

Angelos Dassios and Hongbiao Zhao

Efficient simulation of clustering jumps with
CIR intensity

Article (Accepted version)
(Refereed)

Original citation: Dassios, Angelos and Zhao, Hongbiao (2017) Efficient simulation of clustering
jumps with CIR intensity. Operations Research, 65 (6). pp. 1494-1515. ISSN 0030-364X

DOI: 10.1287/opre.2017.1640

© 2017 INFORMS

This version available at: http://eprints.lse.ac.uk/74205/
Available in LSE Research Online: January 2018

LSE has developed LSE Research Online so that users may access research output of the School.
Copyright © and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. Users may download and/or print one copy of any article(s) in LSE
Research Online to facilitate their private study or for non-commercial research. You may not
engage in further distribution of the material or use it for any profit-making activities or any
commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE Research
Online website.

This document is the author’s final accepted version of the journal article. There may be differences
between this version and the published version. You are advised to consult the publisher’s version
if you wish to cite from it.

http://www.lse.ac.uk/researchAndExpertise/Experts/profile.aspx?KeyValue=a.dassios@lse.ac.uk
https://pubsonline.informs.org/journal/opre
http://dx.doi.org/10.1287/opre.2017.1640
https://pubsonline.informs.org/
http://eprints.lse.ac.uk/74205/

Efficient Simulation of Clustering Jumps with

CIR Intensity

Angelos Dassios∗

London School of Economics

Hongbiao Zhao†

Shanghai University of Finance and Economics

Abstract

We introduce a broad family of generalised self-exciting point processes with

CIR-type intensities, and develop associated algorithms for their exact simulation.

The underlying models are extensions of the classical Hawkes process, which al-

ready has numerous applications in modelling the arrival of events with clustering

or contagion effect in finance, economics and many other fields. Interestingly, we

find that the CIR-type intensity together with its point process can be sequentially

decomposed into simple random variables, which immediately leads to a very effi-

cient simulation scheme. Our algorithms are also pretty accurate and flexible. They

can be easily extended to further incorporate externally-excited jumps, or, to a multi-

dimensional framework. Some typical numerical examples and comparisons with

other well known schemes are reported in detail. In addition, a simple application

for modelling a portfolio loss process is presented.

Keywords: Contagion risk; Jump clustering; Stochastic intensity model; Self-exciting point process; Self-

exciting point process with CIR intensity; Hawkes process; CIR process; Square-root process; Exact simula-

tion; Monte Carlo simulation; Portfolio risk

Mathematics Subject Classification (2010): Primary: 60G55; Secondary: 60H35 · 65C05 · 60G17

JEL Classification: C15 · C53 · C63

∗Department of Statistics, London School of Economics, Houghton Street, London WC2A 2AE, United
Kingdom. Email: a.dassios@lse.ac.uk

†Corresponding author, School of Statistics and Management, Shanghai University of Finance and Eco-
nomics, No. 777 Guoding Road, Shanghai 200433, China. Email: h.zhao1@lse.ac.uk

1

1 Introduction

The square-root diffusion process, later called the Cox-Ingersoll-Ross (CIR) process (Cox et al.,

1985) in finance, was initially studied by Feller (1951), and then widely applied in fi-

nance for modelling interest rates (Cox et al., 1985) and stochastic volatilities (Heston,

1993). The distributional properties of this process and its integral over time were well

documented in Dufresne (2001) and Dassios and Nagaradjasarma (2006). On the other

hand, the default risk, and more recently, the jump risk are extensively investigated in fi-

nance. However, most of the existing literature used simple Poisson processes or Cox point

processes, which would not be able to capture contagion effect of jumps or defaults in

markets particularly during crises. Self-exiting jump processes, in particular the Hawkes

process, were then proposed for modelling the arrival of events (such as jumps, default-

s, bankruptcies, crises, loss claims and catastrophes) with clustering, contagion, ripple

effects, or herd behaviors, see methodologies developed in Hawkes (1971a,b), and their

associated applications to finance, insurance and economics in Chavez-Demoulin et al.

(2005), Bowsher (2007), Large (2007), Errais et al. (2010), Dassios and Zhao (2012) and

Aït-Sahalia et al. (2014, 2015). Therefore, it is natural for us now to explore the idea of

combining the properties of the CIR diffusion and self-exciting jumps together.

In this paper, we mainly use a mean-reverting CIR-diffusion process to model the in-

tensity of a jump process, which is additionally excited by the jumps themselves, namely,

a self-exiting point process with CIR intensity, which extends a point process with CIR stochas-

tic intensity and the classical self-exiting Hawkes process (Hawkes, 1971a,b). This is a gen-

eralised Hawkes process with exponentially decaying intensity additionally perturbed

by an independent mean-reverting diffusion. By adding a diffusion to the intensity of the

classical Hawkes process, the model is then easier to be benchmarked to well-developed

CIR-type models in the existing literature. In addition, for applications in finance, this

diffusion component could be useful in capturing noises which are persistently and ex-

ternally existing in markets. This process and its variants were also discussed in Giesecke

and Kim (2007), Errais et al. (2010), Dassios and Zhao (2011), Giesecke et al. (2011b), Zhu

(2014) and Zhang et al. (2015).

In practice, analytic formulas for many financial quantities (such as path-dependent

option prices, CDS/CDO prices) based on this generalised self-exciting jump model are

rather limited or difficult to be obtained. Hence, a computationally efficient Monte Carlo

simulation scheme for generating this process becomes crucial for model implementa-

tion, simulation-based statistical inference and empirical studies.

2

Our aim here is to develop an exact simulation algorithm for this point process, rather

than conventionally discretising the process and simulating approximately, as the dis-

cretisation introduces bias into simulation results (Giesecke and Kim, 2007). The exact

simulation method has the primary advantage of generating sample paths according to

the process law exactly (Chen and Huang, 2013).

Recently, efficient simulation algorithms for CIR-type stochastic processes were inten-

sively discussed in the literature. Beskos and Roberts (2005) developed an exact simula-

tion based on the acceptance/rejection (A/R) scheme for one-dimensional state-dependent

diffusions. It was then extended by Chen and Huang (2013) to exactly simulate a more

general class of diffusions via a localisation technique. Broadie and Kaya (2006) presented

an exact simulation for the classical Heston (1993)’s stochastic volatility model. This algo-

rithm has been further enhanced by Glasserman and Kim (2011) using a Gamma expansion.

On the other hand, a self-exciting Hawkes process can be simulated via a branch-

ing structure without any discretisation procedure, as it can be equivalently defined as a

branching process via its Poisson cluster representation; see the associated algorithms first

developed in Brix and Kendall (2002) and then extended by Møller and Rasmussen (2005,

2006). For the simulation within a finite time interval, their algorithms all require the s-

tationary condition, and may suffer from edge effects or involve approximations. As an

alternative, from a point of view based on the conditional stochastic intensity representation,

the exact simulation for the Hawkes process and its variants (on R+-time) was first in-

troduced by Giesecke and Kim (2007). An obvious problem as pointed by themselves

in the conclusion is that, their method needs the numerical evaluation of the inverse of

conditional distribution functions of interarrival times. So, a root-finding procedure is

required which involves intensive computations. This work was later refined and gen-

eralised by Giesecke and Kim (2011) and Giesecke et al. (2011b) with the aid of an A/R

scheme. Moreover, Giesecke et al. (2011a) developed the projection method for exactly sam-

pling point processes with general state-dependent intensities via the sequential thinning

(Lewis and Shedler, 1979) or A/R implementation. In addition, Giesecke and Smelov

(2013) adopted an A/R scheme and further extended the exact simulation method of

Beskos and Roberts (2005) to a more general framework of jump-diffusion processes with

state-dependent coefficients and jump intensities.

We have to admit that, the popular A/R scheme for exact simulation indeed work-

s for a very general class of point processes, whereas the efficiency varies. An evident

disadvantage is the mechanism of A/R scheme itself: it brings the uncertainty about the

3

number of loops needed for simulating each step moving forward, as there is a possibility

of rejecting the generated candidates; depending on the frequency of these rejections, one

may end up with a substantially large number of loops. To avoid this problem, Dassios

and Zhao (2013) first developed an efficient, certain and much simpler exact simulation

algorithm for the most widely-used self-exciting point process, i.e. a Hawkes process

with exponentially decaying intensity (or exponential kernel) and random marks. This

scheme is applicable to both one-dimensional and multi-dimensional cases. The key idea

is to decompose the processes into simple random variables sequentially: each interar-

rival time can be generated exactly and certainly as the minimum of two simple inter-

mediate random variables (one exponential random variable and one simple defective

random variable). This certain scheme needs more detailed knowledge about the distri-

bution of the underlying process than the conventional A/R method, and requires the

targeted process to be more specific, and attempts to identify the underlying distribution

as exactly as possible. So, it may not be applicable as generally as the A/R method. How-

ever, it has many advantages: it avoids the numerical inversion of distribution functions,

it also does not involve any approximation or truncation error, and is free of any sta-

tionary condition. Moreover, it does not involve any A/R procedure: generating just two

simple intermediate random variables can guarantee successfully generating one interar-

rival time without wasting (or rejecting) any candidate. Hence, the resulting simulation

speed is independent of the choices of parameters.

The new approach developed in this paper makes a non-trivial extension of the cer-

tain scheme of Dassios and Zhao (2013). Obviously, our current targeted process is much

more complicated and difficult to be simulated: the trajectories of the CIR-type stochas-

tic intensity between two successive jumps (i.e. interarrival intensity processes) are no

longer deterministic as in the Hawkes process. To deal with this problem, we have to use

the integral transforms of joint distributions of the self-exciting point process with CIR

intensity to derive the transition densities as the basis for the algorithm design of exact

simulation. Our approach is mainly based on the distributional decomposition for the

process. The interarrival times and the intensity levels at the jump arrival times can be

sequentially decomposed into simple random variables (uniform, Poisson and Gamma),

so they can be exactly and efficiently simulated, and the entire continuous-time path sim-

ulation for the intensity can be avoided. In fact, each interarrival time can be generated

as the minimum of two intermediate random variables: one is a simple defective random

variable, and the other one is a well-defined random variable. The later one is the only

random variable that needs be generated via a modified (or transformed) A/R scheme,

as to our knowledge its distribution can not be decomposed into simpler ones any fur-

4

ther. More interestingly and elegantly, conditional on the realisation of the interarrival

time, the associated intensity level at each jump time then can be simply generated from

two simple Gamma random variables by conditioning on a single realisation of Poisson

random variable.

The key methodological difference from many other relevant literature is that, here

our principle is to use less A/R scheme as possible, in order to make most use of simu-

lation candidates generated. It means that, if we are able to decompose the distribution

of a random variable explicitly, we will abandon the associated A/R scheme, and hence

reduce the uncertainty from the number of loops needed for each step moving forward

during the simulation. This principle of algorithm design leads our scheme to be very

accurate, efficient and flexible: 1) It has no bias or truncation error, and does not involve

any numerical inversion or root finding procedure. 2) Conventional conditions for the

CIR and Hawkes processes1 are not required. 3) Jumps are allowed to be non-additive.

4) Both of the cases of stationary and non-stationary (unbounded) intensities can be gen-

erated. 5) The path simulation can start from any arbitrary time and any arbitrary initial

intensity without truncation or approximation error. 6) In particular, it is also applicable

to exactly simulating a point process with pure CIR intensity as a special case. Indeed,

this is an important special case, which has many useful applications in practice. For ex-

ample, Glasserman and Kim (2011) in the conducing remarks of their paper also suggest-

ed using a Gamma expansion to simulate this process. However, their approach would

introduce truncation errors, as the expansion creates infinite summations which need the

numerical truncation. Our scheme is exact, thereby it could provide an improvement

over their algorithm for simulating this process. 7) More generally, our algorithm can

be easily adjusted to simulate a broad family of more general self-exciting point process-

es with CIR-type intensities. For example, it can further integrate an additional series

of externally-excited jumps in the intensity process, which may be useful for modelling

external risk factors. 8) Furthermore, it can be easily extended to a multi-dimensional

mutually-exciting framework.

The paper is organised as follows. Section 2 provides the preliminaries, a definition

and some basic distributional properties for this self-exciting point process with CIR in-

tensity. Section 3 investigates the distributional properties of the transition of this process,

and develops the numerical algorithm for exactly generating a sample path of the point

1The conventional condition for CIR-type processes is the Feller’s condition granting that the processes
are strictly positive almost surely and the origin is inaccessible (Feller, 1951); the conventional condition for
Hawkes process is the stationary condition that grants its intensity process to be stationary. We will specify
these two important conventional conditions later, however, both are not required in all of our algorithms
developed in this paper.

5

process in one dimension. Numerical examples (including some unconventional cases

that are often hard to be generated by other algorithms in the current existing literature)

with the associated error and convergence analysis are also demonstrated. Our key al-

gorithm is summarised in Algorithm 3.6. Numerical comparisons with other algorithms

(such as the classical discretisation scheme and projection scheme) are conducted and re-

ported in Section 4. Some important extensions such as a multi-dimensional version are

provided in Section 5. In Section 6, we apply our method to modelling a portfolio loss

process, and cumulative loss distributions for different scenarios are computed by our

exact simulation.

2 Preliminaries

A self-exciting point process with CIR intensity provides a very general framework for

modelling event arrivals, and it extends a Cox process with CIR intensity and a self-exciting

Hawkes process. We provide an intensity-based definition for this point process in Defi-

nition 2.1 as below.

Definition 2.1 (Self-exciting Point Process with CIR Intensity). A self-exciting point pro-

cess with CIR intensity is a counting process

Nt =
X
i≥1

1{T∗i ≤ t},

with non-negative Ft−stochastic (conditional) intensity

λt = a + (λ0 − a) e−δt + σ
Z t

0
e−δ(t−s)

È
λsdWs +

X
0≤T∗i <t

Yie−δ(t−T∗i), t ≥ 0, (1)

where

• 1{·} is the indicator function;

•
¦

T∗i
©

i=1,2,...
on R+ are the associated (ordered) arrival times of point Nt, i.e. N ≡¦

T∗i
©

i=1,2,...
;

• {Ft}t≥0 is a history of the process {Nt}t≥0 with respect to which {λt}t≥0 is adapted;

• λ0 > 0 is the initial intensity at time t = 0;

• a ≥ 0 is the constant of reversion level;

• δ > 0 is the constant of reversion rate;

• σ > 0 is the constant that governs the diffusive volatility of intensity;

6

• {Wt}t≥0 is a standard Brownian motion independent of Nt;

• {Yi}i=1,2,... are the sizes (or marks) of self-excited jumps, a sequence of nonnegative

random variables with FT∗−i
-measurable distribution function G(y), y ≥ 0 2.

Nt is a point process which is completely characterised by the intensity process λt and

satisfies

Pr
n

Nt+∆t − Nt = 1
��� Ft

o
= λt∆t + o(∆t), Pr

n
Nt+∆t − Nt > 1

��� Ft

o
= o(∆t),

where ∆t is a sufficiently small time interval, and o(∆t)/∆t → 0 when ∆t → 0. The

conditional intensity function (1) can be equivalently expressed by the jump-diffusion

stochastic differential equation (SDE)

dλt = δ(a− λt)dt + σ
È

λtdWt + dJt, t ≥ 0,

where the jump process Jt :=
PNt

i=1 Yi is a compound self-exciting point process with CIR

intensity. The (i + 1)th interarrival time or duration (Engle and Russell, 1998) is defined by

S∗i+1 := T∗i+1 − T∗i > 0, i = 0, 1, 2, ..., T∗0 = 0.

The cumulative intensity process (or the compensator of point process) is denoted by

Λt :=
Z t

0
λudu, and the mean of self-excited jump sizes is denoted by µ1G :=

Z ∞

0
ydG(y).

A sample path of the intensity process λt simulated by the discretisation scheme is pre-

sented in Figure 1.

This self-exciting point process with CIR intensity is a special case of affine point pro-

cesses. If Nt is an independent Poisson process, then, λt is a basic affine jump-diffusion

process, which has been already widely used for pricing in finance, see Duffie et al. (2000,

2003). We provide the expectation of Nt conditional on λ0 below in Proposition 2.1, which

can be easily proved by explicitly solving ODEs, see Errais et al. (2010) in general. Note

that, this formula in a simple analytic form is not subject to either the conventional con-

dition for the CIR process or the stationary condition for the Hawkes process, and hence

2It means that the distribution function G(y) is revealed just before the arrival time T∗i . This distribution
could have a highly general dependency structure G(y) = G(y | ·). For example, it could depend on the
initial intensity λ0, the past history of intensity at or just before the jump arrival times {T∗k }k=1,2,...,i, all past
jump sizes {Yk}k=1,2,...,i−1, or cumulated number of jumps Nt, and so on, as long as we can record these
information, i.e. in general, we have

G(y) = G
�

y | T∗1 , T∗2 , ..., T∗i , λ0, λT∗−1
, ..., λT∗−i

, λT∗1
, ..., λT∗i−1

�
.

This is similar as the adaptive model setting of Giesecke et al. (2011a), but is different from the classical
Hawkes process. We will provide some specified examples later.

7

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7
A Sample Path of CIR Intensity Process with Self−exciting Jumps

Time

In
te

ns
ity

 λ
t

Figure 1: A sample path of the CIR intensity process with self-exciting jumps

it is convenient to be used later in Section 3 for numerically validating our simulation

algorithm and measuring the associated errors.

Proposition 2.1. The expectation of NT conditional on λ0 for a fixed time T > 0 is given

by

E[NT | λ0] =

8<:
aδ
ξ T + 1

ξ

�
λ0 − aδ

ξ

� �
1− e−ξT

�
, ξ 6= 0,

λ0T + 1
2 aδT2, ξ = 0,

where ξ := δ− µ1G .

3 Exact Simulation

In this section, based on the joint distributional properties of pre-jump intensity level-

s and interarrival times, we first develop the exact simulation for pre-jump interarrival

times. Then, conditional on the realisation of these interarrival times, the pre-jump inten-

sities at arrival times can be simulated exactly. Finally, by adding self-exited jumps to the

intensity process, the entire series of interarrival times of the process {(Nt, λt)}t≥0 can be

generated exactly.

3.1 Joint Distribution of Pre-jump Intensity and Interarrival Time

We provide the transition law from the location
�
λT∗i

, T∗i
�

to the location
�

λT∗i +S∗−i+1
, T∗i + S∗−i+1

�
as below in Proposition 3.1.

8

Proposition 3.1. Conditional on the ith jump time T∗i and the intensity level λT∗i
, we can

characterise the joint distribution of
�
λT∗i +s− , ΛT∗i +s −ΛT∗i

�
via a special integral transfor-

m of the CIR process (without jumps) starting from T∗i , i.e.

E

"
e
−vλT∗

i
+s− e

−
�

ΛT∗
i
+s−ΛT∗

i

� ����� λT∗i

#
=

�
As

Bsv + Cs

�D
exp

�
− Esv + Fs

Bsv + Cs
λT∗i

�
, s ∈ [0, S∗i+1) ,

(2)

where

κ =
È

δ2 + 2σ2, D =
2aδ

σ2 , As = 2κe
κ+δ

2 s, Bs = σ2(eκs − 1), (3)

Cs = (κ − δ) + (κ + δ)eκs, Es = (κ + δ) + (κ − δ)eκs, Fs = 2 (eκs − 1) . (4)

Obviously, κ, D, As, Bs, Cs, Es, Fs are all positive and EsCs > FsBs. Note that, (2) is a

special case of the bivariate Laplace transform of the intensity and its integral
�
λT∗i +s− , ΛT∗i +s −ΛT∗i

�
,

which is given by Proposition 6.2.4 in Lamberton and Lapeyre (2008, p.162), and also see

the equation (3.76) in Glasserman (2003, p.129). We provide a proof for Proposition 3.1

using the martingale approach in the electronic companion of this paper online.

Based on the integral transform of joint distribution in Proposition 3.1, we will first

simulate the pre-jump interarrival time S∗i+1, and then, by conditioning on the realisation

of S∗i+1 = s, the pre-jump intensity level λT∗i +S∗−i+1
can be simulated.

3.2 Exact Simulation of Pre-jump Interarrival Times

As later given by Theorem 3.3, any pre-jump interarrival time S∗i+1 can be exactly sim-

ulated as the minimum of two intermediate random variables, S∗ and V∗i+1, where S∗ is

well defined and V∗i+1 is defective. Note that, S∗ is independent of the step index i which

can be simulated separately, however, it can not be simulated by distributional decom-

position. Hence, we develop a simulation algorithm for S∗ based on an A/R scheme in

Lemma 3.2. It should be noted that, S∗ is the only intermediate random variable in this

paper that involves an A/R algorithm for simulation. A numerical test is also provided

which shows that this A/R algorithm for S∗ is very efficient and substantially outper-

forms the conventional scheme of numerical inversion.

Lemma 3.2. The random variable S∗ defined by the tail distribution

Pr {S∗ > s} =
"

2κe
κ+δ

2 s

(κ + δ) (eκs − 1) + 2κ

2aδ

σ2

(5)

can be exactly simulated by a modified (or transformed) A/R scheme as follows:

9

1. Generate a generalised Pareto random variable Wg via

Wg =
2κ

κ + δ

"
U
− σ2

aδκ(κ−δ)

1 − 1

#
, U1 ∼ U [0, 1]; (6)

2. Generate a uniformly distributed random variable U2 ∼ U [0, 1];

3. If

U2 ≤
�

κ + δ

2κ

� κ+δ
2κ

2aδ

σ2

Wg + 1
2κ

κ+δ + Wg

! aδ(κ+δ)

σ2κ Wg

Wg + 1
,

then, accept and set

S∗ =
1
κ

ln(Wg + 1); (7)

4. Otherwise, reject and go back to Step 1.

Proof. The random variable S∗ is well defined, since we have the cumulative distribution

function (CDF) of S∗,

FS∗(s) := Pr {S∗ ≤ s} = 1−
"

2κe
κ+δ

2 s

(κ + δ) (eκs − 1) + 2κ

2aδ

σ2

, (8)

with FS∗(0) = 0, FS∗(∞) = 1 and the density

fS∗(s) :=
d
ds

FS∗(s) =

"
2κe

κ+δ
2 s

(κ + δ) (eκs − 1) + 2κ

2aδ

σ2
σ2(eκs − 1)

(κ + δ) (eκs − 1) + 2κ
> 0, s > 0.

We define the random variable W := eκS∗ − 1. Given the tail distribution of S∗ in (5), the

tail distribution of W is

Pr {W > w} =
�

2κ

κ + δ

� 2aδ

σ2
(w + 1)

2aδ

σ2
κ+δ
2κ

�
2κ

κ + δ
+ w

�− 2aδ

σ2
, w ∈ [0, ∞),

and the density of W is

fW(w) =
2aδ

σ2
κ − δ

2κ

�
2κ

κ + δ

� 2aδ

σ2
�

2κ

κ + δ
+ w

�− 2aδ

σ2 −1
w(w + 1)

2aδ

σ2
κ+δ
2κ −1.

Comparing this with the density function of a generalised Pareto random variable Wg

with the location parameter 0, scale parameter σ2

2aδ
2κ

κ−δ and shape parameter σ2

2aδ
2κ

κ−δ
2κ

κ+δ ,

i.e. with density

fWg(w) =
2aδ

σ2
κ − δ

2κ

�
2κ

κ + δ

� 2aδ

σ2
κ−δ
2κ
�

2κ

κ + δ
+ w

�− 2aδ

σ2
κ−δ
2κ −1

, w ∈ [0, ∞),

10

and the CDF of Wg is

FWg(w) = 1−
�

1 +
κ + δ

2κ
w
�− 2aδ

σ2
κ−δ
2κ

, w ∈ [0, ∞).

It is much easier to simulate Wg than W, as Wg can be simulated directly via (6).

Since
fW(w)

fWg(w)
=

�
2κ

κ + δ

� 2aδ

σ2
κ+δ
2κ

w + 1
2κ

κ+δ + w

! 2aδ

σ2
κ+δ
2κ w

w + 1
,

and
fW(w)

fWg(w)
≤ c̄, ∀w ∈ [0, ∞),

where

c̄ =
�

2κ

κ + δ

� κ+δ
2κ

2aδ

σ2
> 1, (9)

we can generate W by the classical A/R method (Glasserman, 2003; Asmussen and Glyn-

n, 2007). Finally, we can generate S∗ by taking a simple transformation of (7).

Note that, our A/R scheme developed in Lemma 3.2 for simulating S∗ is not subject

to the CIR’s conventional condition (i.e. Feller’s condition) 2δa ≥ σ2 or the Hawkes’ sta-

tionary condition δ > µ1G .

Provided the intermediate random variable S∗ as simulated by Lemma 3.2, we can

then simulate the pre-jump interarrival time S∗i+1 via a simple distributional decomposi-

tion as given in Theorem 3.3.

Theorem 3.3. Conditional on the initial intensity λT∗i
, the next interarrival time S∗i+1 can be

exactly simulated via

S∗i+1
D
=

8<: S∗ ∧V∗i+1, di+1 > 0,

S∗, di+1 < 0,
(10)

where

• di+1 is simulated via

di+1 :=
1 + ln U3

2λT∗
i

(κ + δ)

1− ln U3
2λT∗

i

(κ − δ)
, U3 ∼ U [0, 1],

• S∗ is exactly simulated by Lemma 3.2;

• V∗i+1 is a simple defective random variable with Pr{V∗i+1 = ∞} = exp
�
− 2

δ+κ λT∗i

�
, and it

is exactly simulated via

V∗i+1
D
= − 1

κ
ln di+1. (11)

11

Proof. Setting v = 0 in (2), we have the marginal tail distribution of S∗i+1 conditional on

λT∗i
,

Pr
¦

S∗i+1 > s | λT∗i

©
(12)

= E

"
exp

�
−
Z T∗i +s

T∗i
λudu

� ����� FT∗i

#

= E

"
e
−
�

ΛT∗
i
+s−ΛT∗

i

� ����� FT∗i

#

=

"
2κe

κ+δ
2 s

(κ + δ) (eκs − 1) + 2κ

2aδ

σ2

exp
�
− 2 (eκs − 1)
(κ + δ) (eκs − 1) + 2κ

λT∗i

�
, (13)

which is a well-defined distribution function, as obviously, if s → 0, Pr{S∗i+1 > s} → 1

and if s→ ∞, Pr{S∗i+1 > s} → 0.

It is impossible to invert the probability function (13) analytically, however, we can

decompose S∗i+1 into two simpler and independent random variables S∗ and V∗i+1 by

S∗i+1
D
= S∗ ∧V∗i+1,

i.e.

Pr{S∗i+1 > s} = Pr{S∗ ∧V∗i+1 > s} = Pr{S∗ > s} × Pr{V∗i+1 > s},

where their tail distributions are specified respectively by

Pr{S∗ > s} =

"
2κe

κ+δ
2 s

(κ + δ) (eκs − 1) + 2κ

2aδ

σ2

,

Pr{V∗i+1 > s} = exp
�
− 2 (eκs − 1)

κ − δ + (δ + κ)eκs λT∗i

�
.

Note that, S∗ is given by Lemma 3.2, and it is independent of the step index i and the

intensity level λT∗i
. V∗i+1 is a defective random variable with the CDF

FV∗i+1
(s) =: Pr{V∗i+1 ≤ s} = 1− exp

�
− 2 (eκs − 1)
(κ + δ) (eκs − 1) + 2κ

λT∗i

�
,

FV∗i+1
(∞) = 1− exp

�
− 2

δ + κ
λT∗i

�
< 1,

and the density

fV∗i+1
(s) = exp

�
− 2 (eκs − 1)
(κ + δ) (eκs − 1) + 2κ

λT∗i

�
2λT∗i

2κ2eκs

((κ + δ) (eκs − 1) + 2κ)2 > 0.

Hence, V∗i+1 is a simple defective random variable defined by Pr{V∗i+1 = ∞} = exp
�
− 2

δ+κ λT∗i

�
,

and it can be simulated via (11) conditional on di+1 > 0.

12

Finally, we can simulate S∗i+1 via (10).

For simulating S∗, one may wonder whether the associated numerical inversion scheme

would be more efficient than this A/R scheme in Lemma 3.2. So we carry out a numeri-

cal test and compare the performance of the A/R algorithm with the associated inversion

scheme, by setting the parameters (a, λ0, δ, σ) = (0.9, 0.9, 1.0, 1.0) with the total number

of simulation3 replications n = 100, 000. The simulated results via the A/R scheme for

Pr {S∗ > s}, the corresponding theoretical (true) values of (5) and the error percentages

(Error%)4 for measuring the accuracy are reported in Table 1. The simulation experi-

ments for the all 10 different values of s only take about 0.37 seconds and achieve a high

level of accuracy. Alternatively, the random variable S∗ can be simulated by numeri-

cally inverting its CDF FS∗(s) of (8). With the same parameter setting and the number

of replications, we can recreate Table 1. It has a similar level of accuracy but a much

lower speed (69.6 seconds) than the A/R scheme. To save space, the associated table is

not provided here. Hence, the A/R scheme obviously outperforms the inversion scheme.

Table 1: Comparison between the theoretical formulas and the associated simulation results for
Pr {S∗ > s} with the parameter setting (a, λ0, δ, σ) = (0.9, 0.9, 1.0, 1.0) based on the total
number of simulation replications n = 100, 000 by the A/R scheme of Lemma 3.2

s Pr {S∗ > s} Simulation Error%
0.1 99.57% 99.56% 0.01%
0.2 98.33% 98.26% 0.08%
0.3 96.42% 96.35% 0.07%
0.4 93.93% 94.00% -0.07%
0.5 91.00% 91.03% -0.03%
0.6 87.72% 87.78% -0.07%
0.7 84.21% 84.23% -0.02%
0.8 80.53% 80.63% -0.12%
0.9 76.77% 76.86% -0.11%
1.0 72.99% 73.07% -0.11%

Remark 3.4. The efficiency of the A/R scheme of Lemma 3.2 can even be further en-

hanced. The time needed to obtain a qualified candidate for W or S∗ is random, and the

expected number of random variables we will need before the acceptance is the constant

c̄ as given by (9). Hence, to search the optimal efficiency, we want c̄ to be as small as possi-

ble, such that fewer simulated candidate samples of Wg would be wasted. The efficiency

3The simulation experiments here and in the other parts of this paper are conducted on a normal desktop
PC with Intel Core i7-3770 CPU@3.40GHz processor, 8.00GB RAM, Windows 7 64-bit Operating System,
the algorithms are codded and performed in MatLab (R2013b), and the computing time is measured by the
elapsed CPU time (in seconds).

4The error percentage for measuring the accuracy is simply calculated by taking the difference between
the value estimated by simulation and the corresponding true value from (5) and then dividing by the true
value, i.e.

Error% =
Value Estimated by Simulation− True Value

True Value
.

13

of this mainly depends on the value of 2aδ
σ2 . The rest is at most

√
2 which is achieved

when κ and therefore σ2 is large but then 2aδ
σ2 will not be. The problem is that c̄ increases

exponentially with a. This can be addressed by the following refinement when a is rela-

tively large: we note that Pr{W > w} = H̄(w)a, where H̄(·) is the tail of a distribution.

We can repeat the procedure m times with a replaced by a
m and generate independent

W1, W2, . . . , Wm, then, take W = min{W1, W2, . . . , Wm}. The expected number of random

variables to be generated is

C̄(m) := m×
�

2κ

κ + δ

� κ+δ
2κ

2aδ

mσ2
.

Therefore, we choose m to be the integer that minimises C̄(m). Obviously, the minimum

of this function is achieved at

m∗ := min
m

¦
C̄(m)

©
=

2aδ

σ2
κ + δ

2κ
ln
�

2κ

κ + δ

�
,

so we now take m to be the integer either side of m∗ that produces the lowest value, i.e.

we choose integer m = m∗ if C̄([m∗]) < C̄([m∗] + 1), otherwise m = [m∗] + 1, where [m∗]

is the largest integer not greater than m∗. Therefore, the expected number of random

variables needed grows approximately linearly with a rather than exponentially.

3.3 Exact Simulation of Pre-jump Intensities

Given the pre-jump interarrival time S∗i+1 as simulated by Theorem 3.3, we can derive

the distribution explicitly for the pre-jump intensity level λT∗i +S∗−i+1
, so it can be simulated

exactly as given by Theorem 3.5 without any A/R scheme. Note that, only a skeleton

of the intensity process (at these jump times) is exactly simulated here rather than the

entire continuous-time path. However, this will not hinder us from exactly simulating

the entire continuous-time path of the point process Nt afterward.

Theorem 3.5. Conditional on the intensity level λT∗i
and the realisation of interarrival time

S∗i+1 = s, we have the distributional decomposition

λT∗i +s−
D
=

8<: Gamma
�

J∗s + D + 1, Cs
Bs

�
, with probability w1s,

Gamma
�

J∗s + D + 2, Cs
Bs

�
, with probability w2s,

where

J∗s ∼ Poisson
�

λT∗i

�
Es

Bs
− Fs

Cs

��
, (14)

w1s =
DBs

DBs + λT∗i

�
Es − Fs

Bs
Cs

� , w2s =
λT∗i

�
Es − Fs

Bs
Cs

�
DBs + λT∗i

�
Es − Fs

Bs
Cs

� , (15)

14

and Bs, Cs, D, Es, Fs are specified by (3) and (4).

Proof. Note that, λT∗i +s− exp
�
−
Z T∗i +s

T∗i
λudu

�
is the density of the interarrival time S∗i+1

conditional on λT∗i +s− and ΛT∗i +s −ΛT∗i
, and here we concisely denote it by

Pr
¦

S∗i+1 ∈ ds
©
= λT∗i +s−e

−
�

ΛT∗
i
+s−ΛT∗

i

�
ds,

so, we have

E

�
e
−vλT∗

i
+S∗−

i+1 1{S∗i+1 ∈ ds}
�
= E

�
e
−vλT∗

i
+s−λT∗i +s−e

−
�

ΛT∗
i
+s−ΛT∗

i

��
ds.

Using (2) in Proposition 3.1, we have

E

�
λT∗i +s−e

−vλT∗
i
+s− e

−
�

ΛT∗
i
+s−ΛT∗

i

��

= − ∂

∂v
E

�
e
−vλT∗

i
+s− e

−
�

ΛT∗
i
+s−ΛT∗

i

��

=
1

Bsv + Cs

�
DBs + λT∗i

EsCs − FsBs

Bsv + Cs

��
As

Bsv + Cs

�D
× exp

�
− Esv + Fs

Bsv + Cs
λT∗i

�
. (16)

The last term of (16) in an exponential form can be rearranged and expressed in term of

an infinite summation by the Taylor expansion as

exp
�
− Esv + Fs

Bsv + Cs
λT∗i

�

= exp

�
−λT∗i

Es

Bs
×

2
41−

�
1− FsBs

EsCs

� Cs
Bs

v + Cs
Bs

3
5
�

FsBs

EsCs
∈ (0, 1)

= e
−λT∗

i

Es
Bs × exp

�
λT∗i

�
Es

Bs
− Fs

Cs

� Cs
Bs

v + Cs
Bs

�

= e
−λT∗

i

Es
Bs ×

∞X
j=0

�
λT∗i

�
Es
Bs
− Fs

Cs

��j

j!

�
Cs
Bs

v + Cs
Bs

�j

= e
−λT∗

i

Fs
Cs ×

∞X
j=0

e
−λT∗

i
(Es

Bs−
Fs
Cs)
�
λT∗i

�
Es
Bs
− Fs

Cs

��j

j!

�
Cs
Bs

v + Cs
Bs

�j

= e
−λT∗

i

Fs
Cs ×

∞X
j=0

Pr{J∗s = j}

�
Cs
Bs

v + Cs
Bs

�j

,

where J∗s is a Poisson random variable with the given rate λT∗i

�
Es
Bs
− Fs

Cs

�
, i.e.

Pr{J∗s = j} = e
−λT∗

i
(Es

Bs−
Fs
Cs)
�
λT∗i

�
Es
Bs
− Fs

Cs

��j

j!
, j = 0, 1,

15

Then, we have

E

�
λT∗i +s−e

−vλT∗
i
+s− e

−
�

ΛT∗
i
+s−ΛT∗

i

��

=
1

Bsv + Cs

�
DBs + λT∗i

EsCs − FsBs

Bsv + Cs

��
As

Bsv + Cs

�D
× e
−λT∗

i

Fs
Cs

∞X
j=0

Pr{J∗s = j}

�
Cs
Bs

v + Cs
Bs

�j

=
1
Bs

v + Cs
Bs

�
DBs + λT∗i

Es
Cs
Bs
− Fs

v + Cs
Bs

��
As
Bs

v + Cs
Bs

�D

e
−λT∗

i

Fs
Cs ×

∞X
j=0

Pr{J∗s = j}

�
Cs
Bs

v + Cs
Bs

�j

=
1
Cs

Cs
Bs

v + Cs
Bs

2
4DBs + λT∗i

�
Es − Fs

Bs

Cs

� Cs
Bs

v + Cs
Bs

3
5
�

As

Cs

Cs
Bs

v + Cs
Bs

�D

e
−λT∗

i

Fs
Cs ×

∞X
j=0

Pr{J∗s = j}

�
Cs
Bs

v + Cs
Bs

�j

= Gs ×

264w1s

�
Cs
Bs

v + Cs
Bs

�
+ w2s

�
Cs
Bs

v + Cs
Bs

�2
375×

�
Cs
Bs

v + Cs
Bs

�D

×
∞X

j=0

Pr{J∗s = j}

�
Cs
Bs

v + Cs
Bs

�j

= Gs ×
∞X

j=0

Pr{J∗s = j}

264w1s

�
Cs
Bs

v + Cs
Bs

�j+D+1

+ w2s

�
Cs
Bs

v + Cs
Bs

�j+D+2
375 ,

where

Gs :=
e
−λT∗

i

Fs
Cs

Cs

�
As

Cs

�D �
DBs + λT∗i

�
Es − Fs

Bs

Cs

��
,

and the weights w1s, w2s are given by (15). Obviously, we have w1s + w2s = 1, and

w1s, w2s > 0.

Note that,
� Cs

Bs
v+ Cs

Bs

�j+D+1
and

� Cs
Bs

v+ Cs
Bs

�j+D+2
are the Laplace transforms of Gamma ran-

dom variables Gamma
�

j + D + 1, Cs
Bs

�
and Gamma

�
j + D + 2, Cs

Bs

�
, respectively. By in-

verting it with respect to v, we have the joint density of
�

S∗i+1, λT∗i +S∗−i+1

�
,

Pr
n

λT∗i +S∗−i+1
∈ dλ, S∗i+1 ∈ ds

o
/(dsdλ)

= Gs ×
∞X

j=0

Pr{J∗s = j}

2
4w1s

�
Cs
Bs

�j+D+1

Γ(j + D + 1)
λj+De−

Cs
Bs λ + w2s

�
Cs
Bs

�j+D+2

Γ(j + D + 2)
λj+D+1e−

Cs
Bs λ

3
5 .

Integrating out λ ∈ [0, ∞), we obtain the marginal density of S∗i+1,

Pr {S∗i+1 ∈ ds} /ds = Gs,

which can be alternatively derived by setting v = 0 in (16). Note that, Gs is independent

of v.

16

Given S∗i+1 = s, we have the conditional density of λT∗i +S∗−i+1
,

Pr
n

λT∗i +S∗−i+1
∈ dλ | S∗i+1 = s

o
/(dλ)

=
Pr
n

λT∗i +S∗−i+1
∈ dλ, S∗i+1 = s

o
/(dsdλ)

Pr{S∗i+1 ∈ ds}/(ds)

=
∞X

j=0

Pr{J∗s = j}

2
4w1s

�
Cs
Bs

�j+D+1

Γ(j + D + 1)
λj+De−

Cs
Bs λ + w2s

�
Cs
Bs

�j+D+2

Γ(j + D + 2)
λj+D+1e−

Cs
Bs λ

3
5(17)

= E

2
4w1s

�
Cs
Bs

�J∗s +D+1

Γ(J∗s + D + 1)
λJ∗s +De−

Cs
Bs λ + w2s

�
Cs
Bs

�J∗s +D+2

Γ(J∗s + D + 2)
λJ∗s +D+1e−

Cs
Bs λ

3
5 . (18)

Gamma
�

J∗s + D + 1, Cs
Bs

�
in Theorem 3.5 is denoted for a Gamma random variable

with the shape parameter J∗s + D + 1 and rate parameter Cs
Bs

(or scale parameter Bs
Cs

). The-

orem 3.5 suggests that, λT∗i +s− i.e. the intensity location at the next jump time after T∗i ,

can be exactly simulated as a mixture of two Gamma random variables, conditional on

the intensity level λT∗i
and the realisation of interarrival time S∗i+1 = s and a Poisson ran-

dom variable J∗s = j. Note that, although there is an infinite summation in (17), we do

not introduce any truncation error.

3.4 Exact Simulation of Self-excited Jumps

Finally, the exact scheme for simulating self-exiting jumps with CIR intensity via induc-

tion is summarised as below in Algorithm 3.6.

Algorithm 3.6 (Exact Scheme). Based on Theorem 3.3 and Theorem 3.5, we can exactly simulate�
λT∗i+1

, T∗i+1

�
conditional on

�
λT∗i

, T∗i
�

via the following steps:

1. Simulate the (i + 1)th interarrival time S∗i+1 = s via (10).

2. Set the (i + 1)th self-excited jump time T∗i+1 by

T∗i+1 = T∗i + s.

3. Simulate a Poisson random variable J∗s = j of (14).

4. Conditional on s and j, simulate λT∗−i+1
as a mixture of two Gamma random variables

Gamma
�

j + D + 1, Cs
Bs

�
and Gamma

�
j + D + 2, Cs

Bs

�
with weights w1s, w2s of (15).

5. Add a self-excited jump in the intensity process at the jump time T∗i+1 by

λT∗i+1
= λT∗−i+1

+ Yi+1, (19)

17

where Yi+1 is the (i + 1)th self-excited jump size.

6. Add one unit in the point process at the jump time T∗i+1 by

NT∗i+1
= NT∗−i+1

+ 1.

It is interesting to see that, the original randomness we need to simulate through-

out the whole procedure of sampling one path by Algorithm 3.6 only involves uniform,

Poisson and Gamma random variables. The original randomness of normal distributions

driven by the Brownian motion {Wt}t≥0 in the intensity process apparently disappears.

Algorithm 3.6 can be numerically validated by the associated theoretical (true) results,

for instance, the conditional expectation E[NT | λ0] provided in Proposition 2.1. For the

demonstration purpose, we further assume that the self-excited jump sizes follow an

exponential distribution with constant rate β > 0. We implement the simulation for four

different parameter settings of

Θ := (a, λ0, δ, σ, β),

including the unconventional cases when the stationary condition δ > µ1G = 1/β for the

Hawkes process or the conventional condition 2δa ≥ σ2 for the CIR process is invalid,

i.e. the Case II, Case III and Case IV, which are often hard to be generated by other

algorithms5 in the current existing literature:

Case I: ΘI = (0.9, 0.9, 1.0, 1.0, 1.2) when the conventional conditions for the Hawkes pro-

cess and CIR process both hold, i.e. δ > µ1G and 2δa ≥ σ2;

Case II: ΘI I = (0.9, 0.9, 1.0, 1.0, 0.9) when δ < µ1G and 2δa ≥ σ2;

Case III: ΘI I I = (0.9, 0.9, 1.0, 1.0, 1.0) when δ = µ1G and 2δa ≥ σ2;

Case IV: ΘIV = (0.9, 0.9, 1.0, 2.0, 1.2) when δ > µ1G and 2δa < σ2, note that, the origin is

accessible only if 2δa < σ2.

All four cases are based on the total number of simulated sample paths n = 100, 000. The

simulated results, the corresponding theoretical values, error percentages and standard

5To simulate this type of specified process, the condition 2δa ≥ σ2 is usually required in other algorithm-
s such as the classical discretisation scheme, inverse-CDF scheme of Giesecke and Kim (2007), projection
scheme of Giesecke et al. (2011a), and A/R-sampling scheme of Giesecke et al. (2011b), and these schemes
relies on this condition to guarantee that the intensity process would never touch zero level. The condition
δ > µ1G is required in other algorithms such as perfect scheme of Møller and Rasmussen (2005) and approx-
imation scheme of Møller and Rasmussen (2006), this is to guarantee that the intensity process would never
go explosive.

18

errors (SE)6 for different time T are given by Table 2, where we can find that the simu-

lation can achieve a high level of accuracy. One simulated sample path of point process¦
Nt
©

0≤t≤50
with the associated histogram for each case is represented in Figure 2, where

the clustering jumps over the time horizon are evident. The convergence analysis of the

standard errors against the total numbers of simulated sample paths as well as the com-

puting time for the four cases are also provided in Figure 3 respectively with the detailed

data reported in Table 3.

(a) Case I: δ > µ1G , 2δa ≥ σ2

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

Process N
t

Histogram N
t

(b) Case I I: δ < µ1G , 2δa ≥ σ2

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

0

500

1000

1500

2000

2500

3000

3500

4000

Histogram N
t

Process N
t

(c) Case I I I: δ = µ1G , 2δa ≥ σ2

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

Process N
t

Histogram N
t

(d) Case IV: δ > µ1G , 2δa < σ2

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

Process N
t

Histogram N
t

Figure 2: Sample paths of the point process
�

Nt
	

0≤t≤50 simulated by Algorithm 3.6 with the
associated histograms for four sets of parameters ΘI = (0.9, 0.9, 1.0, 1.0, 1.2), ΘI I =
(0.9, 0.9, 1.0, 1.0, 0.9), ΘI I I = (0.9, 0.9, 1.0, 1.0, 1.0), ΘIV = (0.9, 0.9, 1.0, 2.0, 1.2), respective-
ly

4 Comparisons with Other Important Algorithms

In this section, we conduct and report the comparisons of numerical performance with

the classical discretisation scheme and the recently-developed projection scheme in the

6The standard error is estimated as the sample standard deviation of the simulation output divided by
the square root of the total number of simulated sample paths.

19

Table 2: Comparison between the theoretical formulas and the associated simulation result-
s for E[NT |λ0] with four sets of parameters ΘI = (0.9, 0.9, 1.0, 1.0, 1.2), ΘI I =
(0.9, 0.9, 1.0, 1.0, 0.9), ΘI I I = (0.9, 0.9, 1.0, 1.0, 1.0), ΘIV = (0.9, 0.9, 1.0, 2.0, 1.2), respective-
ly, based on the number of simulated sample paths n = 100, 000 by Algorithm 3.6

Time T E[NT |λ0] Simulation Error% SE Time (sec) E[NT |λ0] Simulation Error% SE Time (sec)
Case I Case I I

2 3.1463 3.1506 0.14% 0.0117 67 3.9568 3.9578 0.03% 0.0165 87
4 8.4623 8.4705 0.10% 0.0283 156 12.9295 12.8922 -0.29% 0.0504 267
6 15.3327 15.3965 0.42% 0.0483 285 28.1665 28.2685 0.36% 0.1110 608
8 23.3171 23.3578 0.17% 0.0704 434 51.2265 51.4166 0.37% 0.2019 1,145

10 32.0996 32.1776 0.24% 0.0935 605 84.0563 84.2589 0.24% 0.3326 1,997
12 41.4541 41.4898 0.09% 0.1160 782 129.0871 128.8164 -0.21% 0.5078 3,158
14 51.2182 51.3052 0.17% 0.1403 977 189.3551 189.3875 0.02% 0.7580 4,739
16 61.2761 61.1809 -0.16% 0.1609 1,165 268.6522 267.5076 -0.43% 1.0712 7,106
18 71.5443 71.6200 0.11% 0.1835 1,360 371.7135 371.6251 -0.02% 1.5209 10,044
20 81.9632 81.5863 -0.46% 0.2037 1,609 504.4530 505.5166 0.21% 2.0635 13,643

Case I I I Case IV
2 3.6000 3.5808 -0.53% 0.0143 77 3.1463 3.1317 -0.47% 0.0146 67
4 10.8000 10.8427 0.40% 0.0402 205 8.4623 8.4817 0.23% 0.0378 163
6 21.6000 21.5983 -0.01% 0.0775 425 15.3327 15.3445 0.08% 0.0667 280
8 36.0000 36.0496 0.14% 0.1282 727 23.3171 23.3663 0.21% 0.0983 429

10 54.0000 54.1481 0.27% 0.1898 1,159 32.0996 32.1231 0.07% 0.1323 595
12 75.6000 75.8490 0.33% 0.2650 1,584 41.4541 41.5570 0.25% 0.1645 776
14 100.8000 101.4370 0.63% 0.3534 2,147 51.2182 51.1153 -0.20% 0.1964 969
16 129.6000 129.8397 0.18% 0.4458 2,911 61.2761 61.2148 -0.10% 0.2310 1,165
18 162.0000 162.3701 0.23% 0.5606 3,624 71.5443 71.7533 0.29% 0.2641 1,375
20 198.0000 198.0550 0.03% 0.6812 4,535 81.9632 82.0178 0.07% 0.2927 1,578

Table 3: Convergence analysis on the simulation results for E[NT=5|λ0] with four sets of param-
eters ΘI = (0.9, 0.9, 1.0, 1.0, 1.2), ΘI I = (0.9, 0.9, 1.0, 1.0, 0.9), ΘI I I = (0.9, 0.9, 1.0, 1.0, 1.0),
ΘIV = (0.9, 0.9, 1.0, 2.0, 1.2), respectively, based on the number of simulated sample paths
n by Algorithm 3.6

n E[NT=5|λ0] Simulation Error% SE Time (sec) E[NT=5|λ0] Simulation Error% SE Time (sec)
Case I Case I I

20,000 11.7342 11.9804 2.10% 0.0866 44 19.6756 19.8296 0.78% 0.1759 83
40,000 11.7342 11.6749 -0.51% 0.0599 88 19.6756 19.7735 0.50% 0.1224 168
60,000 11.7342 11.7532 0.16% 0.0486 131 19.6756 19.7067 0.16% 0.0999 245
80,000 11.7342 11.7472 0.11% 0.0426 172 19.6756 19.6267 -0.25% 0.0863 335
100,000 11.7342 11.6755 -0.50% 0.0377 214 19.6756 19.7216 0.23% 0.0787 416
120,000 11.7342 11.7846 0.43% 0.0347 258 19.6756 19.5723 -0.53% 0.0698 492
140,000 11.7342 11.8067 0.62% 0.0323 305 19.6756 19.6965 0.11% 0.0658 583
160,000 11.7342 11.7637 0.25% 0.0300 351 19.6756 19.6725 -0.02% 0.0611 664
180,000 11.7342 11.7495 0.13% 0.0283 392 19.6756 19.7323 0.29% 0.0580 739
200,000 11.7342 11.7465 0.11% 0.0268 435 19.6756 19.6417 -0.17% 0.0548 818

Case I I I Case IV
20,000 15.7500 15.8829 0.84% 0.1318 66 11.7342 11.6952 -0.33% 0.1159 43
40,000 15.7500 15.9381 1.19% 0.0918 133 11.7342 11.6847 -0.42% 0.0817 86
60,000 15.7500 15.6563 -0.60% 0.0737 194 11.7342 11.6553 -0.67% 0.0658 130
80,000 15.7500 15.7119 -0.24% 0.0640 260 11.7342 11.8371 0.88% 0.0584 176
100,000 15.7500 15.6770 -0.46% 0.0571 322 11.7342 11.7331 -0.01% 0.0518 213
120,000 15.7500 15.7850 0.22% 0.0523 389 11.7342 11.7910 0.48% 0.0473 256
140,000 15.7500 15.7184 -0.20% 0.0483 449 11.7342 11.7546 0.17% 0.0436 298
160,000 15.7500 15.8258 0.48% 0.0456 518 11.7342 11.7620 0.24% 0.0413 341
180,000 15.7500 15.6714 -0.50% 0.0424 576 11.7342 11.6443 -0.77% 0.0384 380
200,000 15.7500 15.7022 -0.30% 0.0404 642 11.7342 11.6949 -0.33% 0.0364 426

20

(a) Convergence analysis: standard error v.s. number of simulated paths

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.05

0.1

0.15

0.2

0.25

Total Number of Simulated Sample Paths n

S
ta

nd
ar

d
E

rr
or

Case I
Case II
Case III
Case IV

(b) Convergence analysis: standard error v.s. simulation time

0 100 200 300 400 500 600 700 800 900
0

0.05

0.1

0.15

0.2

0.25

Simulation Time (in Seconds)

S
ta

nd
ar

d
E

rr
or

Case I
Case II
Case III
Case IV

Figure 3: Convergence analysis of the standard error against the total number of simulated path-
s and the simulation time (in seconds) for E[NT=5|λ0] with four sets of parameter-
s ΘI = (0.9, 0.9, 1.0, 1.0, 1.2), ΘI I = (0.9, 0.9, 1.0, 1.0, 0.9), ΘI I I = (0.9, 0.9, 1.0, 1.0, 1.0),
ΘIV = (0.9, 0.9, 1.0, 2.0, 1.2) by Algorithm 3.6, respectively

21

literature, respectively. To compare the performance among different algorithms, we

adopt the conventional measure of root mean square error (RMSE)7. The numerical ex-

amples for our exact simulation in this section are implemented using Algorithm 3.6.

Remind that, its efficiency can be further improved by the adjustment proposed by Re-

mark 3.4.

4.1 Comparison with Discretisation Scheme

The classical time-scaling method for the discretisation scheme is based on the change of

time developed by Meyer (1971). Given the previous intensity level λT∗i
at the ith jump

arrival time T∗i , the following interarrival intensity process {λt}T∗i ≤t<T∗i+1
(i.e. the intensity

of interarrival time S∗i+1) follows a CIR process (or Feller diffusion) with the SDE

dλt = δ(a− λt)dt + σ
È

λtdWt, t ∈ [T∗i , T∗i+1) . (20)

By the change of time (Meyer, 1971), the (i + 1)th jump arrival time T∗i+1 is given by

T∗i+1
D
= inf

¦
t ≥ T∗i : Λt −ΛT∗i

≥ Ei+1
©

, (21)

where
¦
Ei
©

i=1,2,...
is a sequence of i.i.d. standard exponential random variables, i.e. Ei ∼

Exp(1). To numerically implement (21) for simulating T∗i+1, the path of interarrival in-

tensity process {λt}T∗i ≤t<T∗i+1
needs to be discretised. The procedures are summarised in

Algorithm 4.1.

Algorithm 4.1 (Discretisation Scheme). Based on (21), we can approximately simulate
�
λT∗i+1

, T∗i+1

�
conditional on

�
λT∗i

, T∗i
�

via the following steps:

1. The continuous-time interarrival intensity process λt of (20) is approximated by λ̂t via the

Euler discretisation scheme

λ̂tj = λ̂tj−1 + δ
�

a− λ̂tj−1

�
h̄+σ

q
λ̂tj−1

√
h̄Nj−1, j =

T̂∗i
h̄

,
T̂∗i
h̄

+ 1, ...,
T̂∗i+1

h̄
− 1, t0 = 0, λ̂0 = λ0,

with the approximated initial condition λ̂T̂∗i
, where

• j = 1, 2, ..., J̄ is the index of the time-discretisation grid;

• J̄ is the total number of grids within the time interval [0, T];

• h̄ = T/ J̄ is the length of each equally-spaced time grid, i.e. tj = jh̄ for any j;

7 RMSE is calculated by

RMSE =

È
SE2 + Bias2,

where the bias is the difference between the expectation of the estimator and the associated true (theoretical)
value.

22

• {Nj} is a sequence of i.i.d. standard normal random variables, i.e. Nj ∼ N (0, 1).

2. The associated compensator Λt is approximated by Λ̂t as

Λ̂tj = h̄
jX

k=1

λ̂tk , Λ̂t0 = 0.

3. The (i + 1)th jump arrival time can be approximately simulated by

T̂∗i+1 = inf
¦

jh̄ : Λ̂tj − Λ̂T∗i
≥ Ei+1

©
.

4. Add a self-excited jump in the discretised intensity process at the jump time T̂∗i+1 by

λ̂T̂∗i+1
= λ̂T̂∗−i+1

+ Yi+1.

5. Add one unit in the approximated point process at the jump time T̂∗i+1 by

N̂T̂∗i+1
= N̂T̂∗−i+1

+ 1.

This discretisation algorithm introduces bias, as E[N̂t] 6= E[Nt] for any time t > 0

in practice. One sample path of intensity process
¦

λ̂t
©

t∈[0,10]
represented in Figure 1 is

simulated via Algorithm 4.1 based on the parameter setting ΘI = (0.9, 0.9, 1.0, 1.0, 1.2)

of Case I and h̄ = 0.001. Based on the principle of optimal allocation of computation

budget proposed by Duffie and Glynn (1995), in our numerical experiment, the number

of time-discretisation grids is set equal to the square root of the number of sample paths,

i.e. J̄ =
√

n where n is the total number of sample paths. The numerical results of the

comparison between the discretisation scheme and our exact scheme for the parameter

setting ΘI of Case I and T = 1, 2, 5, 10, respectively, are provided in Table 4. By conven-

tionally following Giesecke et al. (2011b) and other relevant literature, the bias column

for the exact scheme is set to be zero, and the bias column for the discretisation scheme is

estimated based on a very large number of 108 sample paths. The associated true values

are calculated based on the theoretical analytic formula in Proposition 2.1. The graphic

comparison of convergence via the RMSE v.s. CPU time is plotted in Figure 4. It shows

that our exact scheme produces much smaller RMSE for a given computational budget,

in particular for a longer time horizon. Hence, our exact scheme obviously outperforms

the discretisation scheme for all different time horizons in term of the convergence rate.

The discretisation scheme is easy to be implemented. However, comparing with our

exact scheme of Algorithm 3.6, it has some obvious disadvantages:

23

Table 4: Numerical comparison between the discretisation scheme and our exact scheme, based on
the parameter setting ΘI = (0.9, 0.9, 1.0, 1.0, 1.2) of Case I for T = 1, 2, 5, 10, respectively

Scheme Paths Grids E[Nt | λ0] Simulation Bias SE RMSE Time (sec)

Discretisation 10,000 100 1.2550 1.2054 -0.0406 0.0160 0.0436 1.53
T = 1 40,000 200 1.2550 1.2441 -0.0207 0.0084 0.0223 7.22

90,000 300 1.2550 1.2506 -0.0139 0.0056 0.0150 20.00
160,000 400 1.2550 1.2389 -0.0105 0.0042 0.0113 40.67
250,000 500 1.2550 1.2458 -0.0081 0.0034 0.0088 72.61
360,000 600 1.2550 1.2466 -0.0071 0.0028 0.0077 119.31
490,000 700 1.2550 1.2502 -0.0065 0.0024 0.0069 176.17
640,000 800 1.2550 1.2464 -0.0054 0.0021 0.0058 252.89
810,000 900 1.2550 1.2527 -0.0046 0.0019 0.0050 348.64

1,000,000 1000 1.2550 1.2517 -0.0045 0.0017 0.0048 466.78
Exact 10,000 1.2550 1.2571 0 0.0171 0.0171 3.33
T = 1 40,000 1.2550 1.2404 0 0.0085 0.0085 13.16

90,000 1.2550 1.2513 0 0.0057 0.0057 30.19
160,000 1.2550 1.2546 0 0.0043 0.0043 55.03
250,000 1.2550 1.2532 0 0.0034 0.0034 84.55
360,000 1.2550 1.2560 0 0.0028 0.0028 120.91
490,000 1.2550 1.2564 0 0.0025 0.0025 163.03
640,000 1.2550 1.2532 0 0.0021 0.0021 212.33
810,000 1.2550 1.2545 0 0.0019 0.0019 266.88

1,000,000 1.2550 1.2541 0 0.0017 0.0017 329.84

Discretisation 10,000 100 3.1463 2.9253 -0.2302 0.0324 0.2325 1.67
T = 2 40,000 200 3.1463 3.0353 -0.1211 0.0172 0.1224 7.73

90,000 300 3.1463 3.0629 -0.0820 0.0118 0.0828 20.38
160,000 400 3.1463 3.0814 -0.0624 0.0089 0.0630 43.30
250,000 500 3.1463 3.0954 -0.0497 0.0072 0.0502 75.42
360,000 600 3.1463 3.1043 -0.0425 0.0060 0.0429 120.44
490,000 700 3.1463 3.1128 -0.0368 0.0052 0.0372 187.41
640,000 800 3.1463 3.1156 -0.0313 0.0045 0.0316 258.95
810,000 900 3.1463 3.1104 -0.0282 0.0040 0.0285 356.53

1,000,000 1000 3.1463 3.1195 -0.0262 0.0036 0.0265 480.84
Exact 10,000 3.1463 3.1224 0 0.0365 0.0365 6.36
T = 2 40,000 3.1463 3.1344 0 0.0185 0.0185 25.77

90,000 3.1463 3.1455 0 0.0123 0.0123 58.48
160,000 3.1463 3.1444 0 0.0092 0.0092 101.16
250,000 3.1463 3.1434 0 0.0073 0.0073 156.47
360,000 3.1463 3.1389 0 0.0061 0.0061 223.23
490,000 3.1463 3.1412 0 0.0053 0.0053 304.09
640,000 3.1463 3.1521 0 0.0046 0.0046 398.86
810,000 3.1463 3.1488 0 0.0041 0.0041 504.31

1,000,000 3.1463 3.1445 0 0.0037 0.0037 619.42

Discretisation 10,000 100 11.7342 8.8240 -2.8711 0.0720 2.8720 2.02
T = 5 40,000 200 11.7342 9.9319 -1.7365 0.0442 1.7370 9.36

90,000 300 11.7342 10.4655 -1.2536 0.0322 1.2541 24.23
160,000 400 11.7342 10.7748 -0.9839 0.0254 0.9842 49.41
250,000 500 11.7342 10.9215 -0.8128 0.0208 0.8131 84.70
360,000 600 11.7342 11.0273 -0.6902 0.0177 0.6904 136.00
490,000 700 11.7342 11.1270 -0.5925 0.0154 0.5927 199.08
640,000 800 11.7342 11.1940 -0.5292 0.0136 0.5294 284.23
810,000 900 11.7342 11.2638 -0.4769 0.0123 0.4771 396.25

1,000,000 1000 11.7342 11.3185 -0.4491 0.0111 0.4493 515.75
Exact 10,000 11.7342 11.5227 0 0.1170 0.1170 20.89
T = 5 40,000 11.7342 11.7919 0 0.0598 0.0598 89.34

90,000 11.7342 11.6653 0 0.0397 0.0397 191.52
160,000 11.7342 11.7320 0 0.0300 0.0300 336.38
250,000 11.7342 11.7110 0 0.0239 0.0239 524.39
360,000 11.7342 11.7225 0 0.0199 0.0199 766.48
490,000 11.7342 11.7486 0 0.0171 0.0171 1,058.94
640,000 11.7342 11.7252 0 0.0150 0.0150 1,356.11
810,000 11.7342 11.7352 0 0.0133 0.0133 1,740.38

1,000,000 11.7342 11.7493 0 0.0120 0.0120 2,119.53

Discretisation 10,000 100 32.0996 16.7565 -15.2934 0.0944 15.2937 2.58
T = 10 40,000 200 32.0996 21.0183 -10.9613 0.0680 10.9615 11.52

90,000 300 32.0996 23.3115 -8.6655 0.0542 8.6657 29.70
160,000 400 32.0996 24.9134 -7.2055 0.0455 7.2057 59.48
250,000 500 32.0996 25.9162 -6.1867 0.0389 6.1868 104.30
360,000 600 32.0996 26.6985 -5.4266 0.0341 5.4267 163.67
490,000 700 32.0996 27.3107 -4.8393 0.0304 4.8394 238.89
640,000 800 32.0996 27.7387 -4.3668 0.0275 4.3669 342.64
810,000 900 32.0996 28.1089 -3.9821 0.0251 3.9822 461.17

1,000,000 1000 32.0996 28.4272 -3.6703 0.0230 3.6704 630.36
Exact 10,000 32.0996 32.2119 0 0.2970 0.2970 62.36

T = 10 40,000 32.0996 32.1947 0 0.1472 0.1472 248.14
90,000 32.0996 32.0534 0 0.0980 0.0980 548.92

160,000 32.0996 32.1711 0 0.0739 0.0739 982.52
250,000 32.0996 32.2147 0 0.0590 0.0590 1,551.08
360,000 32.0996 32.1601 0 0.0491 0.0491 2,252.56
490,000 32.0996 32.1256 0 0.0420 0.0420 3,039.61
640,000 32.0996 32.0723 0 0.0367 0.0367 3,954.58
810,000 32.0996 32.0977 0 0.0327 0.0327 4,955.09

1,000,000 32.0996 32.0684 0 0.0294 0.0294 6,093.38

24

1 10 100 1000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
Time Horizon T=1

CPU Time (sec)

R
M

S
E

1 10 100 1000

0

0.05

0.1

0.15

0.2

0.25
Time Horizon T=2

CPU Time (sec)

R
M

S
E

1 10 100 1000

0

0.5

1

1.5

2

2.5

3
Time Horizon T=5

CPU Time (sec)

R
M

S
E

1 10 100 1000 10000

0

2

4

6

8

10

12

14

16
Time Horizon T=10

CPU Time (sec)

R
M

S
E

Discretisation
Exact

Discretisation
Exact

Discretisation
Exact

Discretisation
Exact

Figure 4: Graphical comparison of the convergence via the RMSE v.s. CPU time between
the discretisation scheme and our exact scheme for the parameter setting ΘI =
(0.9, 0.9, 1.0, 1.0, 1.2) of Case I and T = 1, 2, 5, 10, respectively

25

1. Discretisation introduces bias which is hard to be quantified and measured.

2. The bias and errors are accumulating when time horizon T is increasing. This is

evident from the plots in Figure 4: the RMSE of discretisation scheme becomes

much larger when T increases from T = 1 to T = 10. It would be very time-

consuming to achieve a high level of accuracy, especially for a large time T, as

finer grids for time discretisation (i.e. smaller h̄) are required. The accuracy of our

algorithm does not much depends on T as observed from Table 2.

3. The Feller’s condition 2δa ≥ σ2 may be required by the discretisation method. The

simulated discretised intensity process still has a small probability to be negative

even when the Feller’s condition holds. This is a well known problem and requires

further adjustments.

4.2 Comparison with Projection Scheme

Giesecke et al. (2011a) proved that,

Pr
¦

T∗i+1 > t | FT∗i

©
= exp

�
−
Z t

T∗i
hi(s)ds

�
, t ∈ [T∗i , T∗i+1), i = 0, 1, 2, ..., (22)

where hi(t) is the projected ith interarrival intensity function (or projection). The idea of

the projection method is that, here hi(t) is a time-deterministic function, and if it can be

computed exactly (i.e. without any numerical approximation, or numerically exact) for

any i, then, in theory, the next arrival time T∗i+1 can be exactly simulated via the classical

thinning scheme (Lewis and Shedler, 1979) subject to some upper-bound restriction, just

like simulation for a nonhomogeneous Poisson process. Hence, the entire point process

can be exactly simulated piecewisely by sequently implementing the thinning scheme.

It is just like the Ogata’s modified thinning scheme (Ogata, 1981) for exactly simulating the

classical Hawkes process. However, for the numerical implementation in practice, the

crucial problem is that function hi may be difficult (or even impossible) to be comput-

ed exactly for any i, especially for a large value of i. Giesecke et al. (2011a) developed

a recursive scheme for calculating hi in theory as provided by Algorithm 4.2, see also

Giesecke et al. (2008) for the version of a fixed initial intensity λ0.

Algorithm 4.2 (Recursive Scheme). The projection hi can be calculated recursively:

1. Initialisation: for i = 0, at time T∗0 = 0, compute M0(z) = e−zλ0 , z ≥ 0.

2. For i = 0, 1, 2, ..., the ith projection hi can be computed by

hi(t) = −M′t(z)
���
z=0

, t ∈ [T∗i , T∗i+1), i = 0, 1, 2, ...,

26

where

Mt(z) :=
ea(t−T∗i ,z) ×MT∗i

�
b(t− T∗i , z)

�

ea(t−T∗i ,0) ×MT∗i

�
b(t− T∗i , 0)

� , t ∈ [T∗i , T∗i+1), i = 0, 1, 2, ..., (23)

and

a(s, z) = D ln
�

As

Bsz + Cs

�
, b(s, z) =

Esz + Fs

Bsz + Cs
.

3. Given hi(t), the next arrival time T∗i+1 can be simulated according to (22) via thinning (see

details later in Algorithm 4.3).

4. Recursion, at T∗i+1 compute

MT∗i+1
(z) = e−zYi+1 ×

M′T∗−i+1
(z)

M′T∗−i+1
(z)
���
z=0

, t = T∗i+1, i = 0, 1, 2, ..., (24)

where

MT∗−i+1
(z) = lim

t↑T∗i+1

Mt(z),

and Mt(z) is specified by (23).

Here, Mt(z) is the conditional Laplace transform of intensity λt, which does not di-

rectly have an analytic form. It can be calculated explicitly by (23) for the time period

[T∗i , T∗i+1) and updated at the jump time point T∗i+1 by (24). Hence, the entire function of

Mt(z) for the time horizon [0, T] can be piecewisely obtained by the recursions starting

with M0(z). Note that, the projected intensity hi of our process is a decreasing function of

time. The associated procedure of projection scheme is provided by Algorithm 4.3, which

is a slightly simplified version of the original Algorithm 3.2 in Giesecke et al. (2011a).

Algorithm 4.3 (Projection Scheme). Given hi by the recursive scheme of Algorithm 4.2, we can

exactly simulate T∗i+1 conditional on T∗i via thinning:

1. Initialise t = T∗i .

2. Set the upper bound Bi
t adaptively by Bi

t = hi(t).

3. Generate candidate arrival time t̃ = t + E where E ∼ Exp
�

Bi
t

�
, and draw U ∼ U [0, 1].

• If UBi
t ≤ hi(t̃), then the (i + 1)th jump occurs at time point t̃, so accept the candidate,

set T∗i+1 = t̃.

• If UBi
t > hi(t̃), then no jump occurs within (t, t̃], so reject the candidate, set t = t̃, go

back to Step 2 and continue.

27

Table 5: Numerical comparison between the projection scheme and our exact scheme for estimating
Pr {JT ≤ 1 | λ0}, based on the parameter setting (a, λ0, δ, σ) = (1, 1, 1, 1) and uniformly
distributed jump sizes Yi ∼ U{0.4, 0.8} for T = 1, 2, 3, 4, respectively

Projection Exact
Time T Paths Pr {JT ≤ 1 | λ0} Simulation RMSE CPU Time (sec) Simulation RMSE CPU Time (sec)
T = 1 5,000 0.71490 0.71500 0.00639 6.25 0.70760 0.00643 3.81

10,000 0.71490 0.71390 0.00452 12.77 0.71770 0.00450 6.73
50,000 0.71490 0.71910 0.00201 61.81 0.71640 0.00202 33.91

100,000 0.71490 0.71740 0.00142 127.69 0.71462 0.00143 67.27
T = 2 5,000 0.42821 0.43740 0.00702 17.63 0.42360 0.00699 4.58

10,000 0.42821 0.43020 0.00495 35.20 0.42930 0.00495 9.31
50,000 0.42821 0.43156 0.00222 176.81 0.43048 0.00221 47.22

100,000 0.42821 0.43076 0.00157 355.81 0.42869 0.00156 92.25
T = 3 5,000 0.25280 0.24420 0.00608 28.05 0.24280 0.00606 5.94

10,000 0.25280 0.25280 0.00435 55.84 0.25720 0.00437 12.31
50,000 0.25280 0.25214 0.00194 279.63 0.24984 0.00194 59.63

100,000 0.25280 0.25284 0.00137 561.84 0.25408 0.00138 122.88
T = 4 5,000 0.14670 0.15160 0.00507 35.47 0.14320 0.00495 8.14

10,000 0.14670 0.15040 0.00357 70.14 0.14530 0.00352 15.42
50,000 0.14670 0.14342 0.00157 348.39 0.14478 0.00157 78.61

100,000 0.14670 0.14504 0.00111 708.81 0.14451 0.00111 154.58

For the numerical comparison between the projection scheme and our exact scheme,

the targeted estimation is set to be Pr {JT ≤ 1 | λ0}. It is a simplified version used in

the original numerical experiment of Giesecke et al. (2011a), as we attempt to keep the

targeted estimation simple, without introducing additional complexity irrelevant to the

algorithm comparison itself. Let us start with the same setup as Giesecke et al. (2011a):

• The jump sizes Yi are assumed to follow a uniform distribution over two discrete

points {0.4, 0.8}, i.e. Pr{Yi = 0.4} = Pr{Yi = 0.8} = 1/2 for any jump index i,

which is denoted as Yi ∼ U{0.4, 0.8};

• Parameters are set as (a, λ0, δ, σ) = (1.0, 1.0, 1.0, 1.0).

The results of numerical comparison are reported in Table 5, with the associated graphi-

cal comparison in Figure 5. As both of the two schemes are exact, the biases are set to be

zero. Each of the true value Pr {JT ≤ 1 | λ0} in the second column of Table 5 is estimated

by a very large number of 106 sample paths based on our exact algorithm8. We can ob-

serve that, our exact scheme achieves a similar level of accuracy (as measured by RMSE)

but a much faster computing speed than the projection scheme.

More importantly, our exact scheme is substantially better at exactly simulating sam-

ple paths with a larger number of jumps. Here, to estimate Pr {JT ≤ 1 | λ0}, the maxi-

8Note that, Pr {JT ≤ 1 | λ0} does not have an analytic form to be calculated exactly, however, the true
value of E[NT | λ0] can be calculated exactly by Proposition 2.1, since we have µ1G = (0.4 + 0.8)/2 = 0.6 for
this case. Then, the associated error% for T = 1, 2, 3, 4 can be reported as −0.1815%, −0.1142%, −0.0011%,
0.0004%, respectively. This benchmark makes sure that the associated estimations for Pr {JT ≤ 1 | λ0} in the
second column are accurate enough.

28

10 100
1

2

3

4

5

6

7
x 10

−3 Time Horizon T=1

CPU Time (sec)

R
M

S
E

10 100 1000
1

2

3

4

5

6

7

8
x 10

−3 Time Horizon T=2

CPU Time (sec)

R
M

S
E

10 100 1000
1

2

3

4

5

6

7
x 10

−3 Time Horizon T=3

CPU Time (sec)

R
M

S
E

10 100 1000
1

2

3

4

5

6
x 10

−3 Time Horizon T=4

CPU Time (sec)

R
M

S
E

Projection
Exact

Projection
Exact

Projection
Exact

Projection
Exact

Figure 5: Graphical comparison of convergence via the RMSE v.s. CPU time between the projection
scheme and our exact scheme for estimating Pr {JT ≤ 1}, based on the parameter setting
(a, λ0, δ, σ) = (1, 1, 1, 1) and uniformly distributed jump sizes Yi ∼ U{0.4, 0.8} for T =
1, 2, 3, 4, respectively

29

0 10 20 30 40 50 60 70 80
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Probability Distrbution of Number of Jumps within Time Horizon T=4

P
ro

ba
bi

lit
y

Number of Jumps n

Probability Pr{N

T=4
=nλ

0
 }

Figure 6: The estimated probability distribution for the number of jumps within the time horizon
T = 4, based on 1,000,000 sample paths by Algorithm 3.6 and the parameter setting
(a, λ0, δ, σ) = (1, 1, 1, 1) and uniformly distributed jump sizes Yi ∼ U{0.4, 0.8}

mum number of jumps needed to generate within each sample path is only two9. How-

ever, if one wants exactly simulate sample paths containing many jumps, the projec-

tion scheme would become very slow. This problem was also pointed by Giesecke et al.

(2011a). It is due to the intrinsic recursive execution of differentiation in (23) of Step 2 and

(24) of Step 4 within Algorithm 4.2. In fact, to accurately calculate the projection hi in a

computer when i is large for maintaining the algorithm still exact, these recursions would

cumulate a huge number of analytic terms in the function Mt(z) and function MT∗i+1
(z).

This would be both very time-consuming and memory-consuming, and might be even

hard to be handled by a normal computer. Approximations may be required to deal with

this problem, however, the resulting scheme would not be exact anymore. Indeed, there

is no such issue for our scheme. For instance, it is straightforward to obtain the entire dis-

tribution of the jump number NT, i.e. Pr{NT = n | λ0}, which has numerous applications

in finance (e.g. portfolio risk management and asset pricing). For example, the estimated

probability distribution for the case T = 4 based on 106 sample paths is provided in Fig-

ure 6, with the total number of jumps NT=4 ranging from minimum 0 to maximum 82.

In summary, comparing with the projection scheme, our exact scheme of Algorithm

3.6 has some advantages:

1. In practice, the projection scheme is hard to maintain truly exact for simulating s-

9This is because, the jump sizes Yi only can take two possible values, 0.4 and 0.8 here, for estimating
Pr {JT ≤ 1} = E

�
1
¦PNT

i=1 Yi ≤ 1
©�

, only paths having 0, 1 and 2 jumps are needed to be simulated to save
time.

30

cenarios where large numbers of jumps occur within a given time horizon [0, T].

These scenarios are quite common in the real world, and often important to be

modelled accurately in practice, in particular for the cluttering arrivals of many

events. For example, this point process may be well equipped for modelling ar-

rivals of a large number of trades in a high-frequency trading environment. Since

all of the interarrival times and intensity levels are sequentially decomposed into

simple random variables (of only uniform, Poisson and Gamma) to generate, there-

fore the overall computing speed of our exact simulation does not much depend on

the level of jump number i.

2. The Feller’s condition 2δa ≥ σ2 may be required by the projection method.

4.3 Summary for Numerical Comparisons

We admit that the discretisation scheme and projection scheme could be applicable to a

more general family of point processes than our new exact scheme. However, for such an

important process, the efficiency of our algorithm proposed in this paper exceeds that of

these existing methods in the literature: our scheme is both theoretically and numerically

exact, and also very fast. In fact, our approach is not only restricted to this specified

process, we provide some important and useful extensions of our exact scheme in the

next section.

5 Extensions

Our Algorithm 3.6 can be easily adjusted to exactly and efficiently simulate a broad fam-

ily of self-exiting jumps (points) with CIR-type intensities. Some important extensions

are listed as follows:

1. The self-excited jump sizes {Yi}i=1,2,... in the intensity process (19) are flexible to

be either fixed or following any arbitrary distribution, and they are not restricted

to be positive as long as the zero lower bound of the intensity is not overshot, i.e.

Yi ∈ [−λT∗i
, ∞), i = 1, 2,

2. In particular, if Yi+1 ≡ 0 for any i in (19), then, this recovers the important special

case of a point process with pure CIR intensity.

3. It works for a more general class of processes where the jumps can be anything not

just additive: for example, at any jump time T∗i , the jump in the intensity process

from a level λT∗i−
to λT∗i

can follow a very general conditional CDF, say,

G(y | v) := Pr
¦

λT∗i
≤ y | λT∗−i

= v
©

, v ≥ 0.

31

The simulation for this general case might be even more useful to generate different

features of self excitements or contagion effects, as the nonlinear structure of the

process makes a theoretical treatment very difficult.

4. It can also be adjusted to simulate self-exciting jumps with stationary CIR intensity.

For instance, if jump sizes follow an exponential distribution, say, Yi ∼ Exp(β), β >

0, and the stationary condition holds, i.e. δβ > 1, then, we can implement the

simulation by setting the distribution of the initial intensity as

λ0 ∼ Gamma
�

2aδ

σ2 b1,−c−
�
+ Gamma

�
2aδ

σ2 b2,−c+
�

,

where the constants b1, b2 > 0 and c−, c+ < 0 are given by

b1 =
c− + β

c− − c+
, b2 = − c+ + β

c− − c+
, c± =

−
�

2δ
σ2 + β

�
±
É�

2δ
σ2 − β

�2
+ 8

σ2

2
.

The associated proof is provided by Zhao (2012) and Dassios and Zhao (2017).

5. It is straightforward to integrate an additional series of externally-excited jumps

in the intensity process to Algorithm 3.6, which may be very useful for modelling

some external risk factors, see some similar models in Ogata and Akaike (1982),

Brémaud and Massoulié (2002) and Dassios and Zhao (2011). For example, if a se-

ries of Poisson shot-noise jumps (Dassios and Jang, 2003) are added in the intensity

process, then, the conditional intensity (1) is extended to be

λt = a+(λ0 − a) e−δt +σ
Z t

0
e−δ(t−s)

È
λsdWs +

X
0≤T∗i <t

Yie−δ(t−T∗i)+
X

0≤τ∗k <t

Xke−δ(t−τ∗k), t ≥ 0,

(25)

where

• {τk}k=1,2,... are the arrival times of a Poisson process Mt of constant rate $ > 0;

• {Xk}k=1,2,... are the sizes of externally-excited jumps.

A point process with this generalised intensity (25) can be exactly sampled by Al-

gorithm 5.1 as follows.

Algorithm 5.1 (Exact Scheme). Conditional on (λTn , Tn) where Tn is the nth jump time

in the intensity (which is either a self-excited jump or an externally-excited jump), we can

simulate
�
λTn+1 , Tn+1

�
via the following steps:

(a) Simulate the (n + 1)th interarrival time

s = min {S∗n+1, E∗n+1} ,

32

where the (n+ 1)th self-excited interarrival time S∗n+1 is simulated via (10); and E∗n+1

is the (n + 1)th externally-excited interarrival time following an exponential distri-

bution of rate $, i.e. E∗n+1 ∼ Exp($) which can be simulated via

E∗n+1
D
= − 1

$
ln U, U ∼ U [0, 1].

(b) Set the (n + 1)th jump time Tn+1 by

Tn+1 = Tn + s.

(c) Simulate a Poisson random variable J∗s = j as (14).

(d) Conditional on s and j, simulate λT∗−n+1
as a mixture of two Gamma random variables

Gamma
�

j + D + 1, Cs
Bs

�
and Gamma

�
j + D + 2, Cs

Bs

�
with weights w1s, w2s as (15).

(e) Add a jump in the intensity process at the jump time by

λTn+1 =

8<: λT−n+1
+ Yn+1, if min{S∗n+1, E∗n+1} = S∗n+1,

λT−n+1
+ Xn+1, if min{S∗n+1, E∗n+1} = E∗n+1.

(f) Change the value in the point process at the jump time by

NTn+1 =

8<: NT−n+1
+ 1, if min{S∗n+1, E∗n+1} = S∗n+1,

NT−n+1
, if min{S∗n+1, E∗n+1} = E∗n+1.

Inspired by the work of Dassios et al. (2015), Algorithm 5.1 may be further extended

to the version, where the additional externally excited jumps arrive as a general

renewal process rather than a simple Poisson process Mt. Then, the interarrival

times of external shocks could follow any distribution rather than the exponential

one.

6. Our exact algorithm is also flexible to be generalised to a multi-dimensional frame-

work incorporating self-excited and mutually -excited jumps: A D̄−dimensional

point process
n

N[]
t

o
=1,2,...,D̄

where N[]
t ≡

n
T[]∗

i

o
i=1,2,...

can be constructed via the

th intensity process for any  ∈ {1, 2, ..., D̄} as

λ
[]
t = a +

�
λ
[]
0 − a

�
e−δt + σ

Z t

0
e−δ(t−s)

q
λ
[]
s dW []

s +
D̄X
`=1

X
0≤T[`]∗

i <t

Y[,`]
i e−δ(t−T[`]∗

i),

where
n

Y[,`]
i

o
=`

are the sizes of self-excited jumps, and
n

Y[,`]
i

o
 6=`

are the sizes of

mutually-excited (or cross-excited) jumps. Upon the arrival of one jump in point pro-

cess, say, N[`]
t , each marginal intensity process

n
λ
[]
t

o
=1,2,...,D̄

experiences a simul-

33

taneous co-jump of any nonnegative size. These co-jump sizes are free to be either

mutually independent or dependent, so one can freely structure any dependency

(such as correlation or copula models) for the co-jump sizes. Brownian motionsn
W []

t

o
=1,2,...,D̄

are assumed to be mutually independent. The ordered arrival times

of co-jumps in the intensity processes are denoted by {T∗k }k=1,2,.... By extending our

exact scheme of Algorithm 3.6, it is straightforward to exactly simulate the joint

paths of
n

N[]
t

o
=1,2,...,D̄

with any parameter setting Θ :=
�

a, δ, σ

�
piecewisely by

Algorithm 5.2.

Algorithm 5.2 (Exact Scheme). For each  ∈ {1, 2, ..., D̄}, we can exactly simulate�
λ
[]
T∗k+1

, T∗k+1

�
conditional on

�
λ
[]
T∗k

, T∗k
�

via the following steps:

(a) Simulate the (k + 1)th interarrival time of co-jumps in intensity processes by

ω = min
n

S[1]∗
k+1, S[2]∗

k+1, ..., S[D̄]∗
k+1

o
,

where each candidate S[]∗
k+1 can exactly simulated in the same way as S∗i+1 via (10) of

Theorem 3.3 by simply replacing the index i by k and the parameter setting Θ by Θ

for each . Say, it is the `th point process that experiences a jump and triggers co-jumps

in all intensities, i.e.

ω = S[`]∗
k+1.

(b) Record the (k + 1)th co-jump arrival time T∗k+1 in each intensity λ
[]
t by

T∗k+1 = T∗k + ω.

(c) For each , simulate a Poisson random variable J∗ω = j of (14) using the associated

parameter setting Θ instead.

(d) For each , conditional on ω and j, simulate λ
[]

T∗−k+1
as a mixture of two Gamma ran-

dom variables Gamma
�

j + D + 1, Cω
Bω

�
and Gamma

�
j + D + 2, Cω

Bω

�
with weights

w1ω, w2ω of (15) using the associated parameter setting Θ instead.

(e) Record the change of each intensity process λ
[]
t at the co-jump time T∗k+1 by

λ
[]
T∗k+1

= λ
[]

T∗−k+1
+ Y[,`]

k+1,  ∈ {1, 2, ..., D̄}.

(f) Record the change of each point process N[]
t at the co-jump time T∗k+1 by

N[]

T∗+k+1
=

8><>:
N[]

T∗−k+1
+ 1,  = `,

N[]

T∗−k+1
,  6= `,

 ∈ {1, 2, ..., D̄}.

34

If Brownian motions
n

W []
t

o
=1,2,...,D̄

are dependent, then, the joint process of inter-

arrival intensities between two successive co-jumps generally becomes a general

Wishart process (i.e. the multi-dimensional version of CIR processes) (Bru, 1991).

This case is rather complicated, as the fundamental result for the integral transfor-

m in Proposition 3.1 should be completely re-derived, and it could be a matter for

future research.

6 Applications to Finance: Portfolio Loss Distribution

Efficient numerical algorithms for simulating portfolio loss processes are extensively dis-

cussed in the literature, see Glasserman et al. (2005) and Giesecke and Kim (2011). Now,

we make a simple application of our Algorithm 3.6 to estimate the portfolio loss distribu-

tion. Suppose that, we have a portfolio of investments, and the arrival of loss is modelled

by a self-exciting point process Nt ≡
¦

T∗i
©

i=1,2,...
with the stochastic CIR intensity λt as

defined by Definition 2.1. The cumulative portfolio loss process at time t is

Lt =
X
i≥1

Li1{T∗i ≤ t},

where Li is the individual loss (e.g. the loss-given-default) that occurs at time T∗i .

As previously discussed, the choice for the sizes of self-excited jumps {Yi}i=1,2,... could

be very flexible. To illustrate a simple implementation, here we follow Errais et al. (2010)

by setting Yi = bLi, where b > 0 is a constant multiplier governing the sensitivity to

defaults, and Li could be assumed to be either random or constant. The loss process

then has self-exciting effects, and the loss frequency has the desirable mean-reverting

property: when each individual loss occurs, the intensity of loss arrival jumps up by a

magnitude proportional to this realised individual loss; after the loss, the intensity of loss

arrival tends to diffusively revert back to its long-term level a at a constant rate δ, since

the economy is assumed to have its capability to recover to a normal state from crisis

eventually. The evidence for this mean-reverting property in the default intensity can be

found in Duffie et al. (2009). Comparing to the original Hawkes point process, the addi-

tional component of diffusion {σWt}t≥0 in the portfolio intensity (1) in our model could

be able to capture a certain degree of noises or factors, which are consistently existing

and are making fluctuations in markets. This model could also capture the well known

credit risk phenomena of the negative dependence between defaults and recovery rates,

see empirical evidences in Altman et al. (2005). Overall, this provides a realistic model,

particularly for the loss due to default, and can be applied to portfolio risk management

or pricing multi-name credit derivatives, see more arguments in Giesecke et al. (2011b).

35

For a simple numerical implementation for our exact simulation via Algorithm 3.6, we

further assume individual losses follow exponential distribution, say, Li ∼ Exp(β) with

the parameter setting (a, λ0, δ, σ, β, b) = (0.9, 0.9, 1.0, 1.0, 1.2, 1.0). One simulated sample

path of the joint point process Nt and loss process Lt for the time period t ∈ [0, 100] is

plotted in Figure 7. We can observe that the histogram of Nt reproduces the empirically

observed clustering losses in the time horizon. We can also generally compute various

quantities for the arrival process {Nt}t≥0 and the loss process {Lt}t≥0, such as the CDF

of the cumulative loss process at time T, Pr{LT ≤ l}, and call options on the portfolio

loss, E[(LT − K)+] where K > 0 is the strike price. Here, we take the loss distribution

Pr{LT ≤ l} for instance. We assume that, the individual losses are fixed, or, follow a

standard uniform distribution or an exponential distribution:

Case 1 (Constant): Li ≡ 0.5 with (a, λ0, δ, σ, b) = (0.9, 0.9, 1.0, 1.0, 1.0);

Case 2 (Uniform Distribution): Li ∼ U [0, 1] with (a, λ0, δ, σ, b) = (0.9, 0.9, 1.0, 1.0);

Case 3 (Exponential Distribution): Li ∼ Exp(β) with (a, λ0, δ, σ, β, b) = (0.9, 0.9, 1.0, 1.0, 2.0, 1.0).

Estimated probabilities for Pr{LT ≤ l} based on the simulation of 100,000 sample paths

for each case at T = 1, 2, 5, 10, 20, respectively, are given by Figure 8. Note that, for

all cases above, they have the same average (expected) loss of 0.5. However, the Case

3 of exponential distribution obviously products the heaviest tailed loss distributions,

whereas the Case 1 has the lightest ones.

Acknowledgments

The authors would like to thank all reviewers for extremely helpful and constructive

comments and suggestions, which have significantly improved our paper. They are par-

ticularly grateful to Prof. Mohammad Mousavi at the University of Pittsburgh, for shar-

ing his detailed insights on numerically implementing the projection scheme. The corre-

sponding author Hongbiao Zhao acknowledges the financial support from the National

Natural Science Foundation of China (#71401147).

36

0

100

200

300

400

0

50

100

150

200

250

300

350

One Simulated Sample Path of Joint Point Process N
t
 and Loss Process L

t

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

Time t

Histogram N
t

Point Process N
t

Loss Process L
t

Figure 7: A simulated sample path of the joint point process Nt and loss process Lt based on Algo-
rithm 3.6

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Loss Level l

 P
{L

T
 ≤

 l}

The CDF of The Cumulative Portfolio Loss Process at Time T, P{L
T
 ≤ l}, by Monte Carlo Simulation (100,000 Paths)

Case1,T=1
Case2,T=1
Case3,T=1
Case1,T=2
Case2,T=2
Case3,T=2
Case1,T=5
Case2,T=5
Case3,T=5
Case1,T=10
Case2,T=10
Case3,T=10
Case1,T=20
Case2,T=20
Case3,T=20

Figure 8: The CDF of cumulative portfolio loss process at time T estimated by our exact simulation

37

References

Aït-Sahalia, Y., Cacho-Diaz, J., and Laeven, R. J. (2015). Modeling financial contagion using mu-

tually exciting jump processes. Journal of Financial Economics, 117(3):585–606.

Aït-Sahalia, Y., Laeven, R. J., and Pelizzon, L. (2014). Mutual excitation in Eurozone sovereign

CDS. Journal of Econometrics, 183(2):151–167.

Altman, E. I., Brady, B., Resti, A., and Sironi, A. (2005). The link between default and recovery

rates: Theory, empirical evidence, and implications. The Journal of Business, 78(6):2203–2228.

Asmussen, S. and Glynn, P. W. (2007). Stochastic Simulation: Algorithms and Analysis. Springer.

Beskos, A. and Roberts, G. O. (2005). Exact simulation of diffusions. The Annals of Applied Proba-

bility, 15(4):2422–2444.

Bowsher, C. G. (2007). Modelling security market events in continuous time: Intensity based,

multivariate point process models. Journal of Econometrics, 141(2):876–912.

Brémaud, P. and Massoulié, L. (2002). Power spectra of general shot noises and Hawkes point

processes with a random excitation. Advances in Applied Probability, 34(1):205–222.

Brix, A. and Kendall, W. S. (2002). Simulation of cluster point processes without edge effects.

Advances in Applied Probability, 34(2):267–280.

Broadie, M. and Kaya, Ö. (2006). Exact simulation of stochastic volatility and other affine jump

diffusion processes. Operations Research, 54(2):217–231.

Bru, M.-F. (1991). Wishart processes. Journal of Theoretical Probability, 4(4):725–751.

Chavez-Demoulin, V., Davison, A. C., and McNeil, A. J. (2005). Estimating value-at-risk: a point

process approach. Quantitative Finance, 5(2):227–234.

Chen, N. and Huang, Z. (2013). Localization and exact simulation of Brownian motion-driven

stochastic differential equations. Mathematics of Operations Research, 38(3):591–616.

Cox, J. C., Ingersoll Jr, J. E., and Ross, S. A. (1985). A theory of the term structure of interest rates.

Econometrica, 53(2):385–407.

Dassios, A. and Jang, J. (2003). Pricing of catastrophe reinsurance and derivatives using the Cox

process with shot noise intensity. Finance and Stochastics, 7(1):73–95.

Dassios, A., Jang, J., and Zhao, H. (2015). A risk model with renewal shot-noise Cox process.

Insurance: Mathematics and Economics, 65:55–65.

Dassios, A. and Nagaradjasarma, J. (2006). The square-root process and Asian options. Quantita-

tive Finance, 6(4):337–347.

Dassios, A. and Zhao, H. (2011). A dynamic contagion process. Advances in Applied Probability,

43(3):814–846.

38

Dassios, A. and Zhao, H. (2012). Ruin by dynamic contagion claims. Insurance: Mathematics and

Economics, 51(1):93–106.

Dassios, A. and Zhao, H. (2013). Exact simulation of Hawkes process with exponentially decaying

intensity. Electronic Communications in Probability, 18(62):1–13.

Dassios, A. and Zhao, H. (2017). A generalised contagion process with an application to credit

risk. International Journal of Theoretical and Applied Finance, 20(1):1–33.

Duffie, D., Eckner, A., Horel, G., and Saita, L. (2009). Frailty correlated default. The Journal of

Finance, 64(5):2089–2123.

Duffie, D., Filipovic, D., and Schachermayer, W. (2003). Affine processes and applications in

finance. Annals of Applied Probability, 13(3):984–1053.

Duffie, D. and Glynn, P. (1995). Efficient Monte Carlo simulation of security prices. The Annals of

Applied Probability, 5(4):897–905.

Duffie, D., Pan, J., and Singleton, K. (2000). Transform analysis and asset pricing for affine jump-

diffusions. Econometrica, 68(6):1343–1376.

Dufresne, D. (2001). The integrated square-root process. Working paper. University of Melbourne.

Engle, R. F. and Russell, J. R. (1998). Autoregressive conditional duration: A new model for

irregularly spaced transaction data. Econometrica, 66(5):1127–1162.

Errais, E., Giesecke, K., and Goldberg, L. R. (2010). Affine point processes and portfolio credit

risk. SIAM Journal on Financial Mathematics, 1(1):642–665.

Feller, W. (1951). Two singular diffusion problems. The Annals of Mathematics, 54(1):173–182.

Giesecke, K., Kakavand, H., and Mousavi, M. (2008). Simulating point processes by intensity

projection. In Proceedings of the 2008 Winter Simulation Conference, pages 560–568. IEEE Press.

Giesecke, K., Kakavand, H., and Mousavi, M. (2011a). Exact simulation of point processes with

stochastic intensities. Operations Research, 59(5):1233–1245.

Giesecke, K. and Kim, B. (2007). Estimating tranche spreads by loss process simulation. In Pro-

ceedings of the 2007 Winter Simulation Conference, pages 967–975. IEEE Press.

Giesecke, K. and Kim, B. (2011). Risk analysis of Collateralized Debt Obligations. Operations

Research, 59(1):32–49.

Giesecke, K., Kim, B., and Zhu, S. (2011b). Monte Carlo algorithms for default timing problems.

Management Science, 57(12):2115–2129.

Giesecke, K. and Smelov, D. (2013). Exact sampling of jump diffusions. Operations Research,

61(4):894–907.

Glasserman, P., , and Li, J. (2005). Importance sampling for portfolio credit risk. Management

Science, 51(11):1643–1656.

39

Glasserman, P. (2003). Monte Carlo Methods in Financial Engineering. Springer.

Glasserman, P. and Kim, K.-K. (2011). Gamma expansion of the Heston stochastic volatility model.

Finance and Stochastics, 15(2):267–296.

Hawkes, A. G. (1971a). Point spectra of some mutually exciting point processes. Journal of the

Royal Statistical Society. Series B (Methodological), 33(3):438–443.

Hawkes, A. G. (1971b). Spectra of some self-exciting and mutually exciting point processes.

Biometrika, 58(1):83–90.

Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications

to bond and currency options. Review of Financial Studies, 6(2):327–343.

Lamberton, D. and Lapeyre, B. (2008). Introduction to Stochastic Calculus Applied to Finance. Chap-

man & Hall.

Large, J. (2007). Measuring the resiliency of an electronic limit order book. Journal of Financial

Markets, 10(1):1–25.

Lewis, P. A. and Shedler, G. S. (1979). Simulation of nonhomogeneous Poisson processes by thin-

ning. Naval Research Logistics Quarterly, 26(3):403–413.

Meyer, P.-A. (1971). Démonstration simplifiée d’un théorème de Knight. Séminaire de Probabilités

V Université de Strasbourg, 191:191–195.

Møller, J. and Rasmussen, J. G. (2005). Perfect simulation of Hawkes processes. Advances in Applied

Probability, 37:629–646.

Møller, J. and Rasmussen, J. G. (2006). Approximate simulation of Hawkes processes. Methodology

and Computing in Applied Probability, 8(1):53–64.

Ogata, Y. (1981). On Lewis’ simulation method for point processes. IEEE Transactions on Informa-

tion Theory, 27(1):23–31.

Ogata, Y. and Akaike, H. (1982). On linear intensity models for mixed doubly stochastic Poisson

and self-exciting point processes. Journal of the Royal Statistical Society. Series B (Methodological),

44(1):102–107.

Zhang, X., Blanchet, J., Giesecke, K., and Glynn, P. W. (2015). Affine point processes: Approxima-

tion and efficient simulation. Mathematics of Operations Research, 40(4):797–819.

Zhao, H. (2012). A Dynamic Contagion Process for Modelling Contagion Risk in Finance and Insurance.

PhD thesis, The London School of Economics and Political Science (LSE).

Zhu, L. (2014). Limit theorems for a Cox-Ingersoll-Ross process with Hawkes jumps. Journal of

Applied Probability, 51(3):699–712.

40

	Dassios_Efficient simulation of clustering jumps_cover_2017
	Dassios_Efficient simulation of clustering jumps_author_2017
	1 Introduction
	2 Preliminaries
	3 Exact Simulation
	3.1 Joint Distribution of Pre-jump Intensity and Interarrival Time
	3.2 Exact Simulation of Pre-jump Interarrival Times
	3.3 Exact Simulation of Pre-jump Intensities
	3.4 Exact Simulation of Self-excited Jumps

	4 Comparisons with Other Important Algorithms
	4.1 Comparison with Discretisation Scheme
	4.2 Comparison with Projection Scheme
	4.3 Summary for Numerical Comparisons

	5 Extensions
	6 Applications to Finance: Portfolio Loss Distribution
	References

