
 

 

Paul Dütting and Thomas Kesselheim 

Best-response dynamics in combinatorial 
auctions with item bidding 
 
Book section 
 
 
 

 

Original citation: 
Originally published in Klein, Philip N., (ed.) Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms. Proceedings (SODA17). Society for Industrial and
 
Applied Mathematics, pp. 521-533. ISBN 9781611974782 
 
É 2016 The Authors  
This version available at: http://eprints.lse.ac.uk/73439/ 
 
Available in LSE Research Online: April 2017 
 
LSE has developed LSE Research Online so that users may access research output of the 
School. Copyright É and Moral Rights for the papers on this site are retained by the individual 
authors and/or other copyright owners. Users may download and/or print one copy of any 
article(s) in LSE Research Online to facilitate their private study or for non-commercial research. 
You may not engage in further distribution of the material or use it for any profit-making activities 
or any commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE 
Research Online website.  
 

http://eprints.lse.ac.uk/73439/


Best-Response Dynamics in Combinatorial Auctions with Item Bidding

Paul Dütting∗ Thomas Kesselheim†

Abstract

In a combinatorial auction with item bidding, agents partic-
ipate in multiple single-item second-price auctions at once.
As some items might be substitutes, agents need to strate-
gize in order to maximize their utilities. A number of results
indicate that high welfare can be achieved this way, giving
bounds on the welfare at equilibrium. Recently, however,
criticism has been raised that equilibria are hard to com-
pute and therefore unlikely to be attained.

In this paper, we take a different perspective. We
study simple best-response dynamics. That is, agents are
activated one after the other and each activated agent
updates his strategy myopically to a best response against
the other agents’ current strategies. Often these dynamics
may take exponentially long before they converge or they
may not converge at all. However, as we show, convergence
is not even necessary for good welfare guarantees. Given
that agents’ bid updates are aggressive enough but not too
aggressive, the game will remain in states of good welfare
after each agent has updated his bid at least once.

In more detail, we show that if agents have fractionally
subadditive valuations, natural dynamics reach and remain
in a state that provides a 1/3 approximation to the optimal
welfare after each agent has updated his bid at least once.
For subadditive valuations, we can guarantee an Ω(1/ logm)
approximation in case of m items that applies after each
agent has updated his bid at least once and at any point
after that. The latter bound is complemented by a negative
result, showing that no kind of best-response dynamics can
guarantee more than a an o(log logm/ logm) fraction of the
optimal social welfare.

1 Introduction

In a combinatorial auction, n players compete for the
assignment of m items. The players have private
preferences over bundles of items as expressed by a
valuation function vi : 2[m] → R≥0. Our goal in
this work is to find a partition of the items into
sets S1, . . . , Sn that maximizes social welfare

∑
i vi(Si),

based on reported valuations (bids) bi : 2[m] → R≥0
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with the freedom to impose payments p1, . . . , pn on the
players.

Even if valuations are known, finding an allocation
that maximizes social welfare is typically NP-hard.
Furthermore, since valuations are assumed to be private
information, some mechanics are needed to extract this
information. The traditional approach is to incentivize
players to bid truthfully. Insisting on truthfulness has
the advantage that for the individual players it is easy
to participate as it is not necessary to act strategically.
However, truthfulness requires central coordination of
the entire allocation and payments.

An alternative approach to this problem that is
arguably seen more often in practice is to let players
participate in a simpler, non-truthful mechanism and
to accept strategic behavior. To derive theoretical
performance guarantees, one then seeks to prove bounds
on the so-called Price of Anarchy, the worst-case ratio
between the optimal social welfare and the welfare
at equilibrium. The most prominent example in the
context of combinatorial auctions is item bidding, where
the items are sold through separate single-item auctions.

One can show that for pretty general classes of
valuations, such as submodular or the even more gen-
eral classes fractionally subadditive and subadditive, all
equilibria from a broad range of equilibrium concepts
obtain a decent fraction of the optimal social welfare.
More recently, however, these results have been criti-
cized for ignoring the computational complexity of find-
ing an equilibrium. In fact, by now, there is quite a
selection of impossibility results showing that finding
exact equilibria is often computationally intractable.

Our approach in this paper is different. We consider
simple, best-response dynamics, in which players are
activated in a round-robin fashion and players when
activated buy their favorite set of items at the current
prices, in a myopic way. Christodoulou et al. [7]
showed that one instance of such dynamics converges if
players’ valuation functions are fractionally subadditive.
However, they also showed that it takes exponential
time. For subadditive valuations, even convergence
cannot be guaranteed because any fixed point would
be a pure Nash equilibrium, and pure Nash equilibria
may not exist (see Appendix A). We show that despite
possibly long convergence time or no convergence at all,
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the social welfare reaches a good level very fast.

1.1 The Setting We study combinatorial auctions
with n bidders N and m items M . Each bidder
i ∈ N has a valuation function vi : 2M → R≥0. Our
objective is to find a feasible allocation, i.e., a partition
of the items, S1, . . . , Sn, that maximizes social welfare∑
i∈N vi(Si). We assume that an allocation of items to

bidders is found by distributed strategic behavior of the
bidders using item bidding. That is, each bidder i ∈ N
places a bid bi,j on each item j ∈M . Each item j ∈M
is assigned to the bidder i ∈ N with the highest bid bi,j
at a price of pj = maxi′ 6=i bi′,j . Ties are broken in an
arbitrary, but fixed manner.

We assume that bidders choose their bids strategi-
cally so as to maximize their quasi-linear utilities. Bid-
der i’s utility ui as a function of the bids b = (bi′)i′∈N
is ui(b) = vi(S) −

∑
j∈S pj , where S is the set of items

won by bidder i.
We say that a bid bi is a best response to the

bids b−i if bidder i’s utility is maximized by bi. That
is, ui(bi, b−i) ≥ ui(b

′
i, b−i) for all b′i. Note that any

best response must give bidder i a set of items S that
maximizes ui(b) = vi(S) −

∑
j∈S pj . We call these sets

of items demand sets. A (pure) Nash equilibrium in this
setting is a profile of bids b = (bi′)i′∈N such that for each
bidder i ∈ N his bid bi is a best response against bids
b−i.

We study simple game-playing dynamics in which
bidders get activated in turn and myopically choose to
play a best response. More formally, starting from an
initial bid vector b0, in each time step t ≥ 1, some bidder
i ∈ N is activated and updates his bid bt−1i from the
previous round to a best response to the other players’
bids bt−i = bt−1−i which do not change from the previous
to the current round. The fixed points of such best-
response dynamics are Nash equilibria. However, Nash
equilibria do not necessarily exist and even if they do
best-response dynamics may not converge.

We will evaluate best-response dynamics by the
social welfare that they achieve. For bid profile b and
corresponding allocation S1, . . . , Sn we write SW (b) =∑
i vi(Si) for the social welfare at bid profile b. We seek

to compare this to the optimal social welfare OPT (v).

1.2 Variants of Best-Response Dynamics Since
payments in combinatorial auctions with item bidding
are second price, there are typically many ways to
choose a best response. Clearly, not all best responses
will ensure that good states (in terms of social welfare)
will be reached quickly.

Example 1.1. (Gross Underbidding) Consider a
single-item auction with n bidders. Suppose v1 = C

and vi = 1 for i ≥ 2, where C � 1. Suppose we start
at b = (0, . . . , 0) and the item assigned to bidder 1. A
possible best response sequence has bidders update their
bids in round-robin fashion, each time increasing the
winning bid by ε.

Example 1.2. (Gross Overbidding) Consider the
same setting as in the previous example. If in the first
round of updates the last bidder bids C + ε this will
terminate the dynamics.

Note that in both these examples the social welfare
after each round of best responses (and on average) is 1,
which can be arbitrarily smaller than the optimal social
welfare C.

The issue in each of these examples is as follows.
Through the bids bi,j , the bidders effectively declare
additive valuations. The allocation maximizes the de-
clared welfare DW (b) =

∑
i

∑
j∈Si

bi,j , which usu-
ally differs from the actual welfare SW (b). In both
examples, there exist update steps in which the de-
clared utility of the bidder, i.e., uDi (b) =

∑
j∈Si

bi,j −∑
j∈Si

maxk 6=i bk,j , is very different from his actual util-
ity. We will prove bounds on the welfare achieved by
best-response dynamics that are quantified by the ex-
tent to which declared utilities can differ from the actual
utilities as captured by the following definitions.

Definition 1.1. Let α ≥ 0. We call a bid bi by
bidder i against bids b−i α-aggressive if uDi (b) ≥ α ·
maxb′i ui(b

′
i, b−i).

Definition 1.2. Let β ≥ 1. A best response dynamic
is β-safe if it ensures that uDi (b) ≤ β·ui(b) for all players
i and reachable bid profiles b.

We will usually apply Definition 1.1 when bi is a best
response to b−i. However, it also leaves the freedom to
consider approximate best responses. We will see that
one way to achieve Definition 1.2 is to require strong
no overbidding, but we will also see an example of safe
dynamics that allow overbidding. Note that in both
cases players will have non-negative actual utilities at
all times because ui(b

t) ≥ 1
β ·u

D
i (bt) ≥ 0 for every bidder

i and time step t.

1.3 Our Results Our first main result is that round-
robin best-response dynamics are capable of reaching
states with near-optimal social welfare strikingly fast,
despite the fact that convergence to equilibrium may
take exponentially long or they may not converge at all.

In fact, our result applies to any round-robin bid-
ding dynamics, provided that players choose bids that
are aggressive enough but not too aggressive. This, in
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particular, includes dynamics in which players choose to
play only approximate best responses. Also, their way
of making choices does not need to be consistent in any
way.

Main Result 1.1. In a β-safe round-robin bidding dy-
namic with α-aggressive bid updates the social welfare at
any time step t ≥ n satisfies

SW (bt) ≥ α

(1 + α+ β)β
·OPT (v).

In other words, once every player had the chance to
update his bid, the social welfare, at any time step after
that, will be within α/(1 + α+ β)β of optimal.

For fractionally subadditive valuations and subad-
ditive valuations there exist round-robin best-response
dynamics with (α, β) = (1, 1) and (α, β) = (1/ lnm, 1).
The result for XOS requires access to demand and XOS
oracles [11], the result for subadditive valuations re-
quires access to demand oracles and that the greedy
algorithm for set cover problems can be executed [16, 2].

Our guarantee on the social welfare achieved by
best-response dynamics shows that these dynamics pro-
vide a 1/3 (resp. Ω(1/ logm)) approximation to the op-
timal social welfare that applies after a single round of
bid updates, and at any time step after that.

We also prove a bound on the average social wel-
fare of 1/2(2 + α)β, which improves upon the above
bound for large β. In particular, for subadditive valu-
ations it is also possible to achieve (α, β) = (1, lnm).
While the point-wise guarantee of this dynamics is
only Ω(1/ log2m), its average social welfare is within
Ω(1/ logm) of optimal.

We show that the point-wise welfare guarantee of
1/3 for fractionally subadditive valuations is tight for
the respective mechanism. Our second main result is
that the Ω(1/ logm) bounds are almost best possible in
a more general sense.

Main Result 1.2. For subadditive valuations no best-
response dynamics in which players do not overbid
on the grand bundle can guarantee a better than
o(log logm/ logm) fraction of the optimal social welfare
at any time step.

For round-robin bidding dynamics, this point-wise
impossibility result extends to an impossibility for the
average social welfare that can be achieved.

The assumption that players do not overbid on the
grand bundle is quite natural, and is satisfied by all
dynamics that have been proposed in the literature. It
obviously applies to strong no-overbidding dynamics,
but it also applies to dynamics in which players use
weak no-overbidding strategies on the items that they
win and bid zero on all other items.

Our proof of the lower bound is based on a non-
trivial construction exploiting the algebraic properties
of linearly independent vector spaces. It presents
an interesting separation from the Price of Anarchy
literature, where no such lower bound can be proved.

Finally, we explore to which extent our positive
results depend on round-robin activation. We show that
our positive results extend to the case where at each step
a player is chosen uniformly at random, while the social
welfare can be as low as O(1/n) of optimal when the
order of activation is chosen adversarially.

1.4 Related Work Best-response dynamics are a
central topic in Algorithmic Game Theory. Proba-
bly, the best-studied application are congestion games,
where best-response dynamics always converge but, ex-
cept in special cases, take worst-case exponential time
before they do so [23, 21, 1]. On the other hand,
a number of results show that certain types of best-
response dynamics reach states of low social cost quickly
[19, 6, 3, 15, 25]. Some of these results extend to
weighted congestion games, where equilibria may not
exist and best-response sequences may not converge for
this reason.

The study of the Price of Anarchy in combina-
torial auctions with item bidding was initiated by
Christodoulou et al. [7], and subsequently refined and
improved upon in [2, 20, 26, 14, 18]. Some of these
bounds are based on mechanism smoothness, others are
not. They provide welfare guarantees for a broad range
of equilibrium concepts ranging from pure Nash equi-
libria, over (coarse) correlated equilibria, to Bayes-Nash
equilibria. For fractionally subadditive valuations there
is a smoothness-based proof that shows that the Price
of Anarchy with respect to pure Nash equilibria is at
most 2 [7, 26]. For subadditive valuations the Price of
Anarchy with respect to pure Nash equilibria is also at
most 2 [2], but the best smoothness-based proof gives a
bound of O(logm) [2, 26]. In fact, as shown by Rough-
garden [24], combinatorial auctions with item bidding
achieve (near-)optimal Price of Anarchy among a broad
class of “simple” mechanisms.

Also relevant to our analysis in this context is that
Christodoulou et al. [7] gave a simple, best-response
dynamics for fractionally subadditive valuations, that
they called Potential Procedure. They showed that this
procedure always converges to a pure Nash equilibrium,
but also that it may take exponentially many steps
before it converges.

Lately, attempts at proving Price of Anarchy
bounds for combinatorial auctions with item bidding
have been criticized for not being constructive, in the
sense that the computational complexity of finding an
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equilibrium remained open. Dobzinski et al. [13], for ex-
ample, showed that for subadditive valuations comput-
ing a pure Nash equilibrium requires exponential com-
munication. Regarding fractionally subadditive valua-
tions they concluded that “if there exists an efficient
algorithm that finds an equilibrium, it must use tech-
niques that are very different from our current ones.”
Further negative findings were reported by Cai and Pa-
padimitriou [5], who showed that computing a Bayes-
Nash equilibrium is PP-hard.

Most recently, Daskalakis and Syrgkanis [8] consid-
ered coarse correlated equilibria. They showed that even
for unit-demand players (a strict subclass of submodu-
lar) there are no polynomial-time no-regret learning al-
gorithms for finding such equilibria, unless RP ⊇ NP,
closing the last gap in the equilibrium landscape. How-
ever, they also proposed a novel solution concept to
escape the hardness trap, no-envy learning, and gave
a polynomial-time no-envy learning algorithm for XOS
valuations and complemented this with a proof showing
that for this class of valuations every no-envy outcome
recovers at least 1/2 of the optimal social welfare.

Further relevant work comes from Devanur et al. [9],
who proposed an alternative to simultaneous second-
price auctions, the so-called single-bid auction. This
mechanism also admits a polynomial-time no-regret
learning algorithm and by a result of [4] achieves optimal
Price of Anarchy bounds within a broader class of
mechanisms.

A final point of reference are truthful mechanisms
for combinatorial auctions. While no mechanism can
achieve a better than 1/m1/2−ε approximation for sub-
modular valuations with valuation queries alone [12],
Dobzinski [10] recently managed to improve a long-
standing approximation guarantee of Ω(1/ logm) for
submodular valuations to Ω(1/

√
logm) for fractionally

subadditive valuations, requiring access to both value
and demand oracles.

2 Achieving Aggressive and Safe Bids

As already discussed, best responses are generally not
unique in our settings. Our positive results require
that updates are aggressive and safe. In this section
we briefly describe how to guarantee these properties
for fractionally subadditive (a.k.a. XOS) valuations and
subadditive valuations. The missing proofs are provided
in Appendix B.

A valuation function is fractionally subadditive, or
XOS, if there are values v`i,j ≥ 0 such that vi(S) =

max`
∑
j∈S v

`
i,j . It is subadditive if for all S, T ⊆ M ,

vi(S ∪ T ) ≤ vi(S) + vi(T ).
The dynamics that we consider approach players in

round-robin fashion. When player i is activated he picks

a demand set D at the current prices and updates his
bid as described below. Note that here we assume eager
updating. This assumption leads to cleaner proofs, but
is not necessary. See the full version for details.

2.1 Bid Updates for XOS Valuations For XOS
valuations we can update bids as described by [7].
If D is the demand set chosen by player i, let
(v`i,j)j∈M be the supporting valuation on this demand

set for which
∑
j∈D v

`
i,j = vi(D), and set bti,j =

v`i,j for j ∈ D and bti,j = 0 otherwise. Note that these
update steps can be performed in polynomial time us-
ing demand and XOS oracles.

Proposition 2.1. Starting from an initial bid vector
b0 satisfying strong no-overbidding, the bid updates
described above lead to a sequence of bids b0, b1, b2, . . .
that is 1-safe and in which each update is a 1-aggressive
best response.

2.2 Bid Updates for Subadditive Valuations
For subadditive functions, it is generally not possible
to guarantee α = 1 and β = 1 at the same time. We
describe two different, reasonable ways of bid updates.

No-Overbidding Updates Given a bid vector
b−i, let ũi(S, b−i) = vi(S) −

∑
j∈S maxk 6=i bk,j . That

is, ũi(S, b−i) is the utility bidder i can derive from buy-
ing the set S. Observe that ũ is subadditive. Let D
be an inclusion-wise minimal demand set of bidder i
given b−i. We can show that ũi(S, b

t
−i) > 0 for all

S ⊆ D unless D = ∅. Therefore, by [2] there exists
an additive approximation ai such that (a)

∑
j∈D ai,j ≥

1/ lnm · ũi(D, bt−i) and (b)
∑
j∈S ai,j ≤ ũi(S, bt−i) for all

S ⊆ D with the property that ai,j > 0 for all j ∈ D. We
set bids bti,j = ai,j + maxk 6=i b

t
k,j for j ∈ D and bti,j =

0 otherwise. These update steps can be performed in
polynomial time with a demand oracle if it is possible
to compute the additive approximation, which corre-
sponds to executing the greedy set-cover algorithm on
ũi( · , bt−i).

Proposition 2.2. Starting from an initial bid vector
b0 that satisfies strong no-overbidding, the bid updates
described above lead to a sequence of bids b0, b1, b2, . . .
that is 1-safe and in which each update is a (1/ lnm)-
aggressive best response.

Aggressive Updates The basic construction is
the same as above except that instead of considering
ai we consider ãi such that ãi,j = γ · ai,j for all
items j ∈ D, where 0 < γ ≤ lnm is such that∑
j∈D ai,j = 1/γ · ũi(D, bt−i). Note that these bids

satisfy: (a)
∑
j∈D ãi,j = ũi(D, b

t
−i) and (b)

∑
j∈S ãi,j ≤

γ · ũi(S, bt−i) for all S ⊆ D.
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Proposition 2.3. Starting from an initial bid vector
b0 that satisfies strong no-overbidding, the bid updates
described above lead to a sequence of bids that is lnm-
safe and in which each update is a 1-aggressive best
response.

3 Welfare Guarantees

In this section we prove our first main result (Theorem
3.1). The theorem provides a point-wise social welfare
guarantee, parametrized in α and β, for round-robin
bidding dynamics. It shows that the social welfare
is high already after a single round of updates, and
remains high at every single step after that.

Theorem 3.1. In a β-safe round-robin bidding dy-
namic with α-aggressive bid updates the social welfare
at any time step t ≥ n satisfies SW (bt) ≥ α

(1+α+β)β ·
OPT (v).

As we have argued in Proposition 2.1 and Proposi-
tion 2.2 there exist round-robin best-response dynamics
with (α, β) = (1, 1) for fractionally subadditive valu-
ations and (α, β) = (1/ lnm, 1) for subadditive valua-
tions. So two corollaries of our theorem are point-wise
welfare guarantees of 1/3 and Ω(1/ logm) for the re-
spective mechanisms.

We also show a welfare guarantee for the average
social welfare, Theorem 3.2 below, that improves upon
the pointwise guarantee for large β. Note that the term
(1 − n

T ) is 1 − o(1) for T ∈ ω(n) and at least 1/2 for
T ≥ 2n.

Theorem 3.2. In a β-safe round-robin bidding dy-
namic with α-aggressive bid updates the average social
welfare in the first T steps satisfies 1

T

∑T
t=1 SW (bt) ≥

α
(2α+1)β ·

(
1− n

T

)
·OPT (v).

This theorem shows that the best-response dynam-
ics described in Proposition 2.3 with (α, β) = (1, lnm),
whose point-wise welfare guarantee is only Ω(1/ log2m)
by Theorem 3.1, guarantees an average social welfare of
Ω(1/ logm).

In Appendix C we show that the point-wise welfare
guarantee of 1/3 for fractionally subadditive valuations
is tight for the respective mechanism. In Section 4 we
show that the Ω(1/ logm) bounds are essentially best
possible in a more general sense.

3.1 Proof of Theorem 3.1 The core of our proof
of the pointwise welfare guarantee are two lemmata.
The first (Lemma 3.2) shows that the declared social
welfare after a single round of updates is high when the
initial declared welfare is low and the second (Lemma
3.3) shows that the declared welfare after a single round

of updates is high when the initial declared welfare is
high. To prove these lemmata we need the following
auxiliary lemma.

Lemma 3.1. Consider a sequence b0, . . . , bn in which
bidder i updates his bid in step i. Denote bidder i’s de-
clared utility in step i by uDi (bi). Then,

∑n
i=1 u

D
i (bi) ≤

DW (bn).

Proof. Consider an arbitrary bidder i. Bidder i updates
his bid in step i. Denote the corresponding bid profiles
before and after the update by bi−1 and bi. Suppose
bidder i’s update buys him the set of items S′. Then

uDi (bi) =
∑
j∈S′

(
bii,j −max

k 6=i
bik,j

)
.

For i > 0, let zij = maxk≤i b
i
k,j for all j. That is, zij

is the maximum bid on item j that is placed by one of
the bidders 1, . . . , i, z0j = 0 for all j.

The crucial observation is that
∑
j∈S′(b

i
i,j −

maxk 6=i b
i
k,j) ≤

∑
j∈M (zij − z

i−1
j ) . The reason is as fol-

lows. For j 6∈ S′, we have zij ≥ zi−1j by definition.

For j ∈ S′, bii,j = zij and maxk 6=i b
i
k,j ≥ maxk<i b

i
k,j =

maxk<i b
i−1
k,j = zi−1j .

Summing over all players i we obtain∑
i∈N

uDi (bi) ≤
∑
i∈N

∑
j∈M

(zij − zi−1j ) .

The double sum is telescoping and znj = maxk b
n
k,j

and z0j = 0 by definition. So,∑
i∈N

uDi (bi) ≤
∑
j∈M

(znj − z0j ) =
∑
j∈M

max
k

bnk,j = DW (bn) ,

which proves the claim.

With the help of this lemma we can now prove our
key lemmata.

Lemma 3.2. Let S∗1 , . . . , S
∗
n be any feasible allocation,

in which player i receives items S∗i . Consider a sequence
b0, . . . , bn in which bidder i updates his bid in step i
using an α-aggressive bid. We have (α+ 1) ·DW (bn) +
α ·DW (b0) ≥ α ·

∑
i∈N vi(S

∗
i ).

Proof. Consider player i’s action in time step i. Instead
of choosing bid bii, he could have bought the set of items
S∗i . As bii is α-aggressive, we get

uDi (bi) ≥ α ·

vi(S∗i )−
∑
j∈S∗i

max
k 6=i

bik,j

 .
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Define ptj = maxi b
t
i,j for all items j. That is, ptj is

the maximum bid that is placed on item j in bid profile
bt. We claim that for every j ∈ S∗i , maxk 6=i b

i
k,j ≤

pnj + p0j . This is correct because if bik,j attains its

maximum for k < i then maxk 6=i b
i
k,j ≤ pnj as k’s bid

on item j will not change anymore. In the other case,
if k > i, then maxk 6=i b

i
k,j ≤ p0j because k has not yet

changed the bid on item j. Using that both p0j and pnj
are never negative, the bound follows.

We thus have

uDi (bi) + α ·
∑
j∈S∗i

(pnj + p0j ) ≥ α · vi(S∗i ) .

Summing this inequality over all bidders i ∈ N
yields

n∑
i=1

uDi (bi) + α ·
n∑
i=1

∑
j∈S∗i

(pnj + p0j ) ≥ α ·
n∑
i=1

vi(S
∗
i ) .

We can upper bound the first sum by DW (bn) using
Lemma 3.1. The double sum adds up every j ∈ M
exactly once and we have

∑
j∈M pnj = DW (bn) and∑

j∈M p0j = DW (b0). We obtain

(α+ 1) ·DW (bn) + α ·DW (b0) ≥ α ·
n∑
i=1

vi(S
∗
i ) .

Lemma 3.3. Consider a β-safe bid sequence b0, . . . , bn

in which player i changes his bid from bi−1 to bi using
an α-aggressive bid. Then, DW (bn) ≥ α

β ·DW (b0).

Proof. Consider an arbitrary bidder i and his update
from bi−1 to bi. Denote the set of items that bidder i
won under bids bi−1 by Si−1i , and the set of items that
he wins under bids bi by Sii . So

uDi (bi−1) =
∑

j∈Si−1
i

bi−1i,j −
∑

j∈Si−1
i

max
k 6=i

bi−1k,j and,

uDi (bi) =
∑
j∈Si

i

bii,j −
∑
j∈Si

i

max
k 6=i

bik,j .

Using that for all k 6= i and all j we have bi−1k,j = bik,j
we obtain that the difference in declared welfare over
all bidders between steps i − 1 and i is equal to the
difference in bidder i’s declared utility at these time
steps. Formally,

DW (bi) =
∑

j∈M\Si
i

max
k 6=i

bi−1k,j +
∑
j∈Si

i

bii,j

=
∑
j∈M

max
k 6=i

bi−1k,j +
∑
j∈Si

i

bii,j −
∑
j∈Si

i

max
k 6=i

bik,j

=
∑
j∈M

max
k 6=i

bi−1k,j + uDi (bi)

=
∑

j∈M\Si−1
i

max
k 6=i

bi−1k,j

+
∑

j∈Si−1
i

max
k 6=i

bi−1k,j + uDi (bi)

=
∑

j∈M\Si−1
i

max
k 6=i

bi−1k,j +
∑

j∈Si−1
i

bi−1i,j + uDi (bi)

−
∑

j∈Si−1
i

bi−1i,j +
∑

j∈Si−1
i

max
k 6=i

bi−1k,j

= DW (bi−1) + uDi (bi)− uDi (bi−1) .

We now extend this identity to a lower bound on
DW (bi). Since bii is α-aggressive, we have uDi (bi) ≥
α · ui(bi−1). Since the bidding sequence is β-safe,
uDi (bt) ≤ β · ui(bt) for all t. So,

DW (bi) = DW (bi−1) + uDi (bi)− uDi (bi−1)

≥ DW (bi−1) + uDi (bi)− β · ui(bi−1)

≥ DW (bi−1) + uDi (bi)− β

α
· uDi (bi)

= DW (bi−1)−
(
β

α
− 1

)
· uDi (bi) .

Summing this inequality over all bidders i ∈ N and
using the telescoping sum

∑
i∈N (DW (bi)−DW (bi−1) =

DW (bn)−DW (b0) we obtain

DW (bn) ≥ DW (b0)−
(
β

α
− 1

)∑
i∈N

uDi (bi) .

Since α ≤ 1 and β ≥ 1 the factor (β/α − 1) ≥ 0. We
can therefore use Lemma 3.1 to conclude that

DW (bn) ≥ DW (b0)−
(
β

α
− 1

)
DW (bn) .

This implies the claim.

We will use our key lemmata to show a lower bound
on the declared welfare. To relate the declared welfare
to the social welfare we will use the following lemma.

Lemma 3.4. In a β-safe sequence of bid profiles
b0, b1, . . . for every t ≥ 0, DW (bt) ≤ β · SW (bt).

Proof. Consider an arbitrary time step t. Since the
bid profile bt is β-safe we know that for the allocation
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T1, . . . , Tn that corresponds to bt,

∑
i

uDi (bt) =
∑
i

∑
j∈Ti

(
bti,j −max

k 6=i
btk,j

)
≤ β ·

∑
i

ui(b)

= β ·
∑
i

vi(Ti)−∑
j∈Ti

max
k 6=i

btk,j

 .

Rearranging this and using that β ≥ 1 we obtain

DW (bt) =
∑
i

∑
j∈Ti

bti,j

≤ β · SW (bt)− (β − 1)
∑
i

∑
j∈Ti

max
k 6=i

btk,j

≤ β · SW (bt) ,

and the claim follows.

We are now ready to prove the theorem.

Proof of Theorem 3.1. To prove the guarantee for time
step t ≥ n consider the bid sequence of length n + 1
from bt−n to bt. At time steps t−n+ 1 to t each bidder
updates his bid exactly once. By the virtue of being a
subsequence of a β-safe bidding sequence the sequence
bt−n, . . . , bt is β-safe. Moreover each bid update is α-
aggressive.

Applying first Lemma 3.3 and then Lemma 3.2 with
bt taking the role of bn, bt−n taking the role of b0,
and setting S∗1 , . . . , S

∗
n to the allocation that maximizes

welfare we obtain

(1 + α+ β)·DW (bt)

= (α+ 1) ·DW (bt) + α · β
α
DW (bt)

≥ (α+ 1) ·DW (bt) + α ·DW (bt−n)

≥ α ·OPT (v) .

Now, by Lemma 3.4, DW (bt) ≤ β · SW (bt). Com-
bining this with the previous inequality yields

(1 + α+ β) · β · SW (bt) ≥ α ·OPT (v) ,

as claimed.

3.2 Proof of Theorem 3.2 With the proof of the
pointwise welfare guarantee at hand we have already
done the bulk of the work for proving our guarantee
regarding the average welfare. The basic idea is to sum
the lower bound on the declared welfare at any given
time step as provided by Lemma 3.2 over all time steps

to obtain a lower bound on the average declare welfare,
and to turn this into a lower bound on the actual social
welfare using Lemma 3.4.

Proof of Theorem 3.2. We first use Lemma 3.2 to
relate the declared welfare at time steps t and t − n to
the optimal social welfare. Namely, for all t ≥ n,

(α+ 1) ·DW (bt) + α ·DW (bt−n) ≥ α ·OPT (v) .

Next we take the sum over all time steps t and use
that DW (bt) ≥ 0 to obtain the following lower bound
on the average declared welfare

1

T
·
T∑
t=1

DW (bt)

≥ 1

T
·

T∑
t=n+1

DW (bt)

≥ α

α+ 1
· 1

T
·

T∑
t=n+1

(
OPT (v)−DW (bt−n)

)

≥ α

α+ 1
· T − n

T
·OPT (v)− α

α+ 1
· 1

T
·
T∑
t=1

DW (bt) .

Solving this inequality for 1
T ·

∑T
t=1DW (bt) and

using Lemma 3.4 to lower bound SW (bt) by 1/β ·
DW (bt) we obtain

1

T
·
T∑
t=1

SW (bt) ≥ 1

β
· 1

T
·
T∑
t=1

DW (bt)

≥ α

(2α+ 1)β
· T − n

T
·OPT (v) ,

which proves the claim.

4 Lower Bound for Subadditive CAs

Next we show our second main result (Theorem 4.1),
which shows that no best-response dynamics in which
bidders do not overbid on the grand bundle can achieve
a point-wise welfare guarantee that is significantly bet-
ter than 1/ logm. The assumption that bidders do not
overbid on the grand bundle seems quite natural, and
does allow overbidding on subsets of items. It is satis-
fied by all dynamics that we have described in Section
2 and more generally by all dynamics that have been
proposed in the literature.

Theorem 4.1. For every positive integer k ∈ N>0 there
exists an instance with n = 2 players, m = 2k − 1
items, and subadditive valuations v = (v1, v2) such that
in every best-response dynamics in which players do not
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overbid on the grand bundle there exist infinitely many
time steps t at which

SW (bt) ≤ 1

Ω
(

logm
log logm

) ·OPT (v).

To prove this theorem we show that whenever the
second player has updated is bid social welfare will be
low. This does not imply that the average welfare will be
low as well. However, if we restrict attention to round-
robin dynamics, then we can extend the construction by
adding additional players after the second player that
play a low-stakes game on separate items forcing the
average welfare to be low as well.

4.1 Proof of Theorem 4.1 Our proof of the lower
bound is built around the following family of hard
instances, with n = 2 players and m = 2k−1 items. The
valuations of the first player are based on an example
that demonstrates the worst-case integrality gap for set
cover linear programs (see, e.g, [27, Example 13.4]),
which has been used in the context of CAs with item
bidding before [2]. The crux of our construction is in the
design of the second player’s valuation function, and its
interplay with the valuation function of the first player.

Definition 4.1. For every positive integer k ∈ N>0 the
hard instance Ik consists of n = 2 bidders and m =
2k − 1 items and the following subadditive valuations:

1. First bidder: Number the items from 1 to m and let
i be a k-bit binary vector representing the integer
i. Interpret i as a k-dimensional vector over F2.
Write i · j as the dot product of the two vectors. Let
Si = {j | j ·i = 1}. Note that each such set contains
(m + 1)/2 items, and each item is contained in
(m+ 1)/2 such sets. For each set of items T ⊆M
let v1(T ) be the minimum number of sets Si required
to cover the items in T .

2. Second bidder: Set ρ = 4 k
m and d = k − log k. Let

D denote the set of all d-dimensional subspaces of
Fk2 excluding the zero vector. Then for any set of
items T let

v2(T ) = ρ ·max
D∈D

wD(T ) , where

wD(T ) =


|T ∩D| for |T ∩D| < |D|

2
|D|
2 for |D|2 < |T ∩D| < |D|
|D| else

.

Note that, in the instances just described, the first
player has a valuation of v1(M) ≥ k = log2(m + 1)
for the grand bundle, while the second player has a

maximum valuation of maxT v2(T ) = ρ · |D| = ρ · (2d −
1) ≤ ρ · 2d = 4 for any set of items.

To prove the theorem we first use linear algebra to
derive a symmetry property of D, which together with
weak no-overbidding of the first player on the grand
bundle implies the existence of a subset of items D ∈ D
with low prices (Lemma 4.1). Intuitively, this is because
the sets of items that the second player is interested
in are rather small (of size about m/ logm), and there
are sufficiently many of these sets. We then show that
every demand set of the second player under these prices
includes some set of items D′ ∈ D (Lemma 4.2). In the
final step (Lemma 4.3) we show that if the second player
buys any such set D′, then the first player’s valuation
for the remaining items M \ D′ and hence the overall
social welfare is at most O(log logm).

Lemma 4.1. Let k ∈ N>0. Consider the hard instance
Ik. For every vector of bids b such that the first player
does not overbid on the grand bundle there is a d-
dimensional subspace D ∈ D such that

∑
j∈D b1,j <

ρ · |D|2 .

Proof. Since the first player does not overbid on the
grand bundle we have

∑
j∈M b1,j ≤ v1(M) = k, so the

average bids are bounded by 1
m

∑
j∈M b1,j ≤ k

m .
Observe that the number of d-dimensional sub-

spaces of Fk2 that contain a vector 0 6= x ∈ Fk2 is given
as
(
k−1
d−1
)
2
, where

( ·
·
)
q

refers to the q-binomial coeffi-

cient (see, e.g., [22]). So, in particular, this number is
independent of x. Therefore, instead of taking the av-
erage over all items M , we can take the average over all
sets D ∈ D and take the average within such a set, i.e.,
1
m

∑
j∈M b1,j = 1

|D|
∑
D∈D

1
|D|
∑
j∈D b1,j .

In combination, there has to be a D such that
1
|D|
∑
j∈D b1,j ≤

1
m

∑
j∈M b1,j ≤ k

m . Since k
m < ρ

2 = 2 k
m

the claim follows.

Lemma 4.2. Let k ∈ N>0. Consider the hard instance
Ik. If the prices p as seen by the second player are
such that

∑
j∈D pj < ρ · |D|/2 for some D ∈ D, then

each demand set of the second player under these prices
includes some D′ ∈ D.

Proof. By our assumption on the sum of the prices of
the items in D, u(D) = v2(D)−

∑
j∈D pj = ρ ·wD(D)−∑

j∈D pj > ρ · |D|2 . Now, let S ⊆ M be a demand
set under v2. If |S ∩ D′| < |D′| for all D′ ∈ D,
then we have u(S) = v2(S) −

∑
j∈S pj ≤ v2(S) =

ρ · maxD′∈D wD′(S) ≤ ρ · maxD′∈D
|D′|
2 < u(D). This

means, S can only be a demand set if |S ∩ D′| = |D′|
for some D′ ∈ D.
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Lemma 4.3. Let k ∈ N>0. Consider the hard instance
Ik. Then for D′ ∈ D we have v1(M \D′) ≤ k − d.

Proof. To show the bound on v1, we use that D′ ∪ {0}
is a subspace of Fk2 of dimension d. That is, any basis
x1, . . . , xd of D′ ∪ {0} can be extended by xd+1, . . . , xk
to a basis of Fk2 . Let X = (x1, . . . , xk). This way,
X−1 is the matrix that expresses j ∈ Fk2 as a linear
combination of x1, . . . , xk. As x1, . . . , xd is a basis of
D′∪{0}, we know that for every j 6∈ D′∪{0} the vector
X−1j cannot be zero in all components d + 1, . . . , k.
This implies that the set M \D′ can be covered by sets
Si for i being the rows d + 1, . . . , k of X−1. Therefore
v1(M \D′) ≤ k − d.

Proof of Theorem 4.1. Any best-response dynamics
has to ask every bidder infinitely often. We claim that
the social welfare is O(log logm) right after each update
of the second player. Since the optimal social welfare is
Ω(logm) this shows the claim.

Let bt be a bid vector after the second player has
made a move. Using Lemma 4.1, we know that there is

a set D ∈ D with
∑
j∈D b

t−1
1,j < ρ · |D|2 . By Lemma 4.2,

the second player then buys a superset of some D′ ∈ D.
Therefore, right after the second player has updated his
bid the first player is allocated a subset of the items
M \ D′. Lemma 4.3 implies that the social welfare
for this allocation is no higher than k − d + ρ2d =
O(log logm).

5 Beyond Round-Robin Activation

Our positive results make use of the fact that bidders
are activated to update their bid in round-robin fashion.
That is, between two activations of a bidder, each other
bidder is activated exactly once. In this section, we
investigate alternative activation protocols. Our first
theorem shows that our positive results extend to the
case where at each step a random player gets to update
his bid.

Theorem 5.1. Consider a β-safe sequence of bids that
is generated by choosing at each time step a player
uniformly at random and letting this player update his
bid to an α-aggressive bid. Then for any time step
T ≥ n, E

[
SW (bT )

]
≥ α

2(1+4α)β ·OPT (v) .

Our second theorem shows that if an adversary
chooses the order in which the players get to update
their bids, then it may take exponentially long before
states of high welfare are reached.

Theorem 5.2. For all n and k, there is an instance of
n agents and (n − 1) · (k + 1) items and an activation
sequence, such that until each agent has been activated

Ω(2k) times the welfare has never exceeded a 1
n−1

fraction of the optimum.

We defer the proofs of both these results to the full
version, where we also present some additional results
on adversarial activation.

6 Concluding Remarks and Outlook

In our analysis we focused on fractionally subadditive
and subadditive valuations, which do not exhibit com-
plements. A natural question is whether similar results
can be obtained for classes of valuations that exhibit
complements. In the full version, we discuss an exam-
ple with MPH-k valuations that highlights the difficul-
ties that arise. Another interesting follow-up question
is whether there is a general result that translates a
Price of Anarchy guarantee for a given mechanism that
is provable via smoothness into a result that shows that
best-response sequences reach states of good social wel-
fare quickly. The example with MPH-k valuations al-
ready limits the potential scope of such a result. It
would still be interesting to identify natural sufficient
conditions. One such condition could be that the mech-
anism admits some kind of potential function (as the
procedure for XOS valuations), but our results already
show that this condition is certainly not necessary.
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A Non-Existence of Weak No-Overbidding
Pure Nash Equilibria

We can also leverage our novel insights regarding hard
instances (Definition 4.1) for subadditive combinatorial
auctions with item bidding to show that there is no
pure Nash equilibrium in which players use weakly no-
overbidding strategies.

Theorem A.1. Let k ∈ N>0. Consider the hard
instance Ik with n = 2 players and m = 2k − 1
items. There is no pure Nash equilibrium in weakly no-
overbidding strategies if k ≥ 8. This remains true if we
define a bid profile to be at equilibrium if no player has a
beneficial deviation to a weakly no-overbidding strategy.

Proof. Assume that b is a weakly no-overbidding pure
Nash equilibrium. Suppose the second player wins the
set of items W ⊆M in b, then the first player wins the
set of items M \W . By weak no-overbidding, we have∑
j∈M\W

b1,j ≤ v1(M \W ) and
∑
j∈W

b2,j ≤ v2(W ) .

The first player does not win the items in W ,
which means that b1,j ≤ b2,j for all items j ∈ W .
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Consequently, we have∑
j∈M

b1,j ≤ v1(M \W ) + v2(W )

≤ v1(M) + v2(M)

= k + ρ · 2d

= k + 4 · k
m
· 2k−log k

= k + 4 .

By the same argument as in Lemma 4.1, each item
j ∈ M is included in the same number of sets D ∈ D.
Therefore,

1

|D|
∑
D∈D

1

|D|
∑
j∈D

b1,j =
1

m

∑
j∈M

b1,j ≤
k + 4

m
.

This implies that there is a set D ∈ D such that

1

|D|
∑
j∈D

b1,j ≤
k + 4

m
.

Since k ≥ 8 by assumption, m > 2k + 8, and therefore∑
j∈D

b1,j ≤
k + 4

m
· |D| < |D|

2
.

By Lemma 4.2 and because the second player plays a
best response, we have W ⊇ D′ for some D′ ∈ D.

In the remainder, we will show that this implies that
the first player has a beneficial weakly no-overbidding
deviation b′1.

Let b′1,j = b2,j + 1
m for j ∈ W and b′1,j = b1,j for

j ∈M \W . Observe that in (b′1, b2) the first player wins
all items M . This bid fulfills the weak no-overbidding
property because∑

j∈M
b′1,j =

∑
j∈W

(
b2,j +

1

m

)
+

∑
j∈M\W

b1,j

≤ v2(W ) + 1 + v1(M \W )

≤ v2(D′) + 1 + v1(M \D′)
≤ ρ2d + 1 + k − d
= 4 + 1 + log k

≤ k
= v1(M) ,

where the first inequality uses that b is weakly no-
overbidding, the second inequality exploits the defini-
tion of v2, the third inequality holds by Lemma 4.3,
and the final inequality holds because we have assumed
k ≥ 8.

The deviation by the first player is beneficial be-
cause

u1(b′1, b2) = v1(M)−
∑
j∈M

b2,j

= k − d−
∑

j∈M\W

b2,j + d−
∑
j∈W

b2,j

≥ u1(b) + d− v2(W )

≥ u1(b) + d− 4 > u1(b) ,

where the first inequality uses Lemma 4.3, the second
inequality uses that v2(W ) ≤ v2(D′) = 4, and the final
inequality follows from the definition of d = k − log k
and the assumption that k ≥ 8 and so d > 4.

B Missing Proofs from Section 2

B.1 Sufficiency of Strong No-Overbidding We
show that in order to have a 1-safe dynamic it suffices
that initial bids and the subsequent updates fulfill no-
overbidding in the strong sense. A bid vector b is
strongly no-overbidding if

∑
j∈S bi,j ≤ vi(S) for every

bidder i and every set of items S. A best response bi
by bidder i against bids b−i is strongly no overbidding
if
∑
j∈S bi,j ≤ vi(S).

Lemma B.1. If the initial bid vector b0 is strongly no
overbidding and at each time step t ≥ 1 some bidder
i gets to update his bid to a best response, which is
strongly no overbidding, then the resulting best-response
dynamic is 1-safe.

Proof. Since the initial bid vector and each update
satisfy strong no-overbidding we have

∑
j∈S b

t
i,j ≤ vi(S)

for all bidders i, time steps t ≥ 0, and sets of items
S. Subtracting

∑
j∈S maxk 6=i b

t
k,j from both sides shows

the claim.

B.2 Proof of Proposition 2.1 Consider an arbi-
trary bidder i and his update to bid bti. The bid bti satis-
fies strong no-overbidding by definition. Hence Lemma
B.1 shows that the bid sequence is 1-safe. It remains to
show that bti is a 1-aggressive best response.

We first show that the bid bti is a best response to
bt−i. Let Si denote the set of items that bidder i wins
with bid bti against bids bt−i and let D be the demand
set on the basis of which bti is defined. Then,

ui(b
t) = vi(Si)−

∑
j∈Si

max
k 6=i

btk,j

≥
∑
j∈Si

(bti,j −max
k 6=i

btk,j)

≥
∑
j∈D

(bti,j −max
k 6=i

btk,j)
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= vi(D)−
∑
j∈D

max
k 6=i

btk,j

≥ max
S

vi(S)−
∑
j∈S

max
k 6=i

btk,j

 ,

where the first inequality uses that vi is XOS, the
second uses that maxk 6=i b

t
k,j = bti,j for j ∈ D \ Si and

maxk 6=i b
t
k,j ≤ bti,j for j ∈ Si \D, the following equality

exploits the definition of bti, and the final inequality uses
that D is a demand set.

To show that bti is 1-aggressive it suffices to show
that bidder i’s declared and actual utility at time
step t coincide. Since the right-hand side in the
preceding chain of inequalities is at least vi(Si) −∑
j∈Si

maxk 6=i b
t
k,j all inequalities in the chain of in-

equalities must be equalities. This implies that

ui(b
t) = vi(Si)−

∑
j∈Si

max
k 6=i

btk,j

=
∑
j∈Si

(bti,j −max
k 6=i

btk,j)

= uDi (bt) ,

as claimed.

B.3 Proof of Proposition 2.2 Consider an arbi-
trary bidder i and his update to bid bti. We first argue
that bti is a best response. We claim that ũi(S, b

t
−i) > 0

for all S ⊆ D unless D = ∅. To see this assume
by contradiction that there exist a S ⊆ D such that
ũi(T, b

t
−i) ≤ 0. Then, by subadditivity of vi,

ũi(D, b−i) ≤

vi(D \ T )−
∑

j∈D\T

max
k 6=i

bk,j

+

vi(T )−
∑
j∈S

max
k 6=i

bk,j


≤ ũi(D \ T, bt−i) ,

which contradicts the definition of D. Because of this
the additive approximation ai has ai,j > 0 for all j ∈ D.
It follows that bti,j > maxk 6=i b

t
k,j for all j ∈ D, and so

bidder i wins all items j ∈ D, and for the items j 6∈ D
that he wins maxk 6=i b

t
k,j = 0.

To see that bti is 1/ lnm-aggressive observe the
following. Let Si denote the set of items that bidder
i wins with bid bti. Then, considering the bid bti defined

on the basis of demand set D, we have

uDi (bt) =
∑
j∈Si

(
bti,j −max

k 6=i
btk,j

)

≥
∑
j∈D

(
bti,j −max

k 6=i
btk,j

)
=
∑
j∈D

ai,j ≥
1

lnm
· ũi(D, bt−i) ,

where the first inequality uses that bti,j = maxk 6=i b
t
k,j

for j ∈ D \Si and bti,j ≥ maxk 6=i b
t
k,j for j ∈ Si \D, and

the second inequality uses property (a) of bid bti.
That the bid sequence is 1-safe follows from

the starting condition and Lemma B.1 by observing
that bidder i’s update satisfies strong no-overbidding.
Namely, for every S ⊆ D,∑

j∈S
bti,j =

∑
j∈S

(ai,j + max
k 6=i

btk,j)

≤ ũi(S, bt−i) +
∑
j∈S

max
k 6=i

btk,j

= vi(S) ,

where the inequality follows from property (b) of bid bti.

B.4 Proof of Proposition 2.3 The argument that
the bid bti chosen by bidder i is a best response and 1-
aggressive is identical to the respective argument in the
proof of Proposition 2.2, except that this time we collect
a factor of 1 instead of 1/ lnm when we apply property
(a) of bid bti.

To see that the bid sequence is lnm-safe, consider
a point in time t′ ≥ t after bidder i’s update. In the
vector bt′ , bidder i gets a set S ⊆ M that is possibly
different from D. Note that for j ∈ S\D, bt

′

i,j = 0 by our

definition. Furthermore, for j ∈ S ∩ D, maxk 6=i b
t′

k,j ≤
maxk 6=i b

t
k,j because bid updates are only non-zero if an

item changes its owner. Therefore, because bidder i
wins item j, all new bids have to be zero.

In combination, we have

uDi (bt
′
)

=
∑

j∈S∩D

(
ãi,j + max

k 6=i
btk,j −max

k 6=i
bt
′

k,j

)
≤ lnm ·

(
ũi(S ∩D, bt−i) +

∑
j∈S∩D

(
max
k 6=i

btk,j −max
k 6=i

bt
′

k,j

))
= lnm · ui(bt

′
) ,

because the sum of ãi,j terms is bounded by lnm·ũi(S∩
D, bt−i) by definition and the sum of the remaining terms
is non-negative.
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C Tightness of Point-wise Guarantee for XOS
Valuations

The following proposition shows that the point-wise wel-
fare guarantee of 1/3 for the round-robin best-response
dynamics for fractionally subadditive valuations de-
scribed in Section 2 is tight, even if the valuations are
unit demand.

Proposition C.1. Consider the dynamics described in
Section 2.1 There is an input with n = 3 players, m = 3
items, and unit-demand valuations and an initial bid
vector such that when started from this bid vector the
social welfare obtained by the dynamics after a single
round of bid updates is 1/3 ·OPT (v).

Proof. The valuations of all three bidders are unit
demand, i.e., for all players i and sets of items S, vi(S) =
maxj∈S vi,j . The item valuations vi,j for 1 ≤ i, j ≤ 3
are given by the following table:

item 1 item 2 item 3
player 1 1 0 0
player 2 1 + ε 1 + 2ε 1 + 3ε
player 3 0 0 1

Suppose that the XOS representation of these valu-
ations is that each player has an additive valuation ai,0

that is all zero and then one for each item j, ai,j , such
that ai,j(k) = vi,j for k = j and ai,j(k) = 0 otherwise.

Let b0 be the bid profile in which Player 2 bids
1 + ε on item 1, all other bids are 0. That is, b0 =
(a1,0, a2,1, a3,0). Suppose that the order of updates is
first player 1 gets to update his bid, then player 2, and
then player 3.

Player 1 is already playing a best response to b0−1,
so b1 = b0. Now, to get b2, player 2 updates his bids to
a best-response to b1−2, which is a2,3. That is, he bids
zero on the first two items and 1 + 3ε on the third. So
b2 = (a1,0, a2,3, a3,0). With these bids, however, bidding
0 on all items is a best-response of player 3, therefore
b3 = b2.

Observe that SW (b3) = DW (b3) = 1 + 3ε, whereas
the optimal social welfare is 3 + 2ε. The claim follows
by letting ε tend to zero.
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