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EMPIRICAL LIKELIHOOD FOR RANDOM SETS

KARUN ADUSUMILLI AND TAISUKE OTSU

Abstract. In many statistical applications, the observed data take the form of sets

rather than points. Examples include bracket data in survey analysis, tumor growth

and rock grain images in morphology analysis, and noisy measurements on the support

function of a convex set in medical imaging and robotic vision. Additionally, in studies of

treatment effects, researchers often wish to conduct inference on nonparametric bounds

for the effects which can be expressed by means of random sets. This article develops

concept of nonparametric likelihood for random sets and its mean, known as the Aumann

expectation, and proposes general inference methods by adapting the theory of empirical

likelihood. Several examples, such as regression with bracket income data, Boolean

models for tumor growth, bound analysis on treatment effects, and image analysis via

support functions, illustrate the usefulness of the proposed methods.

1. Introduction

In many statistical applications, the observed data take the form of sets rather than

points. For example, in survey analysis, we often observe bracket data instead of precise

measurements. In mathematical morphology, geostatistics, and particle statistics, the

observations often take the form of two or three dimensional sets reflecting models for

tumor growth or sand rock grains (e.g., Cressie and Hulting, 1992, and Stoyan, 1998, for a

review). Also, in the context of medical imaging and robotic vision, researchers sometimes

need to infer a convex set from noisy measurements of its support function (Fisher et al.,

1997). Furthermore, in studies of treatment effects (e.g., Balke and Pearl, 1997, and
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Horowitz and Manski, 2000), researchers often wish to conduct statistical inference on

nonparametric bounds for the average treatment effects which can be expressed by means

of random sets, as shown in Beresteanu, Molchanov and Molinari (2012).

In this article, we develop a nonparametric likelihood concept for the Aumann expec-

tation of a random sample of convex sets - this is a generalization of the conventional

mathematical expectation to random sets - and propose general inference methods by

adapting the theory of empirical likelihood (Owen, 2001). In particular, by relying upon

the isomorphism between a convex set and its support function, we convert the testing

problem on the random set to one on its support function which implies a continuum

of moment constraints indexed by the direction of the support function. Based on this

conversion, we construct two nonparametric likelihood statistics for testing the moment

constraints which we term the marked and sieve empirical likelihood statistics. We study

the asymptotic properties of these statistics and describe how to compute critical values

for testing. Moreover, to enhance the applicability of our methods, we also discuss test-

ing directed hypotheses and projections, along with situations where the random set of

interest is not directly observable due to nuisance parameters to be estimated and where

inference is based on noisy measurements of the support function.

We demonstrate the usefulness of the proposed methods by four numerical examples.

First, we consider the setup of best linear prediction with interval dependent variables. In

this case, the set of all possible coefficients for the best linear predictor is characterized by

an Aumann expectation involving the interval data. We illustrate our empirical likelihood

methods via inference on the parameters for the best linear predictor of interval wages

given years of education using the Current Population Survey (CPS) data. Second, we

consider a Boolean model for tumor growth studied by Cressie and Hulting (1992) and

numerically evaluate the marked and sieve empirical likelihood tests. Third, we employ
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the empirical example in Balke and Pearl (1997) on the treatment effect of Vitamin

A supplementation under imperfect compliance to study the numerical performance of

our empirical likelihood based inference on the bounds of the average treatment effect.

Finally, based on Fisher et al. (1997), we study the problem of testing the shape of a

convex set based on noisy measurements of its support function; the results are provided

in the web appendix. Both parameter hypothesis and goodness-of-fit testing problems are

investigated. In all of the examples, the proposed empirical likelihood tests perform well

in terms of size and power.

After early developments in e.g., Kendall (1974) and Matheron (1975), the literature on

the probabilistic and statistical theory of random sets is steadily growing (see, Molchanov,

2005, for a modern and comprehensive treatment of random set theory). Most of the

statistical literature on random sets focuses on inference via capacity functionals (e.g.,

Cressie and Hulting, 1992) and support functions (e.g., Fisher et al., 1997) which pro-

vide equivalent characterizations of random sets. The population mean of random sets

is typically characterized by the so-called Aumann expectation. Beresteanu and Molinari

(2008) developed a Wald type test for the Aumann mean of random sets. This paper

introduces a nonparametric likelihood-based approach for inference on the Aumann ex-

pectation by modifying the empirical likelihood method. Thus, this paper also contributes

to the literature on empirical likelihood (see Owen, 2001, for a review) by extending its

scope to random sets rather than points. To establish the asymptotic theory, we adapt

the theoretical results developed in Hjort, McKeague and van Keilegom (2009) to our

context.

Recently, applications of random set methods have been discussed in the context of

partial identification and inference in econometrics; see Molchanov and Molinari (2014)

for a review of such applications, Tamer (2010) for a review of partial identification in
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econometrics, and Manski (2003) for a thorough treatment of partial identification. Partial

identification concerns the situation wherein a parameter of interest is not point identified

but identified only as a set. This could be because of limitations in the data, e.g. interval

or categorical data, or because the theoretical models do not provide enough restrictions

to identify a unique value for the parameter, e.g. game theoretic models with multiple

equilibria. In this context Balke and Pearl (1997) and Horowitz and Manski (2000) made

fundamental contributions to partial identification of treatment effects and probability

distributions with missing data, respectively. However, these papers did not connect the

inference problems on the identified sets to random set theory. Beresteanu and Molinari

(2008) were the first to employ random set methods to conduct estimation and inference

for partially identified models.

An important application of random set theory is in the context of inference for param-

eters characterized by moment inequalities. In this setup, the parameters are typically

partially identified, and thus the aim is to propose a confidence region that covers the

identified set. Examples of this strand of literature include Chernozhukov, Kocatulum

and Menzel (2015), Kaido (2012), and Kaido and Santos (2014) among others. See also

Andrews and Shi (2015) for an extension to conditional moment inequalities. On the

other hand, Canay (2010) developed an empirical likelihood-based inference method for

moment inequality models using “standard” probability theory. Our paper is the first to

to bring together random set theory and empirical likelihood. Although sharing applica-

tions with the moment inequality setup, our approach, which is based on random sets as

observations, is fundamentally different. Indeed, there are situations where the moment

inequality setup is not directly applicable unlike ours (e.g., the Boolean model and im-

age analysis via support function), and vice versa. In addition, the focus of our paper

is on testing, which may have other uses over and above the construction of confidence
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regions (cf. the Boolean model example). Closer to our setup, Beresteanu and Molinari

(2008) were the first to consider tests for expectations of general random sets. Bontemps,

Magnac and Maurin (2012) and Chandrasekhar et al. (2012) obtained related inferential

results in the context of best linear predictors for set identified functions under a variety

of extensions but did not consider other formulations of random sets.

This article is organized as follows. Section 2 introduces the basic setup and presents

two inference approaches, the marked and sieve empirical likelihood methods. Section

3 discusses various extensions of these approaches for wider applicability. In Section 4,

numerical examples are provided. Assumptions and some definitions are presented in the

Appendix. All proofs and additional simulation results are contained in the web appendix.

2. Methodology

Suppose we observe a set-valued random variable (SVRV) X : ⌦ 7! Kd, where Kd is the

collection of all non-empty compact and convex subsets of the Euclidean space Rd. The

collection Kd is endowed with the Hausdorff norm defined as kAkH = sup{kak : a 2 A} for

every set A, where k·k is the Euclidean norm. Let µ denote some underlying probability

measure on ⌦. The mean of the SVRV X is characterized by the Aumann expectation

E[X] =

⇢Z

⌦

xdµ : x 2 {x(!) 2 X(!) a.s. and
Z

⌦

kxk dµ < 1}
�
,

(see, Molchanov, 2005, for details). We restrict our attention to compact and convex val-

ued SVRVs; however, similar results hold for general compact sets since E[X] = E[co(X)]

for compact valued X if µ is non-atomic, with co(X) denoting the convex hull operation

on X (Molchanov, 2005, p. 154). A fundamental statistical question is to test hypotheses
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on the Aumann expectation of the form:

H0 : E[X] = ⇥0(⌫) vs. H1 : E[X] 6= ⇥0(⌫), (1)

based on a random sample of SVRVs {X1, . . . , Xn}, where ⇥0(⌫) is a hypothetical set that

may depend on real-valued nuisance parameters ⌫ 2 Rr. In general, there is no restriction

on the relationship between the dimension d of X and r of ⌫.

To test the null hypothesis H0, we focus on the dual representation of convex sets by

their support functions. Let h·, ·i denote the inner product and Sd the unit sphere in Rd.

The support function of a set A 2 Kd is defined as s(A, p) = supx2A hp, xi for p 2 Sd. If

X is integrably bounded, the testing problem in (1) is equivalent to (Molchanov, 2005, p.

157)

H0 : E[s(X, p)] = s(⇥0(⌫), p) for all p 2 Sd vs. H1 : E[s(X, p)] 6= s(⇥0(⌫), p) for some p 2 Sd,

(2)

where E[·] is the ordinary mathematical expectation with respect to µ. Therefore, infer-

ence on the Aumann mean of the random set is equivalent to inference on the support

function (or continuum of moment restrictions over p 2 Sd). Since this is a testing problem

for infinite dimensional parameters without any parametric distributional assumptions on

the population µ, it is of interest to develop a nonparametric likelihood inference method.

In particular, we adopt the empirical likelihood approach (Owen, 2001) to our testing

problem.

2.1. Marked empirical likelihood. We now introduce the first empirical likelihood

approach to test the hypothesis in (1) for the Aumann expectation of random sets. We

assume that a consistent estimator ⌫̂ for the nuisance parameters ⌫ is available. Typically
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⌫ is a smooth function of population moments which can be estimated by the method of

moments.

One method to construct a nonparametric likelihood function to test H0 in (1) is to fix

a direction p 2 Sd for the support function defining the equivalent form of H0 in (2) and

employ the empirical likelihood approach. For given p, the marked empirical likelihood

function under the restriction E[s(X, p)] = s(⇥0(⌫), p) is given by

`n(p) = max

(
nY

i=1

nwi

�����

nX

i=1

wis(Xi, p) = s(⇥0(⌫̂), p), wi � 0,
nX

i=1

wi = 1

)
. (3)

In practice, `n(p) can be computed from its dual form based on the Lagrange multiplier

method, that is

`n(p) =
nY

i=1

1

1 + �{s(Xi, p)� s(⇥0(⌫̂), p)}
, (4)

where � solves the first-order condition
Pn

i=1
s(Xi,p)�s(⇥0(⌫̂),p)

1+�{s(Xi,p)�s(⇥0(⌫̂),p)} = 0. Since the direction

p is given, the object `n(p) imposes only a single restriction implied from the null H0.

In order to guarantee consistency against any departure from H0, we need to assess the

whole process {`n(p) : p 2 Sd} over the range of Sd. Taking the supremum over p leads

to the Kolmogorov-Smirnov type test statistic

Kn = sup
p2Sd

{�2 log `n(p)}.

Suppose there exists a function G(p; ⌫) continuous in p 2 Sd such that

sup
p2Sd

|s(⇥0(⌫̂), p)� s(⇥0(⌫), p)�G(p; ⌫)0(⌫̂ � ⌫)| = op(n
�1/2). (5)
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In Section 4.1, we provide an example of G(p; ⌫) for the case of the best linear predic-

tion with an interval valued dependent variable. The asymptotic properties of Kn are

summarized in the following theorem.

Theorem 1. Under Assumption M in the Appendix, it holds

Kn
d! sup

p2Sd

{Z(p)�G(p; ⌫)0Z1}2

Var(s(X, p))
, under H0, (6)

where (Z(p), Z 0
1)

0 ⇠ N(0, V (p)) and V (p) is the limiting covariance matrix of

(n�1/2
Pn

i=1{s(Xi, p)�E[s(X, p)]},
p
n(⌫̂�⌫)0)0. In addition, Kn diverges to infinity under

H1.

By a slight modification of the proof, we can also show that under the local alternative

H1n : E[s(X, p)] = s(⇥0(⌫), p) + n�1/2⌘(p) over p 2 Sd,

for some continuous function ⌘, the marked empirical likelihood statistic satisfies Kn
d!

supp2Sd
{Z(p)�G(p;⌫)0Z1+⌘(p)}2

Var(s(X,p)) . Therefore, the test statistic Kn has non-trivial local power

against a local alternative at the parametric rate.

One major advantage of the conventional empirical likelihood approach is that it yields

an asymptotically pivotal statistic even for nonparametric objects of interest under compli-

cated data structures. However, the proposed statistic Kn (or other statistics constructed

from the process {`n(p) : p 2 Sd}) does not share such attractiveness, and its limiting

distribution contains several unknowns to be estimated. To deal with this problem, Sec-

tion 2.1.1 proposes a bootstrap procedure to approximate the null distribution of Kn. In

Section 2.2, we develop an alternative test statistic which is asymptotically pivotal (but
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requires a choice of a tuning parameter). In the current setup, we are not aware of any

test statistic which is both asymptotically pivotal and free from tuning parameters.

We note that lack of pivotalness of process-based tests emerges commonly in the context

of goodness-of-fit testing (e.g., Stute, 1997). In the literature on empirical likelihood,

Chan et al. (2009) propose an integral version of the empirical likelihood statistic to

test hypotheses on Lévy processes via characteristic functions and derive a non-pivotal

limiting distribution; this is approximated by a bootstrap procedure due to its complicated

form. Li (2003) obtained similar results for an empirical likelihood test of survival data.

Furthermore, Hjort, McKeague and van Keilegom (2009) provided various extensions of

empirical likelihood to the cases of (infinite-dimensional) nuisance parameters and growing

numbers of estimating equations. They argued that the empirical likelihood statistic is

not necessarily pivotal but can be approximated by bootstrap methods.

Since the marked empirical likelihood statistic is not asymptotically pivotal, one may

seek to employ alternative likelihood concepts. For instance, we can generate the likeli-

hood process from the Euclidean likelihood (Owen, 2001, Section 3.15):

LE
n (p) = max

(
�1

2

nX

i=1

(nwi � 1)2

�����

nX

i=1

wis(Xi, p) = s(⇥0(⌫̂), p), wi � 0,
nX

i=1

wi = 1

)
,

whose dual form is explicitly given by

�2LE
n (p) =

(
Pn

i=1{s(Xi, p)� s(⇥0(⌫̂), p)})2Pn
i=1{s(Xi, p)� s(⇥0(⌫̂), p)}2

,

for each p. Inspection of the proof of Theorem 1 shows that LE
n (p) is asymptotically

equivalent to log `n(p) for each p and the test statistic KE
n = supp2Sd{�2LE

n (p)} obeys the
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same limiting distribution as Kn. One practical advantage of the Euclidean likelihood-

based statistic KE
n over Kn is that KE

n does not require a numerical search for the Lagrange

multiplier � as in (4).

2.1.1. Bootstrap calibration. The limiting null distribution of the process {`n(p) : p 2 Sd}

is generally difficult to approximate as it contains parameters to be estimated. Thus,

we suggest approximating the distribution of Kn by a bootstrap procedure. Let {X⇤
i }ni=1

denote the bootstrap draws of {Xi}ni=1 with replacement and ⌫̂⇤ the bootstrap counterpart

of ⌫̂.1 Denote s̄(p) = n�1
Pn

i=1 s(Xi, p) and V̂ (p) = n�1
Pn

i=1{s(Xi, p) � s̄(p)}2. For the

bootstrap counterpart of the empirical likelihood function `n(p), we propose

`⇤n(p) = max

(
nY

i=1

nwi

�����

nX

i=1

wi{s(X⇤
i , p)� s(⇥0(⌫̂

⇤), p)} = {s̄(p)� s(⇥0(⌫̂), p)}, wi � 0,
nX

i=1

wi = 1

)
.

(7)

Note that `⇤n(p) does not directly mimic the original statistic but rather evaluates the like-

lihood after recentering by s̄(p)� s(⇥0(⌫̂), p). Such a recentering is necessary to account

for the effect of the estimated nuisance parameters.2 Indeed, by Giné and Zinn (1990),

after imposing bootstrap analogs of Assumption M (i)-(iii), a similar argument to the

proof of Theorem 1 implies that �2 log `⇤n(p) is approximated by
h

1p
n

Pn
i=1 {s(X⇤

i , p)� s̄(p)}� {s(⇥0(⌫̂
⇤), p)� s(⇥0(⌫̂), p)}

i2
/V̂ (p). However, in the ab-

sence of recentering, the additional term s̄(p) � s(⇥0(⌫̂), p) appears in the numerator

which makes the bootstrap invalid. This is reminiscent of Stute, Gonzalez-Manteiga and

Quindimil (1998) who showed inconsistency of the classical bootstrap in the context of

model checks for regression. Using the quadratic expansion above, standard arguments

1If ⌫ is a smooth function of means, then ⌫̂⇤ is given by replacing the moments with the bootstrap
counterparts. If ⌫̂ is an M-estimator, we obtain ⌫̂⇤ through properly recentered estimating equations as
in Shorack (1982) and Lahiri (1992).
2The idea of recentering estimating equations is developed in Shorack (1982) and Lahiri (1992). It is
interesting to see whether such recentering induces a desirable higher-order property in our setup as in
Lahiri (1992).
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based on Giné and Zinn (1990) enable us to prove the following consistency result for the

proposed bootstrap statistic.

Proposition 1. Under Assumptions M and M’, the process {`⇤n(p) : p 2 Sd} converges

in distribution to the Gaussian process {{Z(p) � G(p; ⌫)0Z1}2/Var(s(X, p)) : p 2 Sd} in

P ⇤-probability, where P ⇤ denotes the probability computed under the bootstrap distribution

conditional on the data.

Therefore, the bootstrap critical values of Kn are given by the quantiles of K⇤
n =

supp2Sd{�2 log `⇤n(p)}.

2.1.2. Case of no nuisance parameter. If there is no nuisance parameter to be estimated

(i.e., ⇥0(⌫) = ⇥0), Assumption M is implied by the sole requirement that E[kXk⇠H ] < 1

for some ⇠ > 2,3 and the null distribution of Kn becomes

Kn
d! sup

p2Sd

Z(p)2

E[Z(p)2]
,

where Z is a Gaussian process with zero mean and covariance kernel Cov(s(X, p), s(X, q)).

For comparison, let us consider the Wald type statistic of Beresteanu and Molinari

(2008) adapted to the case of no nuisance parameters. In this case the statistic is simply

Wn =
p
ndH

�
1
n
�n

i=1 Xi,⇥0

�
, i.e., the contrast provided by the Hausdorff distance between

the Minkowski average 1
n
�n

i=1 Xi and the null hypothetical set ⇥0. For convex sets, the

Wald type statistic Wn may be alternatively characterized using the support functions as

Wn =
p
n supp2Sd

�� 1
n

Pn
i=1 s(Xi, p)� s(⇥0, p)

�� (Beresteanu and Molinari, 2008, equation

3This follows from the Lipschitz property of the support function, |s(X, p) � s(X, q)|  kXkH kp� qk
a.s. for any p, q 2 Sd, which ensures that {s(X, p) : p 2 Sd} is µ-Donsker by a standard empirical process
argument (e.g., van der Vaart, 1998, Example 19.7).
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(A.1)). Based on the proof of Theorem 1, we can then see that

K1/2
n =

p
n sup

p2Sd
E[Z(p)2]�1/2

�����
1

n

nX

i=1

s(Xi, p)� s(⇥0, p)

�����+ op(1),

under H0. Therefore, while the Wald type statistic Wn of Beresteanu and Molinari (2008)

evaluates the contrast 1
n

Pn
i=1 s(Xi, p) � s(⇥0, p) over p 2 Sd, the empirical likelihood

statistic Kn evaluates the same contrast but normalized by its standard deviation. This

normalization ensures that our statistic Kn is invariant to scale transformations (i.e.,

multiplication of both {Xi}ni=1 and ⇥0 by some non-singular matrix independent of i),

unlike the Wald type statistic Wn which is sensitive to such transforms.4 In Section 4.1,

we illustrate that the lack of invariance of the Wald type statistic can yield different size

properties depending on what scaling is used.

When there is no nuisance parameter, it is possible to invert Kn to obtain an approxi-

mate confidence region within which the Aumann expectation E[X] lies with some desired

probability. Indeed, using the quadratic approximation for the empirical likelihood pro-

cess (cf. proof of Theorem 1), it follows that with probability ↵, the support function for

the set E[X] asymptotically satisfies s(E[X], p)  n�1
Pn

i=1 s(Xi, p) +
q

ĉ↵
n
V̂ (p)1/2 for all

p 2 Sd, where ĉ↵ is the bootstrap estimate of the ↵-th quantile of the limiting distribution

of Kn. Based on the right hand side of this inequality, we can thus recover the confidence

region that covers E[X] with the desired probability level ↵.

2.2. Sieve empirical likelihood. Another way to construct an empirical likelihood for

testing H0 in (2) is to incorporate the continuum of moment conditions E[s(X, p)] =

4For the identified set ⇥0 = {✓ : E[m(✓)]  0} defined by a finite number of moment inequalities,
Chernozhukov, Kocatulum and Menzel (2015) proposed a confidence region that is invariant to arbitrary
one-to-one mappings of the form ⌧ : ⇥0 !  . However, their construction does not apply in general to
our setup which is concerned with testing E[Xi] = ⇥0 implying the continuum of moment inequalities. In
contrast, invariance of Kn is restricted to particular transformations (i.e., multiplication of both {Xi}ni=1

and ⇥0 by some non-singular matrix independent of i).
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s(⇥0(⌫), p) for all p 2 Sd into a vector of moments with growing dimension. Let k = kn be

a sequence of positive integers satisfying k ! 1 as n ! 1, and choose points (or sieve)

{p1, . . . , pk} from Sd so that in the limit they form a dense subset of Sd. By plugging

in the nuisance parameter estimator ⌫̂, the sieve empirical likelihood function under the

restrictions E[s(X, pj)] = s(⇥0(⌫), pj) for j = 1, . . . , k is defined as

ln = max

(
nY

i=1

nwi

�����

nX

i=1

wis(Xi, pj) = s(⇥0(⌫̂), pj) for j = 1, . . . , k, wi � 0,
nX

i=1

wi = 1

)
.

(8)

If there is no nuisance parameter (i.e., ⇥0(⌫) = ⇥0), we can simplify the proof of Theorem

2 below to show that (�2 log ln�k)/
p
2k

d! N(0, 1) under the null H0 : E[X] = ⇥0. When

there are nuisance parameters, the statistic ln containing ⌫̂ is not internally studentized

(i.e., (�2 log ln � k)/
p
2k does not converge to the standard normal) due to the variance

of ⌫̂. To recover internal studentization, we penalize the dual form of ln as

Ln = sup
�2⇤n

2
nX

i=1

log(1 + �0mk(Xi))� n�0(V̄k � V̂k)�, (9)

where mk(Xi) = [s(Xi, p1)� s(⇥0(⌫̂), p1), . . . , s(Xi, pk)� s(⇥0(⌫̂), pk)]
0 and ⇤n,V̄k, and V̂k

are defined in the Appendix. The limiting null distribution of the penalized statistic Ln

is obtained as follows.

Theorem 2. Under Assumption S in the Appendix, it holds that (Ln�k)/
p
2k

d! N(0, 1)

under H0. In addition, (Ln � k)/
p
2k diverges to infinity under H1.

By adapting the proof of Theorem 2, we can show that under the local alternative

H1n : E[s(X, p)] = s(⇥0(⌫), p) + an⌘(p) over p 2 Sd,
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for some continuous function ⌘, where an = k1/4/
q
n⌘0kV̇k⌘k and ⌘k = (⌘(p1), . . . , ⌘(pk))

0,

the sieve empirical likelihood statistic satisfies (Ln � k)/
p
2k

d! N(2�1/2, 1). Therefore,

the test statistic (Ln � k)/
p
2k has non-trivial local power against a local alternative at

the an-rate. Also, we note that similar to the marked empirical likelihood statistic Kn,

both ln and Ln are invariant to scale transformations (i.e., multiplication of both {Xi}ni=1

and ⇥0 by some non-singular matrix independent of i).

Compared to the marked empirical likelihood statistic studied in Section 2.1, the sieve

empirical likelihood statistic Ln is asymptotically pivotal but requires choosing the sieve

{p1, . . . , pk}. A natural choice for locations of the sieve {p1, . . . , pk} is a grid of equidistant

angle values in Sd. The main remaining problem for practical implementation is choos-

ing the tuning parameter k. In the literature on empirical likelihood, several statistics

have been proposed possessing the same feature (i.e., asymptotically pivotal but depend-

ing on smoothing parameters), see for instance Fan, Zhang and Zhang (2001), Chen,

Härdle and Li (2003), and Fan and Zhang (2004). Following the insight of Fan, Zhang

and Zhang (2001) and Fan and Zhang (2004), one may choose k to be the maximizer

argmaxk2[nc,nc0 ](Ln � k)/
p
2k for some constants c0 � c > 0. This results in a multi-scale

test whose critical value can be obtained by bootstrap. For goodness-of-fit testing of para-

metric regression models, Fan and Huang (2001) showed adaptive minimaxity of such a

test. A thorough analysis of mutli-scale testing in our setup is beyond the scope of this

paper.
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3. Discussion and extensions

3.1. Test for directed hypotheses. It is possible to extend the methodology of marked

empirical likelihood to test directed hypotheses of the form5

H0 : ⇥0(⌫) ✓ E[X] vs. H1 : ⇥0(⌫) * E[X]. (10)

Beresteanu and Molinari (2008) were the first to develop a Wald type test for this problem.

Here we propose empirical likelihood tests. By analogy with the testing problem in (1),

the above is equivalent to testing the continuum of moment inequalities

H0 : s(⇥0(⌫), p)  E[s(X, p)] for all p 2 Sd vs. H1 : s(⇥0(⌫), p) > E[s(X, p)] for some p 2 Sd.

For a given direction p and preliminary estimator ⌫̂, the moment inequality restriction

can be used to form the directed-marked empirical likelihood function

~̀
n(p) = max

(
nY

i=1

nwi

����� s(⇥0(⌫̂), p) 
nX

i=1

wis(Xi, p), wi � 0,
nX

i=1

wi = 1

)
,

which can be equivalently written in the dual form as (see, Canay, 2010)

~̀
n(p) = min

�0

nY

i=1

1

1 + �{s(Xi, p)� s(⇥0(⌫̂), p)}
.

Therefore, the directed hypothesis in (10) can be tested by assessing the process {~̀n(p) :

p 2 Sd}. In particular, we propose the directed Kolmogorov-Smirnov type statistic ~Kn =

supp2Sd{�2 log ~̀n(p)}. By similar arguments as in the proof of Theorem 1 (in particular,

by modifying the proof of Hjort, McKeague and van Keilegom 2009, Theorem 2.1), we

can show that ~Kn
d! supp2Sd

min{Z(p)�G(p;⌫)0Z1,0}2
Var(s(X,p)) under H0. The same also applies for

5The null for the opposite direction H0 : E[X] ✓ ⇥0(⌫) can be treated analogously.
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testing the hypothesis H0 : ✓0 2 E[X] for a singleton ✓0 2 Rd. In this case, we simply set

s(⇥0(⌫), p) = s(⇥0(⌫̂), p) = p0✓0.

It may be possible to extend the construction of the sieve empirical likelihood statistic to

test the directed hypotheses in (10) by replacing the equality constraints
Pn

i=1 wis(Xi, pj) =

s(⇥0(⌫̂), pj) in (8) with the inequalities
Pn

i=1 wis(Xi, pj) � s(⇥0(⌫̂), pj) for j = 1, . . . , k.

If k is fixed, we can apply the results of Canay (2010) to investigate its asymptotic prop-

erties. However, for the case of k ! 1, the asymptotic analysis of the statistic is very

different and is beyond the scope of this paper.

3.2. Linear transform and projection. Our empirical likelihood approach can be

easily modified to test hypotheses on a linear transform RE[X] of the Aumann mean,

where R is an l ⇥ d constant matrix with l < d and full row rank. The first test

for such hypotheses was proposed by Beresteanu and Molinari (2008) who employed a

Wald type statistic based on the Hausdorff metric. Here we provide empirical likelihood

based alternatives. Since the null hypothesis HR
0 : RE[X] = R⇥0(⌫) is equivalent to

HR
0 : E[s(X,R0q)] = s(⇥0(⌫), R

0q) for all q 2 Sl, this motivates the use of the marked em-

pirical likelihood function `n(R
0q) for q 2 Sl, and the Kolmogorov-Smirnov type statistic

KR
n = supq2Sl{�2 log `n(R

0q)} for testing the null. By the invariance property, the latter

is simply KR
n = supp2�{�2 log `n(p)}, where � = {R0q/ kR0qk : q 2 Sl} is a subset of

Sd. Thus, the test statistic KR
n for the linear transform is given by taking the supremum

over a particular subset � ⇢ Sd rather than the whole set Sd as is the case with Kn. A

modification of Theorem 1 then implies KR
n

d! supp2�
{Z(p)�G(p;⌫)0Z1}2

Var(s(X,p)) under HR
0 . It is also

possible to extend the sieve empirical likelihood approach to test HR
0 by choosing a sieve

on �.
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Now let us discuss one of the most important examples: testing for the projection of

E[X] to one of its components. We argue that in this case the sieve empirical likelihood

(with profiling out for ⌫) is particularly attractive. Suppose we are interested in the first

component (i.e., R = [1, 0, . . . , 0]). In this case, the null hypothesis HR
0 : RE[X] = R⇥0(⌫)

reduces to the two moment constraints HR
0 : E[s(X,R0q)] = s(⇥0(⌫), R

0q) for q = ±1. Let

⌫ be defined through the estimating equations E[m(zi, ⌫)] = 0 for observables zi.6 Then

the sieve empirical likelihood reduces to the conventional empirical likelihood:

ln(⌫) = max

8
>>>>><

>>>>>:

nY

i=1

nwi

�����������

nX

i=1

wi

0

BBBBB@

s(Xi, R
0)� s(⇥0(⌫), R

0)

s(Xi,�R0)� s(⇥0(⌫),�R0)

m(zi, ⌫)

1

CCCCCA
= 0, wi � 0,

nX

i=1

wi = 1

9
>>>>>=

>>>>>;

.

By Qin and Lawless (1994), mild regularity conditions guarantee Wilks’ theorem, that is

�2max⌫{log ln(⌫)}
d! �2

2 under HR
0 . In this case, we recommend internalizing the nui-

sance parameters ⌫ and profiling them out because the statistic ln(⌫̂) with a preliminary

estimator ⌫̂ is not asymptotically pivotal in general. See Section 3.3 below for further

discussion.

3.3. Profile likelihood. In Section 2, we considered empirical likelihood statistics where

the nuisance parameters ⌫ are replaced with a preliminary estimator ⌫̂. This approach is

particularly practical when the dimension of ⌫ is high. On the other hand, as explained

in the last subsection, there are some situations where profiling out ⌫ may be desirable to

achieve asymptotic pivotalness. Here we discuss some such extensions for profiling out ⌫.

Again, suppose throughout that ⌫ is defined by some estimating equations E[m(zi, ⌫)] = 0

for observables zi.

6When ⌫ is defined by a smooth function of means, it can be treated as in Owen (2001, Section 3.4).
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The marked profile empirical likelihood can be defined as `Pn (p) = max⌫ `n(p, ⌫), where

`n(p, ⌫) = max

8
>><

>>:

nY

i=1

nwi

��������

nX

i=1

wi

0

BB@
s(Xi, p)� s(⇥0(⌫), p)

m(zi, ⌫)

1

CCA = 0, wi � 0,
nX

i=1

wi = 1

9
>>=

>>;
.

There is a computational drawback of this approach: it requires optimization with re-

spect to ⌫ for each p. Although the technical arguments would be more involved than

the plug-in case, by extending the argument in Qin and Lawless (1994, Corollary 5) we

can obtain the limiting distribution of the process `Pn (p). In particular, defining gi(p, ⌫) =

[s(Xi, p)� s(⇥0(⌫), p),m(zi, ⌫)]
0, we can show that supp2Sd{�2 log `Pn (p)} will converge to

supp2Sd{Z̃(p)0Z̃(p)}, where Z̃(p)0 = [Z(p), Z 0
1]
⇣
I � S(p) (S(p)0⌦(p)�1S(p))

�1
S(p)0

⌘
⌦(p)�1/2,

with Z1 denoting the limiting distribution of n�1/2
Pn

i=1 m(zi, ⌫0), S(p) =

2

664
G(p; ⌫0)

0

E[@m(zi, ⌫0)/@⌫
0]

3

775

(here G(p; ⌫0)
0 is as defined in (5) and the existence of E[@m(zi, ⌫0)/@⌫

0] is assumed), and

⌦(p) = Var(gi(p, ⌫0)). We note the limiting distribution is still not pivotal, and the critical

value needs to be approximated by bootstrap.

Similarly, the sieve profile empirical likelihood can be defined as lPn = max⌫ ln(⌫), where

ln(⌫) = max

8
>>>>>>>>><

>>>>>>>>>:

nY

i=1

nwi

���������������

nX

i=1

wi

0

BBBBBBBBB@

s(Xi, p1)� s(⇥0(⌫), p1)

...

s(Xi, pk)� s(⇥0(⌫), pk)

m(zi, ⌫)

1

CCCCCCCCCA

= 0, wi � 0,
nX

i=1

wi = 1

9
>>>>>>>>>=

>>>>>>>>>;

.

Compared to the marked profile empirical likelihood `Pn (p), the sieve statistic lPn is more

tractable because it requires optimization with respect to ⌫ only once. Additionally, by

arguing as in Donald, Imbens and Newey (2003, Theorems 6.3-6.4), it can be shown that

the null distribution is standard normal, i.e. (lPn � k)/
p
2k

d! N(0, 1) under certain
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conditions. Thus, the profile statistic lPn is asymptotically pivotal without the need for

penalization as in (9).

3.4. Inference based on estimated random sets. In some applications, the random

set of interest X is not directly observable because it contains some parameters to be es-

timated. For example, in the context of treatment effect analysis in experimental studies,

Balke and Pearl (1997) proposed nonparametric bounds on the average treatment effect

when the treatment assignment is random but subject compliance is imperfect. In a gen-

eral form, Balke and Pearl’s (1997) bound on the average treatment (ATE) can essentially

be written as

max
1jJL

E[gjLi]

E[hj
Li]

 ATE  max
1jJU

E[gjUi]

E[hj
Ui]

, (11)

where gjLi (j = 1, . . . , JL) and gjUi (j = 1, . . . , JU) are observable scalar random vari-

ables. By applying the “smooth-max” approximation (Chernozhukov, Kocatulum and

Menzel, 2015), these bounds can be approximated by
PJL

j=1 w
j
AE[gjAi]/E[hj

Ai] with wj
A =

e%E[gjAi]/E[hj
Ai]/

⇣PJA
j=1 e

%E[gjAi]/E[hj
Ai]
⌘

for A = L and U . Indeed, the approximation error

satisfies
���
PJA

j=1 w
j
AE[gjAi]/E[hj

Ai]�max1jJA E[gjAi]/E[hj
Ai]

��� = O(%�1) for A = L and U .

Thus by choosing % large enough, the bounds on the ATE given above are well approxi-

mated by the Aumann expectation E[Xi(�)] of the SVRV

Xi(�) =

"
JLX

j=1

wj
Lg

j
Li/E[hj

Li],

JUX

j=1

wj
Ug

j
Ui/E[hj

Ui]

#
,

where � = (E[g1Li], . . . , E[gJLLi ], E[h1
Li], . . . , E[hJL

Li ], E[g1Ui], . . . , E[gJUUi ], E[h1
Ui], . . . , E[hJU

Ui ])
0.

In this case, the SVRV of interest Xi(�) is not observable because it contains unknown

parameters �.

In order to test null hypotheses of the form H0 : E[X(�)] = ⇥0(⌫), the marked empir-

ical likelihood function `n(p) in (3) can be modified by replacing Xi with the estimated
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counterpart Xi(�̂), where �̂ is an estimator of �. By imposing assumptions analogous to

Assumption M (i)-(iii) to deal with the estimation error of Xi(�̂)�Xi(�) along with the

assumption supp2Sd E[|s(Xi(�m), p)� s(Xi(�), p)|2] ! 0 for all �m ! �, we can show that

Kn
d! sup

p2Sd

{Z(p)�G(p; ⌫)0Z1 + �(p; �)0Z2}2

Var(s(X(�), p))
,

where (Z(p), Z 0
1, Z

0
2)

0 ⇠ N(0, Ṽ (p)), Ṽ (p) is the limiting covariance matrix of

(n�1/2
Pn

i=1{s(Xi, p)�E[s(X, p)]},
p
n(⌫̂�⌫)0,

p
n(�̂��))0, and �(p; �) is a function such

that

|E[s(X(�̂), p)]� E[s(X(�), p)]� �(p; �)0(�̂ � �)| = op(n
�1/2).

To obtain a critical value for testing, we can adapt the bootstrap procedure presented

in Proposition 1 (by replacing X⇤
i and s̄(p) in (7) with X⇤

i (�̂
⇤) and n�1

Pn
i=1 s(Xi(�̂), p),

respectively). The asymptotic validity of this bootstrap procedure can be shown under

the additional condition: supp2Sd |s̄(Xi(�̂
⇤), p)� s̄(Xi(�̂), p)��(p; �)0(�̂⇤� �̂)| = op⇤(n

�1/2)

with probability approaching 1.

It is also possible to employ the sieve empirical likelihood statistic by replacing Xi

in (8) with the estimated set Xi(�̂). Recall, in Section 2.2 we were able to incorporate

nuisance parameters into the sieve statistic by linearizing the term s(⇥0(⌫̂), p)�s(⇥0(⌫), p)

and incorporating the effect of the resulting additional terms via penalization (see the

Appendix for more details). We can proceed similarly for the case of estimated sets if we

impose the following assumption enabling linearization of s̄(Xi(�̂), p)� s̄(Xi(�), p) as

sup
p2Sd

|s̄(Xi(�̂), p)� s̄(Xi(�), p)� �̄(p; �)0(�̂ � �)| = op(n
�1/2),

where �̄(.; .) is the derivative of s̄(Xi(�), p) with respect to � satisfying some regularity

properties akin to Assumption S (iii) (i.e., (i) �̄(p; �) converges uniformly in both p and
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⌫ to a non-stochastic �(p; �) satisfying supp2Sd k�(., �)k < 1 and (ii) for all �̃ in some

neighborhood of �, supp2Sd
���̄(p; �̃)� �̄(p; �)

��  M k�̃ � �k↵ for some ↵ � 2/3 and

M < 1 independent of �̃). By a straightforward modification of the penalty term in (9),

we can obtain a corresponding result to Theorem 2 for the case of estimated random sets.

Alternatively, it is possible to employ a profile likelihood approach as in section (3.3);

this is particularly attractive for tests on low dimensional projections of the set ⇥0(⌫).

3.5. Measurements on support function. In medical imaging and robotic vision,

researchers sometimes directly observe measurements of the support function of a convex

set of interest (see, Fisher et al., 1997). When noiseless measurements of {s(Xi, ·)}ni=1

are available, the marked empirical likelihood method can be applied immediately to

hypothesis testing. Another common statistical question in image analysis of convex

shaped data is to recover a set of interest from noisy measurements of its support function.

In this problem, we observe the pairs {si, pi}ni=1, where si = s(⇥, pi) + ✏i with error ✏i

and pi 2 Sd. Fisher et al. (1997) developed an estimation method for ⇥ by estimating

the support function s(⇥, ·) nonparametrically. Our empirical likelihood approach can

be adapted to test the hypothesis that ⇥ takes a particular shape ⇥0, such as a circle

or ellipse. The marked empirical likelihood function under the restriction E[si|pi = p] =

s(⇥0, p) may be constructed as

˜̀
n(p) = max

(
nY

i=1

nwi

�����

nX

i=1

wiKb(pi � p){si � s(⇥0, p)} = 0, wi � 0,
nX

i=1

wi = 1

)
, (12)

where Kb(·) is a kernel function depending on the smoothing parameter b. For example,

the Cramér-von Mises type statistic, given by Tn =
R
p2Sd �2 log ˜̀n(p)dp, can be shown to

be asymptotically normal under the null after certain normalizations as in Chen, Härdle

and Li (2003). Alternatively, following Härdle and Mammen (1993), a wild bootstrap
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method (i.e., resampling s⇤i = s(⇥0, pi) + v⇤i ✏̂i with ✏̂i = si � s(⇥0, p) and v⇤i ⇠two-point

distribution) can be applied to obtain the critical value.

Simulation results, presented in the web appendix, demonstrate reasonable size and

power properties for our empirical likelihood test.

4. Examples

4.1. Best linear prediction with interval valued dependent variable. We first

consider the issue of best linear prediction with interval valued dependent variables. In

particular, we employ the setup of Beresteanu and Molinari (2008), follow their argument,

and use the characterization they provide. See also Bontemps, Magnac and Maurin (2012)

for an extension to instrumental variable regression.

In usual regression models, we are mostly interested in the best linear relationship be-

tween a dependent variable y and independent variables x, which can be estimated by the

least squares method. On the other hand, if y is unobservable but we observe the interval

[yL, yU ] to which y belongs almost surely, it would be of interest to conduct inference on

the set of the least squares coefficients ⌥ = {argmin✓

R
{y�(1, x0)✓}2dµ for some µ 2 M},

where M is the set of distributions of (y, x) compatible with y 2 [yL, yU ] almost surely.

There are numerous examples of interval data, including data on wealth (e.g., the Health

and Retirement Study) and income (e.g., the Current Population Survey), top coding

in surveys, and ordered categorical measurements (e.g., age, expenditure, GPA, and so

on). By using the Aumann expectation for the random set W =

0

BB@
[yL, yU ]

[xyL, xyU ]

1

CCA ⇢
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Rdim(x)+1, the set of least square coefficients may be written as ⌥ = ⌃�1E[W ], where

⌃ = E

0

BB@
1 x0

x xx0

1

CCA (see, Beresteanu and Molinari, 2008, Proposition 4.1).7

We note that if there is no intercept in the regression and x is scalar (or there is only an

intercept), then the set of best linear predictors is the interval ⌥ = [E[xyL]/E[x2], E[xyU ]/E[x2]].

Thus, inference on ⌥ may be conducted by the conventional empirical likelihood for

the vector of parameters (E[xyL], E[xyU ], E[x2]) or via regressions of yL and yU on the

scalar x. However, if the regression model contains an intercept or x is a vector, then

the set ⌥ is multi-dimensional and neither the conventional empirical likelihood for

(E[(1, x0)yL], E[(1, x0)yU ],⌃) nor regressions of yL and yU on (1, x0) are sufficient for charac-

terizing it completely. Intuitively this is because, as can be seen from the characterization

of the support function of ⌥ given below, we also need to consider situations where some

observations of y take the value yL while the others take yU .

For the following theoretical results we shall suppose that x is a continuous random

variable which ensures ⌥ is strictly convex. Regarding the support function, the null

hypothesis H0 : ⌥ = ⌥0 for a strictly convex ⌥0 can be written as H0 : E[s(W, p)] =

s(⌃⌥0, p) for all p 2 Sd, where s(W, p) = [yL + (yU � yL)I{(1, x0)p � 0}](1, x0)p and d =

dim(x)+1. This is equivalent to the general setup of Section 2 if one defines ⇥0(⌫) = ⌃⌥0,

where the nuisance parameter ⌫ = vec(⌃) is estimated by its sample counterpart vec(⌃̂).

Furthermore, since s(⌃⌥0, p) = s(⌥0,⌃p), the support function of the set ⌃⌥0 can be

computed from that of ⌥0. Let rs(⌥0, p)
0 = [yL + (yU � yL)I{(1, x0)p � 0}](1, x0) be

the Fréchet derivative of s(⌥0, p) with respect to p, and define G(p; ⌫) = p⌦rs(⌥0,⌃p),

where ⌦ represents the Kronecker product. Note that G(p; ⌫)0 is the pointwise derivative

of s(⌃⌥0, p) (s(⇥0(⌫0)) in the terminology of Section 2) with respect to ⌫ = vec(⌃).
7Chandrasekhar et al. (2012) extended this model further to allow for yL and yU to be nonparametrically
estimable functions. Although it is beyond the scope of this paper, it would be interesting to extend our
empirical likelihood approach to such situations.
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In this setup, the null distributions of the empirical likelihood statistics are obtained as

follows.

Proposition 2. Consider the setup of this subsection. Assume that {yLi, yUi, xi}ni=1 is

i.i.d., where the distribution of xi is absolutely continuous with respect to the Lebesgue

measure on Rd�1, and ⌃ is full rank.

(i) Suppose E[k(yLi, yUi, x
0
iyLi, x

0
iyUi)k⇠] < 1 for some ⇠ > 2, E[kxik4] < 1, and

Var(yLi|xi),Var(yUi|xi) � �2 a.s. for some �2 > 0. Then Kn
d! supp2Sd

Z̃(p)2

Var(s(Wi,p))

under H0, where Z̃(·) = Z(·)�G(·; ⌫)0� is the Gaussian process implied from (Z(p),�)0 ⇠

N(0, Ṽ (p)) and Ṽ (p) is the covariance matrix of the vector (s(Wi, p), {zi � vec(⌃)}0).

(ii) Suppose E[k(yLi, yUi, x
0
iyLi, x

0
iyUi)k⇠] < 1 for some ⇠ � 4, E[kxik4] < 1, and

rs(⌥0, p) is locally Hölder continuous of order ↵ � 2/3 over the domain Sd. Also assume

k ! 1 and (k5�̇�6
k )

⇠
⇠�2/n ! 0, where �̇k is defined in Appendix. Then Ln�kp

2k

d! N(0, 1)

under H0.

The assumptions are similar to those of Beresteanu and Molinari (2008, Theorem 4.3).

These results are obtained by verifying the conditions in Theorems 1 and 2. The crit-

ical values for the marked empirical likelihood test may be obtained by the bootstrap

procedure presented in Proposition 1.

We now evaluate the finite sample performance of our test statistic by conducting infer-

ence on the returns to education on (log) wages using data from the Current Population

Survey (CPS). We use data from the March 2009 wave of the CPS on white males aged

between 20 and 50 who earn at least $1000/year. This gives 18017 observations on wages

and education. Analogous to the construction in Beresteanu and Molinari (2008), the

wage data (in thousands of dollars) is artificially bracketed and top-coded in terms of the

following brackets (the top coding value is $100 million):
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[1, 5], [5, 7.5], [7.5, 10], [10, 12.5], [12.5, 15], [15, 20], [20, 25], [25, 30], [30, 35], [35, 40],

[40,50], [50, 60], [60, 75], [75, 100], [100, 150], [150, 100000]

Thus, the variables (yLi, yUi,xi) correspond to lower and upper bounds of log wages and

education, respectively. We draw 5000 samples of size n =100, 200, 500, 1000, and 2000

from the ‘true’ population (consisting of 18017 observations from the CPS) and conduct

inference for ⌥, the set of intercept and slope coefficients consistent with the population

data. Table 1 reports the rejection frequencies of the marked empirical likelihood test un-

der the nominal 5% rejection level. This is compared with Wald-type test statistics based

on the Hausdorff distances ndH
⇣
⌃̂�1 1

n
�n

i=1 Wi,⌥0

⌘2

and ndH

⇣
1
n
�n

i=1 Wi, ⌃̂⌥0

⌘2

(called

Wald 1 and 2, respectively). The first Wald-type test was proposed by Beresteanu and

Molinari (2008). For both the marked empirical likelihood and Wald tests, the critical

values are obtained by the bootstrap calibrations outlined in Section 2 with 399 repe-

titions. In Table 1 it is seen that the marked empirical likelihood test has good size

control and performs better than both Wald tests for smaller sample sizes. As explained

previously, the Wald statistic is not invariant to multiplication of the sets by a constant

matrix unlike the empirical likelihood tests; this drawback is evident in the different sizes

for the two Wald tests.8 The statistics vary considerably along p; for some directions

p = (cos#, sin#)0 with # =
�
0, ⇡3 ,

⇡
4 ,

2⇡
3 ,

⇡
2

�
, the critical values of Wald 1, marked EL,

and V̂ (⌃̂p) are (5.3⇥ 10�2, 2.0⇥ 10�5, 1.4⇥ 10�4, 2.5⇥ 10�4), (10, 6.8, 4.3, 2.0, 0.14), and

(7.5, 337.4, 610.0, 870.8, 1.1⇥ 103), respectively.

We can also adapt the construction of the confidence set based on Kn, described in

Section 2, to the present context. We exploit the invariance property of Kn which ensures

8As expected, however, the marked empirical likelihood test is computationally more expensive than
the Wald test. In particular, for sample size n = 1000, the marked empirical likelihood test with 399
bootstrap repetitions has an average run time of 5.7 seconds as compared to 0.6 seconds for the Wald
test.
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that with probability ↵ the inequalities s(⌥, p)  n�1
Pn

i=1 s(⌃̂
�1Xi, p)+

q
ĉ↵
n
V̂ (⌃̂�1p)1/2

hold asymptotically for all p 2 Sd, where ĉ↵ estimates the ↵-th quantile of the limiting

distribution of Kn. In particular, we can obtain ĉ↵ by the bootstrap procedure presented

in Section 3.4. Figure 1 displays the 95% confidence region thus obtained for a sample

size of n = 1000, along with the ’true’ population region and also the confidence region

from the Wald-type test proposed in Beresteanu and Molinari (2008). It can be seen that

the confidence region based on Kn covers an area that is much less (< 5%) than the one

based on the Wald test.

We can also employ our inferential procedures to obtain confidence intervals for the

best linear predictor of the (log) wage y given some education x. This is equivalent to

providing a confidence region for the projection R⌥0 where R = (1, x). To this end,

we can use the results from Section 3.4 on estimated random sets by exploiting the fact

E[s(⌃�1W,R0q)] = s(⌥, R0q), where setting q = 1 and �1 gives the upper and lower

bounds for the confidence interval. Table 2 reports the estimated prediction intervals

for the cases when x = 12 (corresponding to high school education) and x = 16 (cor-

responding to undergraduate degree). For computational reasons we report the results

for profile likelihood using the Euclidean likelihood function (c.f. Section (2.1)). The

profile likelihood is used to obtain a joint confidence set for the upper and lower bounds

of the interval, from which we obtain a necessarily conservative confidence interval by

taking the worst possible value for each of the components. Nevertheless, the length of

the confidence interval is comparable to, or smaller, than those based on the Marked EL

and Wald statistics.

In the web appendix, we report additional numerical results to compare the marked

empirical likelihood confidence region displayed in Figure 1 with the one based on the

method by Chernozhukov, Kocatulum and Menzel (2015).
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Table 1. Rejection frequencies of the marked empirical likelihood and
Wald tests at the nominal 5% level

n Size (Marked EL) Size (Wald 1) Size (Wald 2)
100 0.038 0.098 0.107
200 0.049 0.073 0.081
500 0.057 0.069 0.059
1000 0.053 0.057 0.059
2000 0.050 0.056 0.058

Table 2. 95% confidence intervals for the best linear predictor of (log)
wage y given education x using profile likelihood, marked Empirical Likeli-
hood and Wald statistics

Education True Region Profile Lik. Marked EL Wald
High school degree [3.549, 3.931] [3.454, 3.999] [3.456, 3.995] [3.465, 3.983]

Undergraduate degree [4.020, 4.915] [3.967, 5.051] [3.906, 5.003] [3.873, 4.976]

Figure 1. The population identification region (solid line) and the cor-
responding 95% confidence regions using the marked empirical likelihood
statistic (dashed line) and the Wald statistic (dotted line) for sample size
n = 1000.

4.2. Boolean model. In the context of mathematical morphology, geostatistics, and

particle statistics, researchers often observe a series of two or three dimensional random

sets, such as tumors and sand or rock grains (see, Stoyan, 1998, for a review). One of
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the most popular models to explain the growth pattern of these shapes is the Boolean

model, where the random set is generated as X = [j{Wj � {gj} : gj 2 G} based on

i.i.d. copies of random sets Wj ⇢ Rd (j = 1, 2, . . .), and a point process G in Rd for the

foci {gj : j 2 N}. For example, Cressie and Hulting (1992) developed a Boolean model

to describe the growth of tumor shapes by specifying G to be a Poisson process with

constant intensity function � over a unit circle support. For simplicity, we shall assume

that Wj = W is a non-random ball with unknown radius R. We note that taking R to be

non-stochastic is not too strong a requirement in this instance. Indeed, as seen in Cressie

and Hulting (1992), the variance of R is an order of magnitude smaller than its mean.

We thus consider � = (R,�) as parameters of the tumor growth process which differ for

normal and malignant tissues; consequently, we wish to conduct inference on these joint

parameters.

To estimate � = (R,�), Cressie and Hulting (1992) focused on the hitting probabil-

ity (or capacity functionals). Alternatively, we can conduct inference using the Aumann

expectation. More precisely, given the hypothesized parameter value �0, we can numer-

ically evaluate the Aumann expectation ⇥(�0) = E[X(�0)]. Then based on the sample

{X1, . . . , Xn} of tumor shapes of patients, the hypothesis H0 : � = �0 can be tested via

our methods for E[X] = ⇥(�0), specifically the marked (Section 2.1) and sieve empirical

likelihood (Section 2.2) statistics.

We note that X may not be convex in this example. However, as long as X is compact

valued, the Aumann expectation E[X] emerges as the almost sure limit of the Minkowski

average of the sample {X1, . . . , Xn}. Therefore, the Aumann expectation can be intu-

itively interpreted as the ‘average’ shape of the observed sets. Furthermore, since the un-

derlying probability measure is non-atomic in this example, it holds that E[X] = E[co(X)]
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(see, the discussion in Section 2). So, even though X is non-convex, our inferential pro-

cedures continue to hold after applying the convex hull operation (note: the support

function remains unchanged since s(X, p) = s(co(X), p) for any compact X).

We present some Monte Carlo simulation based on Cressie and Hulting (1992) to eval-

uate the finite sample performance of our test statistics. In particular, we simulate the

data from the estimated parameter values for � obtained in Cressie and Hulting (1992,

Table 3) with 5000 Monte Carlo replications for the sample sizes n =100, 200, and 500.

Numerical evaluation of ⇥(�0) is achieved by averaging over 5000 draws of the process

generated using the parameter value �0.

Table 3 reports the rejection frequencies of the marked empirical likelihood test under

the nominal 5% rejection level. The null hypothesis is H0 : �0 = (1.342, 4.046). We con-

sider three types of alternatives Ha
1 : (1.342, 4.5), Hb

1 : (1.320, 4.046), and Hc
1 : (1.320, 4.5).

The critical values for this test are obtained by implementing the bootstrap procedure

outlined in Section 3.4 with 99 repetitions. With respect to CPU seconds, the average

computing time to obtain the bootstrap critical values is 4.85 for 399 repetitions and 1.84

for 99 repetitions. With additional parallel processing, we expect that these times may

be further reduced. The first column indicates the test statistic has good size control

over the sample sizes. The second and third columns show that the statistic is sensitive

to slight changes in R and, to a lesser extent, changes in �. This is consistent with the

standard deviations of the estimates in Cressie and Hulting (1992, Table 3) which are

large for � compared to R. The fourth column reports the power properties of the test

when changing both R and �. In this case, these changes somewhat cancel each other

out in the net effect (lower radius vs. higher number of foci), which explains why the

alternative Hc
1 is harder to reject.
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Table 3. Rejection frequencies of the marked empirical likelihood test at
the nominal 5% level

n H0 Ha
1 Hb

1 Hc
1

100 0.059 0.259 0.389 0.074
200 0.063 0.461 0.679 0.099
500 0.071 0.856 0.973 0.173

Table 4. Rejection frequencies of the sieve empirical likelihood test at the
nominal 5% level

n, k H0 Ha
1 Hb

1 Hc
1

100, 3 0.058 0.328 0.475 0.078
100, 5 0.074 0.383 0.584 0.088
100, 10 0.102 0.393 0.521 0.121
200, 3 0.059 0.569 0.789 0.095
200, 5 0.066 0.648 0.890 0.101
200,10 0.085 0.581 0.847 0.110
500, 3 0.070 0.944 0.993 0.176
500, 5 0.082 0.974 0.999 0.202
500, 10 0.090 0.940 0.999 0.174

Table 4 reports analogous results for the sieve empirical likelihood test. We construct

the sieve from a grid of equidistant angle values corresponding to directions of the support

function. We report outcomes for different values of sieve size k =3, 5, and 10. The critical

values for the test are based on a �2
k calibration since, for the sample sizes and values

of k considered, the theoretical normal approximation is found to be too rough. We see

that the sieve empirical likelihood dominates the marked empirical likelihood in terms of

power for all values of k while having comparable size control for smaller values of k.

So far we have considered inference for the joint hypothesis involving both parameters

R and �. By using our empirical likelihood tests with nuisance parameters, it is also

possible to test the single parameter hypothesis H0 : � = �0 by plugging-in an estimated

value for R (e.g. the one in Cressie and Hulting, 1992).

4.3. Treatment effect. We consider the problem of inference for nonparametric bounds

on average treatment effects in the presence of imperfect compliance. In particular, we

conduct a simulation study based on the Vitamin A Supplementation example in Balke
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and Pearl (1997, Section 4.1). Briefly, the study consisted of administering doses of

Vitamin A in a randomized trial to check for the effect on mortality. While the assignment

to control and treatment groups was random, there were a substantial number of subjects

who did not consume the treatment even when assigned to the treatment group. In the

absence of any further assumptions on the relationship between compliance and response,

Balke and Pearl (1997) obtained the sharpest possible bounds on the average treatment

effect, which are of the form described in (11). Using the marked empirical likelihood

statistic with estimated random sets proposed in Section 3.4, we can provide ways to

conduct inference and construct confidence intervals for such bounds.

We use data simulated from the estimated joint probability distributions obtained in

Balke and Pearl (1997, Tables 1 and 2) with 5000 Monte Carlo replications for each of the

sample sizes n =500, 1000, 2500, and 5000. Note that the numerical example in Balke

and Pearl (1997) is based on over 20000 observations. We look at the size and power

properties of the marked empirical likelihood test statistic under the null of the identified

set H0 : ⇥0 = [�0.1946, 0.0054] and the alternative hypotheses obtained by expanding,

contracting, and shifting ⇥0 to the left by a value of 0.025 (i.e., Ha
1 : [�0.2196, 0.0304],

Hb
1 : [�0.1696,�0.0196], and Hc

1 : [�0.2196,�0.0196], respectively). The critical value for

the test is obtained by implementing the bootstrap procedure outlined in Section 3.4 with

399 repetitions. The tuning parameter % for the ‘smooth-max’ approximation (cf. Section

3.4) employed in this test is chosen to be % = 1000.

Table 5 reports the rejection frequencies of the marked empirical likelihood test under

the nominal 5% rejection level. We can see that the our testing procedure has excellent

size properties across all sample sizes (which are much smaller than the numerical example

in Balke and Pearl, 1997). Also, our test has reasonable power properties against the three

types of alternatives when the sample size is large enough.
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Table 5. Rejection frequencies of the marked empirical likelihood test at
the nominal 5% level

n H0 Ha
1 Hb

1 Hc
1

500 0.053 0.193 0.122 0.197
1000 0.054 0.342 0.288 0.335
2500 0.051 0.891 0.967 0.940
5000 0.055 0.998 1.000 0.998

A comparison with the Wald statistic of Beresteanu and Molinari (2008) shows that

both statistics have similar size and power properties. The marked empirical likelihood

test appears on average to have higher power, but the difference is marginal; in particular,

the confidence regions are around 3.5% shorter. Because the results are so similar, we do

not report the additional simulations here.

Appendix A. Assumptions and some definitions

Let Gnf(·) = n�1/2
Pn

i=1(f(Xi)�E[f(X)]) be the empirical process. Hereafter “w.p.a.1”

means “with probability approaching one”. For Theorem 1 and Proposition 1, we impose

the following assumptions.

Assumption M.

(i): {Xi}ni=1 is an i.i.d. sequence of compact and convex SVRSs. The class {s(X, p) :

p 2 Sd} is a µ-Donsker class with envelope F such that E[|F |⇠] < 1 for some

⇠ > 2. Also, infp2Sd Var(s(X, p)) > 0.

(ii): ⌫̂
p! ⌫, k⇥0(⌫̂)kH = Op(1), and there exists a function G(p; ⌫) continuous in

p 2 Sd satisfying (5).

(iii): For every finite collection of points {p1, . . . , pJ} 2 Sd, the vector

(Gns(·, p1), . . . ,Gns(·, pJ),
p
n(⌫̂�⌫)) converges in distribution to a Gaussian ran-

dom vector.
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Assumption M’. For the bootstrap probability P ⇤ conditional on the data, it holds

w.p.a.1,

sup
p2Sd

|s(⇥0(⌫̂
⇤), p)� s(⇥0(⌫̂), p)�G(p; ⌫)0(⌫̂⇤ � ⌫̂)| = op⇤(n

�1/2).

For Theorem 2, we restrict attention to the situation where ⌫ = f(E[z]) is a smooth

function of means of z 2 Rdim(z). A consistent estimator of ⌫ is given by ⌫̂ = f(z̄).

We introduce the following notation: Let mk(Xi), m̃k(Xi), ṁk(Xi), and m̂k(Xi) be k-

dimensional vectors whose j-th elements are given by

mk,j(Xi) = s(Xi, pj)� s(⇥0(⌫̂), pj), m̃k,j(Xi) = s(Xi, pj)� s(⇥0(⌫), pj),

ṁk,j(Xi) = s(Xi, pj)� s(⇥0(⌫), pj)�G(pj; ⌫)
0rf(E[z])0(zi � E[z]),

m̂k,j(Xi) = s(Xi, pj)� s(⇥0(⌫̂), pj)�G(pj; ⌫̂)
0rf(z̄)0(zi � z̄),

respectively. Define V̂k = n�1
Pn

i=1 mk(Xi)mk(Xi)
0, Vk = Var(m̃k(Xi)), V̇k = Var(ṁk(Xi)),

V̄k = n�1
Pn

i=1 m̂k(Xi)m̂k(Xi)
0, �̇k = �min(V̇k), and �̄k = �min(V̄k). The test statistic

Ln in (9) is defined as the maximum over a shrinking neighborhood ⇤n = {� 2 Rk :

k�k  C�̄
�3/2
k

p
k/n} for some positive constant C. In particular, C is chosen to satisfy

C > max{2C 0�̄
1/2
k , 1} where C 0 is the positive constant obtained from km̄k  C 0

p
k/n

w.p.a.1. The condition on C ensures that the local maximum �̂ lies in the interior of ⇤n

w.p.a.1 even in the case when �̇�1
k is bounded. If �̇�1

k diverges to infinity, this additional

condition on C may be dispensed with. Note that the optimization in (9) is well defined

only in the region Sn = {� 2 Rk : �0mk(Xi) > �1 for all i = 1, . . . , n}. However, since

our assumptions guarantee max1in sup�2⇤n
|�0mk(Xi)| = op(1), it holds that ⇤n ✓ Sn

w.p.a.1. For Theorem 2, we impose the following assumptions.

Assumption S.
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(i): Assumption M holds with the envelope function F in Assumption M (i) satisfying

E[|F |⇠] < 1 for some ⇠ � 4.

(ii): rf(·) is Hölder continuous of order ↵ � 2/3 in a neighborhood of E[z]. Fur-

thermore, E[kzk4] < 1.

(iii): For some neighborhood N of ⌫, there exists a function G(·; .) : Sd⇥N ! Rdim(⌫)

such that supp2Sd kG(p; ⌫m)�G(p; ⌫)k ! 0 for all ⌫m ! ⌫, where G(p; ⌫) is de-

fined in Assumption M (ii). Furthermore, for all ⌫̃ 2 N , supp2Sd kG(p; ⌫̃)�G(p; ⌫)k 

M k⌫̃ � ⌫k↵ for some ↵ � 2/3 and M < 1 independent of ⌫̃.

(iv): k ! 1 and (k5�̇�6
k )

⇠
⇠�2/n ! 0 as n ! 1.
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WEB APPENDIX TO “EMPIRICAL LIKELIHOOD FOR RANDOM
SETS”

Abstract. Sections A and B present proofs for Theorems 1 and 2 from the main text,

respectively. Section C reports additional numerical results for Section 4.1. Section D

provides additional simulation results to illustrate the empirical likelihood test proposed

in Section 3.5.

Appendix A. Proof of Theorem 1

We first derive the limiting distribution of Kn under H
0

. By Assumption M (ii),

n�1/2

n
X

i=1

{s(Xi, p)� s(⇥
0

(⌫̂), p)} = Gns(·, p)�G(p; ⌫)0(⌫̂ � ⌫) + op(n
�1/2),

uniformly over p 2 Sd. Assumptions M (i) and (iii) guarantee weak convergence of the

process {Gns(·, p),
p
n(⌫̂ � ⌫) : p 2 Sd} to {Z(p), Z

1

: p 2 Sd}. Thus, by continuity of

G(p; ⌫) (Assumption M(ii)), it follows that n�1/2
Pn

i=1

{s(Xi, p) � s(⇥
0

(⌫̂), p)} converges

weakly to Z(p)�G(p; ⌫)0Z
1

. Using Assumptions M (i) and (ii) and standard arguments,

supp2Sd |n�1

Pn
i=1

{s(Xi, p)� s(⇥
0

(⌫̂), p)}2�Var(s(X, p))| p! 0. From the envelope condi-

tion in Assumption M (i) and a Borel-Cantelli lemma argument as in Owen (1988), it holds

max
1in supp2Sd |s(Xi, p)| = o(n1/2) almost surely. This, along with k⇥

0

(⌫̂)kH = Op(1)

(Assumption M (ii)), implies max
1in supp2Sd |s(Xi, p) � s(⇥

0

(⌫̂), p)| = op(n
1/2). Com-

bining these results, the null distribution of Kn follows by a similar argument as in the

proof of Hjort, McKeague and van Keilegom (2009, Theorem 2.1).

We now prove the second assertion, Kn ! 1 under H
1

. Let gi(p, t) = s(Xi, p) �

s(⇥
0

(t), p) for t = ⌫ or ⌫̂. Under H
1

, there exists p⇤ 2 Sd such that E[gi(p
⇤, ⌫)] 6= 0. We

prove the case of E[gi(p
⇤, ⌫)] > 0 only; the case of E[gi(p

⇤, ⌫)] < 0 can be shown in the

1



same manner. Pick any � 2 (0, 1/2). Observe that

� log `n(p
⇤) = sup

�2R

n
X

i=1

log(1 + �gi(p
⇤, ⌫̂)) �

n
X

i=1

log(1 + n�(1/2+�)gi(p
⇤, ⌫̂))

= n1/2��

(

1

n

n
X

i=1

gi(p
⇤, ⌫̂)

)

+ n�2�

(

1

2n

n
X

i=1

gi(p
⇤, ⌫̂)2

)

+Op(n
�2�),

where the first equality follows from the convex duality and the second equality follows

from a Taylor expansion. Since the first term diverges to infinity and the other terms are

negligible under Assumptions M (i)-(iii), the conclusion is obtained.

Appendix B. Proof of Theorem 2

We first derive the limiting distribution of (Ln � k)/
p
2k under H

0

. Define ġi(p) =

s(Xi, p) � s(⇥
0

(⌫)) � G(p; ⌫)0rf(E[z])0(zi � E[z]), m̄k = n�1

Pn
i=1

mk(Xi), and ¯̇mk =

n�1

Pn
i=1

ṁk(Xi). Note that by the mean value theorem (applicable here by Assumption S

(iii)), for each p 2 Sd there exists some ⌫̃p satisfying k⌫̃p � ⌫k  k⌫̂ � ⌫k and s(⇥
0

(⌫̂), p)�

s(⇥
0

(⌫), p) = G(p; ⌫̃p)
0(⌫̂ � ⌫). Thus by Assumption S (ii) and the asymptotic expansion

⌫̂ � ⌫ = rf(E[z])0n�1

Pn
i=1

(zi � E[z]) +Op(n
�(1+↵)/2), we have

km̄k � ¯̇mkk 
p
k sup

p2Sd
ks(⇥

0

(⌫̂), p)� s(⇥
0

(⌫), p)�G(p; ⌫)0(⌫̂ � ⌫)k+Op(
p

k/n1+↵)


p
k k⌫̂ � ⌫k sup

p2Sd
kG(p; ⌫̃p)�G(p; ⌫)k+Op(

p

k/n1+↵) = Op(
p

k/n1+↵).(1)

Also note that

¯̇mk = Op(
p

k/n), m̄k = Op(
p

k/n), (2)

where the first statement follows from the fact that the process {ġi(p); p 2 Sd} is µ-

Donsker by Assumption S (i), and the second statement follows by (1). Next, observe

2



that

�

�

�

V̂k � Vk

�

�

�

 k sup
p,q2Sd

�

�

�

�

�

1

n

n
X

i=1

{ġi(p)ġi(q)� E[ġi(p)ġi(q)]}

�

�

�

�

�

+Op

 

r

k

n

!

= Op(k/
p
n) (3)

where the inequality follows from supp2Sd |s(⇥(⌫̂), p) � s(⇥(⌫), p)| = Op(n
�1/2) and the

equality follows from the fact that the process{ġi(p)ġi(q); p, q 2 Sd} is µ-Donsker. Further-

more, using Assumptions S (i) and (ii) combined with kz̄ � E[z]k = Op(n
�1/2), straight-

forward algebra ensures that

kṁk(Xi)� m̂k(Xi)k = Op(
p

k/n↵) kzi � E[z]k+Op(
p

k/n).

We can now see that V̄k�n�1

Pn
i=1

ṁk(Xi)ṁk(Xi)
0 is bounded by 2n�1

Pn
i=1

{k1/2ġi�i+�2i },

where �i = kṁk(Xi)� m̂k(Xi)k. Substituting the expression for the latter from the

previous equation and noting that our assumptions guarantee E[ġ2i ] < 1, we obtain
�

�V̄k � n�1

Pn
i=1

ṁk(Xi)ṁk(Xi)
0
�

� = Op(
p

k2/n↵) using the law of large numbers. More-

over,
�

�

�

n�1

Pn
i=1

ṁk(Xi)ṁk(Xi)
0 � V̇k

�

�

�

= Op(k/
p
n) by analogous weak convergence ar-

guments as used to show (3). Combining these results proves

�

�

�

V̄k � V̇k

�

�

�

= Op(
p

k2/n↵). (4)

We also make frequent use of the following fact implied by (4) and the rate condition

(k5�̇�6

k )
⇠

⇠�2/n ! 0:

|�̄c
k � �̇c

k| = op(�̇
c
k) for each c 2 R. (5)

3



For the conclusion of this theorem, it is sufficient to show the followings:

Ln(⌫̂)� nm̄0
kV̄

�1

k m̄kp
2k

p! 0, (6)

nm̄0
kV̄

�1

k m̄k � kp
2k

d! N(0, 1). (7)

We first show (6). Let �̂ 2 argmax�2⇤n Gn(�) and Dn = max
1in kmk(Xi)k. Also define

G⇤
n(�) = n(2�0m̄k � �0V̄k�), which is maximized at �⇤ = V̄ �1

k m̄k. For (6), it is sufficient

to show that �̂, �⇤ = Op(�̇k
�1

p

k/n), and sup�2⌦n✓⇤n
k�1/2|Gn(�) � G⇤

n(�)|
p! 0 where

⌦n = {� 2 Rk : k�k  c�̇k
�1

p

k/n} with c > 0 chosen to ensure ⌦n contains both �̂

and �⇤ w.p.a.1 and ⌦n ✓ ⇤n (such a c exists by the definition of ⇤n). Indeed, these are

shown by an argument similar to the proof of Hjort, McKeague and van Keilegom (2009,

Proposition 4.1) if the following requirements are satisfied under (k5�̇�6

k )
⇠

⇠�2/n ! 0:

(n�1/2k3/2�̇�3

k )Dn = op(1), (8)

k�⇤k = Op(�̇
�1

k

p

k/n), (9)

�
max

(V̂k) = Op(k), (10)

�̂ exists w.p.a.1 and k�̂k = Op(�̇
�1

k

p

k/n). (11)

We first show (8). Using the envelope condition in Assumption S (i) which implies

supk2N E[kk�1/2m̃k(Xi)k⇠] < 1, an argument similar to the proof of Hjort, McKeague and

van Keilegom (2009, Lemma 4.1) guarantees (n�1/2k3/2�̇�3

k )max
1in km̃k(Xi)k = op(1)

under the rate condition (k5�̇�6

k )
⇠

⇠�2/n ! 0. Furthermore, max
1in km̃k(Xi)�mk(Xi)k 

supp2Sd |s(⇥(⌫̂), p) � s(⇥(⌫), p)| = Op(n
�1/2), and (8) follows. Next, (9) follows from (2)

and (5). To show (10), observe that
�

�

�

V̂k � n�1

Pn
i=1

m̃k(Xi)m̃k(Xi)
0
�

�

�

= Op(k/
p
n) by

Assumption S (ii) and

4



kn�1

Pn
i=1

m̃k(Xi)m̃k(Xi)
0k = Op(k) by E[kXik2H ] < 1. Hence, using �

max

(V̂k) 
�

�

�

V̂k

�

�

�

and the triangle inequality, (10) is verified. Finally, for (11), we first note that

�̂ exists w.p.a.1 since ⇤n ✓ Sn w.p.a.1 and ⇤n is a compact set. Thus, letting bn =

max
1in sup�2⇤n

{1� (1+ �0mk(Xi))
�2}, an expansion around � = 0 yields 0  Gn(�̂) 

n{2�̂0m̄k � �̂0(V̄k � bnV̂k)�̂}. Note that

bn = Op

✓

max
1in

sup
�2⇤n

|�0mk(Xi)|
◆

= Op

✓

Dn sup
�2⇤n

k�k
◆

= op(�̇
3/2
k k�1),

where the last equality follows from (5), (8) and the definition of ⇤n. Consequently,

�
min

(V̄k� bnV̂k) � �̄k� |bn|�max

(V̂k) = �̇k(1+op(1)), where the equality also uses (10) and

(5). Thus �̂0(V̄k+bnV̂k)�̂ � k�̂k2 �̇k(1+op(1)), which implies k�̂k  2�̇�1

k km̄kk (1+op(1)).

Therefore, by (2) it must be the case that �̂ is an interior solution w.p.a.1. (by the choice

of C in the definition of ⇤n) and that k�̂k = Op(�̇
�1

k

p

k/n). This proves (11). Combining

these results, the claim in (6) follows.

We now show (7). We can decompose

nm̄0
kV̄

�1

k m̄k � kp
2k

=
nm̄0

k(V̄
�1

k � V̇ �1

k )m̄kp
2k

+
n(m̄k � ¯̇mk)

0V̇ �1

k m̄kp
2k

+
n ¯̇m0

kV̇
�1

k (m̄k � ¯̇mk)p
2k

+
n ¯̇m0

kV̇
�1

k
¯̇mk � kp

2k
. (12)

By de Jong and Bierens (1994, Lemma 4a), the first term of (12) is bounded by

nk�1/2km̄kk2�̄�1

k �̇�1

k

�

�

�

V̄k � V̇k

�

�

�

and is thus negligible using (2),(4) and (5). Next, by

(1),(2) and (5) the second term of (12) is bounded by n�̇�1

k km̄k � ¯̇mkk km̄kk /
p
2k =

Op(�̇
�1

k

p

k/n↵) which is negligible for ↵ � 1/3. Negligibility of the third term of (12)

follows by a similar argument. Finally, note that E[ṁk(Xi)] = 0 and Var(ṁk(Xi)) = V̇k.

Therefore, arguing as in the proof of de Jong and Bierens (1994, Theorem 1), the last

5



term of (12) converges in distribution to N(0, 1) under the rate condition �̇�4

k k2/n ! 0.

Thus the result in (7) follows.

We now prove the second assertion, (Ln � k)/
p
2k ! 1 under H

1

. Since in the limit

the points {p
1

, . . . , pk} form a dense subset of Sd and the support function is continuous,

under H
1

there exists an integer N such that for all n � N the set of points includes

a direction p⇤ for which E[s(Xi, p
⇤) � s(⇥

0

(⌫), p⇤)] 6= 0. Without loss of generality we

prove the case of E[s(Xi, p
⇤)�s(⇥

0

(⌫), p⇤)] > 0. Define gi(p) = s(Xi, p)�s(⇥
0

(⌫̂), p) and

ḡi(p) = s(Xi, p)� s(⇥
0

(⌫̂), p)�G(p; ⌫̂)0rf(z̄)0(zi � z̄). Pick any � 2 (0, 0.3) and observe

Ln � 2
n

X

i=1

log(1 + n�(1/2+�)gi(p
⇤)) + n�2�

n 1

n

n
X

i=1

gi(p
⇤)2 � 1

n

n
X

i=1

ḡi(p
⇤)2

o

= 2n1/2��

(

1

n

n
X

i=1

gi(p
⇤)

)

� n�2�

(

1

n

n
X

i=1

ḡi(p
⇤)2

)

+Op(n
�2�),

for all n � N , where the inequality follows by setting � = n�(1/2+�)e⇤ 2 �n w.p.a.1, where

e⇤ is the unit vector that selects the component of mk(Xi) containing p⇤, and the equality

follows from a Taylor expansion. Now, n�1

Pn
i=1

gi(p
⇤)

p! E[s(Xi, p
⇤)]� s(⇥

0

(⌫), p⇤) 6= 0

by a suitable law of large numbers and n�1

Pn
i=1

ḡi(p
⇤)2

p! E[ġi(p
⇤)2] < 1 by a similar

argument used to show (4). Thus, Ln diverges to infinity at the rate n1/2�� which implies

that (Ln � k)/
p
2k diverges.

Appendix C. Additional numerical results for Section 4.1

In this section we report additional numerical results to compare the marked empirical

likelihood confidence region obtained in Section 4.1 with the one based on the method

by Chernozhukov, Kocatulum and Menzel (2015) (hereafter CKM). As in Section 4.1, we

consider the relationship between the unobservable dependent variable y and regressors

x, where we observe the interval [yL, yU ] satisfying yL  y  yU almost surely.

6



Consider the set of coefficients characterized by the conditional moment inequalities

⌅ = {✓ : E[yL|x]  (1, x0)✓  E[yU |x]}.

The set ⌅ would be the identified region of interest if we assume E[y|x] = (1, x0)✓. It is

important to note that the set ⌅ is a subset of

⌥ = {argmin
✓

Z

{y � (1, x0)✓}2dµ for some µ 2 M},

which is the identified region of interest in Section 4.1. Indeed, this can be seen from the

fact that ⌥ is obtained as the set of parameters satisfying E[(1, x0){y � (1, x0)✓}] = 0.

If all the regressors x are discrete, then ⌅ is characterized by a finite number of mo-

ment inequalities (see, Andrews and Shi, 2015, for a general case). CKM suggest a general

approach to obtain confidence regions in this context by combining the moment inequal-

ities into a single one using the smooth-max approximation (see, Section 3.4). In our

numerical example with log wages and education, the education variable takes 13 values

and thus provides 26 moment inequalities. Since it is computationally difficult to work

with a smooth-max approximation with such a large number of moments, we simplify

the problem by partitioning the regressor values into four bins and utilizing the moment

inequalities within each bin (corresponding to a total of 8 moment inequalities). In par-

ticular, we partition the education variable into the following broad categories: Less than

10th grade (x  10); High school graduate (x 2 [11, 12]); Some college or associate degree

including vocational training (x 2 [13, 14]); and Bachelor’s degree or higher (x � 15).

Figure 1 compares the 95% confidence region of CKM for ⌅ with that from the marked

empirical likelihood for ⌥. The sample size is n = 1000. The tuning parameter % for the

‘smooth-max’ approximation is chosen to be % = 100. The critical values in both cases

7



Figure 1. The population identification regions for regression with interval
outcomes ⌅ (dash-dotted line) and for the best linear prediction ⌥ (solid
line) as well as the corresponding 95% confidence regions via CKM (dashed
line) and the marked empirical likelihood statistic (dotted line). The sample
size is n = 1000.

were obtained using bootstrap with 999 repetitions. Unsurprisingly, the CKM confidence

region is smaller than that obtained by the marked empirical likelihood. This is due to the

fact that the region ⌅ is considerably smaller than ⌥ as can be seen from Figure 1. From

Figure 1, we can thus infer the following: If it is possible to impose additional assumptions

to satisfy the conditional moment restriction E[y|x] = x0✓, then characterizing the set

using moment inequalities leads to a much smaller confidence region. At the same time,

the best linear predictor is more robust to possible misspecification and thus, is applicable

more generally, albeit at the expense of a larger confidence set.

Appendix D. Simulation results for Section 3.5

We consider the problem of testing the shape of a set based on noisy measurements

of the support function, as discussed in Section 3.5. We employ the simulation design of
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Fisher et al. (1997), where the underlying set is an ellipse relative to the origin with the

support function taking the form s(⇥, p) = (✓2
1

cos2 p+ ✓2
2

sin2 p)1/2 for p 2 [�⇡, ⇡]. Noisy

measurements {si, pi}ni=1

of the support function are generated using si = s(⇥, pi) + ✏i

with pi ⇠ Uniform[�⇡, ⇡] and ✏i ⇠ N(0, 0.16).

We consider two types of testing problems here. First, we test whether the set ⇥

takes a particular shape. In the first four columns of Table 1, we report the rejection

frequencies of the marked empirical likelihood test based on eq. (12) of the paper for

the null hypotheses Ha
0

:’⇥ is a circle with (✓
1

, ✓
2

) = (1, 1)’ and Hb
0

:’⇥ is an ellipse with

(✓
1

, ✓
2

) = (1, 2)’. To compute the test statistic we follow Fisher et al. (1997) in employing

the von Mises density function Kb(z) = eb cos z/
R ⇡

�⇡
eb cos zdz on the circle as the kernel and

set the smoothing parameter to be b = 8 (which corresponds to the inverse of the square

of the bandwidth for the conventional kernel density estimator). In the last two rows of

Table 1 we present the results for different values of the bandwidth by setting b = 4 and

16 when n = 200. The critical value of the test is computed using the wild bootstrap

based on Härdle and Mammen (1993). We consider sample sizes of n =100, 200, and

500. The number of Monte Carlo replications is 1000 for all cases. The first and third

columns of Table 1 indicate that the marked empirical likelihood test based on eq. (12)

of the paper has reasonable size properties for both null hypotheses and over all sample

sizes. The second and fourth columns evaluate power properties of the test against the

alternatives Ha
1

: (✓
1

, ✓
2

) = (1.1, 1) and Hb
1

: (✓
1

, ✓
2

) = (1.1, 2), respectively. In both cases,

the power of the empirical likelihood test increases with the sample size at a reasonably

fast rate.

Second, we conduct a goodness-of-fit test for the null Hc
0

:’⇥ is a ellipse with s(⇥, p) =

(✓2
1

cos2 p + ✓2
2

sin2 p)1/2 for some (✓
1

, ✓
2

)’. For this testing problem, (✓
1

, ✓
2

) are nuisance

parameters to be estimated. The marked empirical likelihood statistic is modified by
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Table 1. Rejection frequencies of the marked empirical likelihood test at
the nominal 5% level

n, b Ha
0

:circle Ha
1

Hb
0

:ellipse Hb
1

Hc
0

Hc
1

100, 8 0.022 0.425 0.079 0.413 0.049 0.182
200, 8 0.026 0.851 0.029 0.608 0.020 0.409
500, 8 0.039 0.999 0.025 0.958 0.013 0.991
200, 4 0.036 0.854 0.025 0.557 0.016 0.332
200, 16 0.014 0.774 0.037 0.668 0.012 0.443

replacing {si � s(⇥
0

, p)} in eq. (12) of the paper with its estimated counterpart {si �

(✓̂2
1

cos2 p + ✓̂2
2

sin2 p)1/2}, where (✓̂
1

, ✓̂
2

) is the nonlinear least squares estimator. Under

the null Hc
0

, the measurements on the support function are generated by (✓
1

, ✓
2

) = (1, 2).

Under the alternative Hc
1

, the data are generated by s(⇥, p) = (cos2 p + cos p sin p +

4 sin2 p)1/2. The critical value is again computed using the wild bootstrap. The last two

columns of Table 1 report the rejection frequencies of this test. Although the test is

slightly undersized, it shows good size and power performance.

Finally, the last two rows of Table 1 show that the rejection frequencies are not very

sensitive to the choice of the smoothing parameter b under the null and alternative hy-

potheses.
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