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Abstract

In view of the economic importance of motor third party liability insurance

in developed countries the construction of optimal BMS has been given con-

siderable interest. However, a major drawback in the construction of optimal

BMS is that they fail to account for the variability on premium calculations

which are treated as point estimates. The present study addresses this issue.

Specifically, nonparametric mixtures of Poisson laws are used to construct

an optimal BMS with a finite number of classes. The mixing distribution is

estimated by nonparametric maximum likelihood (NPML). The main contri-

bution of this paper is the use of the NPML estimator for the construction of

confidence intervals for the premium rates derived by updating the posterior

mean claim frequency. Furthermore, we advance one step further by improv-

ing the performance of the confidence intervals based on a bootstrap proce-

dure where the estimated mixture is used for resampling. The construction
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of confidence intervals for the individual premiums based on the asymptotic

maximum likelihood theory is beneficial for the insurance company as it can

result in accurate and effective adjustments to the premium rating policies

from a practical point of view.

Keywords: Optimal BMS; Nonparametric maximum likelihood; Asymptotic

Normality; Wald type two-sided confidence intervals; Efron percentile boot-

strap confidence intervals

1 Introduction

Bonus-Malus Systems, BMS in short, are experience rating mechanisms which im-

pose penalties on policyholders responsible for one or more accidents by premium

surcharges (or maluses) and reward discounts (or bonuses) to policyholders who had

a claim-free year. Optimal BMS are financially balanced for the insurer, i.e. the

total amount of bonuses must be equal to the total amount of maluses, and fair for

the policyholder, i.e. the premium paid for each policyholder is proportional to the

risk that they impose on the pool. The design of such systems is achieved through

Bayesian analysis and the form of the mixed Poisson distributions which capture

the unobserved heterogeneity of claim count data with respect to the simplistic

Poisson law. Over the years numerous articles have been devoted to this topic as

this is an area of applied statistics that has close ties with theoretical statistics, no-

tably Bayesian Analysis, nonparametric maximum likelihood estimation, advanced

regression models and credibility theory, which is the cornerstone of contemporary

insurance mathematics. An excellent account of BMS can be found in Lemaire

(1995). Also, references for BMS include, among others, Dionne and Vanasse (1989,

1992), Coene and Doray (1996), Walhin and Paris (1999), Pinquet (1998), Pinquet

et al. (2001), Denuit and Lambert (2001), Brouhns et al. (2003), Denuit et al.

(2007), Pitrebois et al. (2005), Boucher et al. (2008), Tzougas and Frangos (2014)

and Tzougas et al. (2014).

However, even though the construction of optimal BMS has been a basic interest

of actuarial literature for over four decades, scientific attention has only now focused

on deriving credibility updates of the claim frequency based on the employment of

an abundance of alternative parametric distributions, nonparametric distributions

and advanced regression models. In this respect, a major drawback in the design
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of such systems was neglected: namely the fact that they do not give a measure of

uncertainty of the resulting premium estimates by providing a confidence interval

that contains plausible values.

In a competitive insurance market, in order to avoid lapses, actuaries do not

only have to construct optimal BMS that will fairly distribute the burden of claims

among policyholders, as was the usual practice, but their designs also have to be

able to adjust the individual premiums from a practical point of view . Moreover,

taking into account that according to a 2015 report by Insurance Europe (Insurance

Europe, 2015), an insurance and reinsurance federation with 34 member bodies,

the largest non-life insurance market, motor insurance totaled 130.8bn Euros in

premiums (stable in 2014), it becomes clear that the problem briefly described above

can result in great losses for insurance companies operating in Europe.

Let us now explain how the present study addresses the aforementioned problem.

In most settings involving count data, one of the biggest challenges that a researcher

can come across is reliably estimating or building confidence intervals, CIs, for small

and tail probabilities. In the majority of cases the available data are either insuffi-

cient to allow for asymptotic arguments or they need to be smoothed to render them

useful. In motor third party liability (MTPL) insurance, the interest of actuaries

lies in identifying customers with high claim frequency but they normally represent

very few observations. A simple and intuitive approach could be to resort to the

use of the empirical proportion as an estimate of the event probability. However,

a serious drawback of this method is the heavy data requirement. That is, if the

event is not observed with sufficient frequency, tail probabilities cannot be estimated

with accuracy. Therefore, smoother estimates for tail probabilities are demanded in

order to produce useful results. As a solution to the aforementioned problem, one

could consider a model where the small probabilities are connected to other parts of

the probability distribution. However, in this case inference is vulnerable to model

assumptions.

Karlis and Patilea (2008) proposed a satisfactory trade-off between the flexibil-

ity of that model which guards against misspecification and the ability to provide

non-degenerated estimates with finite samples. Specifically, following Böhning and

Patilea (2005), these authors considered nonparametric mixtures of power series dis-

tributions and built CIs for small probabilities with count data based on the use of

the nonparametric maximum likelihood estimator, NPMLE, of the mixing distribu-

tion. Also, they constructed bootstrap two-sided confidence intervals based on a

bootstrap from the NPMLE of the mixture. Furthermore, Karlis and Patilea (2007)

constructed NPMLE and bootstrap based CIs for the hazard rate function of the
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discrete lifetime distribution.

In this paper we extend BMS literature research by addressing the problem of

building confidence intervals for the premiums determined by an optimal BMS in

the following ways.

• Firstly, following Walhin and Paris (1999) and Denuit and Lambert (2001),

we consider a flexible class of nonparametric mixtures of Poisson distributions

for assessing claim frequency. An algorithm which is a variant of the EM

algorithm adjusted for jumping between different numbers of components is

proposed in order to estimate the unknown mixing, or risk, distribution based

on nonparametric maximum likelihood estimation. The use of the nonpara-

metric estimate of the risk distribution allows for a rich family of claim fre-

quency distributions instead of restricting attention to particular laws such as

the negative binomial distribution that has been widely applied for modelling

claim count data. On the path toward actuarial relevance the Bayesian view

is taken and the NPMLE of the risk distribution is used to calculate premi-

ums as posterior means. Following Lambert and Tierney (1984) and Böhning

and Patilea (2005), it is shown that the NPMLE based posterior mean claim

frequency behaves asymptotically normal. Based on the asymptotic normality

of the posterior mean claim frequency Wald type two-sided confidence inter-

vals are constructed. The Wald CIs are not degenerated and therefore are

more useful than the corresponding intervals based on model analogy or ad

hoc reasoning.

• Secondly, we develop bootstrap two-sided confidence intervals for the individ-

ual premiums based on bootstrap from the NPMLE of the mixing distribution.

This NPMLE based resampling procedure is a common method encountered

in the literature, see for example Laird and Louis (1987) and Böhning (2000).

Refer also to Karlis and Patilea (2008) for the proof of its asymptotic validity.

Specifically, Efron percentile bootstrap confidence intervals are investigated

and compared to the Wald Type confidence intervals obtained directly from

the NPML estimates. Our analysis reveals that Efron percentile bootstrap

intervals on certain occasions improve the asymptotic normal approximation

used by Wald intervals. The aforementioned constructions of NPMLE and

bootstrap based CIs account for the uncertainty as well as the fluctuations of

the individual premium estimates.

In an experience ratemaking scheme the use of such intervals leaves room for the

informed judgment of the actuary to select the final premiums to be charged to
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each policyholder based on the fluctuations that occur equally on either side of the

credibility updates of their claim frequency. In this respect, the insurance company

can be responsive to the needs of different constituencies, such as broader economic

trends for the insurance market in which it operates or mounting regulatory require-

ments, in order to make more accurate and effective adjustments to the tariff from

a practical point of view.

The rest of the paper is as follows. Section 2 presents the general background

on mixtures of Poisson distributions. Section 3 provides the computational details

for the algorithm used for the NPMLE. Section 4 describes the design of an optimal

BMS with a finite number of classes based on the NPMLE of the risk distribution.

Section 5 provides the main results for the NPMLE based intervals and the bootstrap

intervals respectively. Section 6 contains an application to a data set concerning car-

insurance claims at fault. Finally, Section 7 presents the concluding remarks of the

paper.

2 Mixtures of Poisson Distributions

Let us consider a Poisson mixture with probability mass function (pmf) given by

P (x;FΛ) = πFΛ
(k) =

∫
Λ

P (x;λ)FΛ(dλ), (1)

for k ∈ N, where P (x;λ) is the probability distribution function of the Poisson

distribution and where FΛ is the mixing distribution, that is a probability measure

on Λ, whose support is R+. Assume that the independent observations distributed

according to the mixture πFΛ0
with individual probabilities πFΛ0

(k), k ∈ N. The true

mixing distribution FΛ0 is unknown but its support is included in a known compact

interval [0,M ] ⊂ R+. In practice one can choose M to arbitrarily large. It is quite

typical to assume a certain parametric form for FΛ0(·) and fit a parametric model.

However, to gain more flexibility we prefer not to assume any parametric form for

the mixing distribution and leave FΛ0 to be a general mixing distribution. There

are a wide range of practical applications for this type of model, as for example,

population heterogeneity studies, non-parametric empirical Bayes estimation and

semiparametric density estimation; see Lindsay (1995), Lindsay and Lesperance

(1995), Böhning (2000) and the references therein.

By definition, FΛ0 is identifiable if FΛ0 = FΛ implies that Λ0 = Λ. Lam-

bert and Tierney (1984) and Böhning and Patilea (2005) showed that, because
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∑
k>0,k∈N k

−1 =∞ holds, FΛ0 is identifiable among all the mixing distributions with

the support in Λ.

In this study, we estimate FΛ0 in a nonparametric way and then use the Poisson

mixture for constructing an optimal BMS. Let X1, . . . , Xn ∈ N be an i.i.d. sample

with distribution πFΛ0
. The log-likelihood function (denoted as a function of the

mixing distribution) is

`(FΛ) =
n∑
i=1

log

{∫
Λ

P (xi;λ)dFΛ(λ)

}
. (2)

We want to maximize `(·) with respect to all distribution functions defined on Λ,

this is called the nonparametric maximum likelihood estimator (NPMLE) and it is

known to be a distribution with discrete support, i.e. giving positive probability to

a finite number of points.

Hereafter, let F̂Λ be the NPMLE of FΛ0 .There are results on the maximum

number of support points q̂ (see Simar, 1976 and Lindsay, 1983), which cannot

exceed the number of distinct values in the sample. Specifically, Simar (1976) was

the first to show that the NPMLE will be unique under the following condition

q̂ ≤ min

([
kmax + 1

2

]
, κ

)
,

where kmax is the maximum number of claims per risk and κ is the number of classes

for with non-zero frequency. Furthermore, existence, support size, and other finite

sample properties of F̂Λ can be found in Simar (1976) and Lindsay (1995). Concern-

ing consistency, with probability one F̂Λ → FΛ0 weakly, since FΛ0 is identifiable (see

for instance, van de Geer, 1993, Lemma 5.2). Furthermore, existence, support size,

and other finite sample properties of F̂Λ can be found in Simar (1976) and Lindsay

(1995). Since the NPMLE F̂Λ is discrete the model resembles the finite mixture

model.

Methods like the widely used EM algorithm could be used towards the deriva-

tion the NPMLE. Lambert and Tierney (1984) showed the asymptotic normality

of the NPMLE for Poisson mixtures while Böhning and Patilea (2005) showed the

asymptotic normality of the NPMLE for mixture of power series family (and hence

for the Poisson case since it is a member of the power series family of distributions).

Karlis and Patilea (2007, 2008) showed the consistency in probability of bootstrap

confidence intervals and they applied this to the case of hazard function which is

related to what follows here, since it involves ratio of probabilities as we will do for
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the BMS case. Being able to derive such confidence intervals for the BMS we are

able to account for the uncertainty around the premium calculated.

3 Computational Details

In this section we describe the algorithm used to derive the NPMLE. Algorithms

for finding the NPMLE has been proposed by Laird (1978), Dersimonian (1986),

Lesperance and Kalbfleisch (1992)(see also the book of Böhning (2000) for a broad

review on these algorithms). Recent work can be found in Wang (2007). They make

use of the gradient function in order to decide where to add new supports points

and which one can be removed. The gradient function is defined as

d(λ;FΛ) =
n∑
i=1

P (xi;λ)

P (xi;FΛ)
− n (3)

For the NPMLE it holds that supλ d(λ, F̂Λ) = 0 (see Lindsay, 1995) and this pro-

vides a diagnostic whether the NPMLE has been found. Alternatively one may use

algorithms for fixed number of support points k for different values of k. These

algorithms are feasible for count data because the number of support points in the

NPMLE is usually small (see the results of Lindsay, 1995).

The algorithm used in the present paper for finding the NPMLE is a variant of

the EM algorithm adjusted for jumping between different numbers of components.

Namely the algorithm starts with the maximum possible number of components (see

Simar, 1976 and Lindsay, 1983). Then we keep iterating using the EM algorithm

until either satisfaction of the convergence criterion (measured by the change of the

relative likelihood) or until a redundant support points is found. A support point

is redundant either if a) two points are close together or b) one mixing proportion

is close to 0. Two components with parameters, say λj and λk are considered as

being close together if |λj − λk| < 10−6. If this is the case, then, we check if

combining these components in a single component with value the weighted average

of the two components and mixing proportion the sum of the two proportions, we

can improve the likelihood. If the likelihood can be improved, the components are

merged, otherwise we keep iterating retaining both the components. The idea for

this step is that if the components are close together then this implies either that

the components must be merged or that the likelihood will remain trapped in this

area for a long time. If the second is true our algorithm can fail, but in any case we

will not waste our time waiting to pass over the flat point. Note that our experience
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was that typically two point so close should be merged. A mixing proportion is close

to 0 if its value is smaller than a threshold like 10−6. In the case of a small mixing

proportions we just remove this point by rescaling the other mixing proportions to

sum to 1. Note that, very small mixing proportions are expected only for large

sample sizes.

When the algorithm converges (i.e. the relative change of the log-likelihood is

smaller than 10−12, we check whether the NPMLE has been found by using the

conditions given in Lindsay (1995). These conditions were based on the gradient

function defined in (3). We calculated the gradient function over a grid of 1000

points in a large interval from 0 to 1.2λmax, where λmax is she largest support point

and we checked whether for all the points the gradient was less than 0.0001. If the

solution was not truly a NPMLE (i.e. the function lies above zero) then we rerun

the EM algorithm described above from different initial values.

For every repetition, initial values were chosen randomly over the interval of

admissible values. For each sample 20 different initial values were considered. If

the NPMLE was not found after 20 runs then we rejected this sample. The rate of

rejecting samples was smaller than 2% for the Poisson case. Note also that, since we

are not interested about reporting the number of support points, redundant points

in the NPMLE do not cause any problem since the probabilities estimated by the

NPMLE will coincide. Our algorithm is similar to running an EM with fixed support

size equal to the maximum possible for each sample. Our algorithm improved on

this approach by reducing the dimensionality between iterations and thus removing

redundant calculations at each iteration.

A step by step description of the algorithm follows. Technical details are not

repeated.

Step 0: Start with k support points. Choose initial values for the parameters.

Step 1: Run a number of EM iterations, say M (M can be one but usually a larger

value improves speed)

Step 2: Check if there are redundant support points: i.e. points, with λ close together

or mixing proportion close to 0.

Step 3a: If redundant points are found then merge them (or discard the one with a

almost zero mixing proportion).

Step 3b: If the loglikelihood after merging is improved then keep going with the merged

components and go back to Step 1, else keep going with the same number of
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components.

Step 4: Check if convergence is detected and stop otherwise go back to Step 1.

Step 5: Use the gradient function to ensure that the NPMLE is found. If not use other

initial values and go back to Step 0.

4 The Design of an Optimal Bonus-Malus System

We assume that all policyholders have constant but unequal underlying risks of hav-

ing an accident. Consider a policyholder and denote by Nj the number of claims in

which they were at fault during the jth year that the policy was in force. We assume

that the claim frequency does not change over time and that Nj are independent

and identically distributed (i.i.d) random variables according to a mixed Poisson

process with mass function given by

P (Nj = k) = πFΛ0
(k) =

∫
λ∈R+

e−λλk

k!
FΛ0 (dλ) , (4)

where k ∈ N and λ is the observed value of a random variable Λ whose support is

R+ and where FΛ0 is the mixing distribution, called the structure function, which,

as we have previously mentioned, is unknown but its support is included in a known

compact interval [0,M ] ⊂ R+. Depending on the chosen form of the mixing distri-

bution, (4) will lead to different models. Two kinds of models can be distinguished

in actuarial literature for the choice of the structure function, the parametric and

nonparametric cases. The former consists of families where FΛ0 is approximated

by some well known parametric distribution and the latter consists of choosing to

estimate FΛ0 nonparametrically. Firstly, with respect to the parametric case, a tra-

ditional choice for the distribution of λ values among all policyholders is the gamma

distribution which gives the negative binomial distribution, see for instance, Lemaire

(1995). Alternative choices are the inverse Gaussian (see Willmot, 1987 and Trem-

blay, 1963) and the generalized inverse Gaussian (see Tzougas and Frangos, 2014),

which result in the Poisson-inverse Gaussian and Sichel laws respectively, and Hoff-

man’s distributions (see Kestemont and Paris, 1985 and Walhin and Paris, 1999).

The structure function can also be a finite point discrete distribution. In this case

the portfolio heterogeneity is accounted for by choosing a finite number of unob-

served latent components, each of which may be regarded as a sub-population, and

the unconditional distribution of the number of claims in (4) can be regarded as a
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finite mixture of count distributions. In BMS literature research Lemaire (1995) con-

sidered the good risk/bad risk model employing a two component Poisson mixture

distribution for the number of claims. Tzougas et al. (2014) focused on modelling

claim frequency as a finite Poisson, Delaporte and negative binomial mixture respec-

tively. Secondly, with respect to the nonparametric case, the interested reader can

refer to Walhin and Paris (1999) and Denuit and Lambert (2001) who both resort

to nonparametric estimators for the mixing distribution.

In the setup we adopt, as described in Section 2, F̂Λ will be attained for a discrete

distribution function FΛ0 with a maximum number q̂ of support points that maximize

the log-likelihood. Then, the NPMLE of πFΛ0
(k) is the mixture π̂ (k) = πF̂Λ0

(k)

given by

π̂ (k) =

q̂∑
z=1

p̂z
e−λ̂z λ̂kz
k!

, (5)

for k ∈ N, where pq > 0 and where
q̂∑
z=1

p̂z = 1. (5) gives the pmf of a finite Poisson

mixture model with mean and variance equal to

E (Nj) =

q̂∑
z=1

p̂zλ̂z and V (Nj) =

q̂∑
z=1

p̂zλ̂z +

q̂∑
z=1

p̂zλ̂
2
z −

(
q̂∑
z=1

p̂zλ̂z

)2

.

In this respect, population heterogeneity is accounted for by choosing a finite

number of q̂ categories of policyholders classified according to their driving skills.

Let us now present the optimal BMS determined by the finite Poisson mixture.

Consider a policyholder who is observed for t years of their presence in the portfolio

and has claim frequency history N1, ..., Nt. Given N1 = k1, ..., Nt = kt, denote by

K =
t∑

j=1

kj the total number of claims that the policyholder had in t years. The

problem is to determine, at the renewal of the policy, the premium that must be

charged to the policyholder for the period t+1 given the observation of their reported

accidents in the preceding t periods, i.e. to determine the posterior mean, denoted

by λt+1 (K). By means of the Bayes theorem and using the quadratic error loss

function we have that (also see Walhin and Paris, 1999 and Denuit and Lambert,
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2001)

λt+1 (K) = E (Λ|N1 = k1, ..., Nt = kt)

=

∫
λ∈R+ λ

t∏
i=1

e−λλki
ki!

FΛ0 (dλ)

∫
θ∈R+

t∏
i=1

e−θθki
ki!

FΛ0 (dθ)

=

∫
λ∈R+ e

−λtλK+1FΛ0 (dλ)∫
θ∈R+ e−θtθKFΛ0 (dθ)

=
(K + 1)

t

πFΛ0
(K + 1)

πFΛ0
(K)

. (6)

It is interesting to note that λt+1 (K) only depends on the total number of claims

K caused during the past t years that the policy was in force and not on past claim

history records.

After t years of coverage and given N1 = k1, ..., Nt = kt (5) becomes

π̂ (K) =

q̂∑
z=1

p̂z
e−λ̂zt

(
tλ̂z

)K
K!

. (7)

Based on (7) we estimate λt+1 (K) by

λ̂t+1 (K) =
(K + 1)

t

π̂ (K + 1)

π̂ (K)
=

q̂∑
z=1

p̂ze
−λ̂ztλ̂K+1

z

q̂∑
z=1

p̂ze−λ̂ztλ̂Kz

. (8)

Let us call λ̂t+1 (K) the NPMLE of λt+1 (K). When t = 0, λ̂t+1 (K) reduces to

λ̂1 (0) = E (Λ) =
q̂∑
z=1

p̂zλ̂z since there is no information concerning the policyholder.

5 Confidence Intervals

In this Section, using the NPML estimator given by (5) and based on the framework

developed by Karlis and Patilea (2008), we are going to build Wald Type confidence

intervals and Efron percentile bootstrap confidence intervals for λt+1.
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5.1 Wald Type Confidence Intervals

The asymptotic distribution of the NPMLE λ̂t+1 (K) will be described by the fol-

lowing proposition. The proof can be seen in Appendix A.

Proposition 1 Assume that the support of FΛ0 is contained in some known [0,M ]

⊂ R+, i.e. the support of Λ. Moreover, FΛ0 is identifiable since
∑

k>0,k∈N k
−1 = ∞

(see Lambert and Tierney, 1984, and Böhning and Patilea, 2005). Assume also

that there exist positive constants d, γ, ε such that FΛ0 ((λ, λ+ τ ])) ≥ dτ γ for all

λ, τ ∈ (0, ε) .

Then for each K ∈ N we have that

√
n
(
λ̂t+1 (K)− λt+1 (K)

)
=⇒ N (0, Vt+1 (K)) , (9)

where K =
t∑

j=1

kj is the total number of claims after t years of coverage, n is the

sample size, i.e. the total number of insureds, λ̂t+1 (K) is the estimate of λt+1 (K)

yielded by F̂Λ the NPMLE of FΛ and where, denoting by Vt+1(K) the variance of

λ̂t+1(K),

Vt+1 (K) =

(
K + 1

t

)2
[
πFΛ0

(K + 1)

π2
FΛ0

(K)

][
1 +

πFΛ0
(K + 1)

πFΛ0
(K)

]
. (10)

Based on the asymptotic normality of λ̂t+1 (K), consider the Wald type two-sided

confidence interval (CI)[
λ̂t+1 (K)−

z1−α/2√
n

√
V̂t+1 (K), λ̂t+1 (K) +

zα/2√
n

√
V̂t+1 (K)

]
(11)

with K, some fixed value in N, zα the α quantile of the standard normal distribution

and

V̂t+1 (K) =

(
K + 1

t

)2 [
π̂ (K + 1)

π̂2 (K)

] [
1 +

π̂ (K + 1)

π̂ (K)

]

=

K!

tK

q̂∑
z=1

p̂ze
−λ̂ztλ̂K+1

z(
q̂∑
z=1

p̂ze−λ̂ztλ̂Kz

)2


K + 1

t
+

q̂∑
z=1

p̂ze
−λ̂ztλ̂K+1

z

q̂∑
z=1

p̂ze−λ̂ztλ̂Kz

 .
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When t = 0, V̂t+1 (K) reduces to V̂1 (0) = V (Λ) =
q̂∑
z=1

p̂zλ̂z+
q̂∑
z=1

p̂zλ̂
2
z−
(

q̂∑
z=1

p̂zλ̂z

)2

since there is no information concerning the risk. The asymptotic consistency of this

Wald type CI at level 1-α is ensured by Proposition 1.

5.2 Efron Percentile Bootstrap Confidence Intervals

Consider a bootstrap procedure where the bootstrap samples N∗j,1 , ..., N
∗
j,n are the

number of claims of a policyholder i, i = 1, .., n, during the jth year of their presence

in the portfolio generated according to the finite Poisson mixture given by (5). This

is a parametric bootstrap procedure where the unknown parameter is the mixing

distribution and the parameter space is the set of all probability measures on [0,M ] ,

that is, the parameter space is of infinite dimension. The unknown parameter is

estimated by nonparametric maximum likelihood. See Karlis and Patilea (2008) for

the proof of its asymptotic validity.

Let π̂∗ (K) and λ̂∗t+1 (K) be the NPML estimators of the individual probabilities

and the premium at t+1 respectively, obtained from a bootstrap sample, where K is

the total number of accidents caused after t years of insurance. Like for computing

π̂, the NPMLE π̂∗ is obtained from nonparametric maximum likelihood over the

mixing distributions with support in [0,M ]. In what follows the Efron percentile

bootstrap CI will be considered (see Efron, 1982). For α ∈ (0, 1) , we denote by ζα
the smallest value z that satisfies the inequality

P
(
λ̂∗t+1 (K) ≤ z|π̂

)
≥ α. (12)

The notation P (·|π̂) indicates that the distribution of λ̂∗t+1 (K) must be evaluated

assuming that the bootstrap observations are sampled according to π̂ (K) given the

original data Nj,1 , ..., Nj,n (in particular, λ̂t+1 (K) is considered nonrandom). The

Efron percentile is given by [
ζ̂α/2, ζ̂1−α/2

]
. (13)

The results presented in Karlis and Patilea (2008) combined with the delta-

method for bootstrap “in probability” (see, for instance, van der Vaart, 1998, Section

23.2), yield the asymptotic consistency of the Efron bootstrap percentile CI at level

1− α. The proof can be found in Appendix B.
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5.3 Discussion about the intervals

In this section we discussed two alternative ways to construct confidence intervals. It

is important to note that perhaps more sophisticated approach could be used for such

intervals, like improved bootstrap based intervals, at the cost of added complexity

both from computational point of view but also from practicality aspect. Some

comments on the derived intervals can be useful for the practitioners.

Wald type intervals are based on the asymptotic normality and hence the inter-

vals are based on the normal distribution. For actuarial applications, typically we

have reasonable sample sizes to base asymptotic arguments, however the normality

assumption in some cases need to be tested. Wald type intervals may suffer from

lower limits for the mean in the non admissible range (e.g. negative values) since

they are typically based on a point estimate plus/minus some quantity. Also pre-

vious simulations in a relevant problem (see, Karlis and Patilea 2007) showed that

they have large length and are somewhat unstable especially where not enough data

are available as it can be the case at the tails of the data.

On the other hand, Efron percentile bootstrap intervals are smoother at the

cost of additional computational effort. They will never provide limits in the non

admissible range and in general behave better (e.g. smaller length) than Wald type

intervals. Bootstrap based intervals needs more computing and hence can be more

demanding in practice.

6 Application

6.1 About the data and their NPMLE

The data were kindly provided by a Greek insurance company and concern a motor

third party liability (MTPL) insurance portfolio observed during 3.5 years. The data

set comprises n = 15641 policies. Claim counts are modelled for all 15641 policies

that have been in force for the entire sampling period. The expected frequency of

claims at fault is 0.4848 and the variance is 0.7308.

We assume that the claim frequency data follow a Poisson mixture distribution

with pdf given by (1). The unknown mixing distribution FΛ0 was estimated by

the NPMLE. Algorithmic details are provided in Section 3. For our portfolio, the

NPMLE F̂Λ was found to have q̂ = 4 support points leading to a four component

Poisson mixture model with

14



[
p̂1, p̂2, p̂3, p̂4

λ̂1, λ̂2, λ̂3, λ̂4

]
=

[
0.15354, 0.68401, 0.16039, 0.002040

0, 0.369133, 1.36139, 6.80928

]
,

where the first and second line contain the estimated mixing proportions and mixture

components respectively. The four component Poisson mixture is a generalization of

the good risk/bad risk model proposed by Lemaire (1995) since it gives the maximum

number of support points that maximize the log-likelihood, instead of two. The

gradient function of the NPMLE can be seen in Figure 1. We have plot the plot

in two in order to be able to examine the case. The right figure concentrates in

a smaller interval and makes obvious the behavior of the gradient at the support

points (denoted by dotted vertical lines)

Table 1 reports the observed frequency, the relative frequency and the expected

probabilities based on the NPMLE. Then we report based on the methodology

described the 95% confidence intervals for the probabilities. The fit as expected

is quite close. Finally since the data refer to a 3.5 years period we report also

annualized probabilities since these are used for derived the BMS.

Let us now present the optimal BMS resulting from the four component Poisson

mixture model. The NPMLE for this model led to a heterogeneous portfolio. There

is one group which has a zero rate, also there is another group with very large

rate (6.809), which however is only the 0.2% of the portfolio. The premiums that

must be paid for various number of claims when the age of the policy is up to t=5

years will be determined by (8) and are presented in Table 2. From Table 2 we

see that this optimal BMS is fair since if the policyholder has a claim free year the

premium is reduced, while if the policyholder has one or more claims the premium

is increased,resulting in bonus or malus respectively. Furthermore, we notice that

this system can be considered generous with good risks and strict with bad risks.

Figure1a.pdfFigure1b.pdf

Figure 1: The gradient function for the data. The left plot shows the entire range

while the right plot focuses on a smaller interval so as to provide a better picture
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Table 1: Observed data and fitted probabilities with the associated 95% confidence

intervals derived from the NPMLE using the quantile method.The observed data

refer to a period of 3.5 years, so we also report annualized probabilities at the last

3 columns
Annualized

95% conf. int. 95% conf. int.

x observed rel. freq NPMLE LL UL mean LL UL

0 10441 0.667540 0.667540 0.645164 0.685471 0.878005 0.872903 0.883322

1 3604 0.230420 0.230541 0.203722 0.267963 0.107955 0.102907 0.113005

2 1108 0.070839 0.070366 0.054538 0.084995 0.012038 0.010155 0.013724

3 321 0.020523 0.021372 0.012489 0.026335 0.001640 0.001142 0.002166

4 109 0.006969 0.006452 0.003759 0.009697 0.000281 0.000096 0.000500

5 34 0.002174 0.001904 0.000798 0.004446 0.000059 0.000006 0.000157

≥6 24 0.001534 0.001518 0.000319 0.004331 0.000022 0.000001 0.000105

Table 2: Optimal BMS with NPMLE Model

Number of Claims

Year k

t 0 1 2 3 4 5 6

0 0.1385 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.1227 0.2264 0.3798 0.7275 1.3502 1.7784 1.9092

2 0.1116 0.2004 0.3030 0.4444 0.7757 1.3786 1.7870

3 0.1026 0.1822 0.2719 0.3616 0.4783 0.8046 1.4008

4 0.0951 0.1672 0.2496 0.3337 0.3928 0.4955 0.8259

5 0.0888 0.1546 0.2292 0.3161 0.3691 0.4067 0.5057

6.2 Confidence Intervals

We are interested in building confidence intervals for the premiums that must be

paid by a policyholder who is observed for 5 years and whose number of claims

range from 1 to 6. Firstly, Wald type two-sided intervals based on NPMLE are

constructed according to (11) and are presented in Table 3. The NPMLE based

approach provides smooth estimates of the posterior mean claim frequency leading

to intervals of reasonable length. Nevertheless, the lower bounds of the intervals

defined in (11) might be in some cases negative as they rely on the asymptotic

16



standard deviation estimates. On these occasions, NPMLE based CIs lie outside the

admissible range since the premium rates must always be positive. In our application,

negative lower CI bounds were observed for (t = 1, k = 6). For this purpose, in

Table 3 this value is replaced by zero. Secondly, given our data, we generated B =

1000 bootstrap samples N∗t,1 , ..., N
∗
t,n of size 15641 from π̂ (k) in order to construct

the Efron percentile bootstrap intervals based on (13). The results are presented in

Table 4. It should be noted that all NPMLEs were computed without restriction to

the support. This is because in Poisson mixtures the largest point in the support

of an unrestricted NPMLE cannot be greater than the largest observation (see for

example, Lindsay, 1995) and also because in theoretical results the interval [0,M ],

i.e. the support of Λ, may be fixed arbitrarily large (see Proposition 1 above, and

Karlis and Patilea, 2008).

17



T
ab

le
3:

N
P

M
L

E
B

as
ed

C
I’

s
N

u
m

b
er

o
f

C
la

im
s

Y
ea

r
k

t
0

1
2

3
4

5
6

0
[0
.1

25
06

6
,0
.1

51
93

5]
0.

00
00

00
0.

0
0
0
0
0
0

0
.0

0
0
0
0
0

0.
0
0
0
0
0
0

0
.0

0
0
00

0
0.

0
0
0
0
0
0

1
[0
.1

09
66

0
,0
.1

35
80

9]
[0
.1

85
18

4
,0
.2

67
5
8
9
]

[0
.2

6
8
2
8
9
,0
.4

9
1
3
4
0
]

[0
.2

8
2
2
7
6
,0
.9

9
6
3
2
8
]

[0
.4

5
8
6
7
9
,1
.9

5
3
2
3
8
]

[0
.7

4
7
0
8
5
,3
.2

7
4
4
4
3
]

[0
.0

0
0
0
0
0
,5
.8

1
4
4
8
0
]

2
[0
.1

01
24

9
,0
.1

21
89

9]
[0
.1

75
16

8
,0
.2

25
6
2
2
]

[0
.2

5
0
1
5
0
,0
.3

5
5
8
8
5
]

[0
.3

3
2
4
1
3
,0
.5

5
6
3
8
4
]

[0
.5

7
6
9
1
0
,0
.9

7
4
5
8
9
]

[1
.0

5
9
0
5
8
,1
.6

9
8
0
8
5
]

[1
.2

6
7
1
8
7
,2
.3

0
6
9
0
3
]

3
[0
.0

93
51

7
,0
.1

11
64

5]
[0
.1

61
83

2
,0
.2

02
6
3
9
]

[0
.2

3
7
6
8
6
,0
.3

0
6
0
2
1
]

[0
.2

9
3
7
0
4
,0
.4

2
9
5
5
7
]

[0
.3

5
4
0
3
1
,0
.6

0
2
6
6
7
]

[0
.6

1
7
8
9
2
,0
.9

9
1
3
4
8
]

[1
.1

4
2
9
4
9
,1
.6

5
8
6
7
6
]

4
[0
.0

86
99

8
,0
.1

03
18

9]
[0
.1

48
33

5
,0
.1

86
1
2
4
]

[0
.2

2
3
5
1
1
,0
.2

7
5
6
7
6
]

[0
.2

8
8
5
5
1
,0
.3

7
8
9
1
1
]

[0
.3

0
7
0
6
1
,0
.4

7
8
5
7
8
]

[0
.3

5
5
9
7
7
,0
.6

3
5
0
7
5
]

[0
.6

3
9
2
4
4
,1
.0

1
2
6
4
5
]

5
[0
.0

81
63

6
,0
.0

95
89

2]
[0
.1

35
72

5
,0
.1

73
4
6
2
]

[0
.2

0
6
6
7
3
,0
.2

5
1
6
4
5
]

[0
.2

8
2
8
3
4
,0
.3

4
9
4
5
2
]

[0
.3

1
0
2
5
6
,0
.4

2
7
9
8
9
]

[0
.3

1
0
7
3
8
,0
.5

1
2
7
4
3
]

[0
.3

5
0
1
3
0
,0
.6

6
1
2
7
0
]

T
ab

le
4:

B
o
ot

st
ra

p
P

er
ce

n
ti

le
C

I’
s

N
u

m
b

er
o
f

C
la

im
s

Y
ea

r
k

t
0

1
2

3
4

5
6

0
[0
.1

31
96

1
,0
.1

44
87

6]
0.

00
00

00
0.

0
0
0
0
0
0

0
.0

0
0
0
0
0

0.
0
0
0
0
0
0

0
.0

0
0
00

0
0.

0
0
0
0
0
0

1
[0
.1

16
41

4
,0
.1

29
30

9]
[0
.1

87
65

8
,0
.2

55
3
3
8
]

[0
.2

7
5
8
9
1
,0
.5

5
1
0
2
9
]

[0
.3

2
4
6
0
8
,1
.0

8
7
9
9
0
]

[0
.3

3
0
8
8
9
,2
.2

3
3
3
7
3
]

[0
.3

3
2
4
1
3
,3
.4

0
1
0
2
7
]

[0
.3

3
2
4
4
6
,3
.6

7
7
8
9
0
]

2
[0
.1

03
60

6
,0
.1

22
09

6]
[0
.1

47
64

9
,0
.2

40
0
4
9
]

[0
.2

2
9
2
0
4
,0
.4

1
7
3
9
4
]

[0
.2

7
7
0
2
4
,0
.7

9
7
1
1
3
]

[0
.3

2
1
1
3
5
,1
.2

4
7
8
3
3
]

[0
.3

3
2
4
0
1
,2
.1

1
5
2
4
8
]

[0
.3

3
2
4
4
4
,2
.9

3
6
9
4
1
]

3
[0
.0

91
26

1
,0
.1

19
22

1]
[0
.1

28
74

7
,0
.2

35
8
4
5
]

[0
.2

0
5
4
2
3
,0
.3

4
9
6
8
1
]

[0
.2

3
6
6
9
1
,0
.6

4
2
0
9
6
]

[0
.2

7
4
2
3
1
,0
.9

5
6
9
5
0
]

[0
.3

2
1
2
3
4
,1
.3

9
4
4
1
3
]

[0
.3

3
1
2
0
1
,2
.0

9
5
9
8
3
]

4
[0
.0

79
15

1
,0
.1

17
86

7]
[0
.1

18
15

8
,0
.2

33
5
2
7
]

[0
.1

6
0
0
5
4
,0
.3

1
1
5
3
6
]

[0
.2

1
4
8
1
0
,0
.5

2
4
5
6
6
]

[0
.2

3
9
6
5
8
,0
.8

4
3
6
9
7
]

[0
.2

7
0
2
3
5
,1
.0

6
2
4
8
2
]

[0
.3

1
4
3
7
4
,1
.5

3
4
9
6
4
]

5
[0
.0

67
26

4
,0
.1

17
13

0]
[0
.1

10
90

0
,0
.2

33
5
2
4
]

[0
.1

3
4
5
2
4
,0
.2

8
2
3
9
5
]

[0
.2

0
4
3
4
5
,0
.4

4
5
8
2
1
]

[0
.2

2
1
9
5
4
,0
.7

1
9
2
6
9
]

[0
.2

4
0
1
6
3
,0
.9

7
4
3
4
4
]

[0
.2

6
9
6
3
5
,1
.1

8
3
7
1
6
]

18



Overall, from Tables 3 and 4 we observe that the Wald type intervals based on

NPMLE, and the Efron bootstrap percentile intervals in most cases do not differ

greatly. In both cases, a policyholder who is observed for t = 5 years of his presence

in the portfolio and has a low claim frequency has a smaller confidence interval

radius than one who in the same period of observation has more expected claims.

For instance, when(t = 1, k = 2) the premium rates range from 0.26829 to 0.49134

and from 0.27589 to 0.55103, when (t = 4, k = 3) the premium rates range from

0.28855 to 0.37891 and from 0.21481 to0.52457, and when (t = 5, k = 5) the premium

rates range from 0.31074 to 0.51274 and from 0.24016 to 0.97434 in the case of

the Wald type intervals based on NPMLE and Efron bootstrap percentile intervals

respectively. However, as we have already mentioned, for (t = 1, k = 6) the NPMLE

based approach provides a very large and, thus, unusable CI. This aspect is improved

by the bootstrap type interval which is not unreasonably long. The construction of

confidence intervals is important because it indicates the precision of the estimates of

the premiums of an optimal BMS. The reliability of the resulting premium estimates

is bigger if the length of the intervals is smaller.

7 Conclusion

The present paper addressed the issue of building confidence intervals for the pre-

miums determined by an optimal BMS, In this respect, actuarial literature research

was extended since previous designs of such systems failed to identify customers

with high claim frequency as they usually represent very few observations. Specifi-

cally, NPML was used for estimating the risk distribution in a mixed Poisson model

for the claim counts and this system was derived by means of the Bayes theorem,

i.e. by updating the posterior mean claim frequency. As a result of the asymptotic

normality of the estimator of the posterior mean claim frequency, Wald type two-

sided confidence intervals were constructed. Such intervals are not degenerated and

therefore are more useful than the corresponding intervals which could be derived

from empirical estimation and those resulting from model based probability esti-

mates that depend heavily on the form of the model under consideration. However,

the construction of Wald type CIs relies on standard deviation estimates and thus

in certain circumstances may have negative bounds, and as such prove to be larger

than the nominal level. Therefore, the investigation was taken another step forward

by considering the construction of Efron percentile bootstrap two-sided confidence

intervals which was based on bootstrap from the NPMLE of the mixture. Efron type

intervals require much more computing, but may make important improvements to
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the asymptotic normal approximation used by Wald intervals. In an Bonus-Malus

ratemaking scheme, the use of these intervals is beneficial for the insurance company

as they account for the fluctuations in the imposed premiums. Moreover, their con-

structions can be employed with flexibility by insurance companies which are free

in a competitive market to set up their own tariff structures and rating policies.

Furthermore, we would like to emphasize that the interest is not on identifying

risk groups. So using a smoother mixing distribution is not a key ingredient for our

derivations, since we focus on the estimated claim distribution itself and not on the

number of support points themselves. Also, the usage of covariate information for

the model for a priori classification is under investigation. However, the derivation of

the asymptotic normality is such cases is not straightforward and hence construction

of confidence intervals needs further work.

Finally, a possible line of further research would be to employ nonparametric mix-

tures of a multivariate Poisson distribution in order to construct an optimal BMS

with a finite number of classes that takes into account different types of claims,

for example claims with or without bodily injuries, or claims with full or partial

liability of the insured driver. In this case, the independence assumption between

claim types can be relaxed and it would be interesting to observe how the BMS

might be affected. Moreover, one can investigate the asymptotic behaviour of the

maximum likelihood estimators of the probabilities of a multivariate Poisson with a

nonparametric mixing distribution. Specifically, if the asymptotic normality for the

estimator of individual probabilities can be established, then following and extend-

ing the framework of the present work, the NPML estimator can be used for the

construction of confidence intervals for the premiums that must be paid for different

types of claims.

Acknowledgments: We would like to thank the editor and the reviewer for

their constructive comments and suggestions.

Appendix A. Proof of Proposition 1

Fix kj ∈ N , the number of claims that the policyholder had in year j, j = 1, ..., t.

Then, K =
t∑

j=1

kj ,the total number of claims of a policyholder after t years of

insurance, will be a fixed value in N. Also, define the interval J = {K,K + 1}
and consider the probabilities πFΛ0

(J) = πFΛ0
(K) + πFΛ0

(K + 1). Furthermore,
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let π̂ (K) and π̂ (J) be the NPML estimators of πFΛ0
(K) and πFΛ0

(J) respectively.

Based on Corollary 2 of Böhning and Patilea (2005), which is an extension of Corol-

lary 5.1 of Lambert and Tierney (1984), one can see that

√
n
(
π̂ (J)− πFΛ0

(J) , π̂ (K)− πFΛ0
(K)

)
=⇒ N2 ((0, 0) ,Ω (K)) ,

where N2 denotes a bivariate normal law and

Ω (K) =

(
πFΛ0

(J)− π2
FΛ0

(J) πFΛ0
(J)
[
1− πFΛ0

(K)
]

πFΛ0
(J)
[
1− πFΛ0

(K)
]

πFΛ0
(K)− π2

FΛ0
(K)

)
(A.1)

On the other hand, the premium that must be paid by this specific individual at

t + 1 will be given λt+1 (K) = ψ
(
πFΛ0

(J) , πFΛ0
(K)

)
, where ψ (x, y) =

(
K+1
t

)
x−y
y

.

Let ∇ψ (x, y) represent the vector of first-order partial derivatives of ψ (., .) at a

point (x, y) with y 6= 0. The delta-method (see, for example, van der Vaart, 1998,

Theorem 3.1) implies that

√
n
(
λ̂t+1 (K)− λt+1 (K)

)
=⇒ N (0, Vt+1 (K)) , (A.2)

where

Vt+1 (K) = ∇ψ
(
πFΛ0

(J) , πFΛ0
(K)

)
Ω (K)

{
∇ψ

(
πFΛ0

(J) , πFΛ0
(K)

)}′
=

=

(
1

πFΛ0
(K)

,−
πFΛ0

(J)

π2
FΛ0

(K)

)
×

(
πFΛ0

(J)− π2
FΛ0

(J) πFΛ0
(J)
[
1− πFΛ0

(K)
]

πFΛ0
(J)
[
1− πFΛ0

(K)
]

πFΛ0
(K)− π2

FΛ0
(K)

)
×

×

 1
πFΛ0

(K)

−
πFΛ0

(J)

π2
FΛ0

(K)

(K + 1

t

)2

=
πFΛ0

(J) πFΛ0
(K)

π3
FΛ0

(K)

(
K + 1

t

)2

=

(
K + 1

t

)2
[
πFΛ0

(K + 1)

π2
FΛ0

(K)

][
1 +

πFΛ0
(K + 1)

πFΛ0
(K)

]
.
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Appendix B. Proof of asymptotic consistency of

Efron percentile bootstrap confidence intervals

Let us now provide a proof of the asymptotic consistency of the Efron percentile

bootstrap interval (13) provided that the assumptions of Proposition 1 are satisfied.

In what follows, fix kj ∈ N, j = 1, ..., t ,thus K ∈ N is a fixed value, and define J as

in the previous proof. For each l ∈ N, let p∗n (l) denote the proportion of observations

equal to l in a bootstrap sample. Under the assumptions of Proposition 1, Karlis

and Patilea (2008) showed that for any l ∈ N, if

R∗n (l) =
√
n (π̂∗ (l)− p∗n (l)) ,

then for any δ > 0, P (|R∗n (l)| > δ|π̂) → 0 in probability. From this, deduce that

if π̂∗ (J) =
∑

l∈J π̂
∗ (l) = π̂∗ (K) + π̂∗ (K + 1) , p∗n (J) =

∑
l∈J p

∗
n (l) = p∗n (K) +

p∗n (K + 1) and

R∗n =
√
n (π̂∗ (K)− p∗n (K) , π̂∗ (J)− p∗n (J)) ,

then for any δ > 0, P (‖R∗n‖ > δ|π̂) → 0 in probability. Based on the last display

and using a central limit theorem for a triangular array (see, for instance, van der

Vaart, 1998, pp. 20, 330–331) applied for the vector (p∗n (K) , p∗n (J)), deduce that

for any t1, t2 ∈ R

P
(√

n (π̂∗ (K)− π̂∗ (K)) ≤ t1, (π̂
∗ (J)− π̂ (J)) ≤ t2|π̂

)
→ F1 (t1.t2) ,

where F1 (., .) is the distribution function of a bivariate centered normal law with

the variance matrix Ω (K) given by (A.1).Working with subsequences along which

the sequence
√
n (π̂∗ (K)− π̂∗ (K) , π̂∗ (J)− π̂ (J)) converges weakly to the bivariate

normal law, conditionally, almost surely, using the delta method for bootstrap (see,

for example,van der Vaart, 1998, Theorem 23.5) we deduce that for any u ∈ R(√
n
(
λ̂∗t+1 (K)− λ̂t+1 (K) ≤ u|π̂

))
→ F2 (u) in probability,

where F2 (.) is the distribution function of the centered normal law with variance

Vt+1 (K). Finally, the asymptotic consistency of the Efron percentile bootstrap

interval for λt+1 (K) follows from the latter, the weak convergence (A.2) and Lemma

23.3 of van der Vaart (1998).
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