflated Poisson (ZIP)-based mod-
els as opposed to those based on the negative binomial distribution. Hence,
in this paper we focus upon the Poisson and ZIP specifications. The fol-
lowing section contains the model formulation while section 3 presents the
connection of this class of models with stochastic epidemics, a useful tool for
disease control. Section 4 illustrates the results of the analysis and section 5
concludes with some discussion.

2 Bayesian modelling

2.1 Spatio-temporal model

Our response variable consists of 260 weekly observations (infected farms)
spanning over a time interval of 5 years. Time is measured in weeks and
we let ti, i ∈ {0, 1, . . . , 259} correspond to the time after the i-th week. The
response vector y = {yi ; i = 0, . . . , 259} is also ordered chronologically where
each yi denote the number of sheep pox cases at ti.

In what follows, the modelling framework is first presented in continuous
time and then, given that the data appear in weeks, we extract its form in
discrete time. The fitted models are special cases of the specification scheme
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described by:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yi ∼ g(yi|Λi, pi)

g(yi|Λi, pi) = piI{yi=0} + (1− pi)f(yi|Λi)

Λi =
∫ ti
ti−1

exp(λs)ds

dλt = φ(λt − µt)dt+ dBt

(1)

where Bt denotes standard Brownian motion, and µt is the piecewise constant
deterministic process:

µt =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

µ(0) if 0 ≤ t < t1
µ(1) if t1 ≤ t < t2
...

µ(259) if t259 ≤ t < t260

where each µ(i) corresponding to ti ≤ t < ti+1, i = 0, 1, . . . , 259, is given by

µ(i) = X(i)β + bi +K
(
di,ΘK

)
,

where X(i)β + bi is a component comprising of endemic/epidemic covariates
and K

(
di,ΘK

)
is the rate at which infection is transmitted from an infected

farm to a susceptible farm, made precise in (5). Moreover, I{yi=0} is an
indicator variable denoting whether the response is positive or not, θi is
the instantaneous rate of the process at the i-th time point, pi denotes the
proportion of excess zeros for ti and β is a vector of dimension dim(β) with
the coefficients of the fixed-effects covariates; the corresponding covariate
values for ti are denoted by the row vector X(i), also of dimension dim(β).

Note that the diffusion path integral
∫ ti
ti−1

exp(λs)ds does not have a closed

form solution and therefore the model in (1) is intractable. One option is
to adopt a data augmentation scheme, introducing a fine partition to the
path of λt in the spirit of [6]. An alternative is to proceed via the following
approximation:

∫ ti

ti−1

exp(λs)ds ≈ (exp(λti−1) + exp(λti))δi/2, δi = ti − ti−1.

The former option offers the benefit of controlling the approximation er-
ror due to time discretisation. Nevertheless, this comes at the expense of a
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substantial increase in the computational cost and complexity of the imple-
mentation algorithm. Hence, we proceed by adopting the latter approxima-
tion.

In our dataset dim(β) = 10, and therefore β=(β0, β1, β2, β3, ..., β9)T is the
vector of regression coefficients for the intercept (β0), the covariates describ-
ing the number of villages infected in the previous week (β1), rainfall (β2),
average temperature (β3), maximum temperature (β4), minimum tempera-
ture (β5), average humidity (β6) and seasonal effects: spring (β7), summer
(β8), autumn (β9). In addition, ΘK is the parameter vector of the transmis-
sion kernel function K(·) and bi reflects independent yearly random effects
with b = (b0, b1, b2, b3, b4)T . Note that Poisson regression is recovered when
pi = 0 and f denotes the Poisson probability mass function.

The instantaneous λt is an OU process evolving around µt, which in turn
is determined by the potentially time varying covariates X(i). Its transition
density is available in closed form allowing us to write (for all i)

λti+1 |λti ∼ N

(
µ(i) +

(
λti − µ(i)

)
e−φδi ,

1− e−2φδi

2φ

)
. (2)

The OU process reflecting λt need not be stationary. In fact, every change in
the covariates provides a shock to the system, to which the latent process λt

adapts through a transient OU process with rate of convergence driven by the
parameter φ. Large values of φ imply that the effect of the covariates on λt is
imminent, whereas values close to zero point towards a delayed impact. This
formulation is therefore substantially different than that of [1] and [7],under
which the model would have been written as

⎧
⎪⎨

⎪⎩

yi ∼ g(yi|λi, pi)

g(yi|λi, pi) = piI{yi=0} + (1− pi)f(yi|λti)

λti = µ(i) + θ1λti−1 + ϵti ,

(3)

where ϵti is modeled via a stationary, zero mean, OU process in the spirit
of [8]. In fact, the model in (1) may actually be seen as the model used
in [9], adapted to the context of this paper. Comparisons between the two
approaches can be found in the supplementary material Table S3 support-
ing the non-stationary version for the particular application of this paper.
Overall, this OU formulation has the following features:

a) Its mean reverting nature is essential in order to capture the effect of the
several time-varying predictors, such as the spatial transmission kernels
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and climate effects, and introduce serial correlation. For example an
increase in the temperature will result in an increase of µ(i) which,
according to (2), is the mean of the intensity process as time increases.
Hence, the intensity process will adapt to the increased temperature at
a rate controlled by the parameter φ. Note that this is not the case for
the model in (3) where µ(i) is the constant in the AR(1) equation.

b) As δi or φ increases we get that λti+1 |λti ∼ N
(
µ(i), (2φ)−1

)
, in other

words the autoregressive part vanishes and the λti ’s become indepen-
dent with finite variance.

c) It introduces an additional source of variability that can be linked with
the inherent environmental noise of the system or it can also absorb
potential model mis-specification.

d) As it is based on a continuous time process, it can be used to different
types of datasets; e.g. irregularly spaced observations.

e) Finally, incorporating the above aspects comes at no additional com-
plexity in terms of computation or implementation since the presence
of a tractable solution simplifies the calculations significantly. In fact,
the amount of complexity is comparable to using an AR(1) model.

An inherent feature of epidemic data - such as those analyzed here - is
the excessive number of zero counts (excess zeros). This is often due to
endemic conditions or diseases that are hard to detect. To account for this,
we now complete our model formulation by using a similar structure for the
zero-inflation probability pi as the one for λi in (1), writing

log

(
pi

1− pi

)
= X(i)β

z + bzti +K(di,Θ
z
K) ; (4)

where the superscript z denotes the parameters used for modeling the zero-
inflation probability with similar role as β, bti , ΘK , respectively. The latter
equation for pi involves a Kernel K, as was done with the positive response
part, anticipating here a negative association with the probability of zero
cases occurring as time increases from the latest infection.
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2.1.1 Spatial kernels

The literature contains several attempts to capture the spatial structure of
transmission of an animal disease, including foot-and-mouth disease (FMD)
which had economically devastating consequences to livestock [10]. Thus, the
use of simulation modeling for estimating the spread of highly contagious live-
stock diseases and for conducting risk assessment for various control measures
has become common in recent years (e.g. [11], [12], [13]).

The K
(
di,ΘK

)
term is an infection kernel used to model the spatial com-

ponent of disease propagation, where di = {dkℓ : k ∈ Si, ℓ ∈ Ii−j}, is the
set of all the Euclidean distances between uninfected farms k ∈ Si at time i
and previously infected farms ℓ ∈ Ii−j within the typical incubation period
for sheep pox. Here, Si and Ii denote, respectively, the set of susceptible
and infected farms at time point i. The Euclidean distance dkℓ is calculated
by dkℓ =

√
(uk − ul)2 + (vk − vl)2 with (uk, vk) denoting the geographical

coordinates of farm k measured in kms according to global positioning sys-
tem (GPS). The geographical coordinates were then used for calculating the
matrix containing all pairwise distances.

We model this risk factor as a parametric function assuming a 3-week
incubation period [14] by including kernels, K(·), of the form:

K
(
di,ΘK

)
=

⎧
⎪⎨

⎪⎩

1
|di|

∑
k∈Si

∑
ℓ∈Ii−j

K(dkℓ,ΘK) if at least one yi−j > 0 (j = 1, 2, 3)

K(dmin,ΘK

)
if all yi−j = 0 (j = 1, 2, 3)

(5)

where |di| is the cardinality of di.
The pre-specified constant dmin denotes the minimum distance beyond

which infections cannot occur (see, e.g., [15]). In our analysis we set dmin =
250km, a distance sufficiently higher than the largest observed distance of 69
kms occurred in the Evros prefecture. For specifying the transmission kernel
we have resorted to a variety (see Table 1) of relevant functions.

Table 1 near here

Note that the term di depends on yi−j (j = 1, 2, 3); i.e. the presence
of many infections will affect the average distances between infected farms.
However, if the ΘK parameters (a, b, c) are restricted on the positive real
line, K

(
·
)
is decreasing in dkℓ and therefore on di, hence K

(
·
)
is bounded
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above. This ensures that the model is well defined and doesn’t explode. In
continuous time this is due to the fact that the stochastic differential equation
for λt, and therefore also θt, has a unique weak solution for all yi; typically
this requires the drift and volatility function to be locally Lipschitz and with
a linear growth bound. In discrete time one can note that the model is very
similar to the class of models considered in ([16], equation 11) that are known
to be geometrically ergodic for φ > 0.

Figure S5 near here

A graphical illustration of the model assumptions is depicted in Figure
S5 via a schematic representation of the proposed model.

2.1.2 Intensity Decomposition

An interesting interpretation of such models can be found in [17] and refer-
ences therein where the model components are appropriately split, disentan-
gling the epidemic and endemic aspects of disease dynamics. In particular,
one can imagine that environmental and seasonal covariate information (i.e.
rainfall, average temperature, maximum temperature, minimum tempera-
ture, average humidity and seasonal effects) may well relate to the endemic
part of the disease while farm-to-farm contacts as described by the spatial
component K

(
di,ΘK

)
and the covariate of the number of villages infected

in the previous week are concerned with epidemic spread. Our model can
naturally be adapted to this framework via an additive decomposition of µt,
the mean driving the instantaneous log rate of infection λt. The trajectory
of µt can be split into its endemic and epidemic parts as follows:

µt = Θendemic +Θepidemic

where Θendemic (Θepidemic) denotes the time-dependent endemic (epidemic)
component.

This decomposition enhances our ability to inform control strategies since
a large epidemic component (relative to the endemic component) would sug-
gest imposing restrictions associated with the spatial allocation of farm struc-
ture in the region of interest, whereas the opposite results may indicate that
most of infections are due to external factors and thus are less sensitive to
such control measures [18].
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2.2 The variable selection component

The variable selection problem arises naturally when one wishes to simplify
the model structure by eliminating predictors with negligible effects; see [19]
for a review.

Here, we are interested to identify important effects and eliminate non-
significant covariates both for reasons of interpretation and prediction. When
variable selection is ignored, it is common to experience the well known
problems of using over-fitted models; see, for example, in [20] (Section 5.1)
for details.

Bayesian variable selection typically involves the introduction of a vector
of binary indicators γ ∈ {0, 1}dim(β) which contains each possible combination
of covariates to be included in the model. Then, MCMC methodology can
be used to estimate the posterior distribution of γ. The exploratory results
of [5] suggest that only a few of the variables under consideration, such as
the number of villages infected in the previous week and certain meteorolog-
ical/environmental variables should be included in the final model.

2.2.1 Hyper g-prior setup.

In the present analysis, we use the hyper-g prior introduced by [2] and imple-
mented by [21] in generalized linear models (GLMs). Over the last decade,
hyper-g priors [2] have become a common approach for comparing and aver-
aging models within the Bayesian framework due to several reasons. First,
the hyper-g prior is a natural descendant of the classic Zellner’s (1986) g-
prior approach [23] inheriting also its important properties — for example
the g-prior leads to BIC-based variable selection and also has an intuitive
interpretation based on the use of additional imaginary data points from the
null model weighted by the dispersion parameter g. The idea of the hyper-
g prior is relatively simple. We introduce an additional hierarchical level
to the model formulation by specifying a prior on the shrinkage parameter
g/(g + 1). Then we estimate the dispersion parameter g (which is responsi-
ble for the sensitivity of posterior model probabilities and Lindley-Bartlett
paradox [24–26]) by the resulting posterior distribution. The induced proce-
dure leads to a default Bayesian method which is robust over a wide range
of values of the hyper-parameters. Moreover, it has been proven to posses
important consistency properties such as model selection consistency (poste-
rior probability of the true model goes to one as the sample size increases),
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information consistency (posterior probability of the true model goes to one
as the error variance reduces) and prediction consistency (the posterior mode
of the predicted values converge to the true expected predicted values as the
sample size increases). These desirable properties, along with the simple
computation within the regression framework, have established the method
as a common approach for Bayesian variable selection and averaging.

In our implementation, all covariates are first centered. Moreover, follow-
ing [22], we consider a slightly modified version of the hyper-g prior which
depends on the intercept β0, that is:

f(β\0|β0, σ
2) ∼ Normal

(
0, geβ0(XT

\0X\0)
−1
)
, (6)

f(β0) ∼ Normal(0, 104), and
g

1 + g
∼ Beta

(
1,

α

2
− 1

)
.

where β\0 is the vector β excluding β0, X\0 is the data matrix X without the
column that corresponds to the intercept β0 and eβ0 denotes a rough estimate
of λi under the above prior setup. This prior can be seen as the power prior
of [24] for the parameters β\0 conditioned upon the constant β0 and setting
the power equal to g. In the power prior setup, if we assume responses equal
to eβ0 (which corresponds to the expected value under the null model) and
covariates with values equal to the observed ones, then this prior accounts
for n/g additional data points from the null model.

The above hyper g-prior is slightly modified from the original version in
the sense that the covariate effects a-priori depend on the constant parameter.
By this way, the corresponding power-prior interpretation is more sensible
since we assume that all data are equal (fully supporting the constant model)
but without any specific value to be chosen a-priori (in contrast to [22] who
proposed to choose the zero value).

Hence, hyper-parameter g controls the weight of the data in the posterior
distribution. Following [2], we use a Beta hyper-prior for the shrinkage weight
g/(g + 1) which introduces an additional hierarchical layer in our model
enabling us to estimate its posterior distribution by using information from
the data. This approach avoids sensitivity problems created with the direct
specification of g and has better consistency properties than the usual g-prior
[2].

We primarily focus on the hyper-g prior using the value α = 4 which
corresponds to the uniform prior on the shrinkage parameter but, as we
demonstrate later in the paper, the results are fairly robust for different
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choices of α ∈ (2, 4]. The same hyper-g prior structure has been considered
for the covariate effects βz of the zero-inflation probability component pi.

2.2.2 Implementation details, sensitivity and comparisons.

Bayesian variable selection is notorious for its sensitivity to the choice of
prior, particularly the prior variances of β or its multiplier g in (6). This
is due to the well known Bartlett-Lindley paradox; see for details in [25]
and [26]. To this end, we have performed a number of comparisons and
sensitivity analyses to test for the robustness of our results. Specifically, we
have compared our results with the Zellner’s g-prior [23] with g = n and
g = p2 denoted as ZG(n) and ZG(p2), respectively; n is the sample size and
p the number of covariates. The prior distribution for the vector of covariate
parameters under the Zellner’s g prior approach involve the multivariate
Gaussian distribution, with zero-mean vector and a prior variance of the form:
g
τ (X

TX)−1, where τ is a precision parameter. Additionally, an empirical
normal prior with an approximate unit information interpretation was used
(denoted by EUI).

Concerning the comparison with other priors, the ZG(n) can be thought
as the default choice in Bayesian variable selection since it has a unit in-
formation interpretation and its results correspond asymptotically to those
obtained via BIC [27]. Following the modification of [2], and in order to
have prior structure equivalent to the hyper-g prior, we use (6) with g = n.
Similarly, we have also considered as an alternative the (modified) Zellner’s
g-prior (6) with g = p2 which corresponds to the risk inflation criterion of
[28]; see also [29] for a related comment.

The empirical independent prior with approximate unit interpretation
(EUI) suggested by [30] is used as a rough yardstick. It is comprised by
independent normal prior distributions for each βj, i.e. βj ∼ N(0, nσ2

βj
) with

σβj set to the posterior standard deviation of each βj of the full model with
flat priors. This setup obviously uses information from the data to specify
the prior variance but its multiplication with the sample size n makes this
effect minimal and approximately equivalent to one data-point in a similar
manner to the g = n choice.

Finally, for the hyper-g hyper-prior, we perform variable selection using
a variety of values for hyper-parameter α and we graphically examine the
robustness of the posterior inclusion probabilities for each covariate. We
expect that results will be robust as previously reported by [31].
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2.2.3 Prior distribution on model space.

Concerning the prior specification of model indicators γ, we primarily use
the uniform prior on model space with γj ∼ Bernoulli(0.5). We also compare
our results with the recently used beta-binomial prior on the model space
where γj ∼ Bernoulli(p) with p ∼ Beta(1, 1); see for example [32]. The latter
is very useful in large scale problems (with large p) due to its shrinkage effect
yielding parsimonious model structures. Moreover, it allows for additional
prior variability and robustness [33].

2.2.4 Prior specification for the remaining parameters.

For the ΘK parameters, a weakly informative normal prior with zero mean
and large variance (equal to 104) was used. Random yearly effects are as-
sumed to follow a N(0, σ2

b ) density with σb ∼ U(0, 100). Regarding the priors
on φ and the kernel parameters ΘK = (α, b, c), they are all half normals with
large variances and therefore less likely to have an impact on the results.
Specifically for the ΘK parameters, the restriction on the positive real line
ensures the well-definition of the model. Other non-informative priors have
been also tested for σb giving similar results, indicating the robustness of
different priors on the standard deviation of the random effects.

3 Epidemic control

This section is concerned with the connection of our model, which can be
seen as a typical epidemiological model, to stochastic epidemic models, often
considered as invaluable tools for disease control. One of the primary objec-
tives of modelling the spread of an infectious disease is the ability to evaluate
disease severity through key measures such as its reproduction number R0,
often interpreted as the average number of infections produced by a single
infective during their infectious period. This facilitates for disease control via
appropriate prophylactic measures. Specifically, one can evaluate the corre-
sponding extinction probability q as well as the effect of control strategies in
achieving the sine qua non target of reducing R0 below unity, thus securing
that major outbreaks cannot occur. Here, we link our models to stochastic
epidemics via considering the corresponding branching process [34]. Subse-
quently we exploit this connection by exploring alternative, covariate-based,
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scenarios for the probability of hypothetical sheep pox outbreaks going ex-
tinct in the region of Evros.

A branching process represents an accurate approximation to a stochastic
epidemic model (i) at the early stages of an outbreak when the number of
infected individuals is much smaller than the population size and (ii) at the
onset of disease re-emergence in the context of endemic diseases. Assuming
constant offspring mean ξ is probably reasonable in these two scenarios. Note
that our epidemic model does not assume independent disease reproduction
as do the branching process models. However, the coupling of the two models
appears reasonable in the two scenarios given above and can be made rigorous
using techniques described in [35].

A general family for the offspring distribution Z of branching processes
is given by the power series family where:

P (Z = r) = αr
ξr

A(ξ)
, A(ξ) =

∞∑

r=0

αrξ
r,

with ξ = exp(λ) being the canonical parameter and αr ≥ 0. Then the
probability, q(ξ), of an epidemic going extinct is the smallest non-trivial root
in the interval [0,1] of the equation:

A(qξ) = qA(ξ), (7)

see for example [36] and [37]. For αr = (r!)−1 we obtain the Poisson distri-
bution whence q(ξ) can be numerically calculated as the smallest non-trivial
root of exp(qξ) = q exp(ξ).

We proceed by exploring the effect of particular covariates upon q(ξ). In
particular, we utilise three distinct values for each covariate (minimum, me-
dian and maximum) keeping the other covariates fixed at their median values
and for each covariate combination we simulate from the posterior density of
q(ξ) by sampling from the posterior of the β’s and solving exp(qξ) = q exp(ξ)
for each set of samples. Regarding the spatial kernel term, we keep the best
selected spatial kernel term as was chosen among the candidate functions
of Table 1, fixed at the median distance between the susceptible and the
previously infected farms. In addition, the random yearly effects term was
kept at its mean level. Note that by using the posterior output we preserve
the correlation structure of the posterior density, an important aspect when
estimating non-linear functionals such as q(ξ). For the ZIP model where
E(Yi) = (1− p)ξ + p · 0 it is possible for non-negligible p to have a scenario
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where solving (7) results in a q such that q(ξ)+p > 1. We truncate such values
by adjusting the extinction probability via Pr(extinction) = 1 ∧ (q(ξ) + p).

We also use a recent result due to [38] to estimate the expected time, say
E(AQ), the outbreak has Q infected farms via:

E(AQ) =
ξQ−1

Q(1 ∨ ξ)Q
, Q = 1, 2, ...

This gives a somewhat complementary measure of disease propagation which
must be interpreted with respect to the length of the incubation period. The
following section illustrates the application of the model and the control
methods to real data.

4 Application to sheep pox data

The data refer to the sheep pox epidemic in the Evros Prefecture of North-
eastern Greece, made available by the Veterinary Directorate of N. Evros
Prefecture (VDNEP). The epidemic began on December 1994 and ended in
December 1998, infecting 249 premises. The overall number of dead animals
was approximately 35, 500. The data comprised of temporal information such
as the day of culling, daily records of infected herds, detection time of the
virus and the putative infection time. The virological tests used for sheep
pox detection were PCR and ELISA. For the purposes of our analysis, a case
is a herd infected with sheep pox virus, i.e. a farm for which there is at least
one infected animal during a particular week. Table S1 in the supplement
presents the aggregated monthly number of sheep pox cases during the 1994-
98 period in the Evros Prefecture, Greece. We first illustrate the variable
selection procedure through detailed comparisons and extensive sensitivity
analyses (Section 4.1.1). Then we investigate the form of the spatial kernels
(Section 4.1.2). Having selected our model, we disentangle the endemic and
epidemic components in Section 4.2 and estimate the extinction probabilities
under several covariate scenarios in Section 4.3.

4.1 Model building and choice of variables

For all MCMC runs we used an output of ten thousand iterations produced
from chains with total length equal to 105,000 iterations and after using a
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burn-in of 5,000 and a thinning lag of 10 iterations. The analyses were con-
ducted using the WinBUGS software ([39]). The codes and data are available
in http://utopia.duth.gr/malesios/ARTICLES/code.pdf. The comparison of
the spatial kernels was based upon the mean deviance (D) due to the well-
known asymptotic equivalence of AIC (and DIC) with cross-validation in
model selection ([40]).

In the following analysis, we compared various models in order to assess
the impact of spatial kernels and the Struthers and McLeish-like OU struc-
ture [9]. Specifically, the introduction of the spatial component results in a
substantially improved fit reducing the mean deviance from 336.9 to levels
ranging from 255.5 to 265.5 depending on the choice of kernel. The adopted
OU structure of (1) also results in improved fit compared to Taylor-based
alternatives as in (3) where the corresponding mean deviance is around 300;
see also Table S3 of the supplementary material. As discussed in Section 2.1
the main difference between the two types of models is that the one of this
paper allows for a delayed effect, which is estimated by the data, at which
the covariates affect the mean of the intensity process. Hence. in our view,
this seems to be the most plausible explanation for the improved fit. In what
follows, we present more details for each modelling component.

4.1.1 Covariate selection.

The posterior inclusion probabilities of each covariate for the ZIP model
under the hyper-g prior specification with α = 4 are summarized in Table 2.

Table 2 near here

These results are obtained using the uniform prior on model space, how-
ever the corresponding posterior results under the beta-binomial prior on the
model space give the same ordering for the posterior inclusion probabilities of
each covariate (see Table S2 in the supplementary material), inflating them
upwards for all covariates. Table 3 summarizes posterior results of the co-
efficients of the a-posteriori supported covariates and the additional model
parameters (φ and random effects variance) for the selected model.

Table 3 near here
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Posterior inclusion probabilities suggest the inclusion of covariates x6 and
x9, corresponding to the average humidity and the autumn season and, po-
tentially, the selection of covariates x3, x4 and x8 (average and maximum
temperature and summer season, respectively) regarding the infection rate.
On the other hand covariates x1 and x3 (i.e. number of villages infected in
the previous week and average temperature) are selected for the prediction of
excess zeros. In particular, the importance of villages infected in the previ-
ous week on the excess zeros is intuitively natural since more infected villages
imply a smaller chance of excess zeros. In summary, it appears that a combi-
nation of temperature, humidity and seasonality seems largely responsible for
explaining disease occurrence. This is intuitively reasonable and represents
a common finding for animal diseases.

In the subsequent analyses, we retain only covariates with posterior inclu-
sion probabilities higher than a threshold. A natural choice for this threshold
is the value of 0.5 which is recommended by the theoretical work of [41] and
has better predictive properties than the usual choice of the maximum a-
posteriori model for specific cases in normal linear regression models. Here,
we decided to raise slightly this threshold to the value of 0.6 in order to al-
leviate the problem of inflated (towards 0.5) posterior inclusion probabilities
of non-important effects reported for hyper-g priors (see, for example, [31]).
This way, we also avoid the inclusion of variables with high uncertainty con-
cerning their importance. (Note that covariate selection was based upon the
utilization of the best fitted - among the tested - spatial kernels, as described
in the following section 4.1.2).

Sensitivity analysis. We performed sensitivity analyses using the hyper-
parameter values α ∈ {2.01, 2.1, 2.5, 3.0, 3.5, 3.9, 3.99} for the hyper-g prior
setup. The results are summarized in Figure S1 in the supplementary mate-
rial which present posterior inclusion probabilities under the hyper-g prior,
for each covariate regressed on the rate of infection. The corresponding re-
sults for the covariates related to the probability of excess zeros are depicted
in Figure S2 in the supplement. These analyses have been conducted using
the uniform prior on model space. The results obtained using the beta-
binomial prior (not shown), although quantitatively different to those of the
uniform prior, display similar ordering of the importance of the covariates.
Comparing the outcomes of the analysis one may deduce that the results are
reasonably robust, especially for the covariates associated with excess zeros.
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Liang et al. [2] recommended using the values of α = 3 and α = 4
“. . . although any choice 2 < a ≤ 4 may be reasonable”. Generally, hyper-g
priors are relatively robust to the choice of α (e.g. [31]) and this was also
the case in the present study; see Figure S1 for the sensitivity of posterior
inclusion probabilities over different values of α where any plausible α value
indicates the same set of covariates as important. We have a-priori decided to
use the value of α = 4 in order to express our relative indifference concerning
the shrinkage parameter since this choice imposes a U(0, 1] prior for g/(g+1).
Sensitivity analysis confirmed that this choice had minimal effect on the
posterior selection of covariates. Thus, for the remaining of this paper, we
focus on the variables selected by the hyper-g prior with α = 4 as reported
in Table 2.

Comparisons with other prior setups. Figure 2 presents a summary
of the results on the comparison between the various choices of prior for
covariate selection.

Figure 2 near here

Four different priors are compared, notably EUI, ZG(n), ZG(p2) and
hyper-g priors. In particular, Figure 2 depicts posterior inclusion probabili-
ties for each covariate of the infection rate for the hyper-g prior and compares
these values with the other choices. The corresponding results for the excess
zeros are shown in Figure S3 in the supplementary materials.

We observe that the EUI is systematically more parsimonious in compar-
ison to the other methods with the exception of the support on X8. For the
two (with g = n and g = p2) g-prior and the hyper-g prior setups, the inclu-
sion probabilities are identical for all covariates except for X7. For X7, the
inclusion probability under the hyper-g is lower (≈ 0.5) than the correspond-
ing ones for the other two set-ups. The picture of the inclusion probabilities
of the zero-inflated component is more clear. The hyper-g prior seems to
have inflated the inclusion of all covariates towards 0.5 with the exception of
X4 and X6 which are a-posteriori not supported by this method; see Figure
S3 in the supplementary materials.

4.1.2 Spatial kernels.

We proceed with fitting different kernel forms to the ZIP models in order to
assess their relative importance in disease spread. The posterior estimate for
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the K parameter (i.e. α) is also presented.
Figure 3 presents posterior density strip plots for the deviance D of the

time-varying kernel models; see Table S3 in the supplementary materials for
a comparison between the Struthers and McLeish [9] and the Taylor et al.
[8] OU formulations. We additionally include the posterior mean deviance
(denoted by D′) for the model without a spatial component.

Figure 3 near here

For all the fitted kernels, the posterior distribution of the corresponding
coefficients are placed well away from zero and the model fit is improved
indicating the key importance of the spatial component in describing the
progression of the epidemic. There are small differences in the model fit
when different kernels are employed. The exponential kernel (B) ([11]) yields
the best fit, followed by (D). On the other hand, the kernels (A), (C) and
(E) gave a slightly worse fit. The better performance of the exponential-
based kernel may be an indication of the importance of short distances on
disease spread when compared to the fat-tailed functions (i.e. kernels A and
E) which place more mass in the tails of the kernel functions.

The large overlap of the deviance distributions suggests that we cannot
select a particular kernel with confidence. Hence, we choose for the remainder
of the analysis the exponential decay with a single parameter (kernel C) due
to parsimony considerations. The parameter α is associated with the effect
of distance with high α values indicating disease transmission to shorter
distances. The high estimate of α (α = 6.749) suggests that long-distance
transmission was unlikely in this outbreak. In summary, the association
between spatial information and progression of the sheep pox disease can be
expressed by the following form:

K(dkℓ) = 6.749 exp (−6.749 dkℓ) .

Figure 4 depicts the fit of the best model, indicating reasonably good agree-
ment with the observed infectious disease counts.

Figure 4 near here

4.2 Endemic/epidemic decomposition

The results regarding the endemic/epidemic decomposition presented in Sec-
tion 2.1.2 are given in Table S4 in the supplement where the instantaneous
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mean (µt) of the log rate of infection (λt) is decomposed to its endemic
(Θendemic) and epidemic (Θepidemic) components.

Specifically, we report the mean µt along with the corresponding 95%
credible intervals under various scenarios for a hypothetical outbreak. The
results indicate that disease spread is likely to increase for lower levels of the
endemic/epidemic components. Figure S4 in the supplementary materials
demonstrates the endemic/epidemic decomposition over the 5-year period
(1994-1998) of the sheep pox epidemic. This graph may assist in illustrating
the relative importance of the epidemic spatial component over the endemic
part of the model and vice versa during the progress of the disease spread.

4.3 Extinction Probabilities

Here we present results based on the approach introduced in Section 3, in-
vestigating the effect of each important covariate on a hypothetical future
epidemic outbreak in the Evros region. Specifically, we combine parameter
estimates from the historical sheep pox epidemic data and current farm loca-
tions in the region to calculate the probability of an epidemic going extinct.
The findings are summarized in Table 4 and present extinction probabilities
obtained for the minimum, maximum and median value of each covariate,
keeping the other covariates fixed at their median value (the covariate val-
ues of humidity and distance used for the current analysis refer to year 2012
and are: min=14, max=100, median=65 for humidity; min=1, max=99,
median=31 for distance).

Table 4 near here

It appears that a large epidemic may occur when the levels of humidity are
low (q=0.036). Also small distances between infected farms are decreasing
the probability of an epidemic going extinct (q=0.597). Results of this kind
provide an indicator towards potential disease re-emergence. Therefore, mon-
itoring these covariates may be useful for surveillance purposes.
The results for the expected ‘Q-occupation times’, Q ∈ {1, 2, 3, 4, 5, 6}, are
summarized in Table S5 (see also Figure S5) in the supplement, and are
typical of a supercritical branching process (i.e. λt > 1). Indeed, in the few
occasions where λt < 1 we expect only a few farms to get infected thus E(AQ)
is relatively large. In contrast, for fixed λt (being a specific combination of
humidity and seasonality) E(AQ) decreases with Q reflecting the standard
behaviour of the final size distribution of epidemic models (e.g. [42]).
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5 Discussion

In the present paper we proposed a general infectious disease modelling
framework which incorporates several common features of epidemic data.
This was achieved by extending current spatio-temporal models via different
variants of the O-U process. Particular attention was also paid to covariate
selection by investigating recently developed priors which have not hitherto
been used in models of high complexity. More elaborate versions of the ker-
nel distance, effectively reweighing the contribution of each week based upon
some sort of ’infectivity function’ are possible and trivial to incorporate.
However, the lack of more detailed data would imply identifiability issues so
we decided not to pursue this matter further.

Perhaps more importantly, we linked our epidemiological models with
stochastic epidemic processes through an approximate branching process rep-
resentation. Although the two models have distinct characteristics, they can
be thought of as different instances of a certain class of counting processes.
Thus, one can calculate crude extinction probabilities under different sce-
narios providing a link to policy decisions targeted at disease control. This
complements a byproduct of our model, the identification of ‘disease-free’
status, stemming from particular regions of the covariates which link to the
modelling component that is concerned with excess zeros.

Regarding covariate effects we found that an increase in humidity levels
yields a decrease in sheep pox occurrence, while the average temperature has
the opposite effect. The significance of humidity is perhaps an indication for
the relative importance of airborne spread [43]. The spatial component of
our model uses the distances among farms in order to quantify the pressures
caused by currently infected farms on the remaining susceptible farm popu-
lation in the region. For this particular dataset it appears that the disease is
transmitted mainly by short-range interactions. Spatially-explicit evidence
represents an important component of our model and substantially improves
model fit. The absence or possible aggregation of such evidence, a plausible
feature of some surveillance systems, would result in simpler fitting of the
corresponding models at the expense of potentially biased results. In this
paper we used standard Bayesian model determination techniques. An in-
teresting alternative is based upon the prequential principle [44] and this is
the subject of current work.
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Table 1: Summary of transmission kernel functions included in spatio-
temporal models.

Notation K(dkℓ,ΘK) ΘK Reference

A b
(
1 +

dkℓ
a

)−c

(a, b, c) [13]

B b exp
{
−

(
dkℓ
a

)c}
(a, b, c) [11]

C a exp (−a dkℓ) a [45]

D
α√
π
exp (−a2d2kℓ) a [45]

E
a

4
exp

(
−a

1
2d

1
2
kℓ

)
a [45]
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Table 2: Posterior inclusion probabilities (γ and γz) under the uniform prior
on model space for the hyper-g-prior (α = 4) variable selection approach
applied to ZIP model with flat prior on β0 (in bold inclusion probabilities
above 50%).

Hyper-g-prior (α = 4)
Parameter γ Parameter γz

β1 0.514 βz
1 0.969

β2 0.404 βz
2 0.406

β3 0.573 βz
3 0.617

β4 0.551 βz
4 0.276

β5 0.376 βz
5 0.589

β6 0.757 βz
6 0.143

β7 0.509 βz
7 0.505

β8 0.539 βz
8 0.589

β9 0.874 βz
9 0.492

D̄ 261.5 (235.8-288.9)

Table 3: Posterior medians and corresponding 95% credible intervals of the
ZIP model.

Parameter Estimates
β6 (humidity) -0.023

(-0.047,-0.005)
β9 (autumn) 1.359

(0.183,2.904)
βz
1 (villages infected in previous week) -1.405

(-2.483,-0.575)
βz
3 (average temperature) 0.044

(0.011,0.127)
φ 0.353

(0.292,0.843)
σ2
bi

0.444
(0.011,6.56)
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Table 4: Estimated average extinction probabilities (q) along with corre-
sponding 95% credible intervals based on the branching process approxima-
tion.

humidity distance
0.036 0.597

min (0.031-0.04) (0.576-0.619)
0.965 0.731

max (0.956-0.974) (0.711-0.751)
all covariates 0.654
at median values (0.0.628-0.675)

Figure 1: A schematic representation of the model.
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Figure 2: Inclusion probabilities for each covariate of infection rate λt of the
hyper-g and comparison with other choices (uniform prior).



30

Kernel functions
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Figure 3: Posterior density strip plots of deviance D for the six spatio-
temporal models.
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Figure 4: Predicted vs observed numbers of disease occurrence for the ZIP
model (dashed lines represent the 95% credible intervals).
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Hyper-g-prior (α = 4)
Parameter γ Parameter γz

β1 0.699 βz
1 0.983

β2 0.593 βz
2 0.609

β3 0.712 βz
3 0.736

β4 0.661 βz
4 0.597

β5 0.537 βz
5 0.651

β6 0.794 βz
6 0.347

β7 0.664 βz
7 0.664

β8 0.689 βz
8 0.751

β9 0.915 βz
9 0.641

D̄ 261.5

Table S6: Posterior inclusion probabilities (γ and γz) under the beta binomial
prior on model space for the hyper-g-prior (α = 4) variable selection approach
applied to ZIP model with flat prior on β0 (in bold inclusion probabilities
above 50%).

min median max
Θendemic 0.656 0.244 0.166

(0.65-0.662) (0.233-0.256) (1.149-0.183)
Θepidemic 6.081 5.612 5.584

(5.867-6.295) (5.42-5.803) (5.394-5.775)

Table S8: Endemic/epidemic decomposition of µt.
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SM OU Taylor et al. OU
process process

Kernel D D
A Chis-Ster and Ferguson (2007) 265.5 310.1
B Keeling et al. (2001) 255.5 303.4
C Szmaragd et al. (2009) 261.5 302.6
D Szmaragd et al. (2009) 255.7 298.1
E Szmaragd et al. (2009) 261.6 305.1

D′

336.9

Table S7: Goodness-of-fit statistics for the time-varying spatial models.
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Figure S5: Sensitivity analysis of posterior inclusion probabilities for each
covariate of infection rate λt of the hyper-g (uniform prior on model space).

Figure S6: Sensitivity analysis of posterior inclusion probabilities for each
covariate of excess zeros of the hyper-g (uniform prior on model space).
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Figure S7: Inclusion probabilities for each covariate of excess zeros of the
hyper-g and comparison with other choices (uniform prior).

Figure S8: Epidemic and endemic decomposition of µt during the 1994-98
sheep pox epidemic in Evros Prefecture, Greece.
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Figure S9: Expected time for exactly Q infected farms based on the branching
process approximation.
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