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Estimating Conditional Means with

Heavy Tails

Liang Peng
Department of Risk Management and Insurance

Georgia State University
and Qiwei Yao

Department of Statistics, London School of Economics

Abstract

When a conditional distribution has an infinite variance, commonly
employed kernel smoothing methods such as local polynomial estima-
tors for the conditional mean admit non-normal limiting distributions
(Hall, Peng and Yao 2002). This complicates the related inference
as the conventional tests and confidence intervals based on asymptotic
normality are no longer applicable, and the standard bootstrap method
often fails. By utilizing the middle part of data nonparametrically and
the tail parts parametrically based on extreme value theory, this paper
proposes a new estimation method for conditional means, resulting
in asymptotically normal estimators even when the conditional dis-
tribution has infinite variance. Consequently the standard bootstrap
method could be employed to construct, for example, confidence inter-
vals regardless of the tail heaviness. The same idea can be applied to
estimating the difference between a conditional mean and a conditional
median, which is a useful measure in data exploratory analysis.

Key words: Asymptotic normality; conditional mean; extreme value
theory; heavy tail.

1 Introduction

Mean and median are two important location parameters in data exploratory
analysis and the difference between them is indicative for the skewness of
the underlying distribution. When the underlying distribution has a finite
variance, the sample mean has a normal limit. However, when the underly-
ing distribution has heavy tails with a finite mean but an infinite variance,
the sample mean admits a stable law limit. Therefore, in order to construct
a valid confidence interval for the mean, one has to know if the variance of
the underlying distribution is finite or not. When the distribution is heavy
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tailed with infinite variance, the standard bootstrap method does not work,
and a subsample bootstrap method should be employed to construct a valid
confidence interval for the mean; see Hall and Jing (1998).

A different and unified approach has been proposed by Peng (2001)
which constructs a mean estimator by using the middle part of data non-
parametrically and the tail parts parametrically based on extreme value
theory. The resulted estimator for the mean is alway asymptotically nor-
mal regardless of the tail heaviness of the underlying distribution. Hence
one could simply employ the standard bootstrap method or empirical likeli-
hood method to construct the confidence intervals for the mean even when
the underlying distribution has an infinite variance; see Peng (2004). This
idea has been taken further for estimating expected shortfall in risk man-
agement by Necir and Meraghni (2009). This paper aims to further extend
this idea for estimating a conditional mean and the difference between a
conditional mean and a conditional median, which are useful quantities in
data exploratory analysis.

Suppose that {(Xi, Yi)T } is a sequence of independent and identically
distributed random vectors and the conditional distribution function F (y|x) =
P (Yi ≤ y|Xi = x) satisfies

{
limt→∞

1−F (ty|x)
1−F (t|x) = y−α(x), y > 0

limt→∞
1−F (t|x)

1−F (t|x)+F (−t|x) = p(x) ∈ [0, 1],
(1)

where m(x) is an unknown smooth function and α(x) > 1. Like mean
and median, the conditional mean E(Yi|Xi = x) is of importance in many
applications, which includes the random design regression model as a special
case:

Yi = m(Xi) + εi, (2)

where ε′is are independent and identically distributed random variables with
zero mean and satisfy

{
limt→∞

P (εi>ty)
P (εi>t)

= y−β, y > 0

limt→∞
P (εi>t)
P (|εi|>t) = p ∈ [0, 1],

(3)

for some β > 1.
Under model (2) and condition (3), model (1) holds with α(x) ≡ β.

Furthermore, the limiting distribution of a local smoothing estimator for
m(x) is normal or non-normal, respectively, when β > 2 or β < 2. This
makes interval estimation nontrivial. However, when εi has a median zero,
i.e., m(x) is a conditional median, Hall, Peng and Yao (2002) showed that
the least absolute deviations estimator has a normal limit for any β > 1.
Consequently the standard bootstrap method can be employed to construct
a confidence interval for the conditional median even when β is less than 2.
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In this paper, we seek a new estimator for conditional mean E(Yi|Xi =
x), and the difference between this conditional mean and the conditional
median of Yi given Xi = x under the general setting (1). The new estimator
is always asymptotically normal provided α(x) > 1. Therefore the standard
bootstrap method can be employed to construct confidence intervals for the
conditional mean in a straightforward manner.

We organize the paper as follows. Section 2 presents the new method
and the asymptotic results. A simulation study is given in Section 3. All
proofs are put in Section 4.

2 Main Results

First we propose a new estimator for the conditional mean E(Yi|Xi = x),
which admits a normal limiting distribution regardless of Var(Yi|Xi = x)
being finite or not.

Suppose that our observations {(Xi, Yi)T }ni=1 are independent and iden-
tically distributed random vectors with distribution function F (x, y) and the
conditional distribution F (y|x) of Yi given Xi = x satisfies (1). For a given
h = h(n) > 0, define N =

∑n
i=1 I(|Xi − x| ≤ h), let {(X̄j , Ȳj)}Nj=1 denote

those data pairs {(Xi, Yi)}ni=1 such that |Xi − x| ≤ h, and let ȲN,1 ≤ · · · ≤
ȲN,N denote the order statistics of Ȳ1, · · · , ȲN . Obviously, when h→ 0 and
hn → ∞, we have N/(nh)

p→ f1(x), where f1 denotes the density of Xi.
Therefore we write N0 = nh and say N0 →∞ instead of N

p→∞.
Similar to Peng (2001), we write

E(Yi|Xi = x) =
∫∞
−∞ y dF (y|x) =

∫ 1
0 F

−(y|x) dy
=

∫ k/N
0 F−(y|x) dy +

∫ 1−k/N
k/N F−(y|x) dy +

∫ 1
1−k/N F

−(y|x) dy
:= m1(x) +m2(x) +m3(x),

(4)

where F−(y|x) denotes the generalized inverse of the conditional distribu-
tion F (y|x), and k = k(N0) → ∞ and k/N0 → 0 as N0 → ∞. Based on
(4) we propose to estimate the first and third terms by a parametric ap-
proximation for F (y|x) via extreme value theory and to estimate the second
term nonparametrically. More specifically, when F−(y|x) ∼ c1y

−1/α1 and
F−(1 − y|x) ∼ c2y

−1/α2 for some constants c1 and c2 as y → 0, the tail
indices α1 and α2 can be estimated by the well-known Hill estimator (Hill
(1975))

α̂1 = {1
k

k∑

i=1

log+(−ȲN,i)− log+(−ȲN,k)}−1

and

α̂2 = {1
k

k∑

i=1

log+(ȲN,N−i+1)− log+(ȲN,N−k+1)}−1

3



with log+ x = log(x∨1). In our simulation, we set α̂1 = 0 when all ȲN,i > −1
for 1 ≤ i ≤ k, and α̂2 = 0 when all ȲN,i < 1 for N − k + 1 ≤ i ≤ N . Note
that as N0 →∞

m1(x)
k
NF

−(k/N |x)
p→
∫ 1

0
y−1/α(x) dx =

α(x)
α(x)− 1

and
m3(x)

k
NF

−(1− k/N |x)
p→
∫ 1

0
y−1/α(x) dx =

α(x)
α(x)− 1

.

Therefore the three terms in (4) can be estimated separately by

m̂1(x) =
k

N
ȲN,k

α̂1

α̂1 − 1
, m̂2(x) =

1
N

N−k∑

i=k+1

ȲN,i, m̂3(x) =
k

N
ȲN,N−k+1

α̂2

α̂2 − 1
,

which leads to our new estimator for the conditional meanm(x) = E(Yi|Xi =
x) as m̂(x) = m̂1(x)+m̂2(x)+m̂3(x). Note that one could also use other tail
index estimators instead of the Hill’s estimator such that the one in Dierckx,
Goegebeur and Guillou (2014). Moreover one may employ a different k in
α̂1 and α̂2.

Like the study of extreme value statistics, in order to derive the asymp-
totic limits for m̂1(x) and m̂3(x), one needs to specify an approximate rate
in (1), which is generally called a second order condition in extreme value
theory; see De Haan and Ferreira (2006). Here we simply assume that there
exist positive smoothing functions d(x), c1(x), c2(x), α(x) > 1, β(x) such that
for y large enough

|1−F (y|x)− c1(x)y−α(x)|+ |F (−y|x)− c2(x)y−α(x)| ≤ d(x)y−α(x)−β(x) (5)

uniformly in |x − x0| ≤ h. Note that β(x) is slightly smaller than the so-
called second order parameter in extreme value theory, which can be seen
from the inequality for a second order regular variation in De Haan and
Ferreira (2006). Furthermore we assume the following regularity conditions:

A1) the marginal density f1 of Xi is positive and continuous at x0;

A2) functions c1(x), c2(x) and α(x) have a continuous second order deriva-
tive at x0, and functions d(x) and β(x) have a continuous first order
derivative at x0;

A3) the conditional mean functionm(x) =
∫ 0
−∞ F (y|x) dy+

∫∞
0 (1−F (y|x)) dy

has a continuous second order derivative at x0.
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To show that the new estimator always has a normal limit, we rely on the
following approximations.

Let H(y) denote the distribution function Ȳi with x = x0, i.e., the
conditional distribution of Yi given |Xi − x0| ≤ h. Put Ui = H(Ȳi) for
i = 1, · · · , N , and so U1, · · · , UN are i.i.d. random variables with uniform
distribution on (0, 1). Let UN,1 ≤ · · · ≤ UN,N denote the order statistics of
U1, · · · , UN . Define GN (v) = 1

N

∑N
i=1 1(Ui ≤ v), αN (v) =

√
N{GN (v)− v},

QN (0) = UN,1, QN (s) = UN,i if i−1
N < s ≤ i

N , and βN (s) =
√
N{QN (s)−s}.

Then it follows from Csörgő, Csörgő, Horváth and Mason (1986) that there
exists a sequence of Brownian bridges {BN (u)} such that for any ν ∈ [0, 1/4)
and λ > 0

{
supUN,1≤u≤NN,N

uν |αN (u)−BN (u)|
u1/2−ν(1−u)1/2−ν

= Op(1)

supλ/N≤s≤1−λ/N
Nν |βN (s)+BN (s)|
s1/2−ν(1−s)1/2−ν = Op(1).

(6)

Theorem 1. Suppose (5) and Conditions A1)–A3) hold. Put N0 = nh,
α0 = α(x0), β0 = β(x0), and further assume that as n→∞





k →∞,
√
kh2(logN0)2 = o(1),

k = o(N
2β0

α0+2β0
0 ),

√
N0

σ(k/N0)h
2 = o(1),

(7)

where

σ2(s) =
∫ 1−s

s

∫ 1−s

s
(u ∧ v − uv) dH−(u)dH−(v).

Then as n→∞,
√
N

σ(k/N){m̂(x0)−m(x0)}
= − ∆2α0

(α0−1)2

∫ 1
0

√
N
k (BN ( k

N
s)

s −BN ( kN )) ds− ∆2
α0−1

√
N
k Bn( kN )

− ∆1α0
(α0−1)2

∫ 1
0

√
N
k (BN (1− k

N
s)

s −BN (1− k
N )) ds− ∆1

α0−1

√
N
k BN (1− k

N )

−
∫ 1−k/N
k/N

BN (s) dH−(s)

σ(k/N) + op(1)
d→ N(0, 1 + { (2−α0)(2α2

0−2α0+1)
2(α0−1)4

+ 2−α0
α0−1}I(α0 < 2)),

where m(x0) = E(Yi|Xi = x0),

∆1 = { 2− α0

2(c2/α0

1 (x0) + c
2/α0

2 (x0))
}1/2c1/α0

1 (x0)I(α0 < 2)

and
∆2 = { 2− α0

2(c2/α0

1 (x0) + c
2/α0

2 (x0))
}1/2c1/α0

2 (x0)I(α0 < 2).

5



Remark 1. If α(x0) > 2, then as N0 →∞

σ2(k/N)
p→ E(Y 2

i |Xi = x0)− (E(Yi|Xi = x0))2 <∞.

In this case, we require
√
nhh2 → 0, which gives the same rate of convergence

as the local smoothing estimator of a conditional mean without asymptotic
bias. It also follows from the proof of the above theorem that the above H(y)
can be replaced by F (y|x0).

Remark 2. It follows from the above theorem that a naive bootstrap method
can be employed to construct a confidence interval for the conditional mean
regardless of tail heaviness. We refer to Hall (1992) for an overview on
bootstrap method. A review paper on applying bootstrap methods to extreme
value statistics is Qi (2008).

Remark 3. When α0 > 2, the terms m1(x) and m3(x) in (4) become a
smaller order than the term m2(x). Therefore the asymptotic limit of the
new estimator is independent of the tail index α0.

Next we consider estimating the difference between conditional mean
and conditional median, i.e., θ(x) = E(Yi|Xi = x) − F−(1/2|x). Based
on the above estimator for m(x), the proposed estimator for θ is θ̂(x) =
m̂(x)− ȲN,[N/2], and its asymptotic limit is given in the theorem below.

Theorem 2. Under conditions of Theorem 1 and that the conditional den-
sity function g(y|x) = dF (y|x)

dy is positive and continuous at y = F−(1
2 |x0)

and x = x0, we have, as n→∞,
√
N

σ(k/N){θ̂(x0)− θ(x0)}
= − ∆2α0

(α0−1)2

∫ 1
0
N
k (BN ( k

N
s)

s −BN ( kN )) ds− ∆2
α0−1

√
N
k Bn( kN )

− ∆1α0
(α0−1)2

∫ 1
0

√
N
k (BN (1− k

N
s)

s −BN (1− k
N )) ds− ∆1

α0−1

√
N
k BN (1− k

N )

−
∫ 1−k/N
k/N

BN (s) dH−(s)

σ(k/N) − BN (1/2)

σ(k/N)g(F−( 1
2
|x0)|x0)

+ op(1)
d→ N(0, σ2

θ),

where σ2
θ equals to the variance in Theorem 1 when α0 ≤ 2, and is

1 + 1

4g2(F−(1/2|x0)|x0)
∫ 1
0

∫ 1
0 (u∧v−uv) dF−(u|x0)dF−(v|x0)

+
∫ 1/2
0 u dF−(u|x0)+

∫ 1
1/2(1−u) dF−(u|x0)

g(F−(1/2|x0)|x0)
∫ 1
0

∫ 1
0 (u∧v−uv) dF−(u|x0)dF−(v|x0)

when α0 > 2.
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3 Simulation

We conduct a small scale simulation to illustrate the proposed method. To
this end, we let X ′is in (2) be independent U(−1, 1) random variables, and
consider

m(x) = x+ 4 exp(−4x2).

Furthermore in (2) we let εi be independent scaled t-distribution with d
degrees of freedom for d = 1.5 and 3. Then α(x) = d in (1). We re-scale εi
such that its standard deviation is 0.5. We set sample size n = 1000 or 3000,
and choose k = 5, 10, 20, 30, 40 and 50. We use bandwidth h = 0.2 when
n = 1000, and h = 0.1 when n = 3000. This effectively sets the sample sizes
200 and 300, respectively, in the local estimation for m(x) for each given x.

We estimate m(·) on a regular grid of the 19 points between -0.9 and
0.9, and calculate the root mean square error:

rMSE =
{ 1

19

9∑

j=−9

{m̂(0.1j)−m(0.1j)}2
}1/2

. (8)

For each setting, we replicate the exercise 500 times. To compare the perfor-
mance with conventional nonparametric regression, we also calculate three
nearest neighbor estimates, namely estimate m(x) by the mean of Yi’s corre-
sponding to those Xi’s within, respectively, h-, h/2- and h/4-distance from
x. Table 1 reports the mean and the standard deviation of rMSE for dif-
ferent settings over 500 replications. As we expected, the estimation error
decreases when sample size n increases from 1000 to 3000, and the error
also decreases when the tail index, reflected by the degrees of freedom (df),
increases. With t1.5-distributed errors, k = 30 gives a smallest standard de-
viation, and both k = 20 and k = 30 perform well. But with t3-distributed
errors, k = 5 leads to the most accurate estimates, which is in line with the
theorem that tail parts do not play a role asymptotically in case of finite
variance and so a smaller k is preferred. For the model with t1.5-distributed
errors, the nearest neighbor estimator is no longer asymptotically normal.
Indeed our newly proposed estimator with either k = 20 or k = 30 performs
better than the nearest neighbor estimator. However for the model with t3-
distributed errors, the nearest neighbor estimator is asymptotically normal
and is indeed performs better than the new method.
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(n, h, df) New Estimator NN Estimator
k = 5 k = 10 k = 20 k = 30 k = 40 k = 50 h h/2 h/4

(1000, 0.2, 1.5) Mean 3.674 0.381 0.188 0.200 0.236 0.279 0.218 0.250 0.340
STD 47.66 1.836 0.291 0.053 0.071 0.090 0.447 0.621 0.701

(3000, 0.1, 1.5) Mean 1.546 4.333 0.162 0.138 0.155 0.173 0.201 0.280 0.354
STD 12.92 74.57 0.283 0.022 0.025 0.033 0.345 0.482 0.769

(1000, 0.2, 3) Mean 0.134 0.154 0.208 0.274 0.348 0.428 0.122 0.080 0.103
STD 0.021 0.023 0.033 0.045 0.059 0.072 0.021 0.018 0.024

(3000, 0.1, 3) Mean 0.059 0.067 0.105 0.151 0.202 0.255 0.050 0.058 0.079
STD 0.040 0.011 0.016 0.022 0.028 0.036 0.010 0.011 0.015

Table 1: Mean and standard deviation (STD) of rMSE defined in (8) for
the proposed new estimator and the nearest neighbor (NN) estimator in
simulation with 500 replications.

4 Proofs

Proof of Theorem 1. Write

m̂1(x0)−
∫ k/N

0 H−(v) dv
= k

NH
−(UN,k)( α̂1

α̂1−1 − α0
α0−1)

+ α0
α0−1

(
k
NH

−(UN,k)− k
NH

−(k/N)
)

+
(
k
NH

−(k/N) α0
α0−1 −

∫ k/N
0 H−(v) dv

)

= k
NH

−(UN,k) α̂1α0
(α̂1−1)(α0−1)

1
k

∑k
i=1

{
log H−(UN,i)

H−(UN,k)
− log(UN,i/UN,k)−1/α0

}

+ k
NH

−(UN,k) α̂1α0
(α̂1−1)(α0−1)

{
1
k

∑k
i=1 log(UN,i/UN,k)−1/α0 − 1/α0

}

+ k
NH

−(k/N) α0
α0−1

{
H−(UN,k)

H−(k/N)
− (Nk UN,k)

−1/α0

}

+ k
NH

−(k/N) α0
α0−1

{
(Nk UN,k)

−1/α0 − 1
}

+
{
k
NH

−(k/N) α0
α0−1 −

∫ k/N
0 H−(v) dv

}

:= I1 + I2 + I3 + I4 + I5,

m̂3(x0)−
∫ 1

1−k/N H
−(v) dv

= k
NH

−(UN,N−k+1) α̂2α0
(α̂2−1)(α0−1)

1
k

∑k
i=1

{
log H−(UN,N−i+1)

H−(UN,N−k+1)
− log( 1−UN,N−i+1

1−UN,N−k+1
)−1/α0

}

+ k
NH

−(UN,N−k+1) α̂2α0
(α̂2−1)(α0−1)

{
1
k

∑k
i=1 log( 1−UN,N−i+1

1−UN,N−k+1
)−1/α0 − 1/α0

}

+ k
NH

−(1− k/N) α0
α0−1

{
H−(UN,N−k+1)

H−(1−k/N)
−
(
N
k (1− UN,N−k+1)

)−1/α0
}

+ k
NH

−(1− k/N) α0
α0−1

{(
N
k (1− UN,N−k+1)

)−1/α0 − 1
}

+
{
k
NH

−(1− k/N) α0
α0−1 −

∫ 1
1−k/N H

−(v) dv
}

:= III1 + III2 + III3 + III4 + III5
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and

m̂2(x0)−
∫ 1−k/N
k/N H−(v) dv

=
∫ k/N
UN,k

H−(v) dGN (v) +
∫ UN,N−k

1−k/N H−(v) dGN (v)
+H−(1− k/N){GN (1− k/N)− 1 + k/N} −H−(k/N){GN (k/N)− k/N}
−
∫ 1−k/N
k/N {GN (v)− v} dH−(v)

:= II1 + II2 + II3 + II4 + II5.

Using Conditions A1)–A2), (5) and the fact that |yδ3h − 1| ≤ Mh log y
uniformly in y ∈ [nδ1 , nδ2 ] for any given 0 < δ1 < δ2 < 1 and δ3 > 0, where
M > 0 only depends on δ1, δ2, δ3, since h log n→ 0, we have

|1−H(y)− c1(x0)y−α0 |
= |

∫ x0+h
x0−h {1−F (y|z)}f1(z) dz

P (|X1−x0|≤h) − c1(x0)y−α(x0)|

≤ |
∫ x0+h
x0−h {1−F (y|z)−c1(z)y−α(z)}f1(z) dz

P (|X1−x0|≤h) |

+|
∫ x0+h
x0−h {c1(z)y−α(z)−c1(x0)y−α0}f1(z) dz

P (|X1−x0|≤h) |
≤ M1y

−α0{y−β0 + h2(log y)2}

(9)

uniformly in y ∈ [nδ1 , nδ2 ] for any given 0 < δ1 < δ2 < 1, where M1 > 0 is
independent of y. Similarly

|H(−y)− c2(x0)y−α0 | ≤M2y
−α0{h2(log y)2 + y−β0} (10)

uniformly in y ∈ [nδ1 , nδ2 ] for any given 0 < δ1 < δ2 < 1, where M2 > 0 is
independent of y. Therefore

|H−(1− t)− c1/α0

1 (x0)t−1/α0 | ≤M3t
−1/α0{h2(log t)2 + tβ0/α0} (11)

and
|H−(t) + c

1/α0

2 (x0)t−1/α0 | ≤M4t
−1/α0{h2(log t)2 + tβ0/α0} (12)

uniformly in t ∈ [n−δ1 , n−δ2 ] for any given 0 < δ2 < δ1 < 1, where M3 > 0
and M4 > 0 are independent of t.

Note that

N

nh

p→ f1(x0), P (ȲN,1 ≥ −n−δ, ȲN,N ≤ nδ)→ 1 (13)

for δ ∈ (0, 1) large enough.
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Write

σ2(s) =
∫ 0
H−(s)

∫ 0
H−(s){H(u) ∧H(v)−H(u)H(v)} dudv

+
∫ H−(1−s)

0

∫ H−(1−s)
0 {H(u) ∧H(v)−H(u)H(v)} dudv

= 2
∫ 0
H−(s)

∫ 0
v H(v){1−H(u)} dudv

+2
∫ H−(1−s)

0

∫ v
0 H(u){1−H(v)} dudv

= −2
∫ 0
H−(s) vH(v) dv − {

∫ 0
H−(s)H(u) du}2

+2
∫ H−(1−s)

0 v{1−H(v)} dv − {
∫ H−(1−s)

0 (1−H(u)) du}2
= IV1(s) + IV2(s) + IV3(s) + IV4(s).

Then it follows from (11)–(13) that




IV1(k/N)

(k/N)1−2/α0

p→ 2c
2/α0
2 (x0)
2−α0

, IV2(k/N)

(k/N)1−2/α0

p→ 0,

IV3(k/N)

(k/N)1−2/α0

p→ 2c
2/α0
1 (x0)
2−α0

, IV4(k/N)

(k/N)1−2/α0

p→ 0,

when α0 < 2, and

σ2(k/N)
p→
{

σ2
0 <∞ if α0 > 2
∞ if α0 = 2,

where σ2
0 =

∫ 1
0

∫ 1
0 (u ∧ v − uv) dF−(u|x0)dF−(v|x0). Therefore,

(k/N)1−2/α0

σ2(k/N)
p→ 2− α0

2(c2/α0

1 (x0) + c
2/α0

2 (x0))
I(α0 < 2). (14)

Now using (6), (9)–(14) and (7), we can show that
√
N

σ(k/N)
{|I1|+ |I3|+ |I5|+ |III1|+ |III3|+ |III5|} = op(1),

√
N

σ(k/N)I2 = −∆2
α0

(α0−1)2

∫ 1
0

√
N
k {

BN ( k
N
s)

s −BN ( kN )} ds+ op(1),
√
N

σ(k/N)I4 = −∆2
1

α0−1

√
N
k BN ( kN ) + op(1),

√
N

σ(k/N)III2 = −∆1
α0

(α0−1)2

∫ 1
0

√
N
k {

BN (1− k
N
s)

s −BN (1− k
N )} ds+ op(1),

√
N

σ(k/N)III4 = −∆1
1

α0−1

√
N
k BN (1− k

N ) + op(1),
√
N

σ(k/N)II1 = −∆2

√
N
k BN ( kN ) + op(1),

√
N

σ(k/N)II2 = −∆1

√
N
k BN (1− k

N ) + op(1),
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√
N

σ(k/N)II3 = ∆1

√
N
k BN (1− k

N ) + op(1),
√
N

σ(k/N)II4 = ∆2

√
N
k BN ( kN ) + op(1),

√
N

σ(k/N)
II5 = −

∫ 1−k/N
k/N BN (s) dH−(v)

σ(k/N)
+ op(1),

which implies that
√
N

σ(k/N){m̂(x0)−
∫ 1

0 H
−(v) dv}

= − ∆2α0
(α0−1)2

∫ 1
0

√
N
k (BN ( k

N
s)

s −BN ( kN )) ds− ∆2
α0−1

√
N
k Bn( kN )

− ∆1α0
(α0−1)2

∫ 1
0

√
N
k (BN (1− k

N
s)

s −BN (1− k
N )) ds− ∆1

α0−1

√
N
k BN (1− k

N )

−
∫ 1−k/N
k/N

BN (s) dH−(s)

σ(k/N) + op(1)
d→ N(0, 1 + { (2−α0)(2α2

0−2α0+1)
2(α0−1)4

+ 2−α0
α0−1}I(α0 < 2))

(15)
by noting that

E{
√

N
k BN ( kN )

∫ 1−k/N
k/N

BN (s) dH−(s)

σ(k/N) |N}

=

√
N
k

∫ 1−k/N
k/N

k
N

(1−s) dH−(s)

σ(k/N)

=
√
k/N

σ(k/N){
∫ 0
H−(k/N)(1−H(u)) du+

∫ H−(1−k/N)
0 (1−H(u)) du}

p→ { 2−α0

2(c
2/α0
1 (x0)+c

2/α0
2 (x0))

}1/2c1/α0

2 (x0)I(α0 < 2)

and

E{
√

N
k BN (1− k

N )
∫ 1−k/N
k/N

BN (s) dH−(s)

σ(k/N) |N}

=

√
N
k

∫ 1−k/N
k/N

k
N
s dH−(s)

σ(k/N)

=
√
k/N

σ(k/N){
∫ 0
H−(k/N)H(u) du+

∫ H−(1−k/N)
0 H(u) du}

p→ { 2−α0

2(c
2/α0
1 (x0)+c

2/α0
2 (x0))

}1/2c1/α0

1 (x0)I(α0 < 2).

It follows from A3) that

∫ 1
0 H

−(v) dv −
∫ 1

0 F
−(v|x0) dv

=
∫ 0
−∞H(v) dv +

∫∞
0 (1−H(v)) dv −

∫ 0
−∞ F (v|x0) dv −

∫∞
0 (1− F (v|x0)) dv

=
∫ x0+h
x0−h f1(z){

∫ 0
−∞ F (y|z) dy+

∫∞
0 (1−F (y|z)) dy−

∫ 0
−∞ F (y|x0) dy−

∫∞
0 (1−F (y|x0)) dy}dz

P (|X1−x0|≤h)

= O(h2).
(16)

Hence the theorem follows from (15), (16) and (7).
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Proof of Theorem 2. The theorem easily follows from the expansions in the
proof of Theorem 1 and the fact that

√
N{ȲN,[N/2] −H−(

1
2

)} =
√
N(GN (1/2)− 1/2)
g(F−(1

2 |x0)|x0)
+ op(1).
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