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Abstract

This paper presents the design of optimal Bonus-Malus Systems (BMS) using �nite mixture
models, extending the work of Lemaire (1995) and Frangos and Vrontos (2001). Speci�cally, for the
frequency component we employ a �nite Poisson, Delaporte and Negative Binomial mixture, while
for the severity component we employ a �nite Exponential, Gamma, Weibull and Generalized Beta
Type II mixture, updating the posterior probability. We also consider the case of a �nite Negative
Binomial mixture and a �nite Pareto mixture updating the posterior mean. The generalized BMS we
propose, integrate risk classi�cation and experience rating by taking into account both the a priori
and a posteriori characteristics of each policyholder.
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1 Introduction

A Bonus-Malus System (BMS) penalizes policyholders responsible for one or more claims by a premium
surcharge (malus) and rewards the policyholders who had a claim-free year by awarding discount of the
premium (bonus). An optimal BMS is �nancially balanced for the insurer and fair for the policyholder.
Optimal BMSs can be broadly derived in two ways; based only on the a posteriori classi�cation criteria
and based on both the a priori and the a posteriori classi�cation criteria. Typically, a posteriori classi�-
cation criteria include the number and severity of individual claims, while a priori classi�cation criteria
include variables such as characteristics of the policyholder and the automobile.
Contributions to the literature of BMS include, among others, Lemaire (1995), Dionne and Vanasse

(1989, 1992), Picech (1994), Pinquet (1997, 1998), Frangos and Vrontos (2001), Brouhns et al. (2003),
Denuit et al. (2007) and Mahmoudvand and Hassani (2009). The literature more closely related to ours
is Lemaire (1995), Dionne and Vanasse (1989, 1992), Pinquet (1997) and Frangos and Vrontos (2001).
Lemaire (1995) considered the good risk/bad risk model employing a two component Poisson mixture
distribution. Dionne and Vanasse (1989, 1992) proposed a BMS that integrates a priori and a posteriori
information on an individual basis. Speci�cally, this generalized BMS is derived as a function of the years
that the policyholder is in the portfolio, the number of accidents and their individual characteristics.
Pinquet (1997) proposed the design of a BMS on the pure premium of insurance contracts from Poisson
and Lognormal distributions on the number and cost of claims, with a joint distribution on the random
e¤ects. Frangos and Vrontos (2001) considered an optimal BMS based on both the number of accidents
and their severity employing Negative Binomial and Pareto distributions/regression models by updating
the posterior mean of the claim frequency and severity respectively.
Our �rst contribution is the development of an optimal BMS that takes into account the number

of claims of each policyholder and the exact size of loss that these claims incurred using various �nite
mixtures of distributions. For the frequency component we assume that the number of claims is dis-
tributed according to a �nite Poisson, Delaporte and Negative Binomial mixture, and for the severity
component we consider that the losses are distributed according to a �nite Exponential, Gamma, Weibull
and Generalized Beta Type II (GB2) mixture. In this way we expand the setup that Lemaire (1995)
used to design an optimal BMS based on the number of claims. Applying Bayes theorem we derive the
posterior probability of the policyholder�s classes of risk. Furthermore, we extend the setup of Frangos
and Vrontos (2001) for Negative Binomial and Pareto mixtures and derive the posterior distributions of
the mean claim frequency and the mean claim size given the information we have for the claim frequency
and severity for each policyholder for the period they are in the portfolio. Our third contribution is the
development of a generalized BMS that integrates the a priori and the a posteriori information on a indi-
vidual basis, extending the framework developed by Dionne and Vanasse (1989, 1992) and Frangos and
Vrontos (2001). This is achieved by using �nite mixtures of generalized linear models. In this generalized
BMS, the premium is a function of the years the policyholder is in the portfolio, the number and size of
loss of their accidents, and the signi�cant a priori rating variables for the number of accidents and their
severity.
The layout of the paper is as follows. Section 2 introduces the �nite mixture models we use. Section

3 describes the design of optimal BMS by updating the posterior probability and Section 4 by updating
the posterior mean. Section 5 contains an application to a data set concerning car-insurance claims at
fault. Finally, Section 6 concludes the paper.

2 Finite Mixture Models

Finite mixture models are a popular statistical modelling technique since they constitute a �exible and
easily extensible model class for approximating general distribution functions in a semi-parametric way
and accounting for unobserved heterogeneity. Finite mixture models have been widely applied in many
areas, such as biology, biometrics, genetics, medicine and marketing. However, as we have mentioned,
with the exception of Lemaire (1995), these models have not been extensively studied in BMS literature.
In what follows we present a short summary of the main characteristics of �nite mixture models.

McLachlan and Peel (2000) provide a detailed treatment of �nite mixture models and their applications.
We consider the random variable Y having probability density function

fY (y) =
nX
z=1

�zfz(y); (1)
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where 0 � �z � 1 is the prior (or mixing) probability of component z and
nX
z=1

�z = 1; z = 1; ::; n:

The simplest �nite mixture models are �nite mixtures of distributions which are used for model-
based clustering. In this case the model is given by a convex combination of a �nite number of di¤erent
distributions where each of the distributions is referred to as component.
An extension is to estimate �nite mixture models assuming that the n components fz(y) can be repre-

sented by generalized additive models for location scale and shape, GAMLSS (see Rigby and Stasinopou-
los, 2005 and 2009). In this setup the probability density function fz(y) for component z depends on
�z; a vector of the distribution parameters, each of which can be a function of the explanatory variables
xz, i.e. fz(y) = fz(yj�z;xz). Similarly, fY (y) depends on parameters  = (�;�) ; where � = (�1; :::;�n)
and �T = (�1; :::;�n) and explanatory variables x = (x1; :::;xn); i.e. fY (y) = fY (yj ;x); and

fY (yj ;x) =
nX
z=1

 zfz(yj�z;xz): (2)

Note that the prior probabilities may also depend on explanatory variables x0 and parameters through
a multinomial logistic model (for more information, refer to Rigby and Stasinopoulos, 2009). In this study,
we assume that all the component distributions, fz(y), arise from the same parametric distribution family
and the covariates are only included in the linear predictor for the mean parameter (of claim frequency
or severity). Using this formulation, the heterogeneity in the data can be accounted for in two ways.
Firstly, the population heterogeneity is accounted for by choosing a �nite number of unobserved latent
components, each of which may be regarded as a sub-population. This is a discrete representation of
heterogeneity since the mean is approximated by a �nite number of support points. Secondly, depending
on the choice of the fz(y) distribution, heterogeneity can also be accommodated within each component
by including the explanatory variables in the mean function.
The log-likelihood function can be maximized with respect to  , i.e. with respect to � and �, using

the EM algorithm (for more details see Rigby and Stasinopoulos, 2009).

2.1 Frequency Component

Mixtures of count distributions can be considered as counterparts or generalizations to the simple count
distribution (e.g. Poisson) for the description of non-homogeneous populations, consisting of a �nite num-
ber of homogeneous sub-populations. In these cases the probability distribution (pdf) of the population
can be regarded as a �nite mixture of count distributions (e.g. �nite mixture of Poisson distributions).
The use of mixture distributions is justi�ed when the portfolio is considered to be heterogeneous, con-
sisting of n categories of policyholders classi�ed according to their driving skills. In this respect, we have
fractions of drivers �z where the risk that each policyholder of category z is imposing to the pool, with
respect to their claim frequency is denoted by �z; z = 1; � � � ; n. The distribution of the number of claims
k in each category is denoted by Pz (k). Thus, the structure function is an n-point discrete distribution
and the unconditional distribution of the number of claims, denoted by P (k) ; is given by

P (k) =
nX
z=1

�zPz (k) ; (3)

for k = 0; 1; 2; 3; :::; �z; �z > 0; and
nP
z=1

�z = 1: The expected value of the number of claims is equal to

E (k) =
nP
z=1

�z�z and its variance is equal to V ar(k) = E [V ar(kj�)]+V ar[E(kj�)] = E�
�
�2k
�
+V ar�[�]:

In this study we model the claim frequency using a �nite Poisson, Delaporte and Negative Binomial
mixture.

� In the case of the �nite Poisson mixture Eq.(3) is equal to

P (k) =
nX
z=1

�z
e��z�kz
k!

: (4)

� In the case of the �nite Negative Binomial1 mixture distribution Eq.(3) is equal to
1We use the parameterization of Negative Binomial Type I given by Johnson et al. (2005) and Rigby and Stasinopoulos

(2009).
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P (k) =
nX
z=1

�z

�
k + 1

�z
� 1

k

��
1

1 + �z�z

� 1
�z
�

�z�z
1 + �z�z

�k
; �z > 0: (5)

� In the case of the �nite Delaporte2 mixture distribution Eq.(3) is equal to

P (k) =
nX
z=1

�z
e��z�z

�
�
1
�z

� (1 + �z�z (1� �z))� 1
�z S; �z > 0; 0 < �z < 1;

S =
kX

m=0

�
k

m

�
(�z)

k
(�z)

k�m

k!

�
�z +

1

�z (1� �z)

��m
�

�
1

�z
+m

�
: (6)

2.2 Severity Component

Let us consider now the severity component. The portfolio is considered to be heterogeneous and we
have fractions of drivers �z where the risk (with respect to the mean claim size) that each policyholder
of category z is imposing to the pool, z = 1; � � � ; n; is denoted by yz. The pdf of the claim size x in each
category is denoted by fz (x). Thus, the structure function is an n-point discrete distribution and the
unconditional distribution of claim size, denoted by f (x) ; is given by

f (x) =
nX
z=1

�zfz (x) (7)

for x; �z; yz > 0 and
nP
z=1

�z = 1: The expected value of the claim size is equal to E (x) =
nP
z=1

�zyz and its

variance is equal to V ar(x) = E [V ar(xj�)] + V ar[E(xj�)] = E�
�
�2x
�
+ V ar�[y]:

In this paper we model the costs of claims using a �nite mixture of Exponential, Gamma, Weibull
and GB2 distributions.

� In the case of the �nite mixture of Exponential Eq.(7) is equal to

f (x) =

nX
z=1

�z
e�

x
yz

yz
: (8)

� In the case of the �nite mixture of Gamma3 Eq.(7) is equal to

f (x) =
nX
z=1

�z
1�

�2zyz
� 1
�2z

x
1
�2z
�1
e
� x
�2zyz

�
�
1
�2z

� ; �z > 0: (9)

� In the case of the �nite mixture of Weibull4 Eq.(7) is equal to

f (x) =
nX
z=1

�z
�z
yz
�

�
1

�z
+ 1

��
x

yz
�

�
1

�z
+ 1

���z�1
e�[

x
yz
�( 1

�z
+1)]

�z

; �z > 0: (10)

� In the case of the �nite mixture of GB25 Eq.(7) is equal to

f (x) =
nX
z=1

�zj�zjx�z�z�1
(
y�z�zz B(�z; sz)

�
1 +

�
x

yz

��z��z+sz)�1
; �z; sz > 0;�1 < �z <1:

(11)
In this case the mean is given by

E (x) =
nX
z=1

�zyz
B(�z +

1
�z
; sz � 1

�z
)

B(�z; sz)
:

2The Delaporte distribution can be alternatively employed for modeling the number of claims when we deal with
overdispersed count data. We use the parameterization of Delaporte given by Rigby and Stasinopoulos (2009).

3The pdf is obtained by setting �2 = 1
�
and y = �� using the reparameterization of Johnson et al. (1994): See also

Rigby and Stasinopoulos (2009).
4We use the reparameterization of Weibull III given by Rigby and Stasinopoulos (2009).
5We use the reparameterization of GB2 given by McDonald and Xu (1995), McDonald (1996) and Rigby and Stasinopou-

los (2009).
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3 The Optimal BMS Derived by Updating the Posterior Prob-
ability

We assume that the number of claims of each policyholder is independent from the severity of each claim
so as to deal with the frequency and severity components separately. In Section 3.1 we consider the
design of an optimal BMS based on the a posteriori criteria while in Section 3.2 we present a generalized
BMS based on both the a priori and a the posteriori criteria.

3.1 A BMS Based on the a Posteriori Criteria

The framework we develop for both the claim frequency and the severity components is a generalization
of the good risk/bad risk model proposed by Lemaire (1995).

3.1.1 Frequency Component

In what follows, we consider a policyholder with claims history k1; :::; kt, where kj is the number of
claims the policyholder had in year j; j = 1; :::; t. Let us denote by K =

Pt
j=1 kj the total number

of claims they had in t years and with Rl the risk, imposed on the insurance company, associated by
the lth category of policyholders. Moreover, the posterior probability of the policyholder belonging to
the lth category is denoted by �l (k1; � � � ; kt) : Applying Bayes theorem, the posterior probability of the
policyholder belonging to the lth category is given by

�l (k1; :::; kt) =
P (k1; :::; ktjRl)�l
nX
z=1

P (k1; :::; ktjRz)�z
: (12)

In this way, we update the posterior probability of belonging in category l given the information we
have for the claim history of the policyholder. The setup we described above is applied to the �nite
Poisson, Negative Binomial and Delaporte mixture distributions and the following results are obtained:

� In the case of the �nite Poisson mixture distribution Eq.(12) becomes

�l (k1; :::; kt) =
�Kl e�t�l�l

nX
z=1

�Kz e
�t�z�z

: (13)

� In the case of the �nite NBI mixture distribution Eq.(12) becomes

�l (k1; :::; kt) =

tY
j=1

�kj+ 1
�l
�1

kj

� �
1

1+�l�l

� t
�l
�

�l�l
1+�l�l

�K
�l

nX
z=1

tY
j=1

�kj+ 1
�z
�1

kj

� �
1

1+�z�z

� t
�z
�

�z�z
1+�z�z

�K
�z

: (14)

� In the case of the �nite Delaporte mixture distribution Eq.(12) becomes

�l (k1; :::; kt) =

24 e�t�l�lh
�
�

1
�l

�it (1 + �l�l (1� �l))� t
�l

tY
j=1

Sj;l

35�l
nX
z=1

24 e�t�z�z

[�( 1
�z
)]
t (1 + �z�z (1� �z))�

t
�z

tY
j=1

Sj;z

35�z
; (15)

Sj;l =

kjX
m=0

�
kj
m

�
(�l)

kj (�l)
kj�m

kj !

�
�l +

1

�l (1� �l)

��m
�

�
1

�l
+m

�
:
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It should be noted that due to the existence of kj in Eq.(14) and Eq.(15), the explicit claim frequency
history determines the calculation of the posterior probabilities and thus of premium rates and not just
the total number of claims as in the case of the two component Poisson mixture.
Under a quadratic error loss function, the optimal choice of �̂t+1 for a policyholder with claim history

k1; :::; kt is the mean of the posterior structure function given by

�̂t+1 (k1; :::; kt) =
nX
z=1

�z (k1; � � � ; kt)�z: (16)

3.1.2 Severity Component

We assume again that a policyholder stays in the portfolio for t years and that the number of claims in
year j is denoted by kj , the total number of claims in t years is denoted, as before, by K and the claim
amount for the kth claim is denoted by xk. In such a case the information we have for their claim size
history will be in the form of a vector x1; :::; xK . The risk imposed on the pool by the policyholder who
belongs to the lth category of policyholders based on the severity of their claims is denoted by Ql: Then
the posterior probability of the policyholder belonging to the lth category is given by �l (x1; :::; xK).
In order to design an optimal BMS that accounts for each claim amount, we must �nd the posterior
probability of belonging in each risk class, given the information we have about the claim size history
for each policyholder for the period they are in the portfolio. Applying Bayes theorem, the posterior
probability of the policyholder belonging to the lth category is given by

�l (x1; :::; xK) =
f (x1; :::; xK jQl) �l
nX
z=1

f (x1; :::; xK jQz) �z

: (17)

Thus, we update the posterior probability of belonging in category l given the information we have
for the claim size history of the policyholder. The framework we introduced above is applied to �nite
Exponential, Weibull, Gamma and GB2 mixture distributions.

� In the case of the �nite mixture of Exponential Eq.(17) becomes

�l (x1; :::; xK) = �l
e
�

KX
k=1

xk

yl

yKl

26666664
nX
z=1

�z
e�

KX
k=1

xk

yz

yKz

37777775

�1

: (18)

� In the case of the �nite mixture of Gamma Eq.(17) becomes

�l (x1; :::; xK) =

�l

��
�2l yl

� 1

�2
l �
�
1
�2l

���K 0@ KY
j=1

xj

1A 1

�2
l

�1

e
�

KX
j=1

xj

�2
l
yl

nX
z=1

�z

h�
�2zyz

� 1
�2z �

�
1
�2z

�i�K 0@ KY
j=1

xj

1A 1
�2z
�1

e
�

KX
j=1

xj

�2zyz

: (19)

� In the case of the �nite mixture of Weibull Eq.(17) becomes

�l (x1; :::; xK) =

�l�
K
l

�
�
�

1
�l
+1
�

yl

�K�l KY
j=1

x�l�1j e

�
KX
j=1

h
xj
yl
�
�

1
�l
+1
�i�l

nX
z=1

�z�
K
z

�
�( 1

�z
+1)

yz

�K�z KY
j=1

x�z�1j e

�
KX
j=1

[
xj
yz
�( 1

�z
+1)]

�z

(20)
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� In the case of the �nite mixture of GB2 Eq.(17) becomes

�l (x1; :::; xK) =

�
j�lj

y
�l�l
l B(�l;sl)

�K 0@ KY
j=1

xj

1A�l�l�18<:
KY
j=1

h
1 +

�
xj
yl

��li�l+sl9=;
�1

�l

nX
z=1

�
j�zj

y�z�zz B(�z;sz)

�K 0@ KY
j=1

xj

1A�z�z�18<:
KY
j=1

h
1 +

�
xj
yz

��zi�z+sz9=;
�1

�z

: (21)

Using the quadratic error loss function the optimal choice of yt+1 for a policyholder with claim size
history x1; :::; xK ; in t years is the mean of the posterior structure function, that is

ŷt+1 (x1; :::; xK) =
nX
z=1

yz�z (x1; :::; xK) ; (22)

for the case of the �nite mixture of Exponential, Gamma and Weibull, while for the case of GB2 it is

ŷt+1 (x1; :::; xK) =
nX
z=1

�z (x1; :::; xK) yz
B(�z +

1
�z
; sz � 1

�z
)

B(�z; sz)
: (23)

3.2 A BMS Based Both on the a Priori and the a Posteriori Criteria

In the models discussed above, the characteristics of each policyholder and the insured vehicle are not
taken into consideration for the calculation of �̂t+1 and ŷt+1. In this way the premiums do not vary
simultaneously with other variables that a¤ect the claim frequency and/or the claim severity distribu-
tions. For this purpose in 3.2.1 and 3.2.2 we employ �nite mixture generalized linear models. Speci�cally,
using the exponential link function we allow the parameters of the claim frequency distribution, �z; and
severity distribution, yz, presented in Sections 2.1 and 2.2 respectively, to be modelled as functions of
the signi�cant a priori rating variables for the number and costs of claims.

3.2.1 Frequency Component

Consider a policyholder i with an experience of t periods whose number of claims for period j, denoted as
Kj
i are independent. If we assume that the portfolio consists of n categories of policyholders classi�ed with

respect to the risk they impose on the pool and that the observations Kj
i follow an n-point discrete �nite

mixture of Poisson, Negative Binomial and Delaporte, given by Eq.(4), Eq.(5) and Eq.(6) respectively,
then we have fractions of policyholders �z, z = 1; :::; n; with mean claim frequency, denoted as �jz;i: The

vector parameter �jz;i can be modelled as �
j
z;i = exp

�
cjz;i�

j
z

�
, where cjz;i

�
cjz;i;1; :::; c

j
z;i;h

�
is the vector of

h individual characteristics6 , which correspond to di¤erent a priori rating variables and �jz is the vector
of coe¢ cients. The use of the exponential link function ensures the non-negativity of �jz;i. Let us denote

with K =
tP

j=1

Kj
i the total number of claims of policyholder i in t years and Rl the risk the policyholder

imposes on the pool if we assume that she belongs to the lth category of policyholders. Applying Bayes

theorem the posterior probability �l
�
K1
i ; :::;K

t
i ; c

1
l;i; :::; c

t+1
l;i

�
that the policyholder belongs to the lth

category is given by Eqs(13, 14 and 15) for the case of �nite Poisson, Negative Binomial and Delaporte

mixture regression models respectively, by letting �jz;i = exp
�
cjz;i�

j
z

�
. Moreover, the optimal choice

of �̂
t+1

i

�
K1
i ; :::;K

t
i ; c

1
z;i; :::; c

t+1
z;i

�
under the quadratic loss function will be the mean of the posterior

structure function, given by letting �jz;i = exp
�
cjz;i�

j
z

�
in Eq.(16), for the case of the Poisson, Negative

Binomial and Delaporte respectively.

3.2.2 Severity Component

Let us consider now the severity component. Consider a policyholder i with an experience of t periods.
whose number of claims for period j are independent and are denoted as Kj

i = k, her total number

6All the characteristics we consider are observable.
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of claims over t periods is denoted as K and by Xj
i;k is denoted the loss incurred from her claim k for

the period j. Then, the information we have for her claim size history will be in the form of a vector
Xi;1;Xi;2; :::; Xi;K and the total claim amount for the speci�c policyholder over the t periods that she is

in the portfolio will be equal to
KX
k=1

Xi;k. We assume that the portfolio consists of n categories of drivers

based on their claims severity and their losses follow an n-point discrete �nite mixture of Exponential,
Gamma, Weibull and GB2, given by Eqs(8, 9, 10 and 11) respectively. Furthermore, we consider that

the expected claim severity, yjz;i; is a function of the vector d
j
z;i

�
djz;i;1; :::; d

j
z;i;h

�
of h individual charac-

teristics which are represented using di¤erent a priori rating variables. Speci�cally, assume that yjz;i =

exp
�
djz;i


j
z

�
, for z = 1; :::; n, non-negativity of yjz;i is implied from the exponential function and 
jz is

the vector of the coe¢ cients. Let us denote as Ql the risk that is imposed on the insurance company
assuming that the policyholder belongs to the lth category of drivers sorted by the amount of loss that
their accidents produce. In order to design an optimal BMS that will take into account the size of loss of

each claim, we must estimate the posterior probability �l
�
Xi;1;Xi;2; :::; Xi;K ; d

1
l;i; :::; d

t+1
l;i

�
of belonging

in each risk class given the information we have about the claim size history for each policyholder for
the period they are in the portfolio. Applying Bayes theorem, the posterior probability of the policy-
holder belonging to the lth category is given by Eqs(18, 19, 20 and 21) for the case of �nite Exponential,

Gamma, Weibull and GB2 mixture regression models respectively, by employing yjz;i = exp
�
djz;i


j
z

�
.

The optimal choice of ŷt+1i

�
Xi;1;Xi;2; :::; Xi;K ; d

1
z;i; :::; d

t+1
z;i

�
under the quadratic error loss function will

be the mean of the posterior structure function, given by letting yjz;i = exp
�
djz;i


j
z

�
in Eqs(22 and 23),

for the case of the Exponential, Gamma and Weibull and GB2 respectively.

4 The Optimal BMS Derived by Updating the Posterior Mean

We model the number and cost of claims using the �nite Negative Binomial and Pareto mixture models
respectively. The optimal BMS we propose is derived by updating the mean claim frequency and the
mean claim severity, assuming independence between the two components. Our analysis in Section 4.1 is
based only on the a posteriori criteria while in Section 4.2 is based both on the a priori and a posteriori
criteria.

4.1 A BMS Based on the a Posteriori Criteria

Generalizing the structure used by Lemaire (1995) and Frangos and Vrontos (2001) we present an optimal
BMS derived by updating the posterior mean.

4.1.1 Finite Negative Binomial Mixture Distribution

As previously, the portfolio is considered to be heterogeneous and all policyholders have constant over
time but unequal underlying risks of having an accident. We assume that the number of claims given
the mean claim frequency, kj�, is distributed as a Poisson(�) random variable and that the structure
function follows an n-component mixture of Gamma distributions which has a pdf of the form

u (�) =
nX
z=1

�z
��z�1��zz exp (��z�)

� (�z)
;

�; �z; �z > 0;
nX
z=1

�z = 1; with mean E(�) =
nX
z=1

�z
�z
�z
: Then the unconditional distribution of the

number of claims k is an n-component mixture of Negative Binomial distributions7 with probability
density function

7Note that the �nite Negative Binomial(�z ; �z) mixture, derived by updating the posterior mean, is given from a
reparameterization of the pdf of the �nite NBI(�z ; �z) mixture, derived by updating the posterior probability, if we let
�z =

�z
�z

and �z = 1
�z
; for z = 1; :::; n.
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P (k) =
nX
z=1

�z

�
k + �z � 1

k

�
p�zz qkz ; pz =

�
�z

1 + �z

�
; qz =

�
1

1 + �z

�
: (24)

Consider a policyholder with claim history k1; :::; kt, where kj is the number of claims that the policy-
holder had in year j; j = 1; :::; t. Let K denote the total number of claims in t years. Applying Bayes
theorem, one can �nd that the posterior structure function, u (�jk1; :::; kt) ; for a policyholder or a group
of policyholders with claim history k1; :::; kt is given by

u (�jk1; :::; kt) =
nX
z=1

�z
(�z + t)

K+�z �K+�z�1e�(�z+t)�

� (�z +K)
; (25)

which is the pdf of an n-component mixture of Gamma densities. Consequently, using the quadratic
error loss function, the optimal choice of �̂t+1 for a policyholder with claim history k1; :::; kt is the mean
of the posterior structure function, that is

�̂t+1 (k1; :::; kt) =
nX
z=1

�z
K + �z
�z + t

: (26)

4.1.2 Finite Pareto Mixture Distribution

We consider a heterogeneous portfolio with respect to the mean claim size of each policyholder. Assume
that the claim severity given the mean claim severity, xjy, is distributed according to an Exponential(x)
distribution and that the structure function follows an n-component mixture of Inverse Gamma distrib-
utions, with pdf given by

g (y) =
nX
z=1

�z

1
mz
exp

�
�mz

y

�
�

y
mz

�sz+1
� (sz)

;

y > 0; sz > 0;mz > 0,
nX
z=1

�z = 1, with mean E(y) =
nX
z=1

�z
mz

sz�1 : Then the unconditional distribution of

the claim severity x will be an n-component mixture of Pareto distributions with pdf

f (x) =

nX
z=1

�zszm
sz
z (x+mz)

�sz�1
: (27)

Consider that a policyholder stays in the portfolio for t years with claims in year j; kj , and their total
number of claims in t years is denoted by K: As before by xk is denoted the claim amount for the kth
claim. Then, the information we have for their claim size history will be in the form of a vector x1; :::; xK
and the total claim amount for that speci�c policyholder over the t years that they are in the portfolio

will be equal to
KX
k=1

xk. Applying Bayes theorem, we �nd that the posterior structure function of the

mean claim size y, given the policyholder�s claim size history x1; :::; xK ; denoted as g (yjx1; :::; xK) ; is
given by

g (yjx1; :::; xK) =
nX
z=1

�z

 
mz +

KX
k=1

xk

!K+sz
e�

0BBB@mz+

KX
k=1

xk

1CCCA
y

yK+sz+1� (K + sz)
; (28)

which is the pdf of an n-component mixture of Inverse Gamma densities. Consequently, using the
quadratic error loss function, the optimal choice of ŷt+1 for a policyholder with claim size history x1; :::; xK
is the mean of the posterior structure function, that is

ŷt+1 (x1; :::; xK) =
nX
z=1

�z

mz +
KX
k=1

xk

K + sz � 1
: (29)
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4.2 A BMS Based Both on the a Priori and the a Posteriori Criteria

In this case, the generalized BMS obtained for the frequency component will be derived as a generalization
of the structure proposed by Dionne and Vanasse (1989, 1992) and the generalized system obtained for
the severity component will be derived as a generalization of the setup used by Frangos and Vrontos
(2001).

4.2.1 Finite Negative Binomial Mixture Regression Model

Consider a policyholder i with an experience of t periods whose number of claims for period j, denoted as
Kj
i are independent. We assume that K

j
i follows Poisson distribution with parameter �

j : We consider a
heterogeneous portfolio of n categories of policyholders, with expected number of claims of the individual
i who belongs to the zth category denoted as �jz;i; z = 1; :::; n: We allow �jz vary from one individual

to another. Let �jz;i = exp
�
cjz;i�

j
z

�
; where cjz;i

�
cjz;i;1; :::; c

j
z;i;h

�
is the vector of h individual charac-

teristics and �jz is the vector of the coe¢ cients. The conditional to c
j
z;i probability, P

�
Kj
i = kjcjz;i

�
;

that policyholder i will be involved in k accidents during the period j is given by Eq.(4), for �jz;i =

exp
�
cjz;i�

j
z

�
.

For the determination of the expected number of claims in this model we assume that the h individual
characteristics provide enough information. However, if one assumes that the a priori rating variables
do not contain all the signi�cant information for the expected number of claims then a random variable
"i must be introduced into the regression component. According to Gourieroux, Montfort and Trognon
(1984 a), (1984 b) we can write

�ji = exp
�
cjz;i�

j
z + "i

�
= exp

�
cjz;i�

j
z

�
ui;

where ui = exp ("i) ; yielding a random �ji . Assume that ui follows an n�component gamma mixture
distribution with pdf

� (ui) =
nX
z=1

�z
u

1
�z
�1

i
1
�z

1
�z exp

�
� 1
�z
ui

�
�
�
1
�z

� ;

ui > 0; �z > 0 for z = 1; :::; n;
nX
z=1

�z = 1 with mean E(ui) = 1. Under this assumption the conditional

distribution of Kj
i jc

j
z;i becomes an n-component Negative Binomial mixture distribution with pdf given

by Eq.(5), for �jz;i = exp
�
cjz;i�

j
z

�
: Then the posterior distribution of the mean claim frequency �t+1i for

an individual i observed over t+1 periods with K1
i ; :::;K

t
i claim history and c

1
i;z; :::; c

t+1
i;z characteristics is

obtained using Bayes theorem and is given by an n-component Gamma mixture with updated parameters
1
�z
+K and Sji;z; with pdf

f
�
�t+1i jK1

i ; :::;K
t
i ; c

1
i;z; :::; c

t
i;z

�
=

nX
z=1

�z

�
Sji;z

�K+ 1
�z �

�t+1i

�K+ 1
�z
�1
exp

h
�Sji;z�

t+1
i

i
�
�
1
�z
+K

� ;

where Sji;z =

1
�z
+

tX
j=1

exp(cjz;i�
j
z)

exp(ct+1z;i �
t+1
z )

with ui > 0; �z > 0 and
nX
z=1

�z = 1. Using the quadratic loss function,

one can �nd that the optimal estimator of �t+1i is the mean of the posterior structure function given by

�̂
t+1

i

�
K1
i ; :::;K

t
i ; c

1
i;z; :::; c

t+1
i;z

�
=

nX
z=1

�z exp
�
ct+1z;i �

t+1
z

�
2666664

1
�z
+

tX
j=1

Kj
i

1
�z
+

tX
j=1

exp
�
cjz;i�

j
z

�
3777775 : (30)
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4.2.2 Finite Pareto Mixture Regression Model

Consider a policyholder i with an experience of t periods. Assume that the number of claims of the
individual i for period j are independent and is denoted by Kj

i and by Xj
i;k is denoted the loss incurred

from their claim k for the period j. We consider that Xj
i;k follows the Exponential distribution with mean

claim severity for period j; yj :We allow the yj parameter to vary from one individual to another, assuming

that the expected claim severity yjz;i is a function of the vector d
j
z;i

�
djz;i;1; :::; d

j
z;i;h

�
of h individual

characteristics, which are represented using di¤erent a priori rating variables. Since policyholders have
di¤erent mean claim severity, it is fair for each policyholder to pay a premium proportional to the risk

they impose on the pool. Speci�cally, we assume that yjz;i = exp
�
djz;i


j
z

�
, where 
jz is the vector of

the coe¢ cients. Then, the conditional to djz;i pdf of the claim size x, f
�
xjdjz;i

�
; for a claim k of a

policyholder i in period j; is given by Eq.(8), employing yjz;i = exp
�
djz;i


j
z

�
:

For the determination of the expected claim severity in this model we assume that the h individual
characteristics provide enough information. Nevertheless, if one assumes that the a priori rating variables
do not contain all the signi�cant information for the mean claim severity then a random variable �i must
be introduced into the regression component. Thus we can write

yji = exp
�
djz;i


j
z + �i

�
= exp

�
djz;i


j
z

�
wi;

where wi = exp (�i) ; yielding a random yji . We assume that wi follows an n-component Inverse Gamma
mixture distribution with pdf

! (wi) =

nX
z=1

�z

1
(sz�1) exp

�
� (sz�1)

wi

�
�

wi
sz�1

�sz+1
� (sz)

;

wi > 0; sz > 0 for z = 1; :::; n;

nX
z=1

�z = 1 with mean E(wi) = 1. It can be shown that the above

parameterization does not a¤ect the results if there is a constant term in the regression. We chose
E(wi) = 1 in order to have E(�i) = 0. Under this assumption the conditional distribution of X

j
i;kjd

j
z;i

becomes

P
�
Xj
i;kjd

j
z;i

�
=

nX
z=1

�zsz

�
(sz � 1) exp

�
djz;i


j
z

��sz
�
x+ (sz � 1) exp

�
djz;i


j
z

��sz+1 ;
which is an n-component Pareto mixture distribution with parameters sz and (sz � 1) exp

�
djz;i


j
z

�
and

has E(Xj
i;kjd

j
z;i) =

nX
z=1

�z exp
�
djz;i


j
z

�
: The posterior pdf of the mean claim severity yt+1i for an individ-

ual i observed over t+1 periods, with X1
i;1;X

2
i;2; :::; X

t
i;Kt

i
claim size history and d1i ; :::; d

t+1
i characteristics,

is obtained applying Bayes theorem and is an n-component inverse gamma mixture with updated para-
meters, given by

g
�
yt+1i jX1

i;1;X
2
i;2; :::; X

t
i;Kt

i
; d1i;z; :::; d

t+1
i;z

�
=

nX
z=1

�z

1

Cj
i;z

exp

�
�Cj

i;z

yji

�
�

yji
Cj
i;z

�K+sz+1
� (sz +K)

;

for yji > 0; sz > 0 and z = 1; :::; n;
nX
z=1

�z = 1; whereC
j
i;z =

2666664(sz � 1) +
tX

j=1

K
j
iX

k=1

Xj
i;k

exp(djz;i

j
z)

3777775 exp
�
dt+1z;i 


t+1
z

�
:
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Using the quadratic loss function, the optimal estimator of yt+1i will be the mean of the posterior
structure function, given by

ŷt+1i

�
X1
i;1;X

2
i;2; :::; X

t
i;Kt

i
; d1i;z; :::; d

t+1
i;z

�
=

nX
z=1

�z exp
�
dt+1z;i 


t+1
z

�
2666666666664

(sz � 1) +
tX

j=1

K
j
iX

k=1

Xj
i;k

exp(djz;i

j
z)

sz +K � 1

3777777777775
: (31)

5 Numerical Illustration

The data were kindly provided by a Greek insurance company. In our application we �t the Poisson
and Negative Binomial distributions and their two component mixtures on the number of claims and
the Exponential, Gamma, Weibull, GB2 and Pareto and their two and three component mixtures on
the claim sizes. Furthermore, we introduce a regression component in the above models and we include
risk classifying characteristics so as to use all the available information in the estimation of the claim
frequency and severity distributions. We give emphasis on both the analysis of the claim frequency and
severity using two and/or three component mixtures of distributions and generalized linear models (glm)
as these methods have not been extensively studied in the BMS literature. The location and weight of
these components are estimated from the data employing the EM algorithm. The number of components
was chosen based on the information we had from the frequency and severity data respectively8 . The
distributions and regression models were estimated using the GAMLSS package in R.

5.1 Modelling Results

The available a priori rating variables we employ are the Bonus Malus (BM) class, the horsepower (HP)
of the car and gender of the driver. The variable BM class divides the classes of the current Greek BMS
into �ve categories of drivers, those who belong to BM classes: C1= "1-2", C2 = "3-5", C3 = "6-9",
C4 = "10" and C5 = "11-20". The variable HP consists of eleven categories of cars, those with a HP
between: C1 = "0-33", C2 = "34-44", C3 = "45-55", C4 = "56-66", C5 = "67-74", C6 = "75-82",
C7 = "83-90", C8 = "91-99", C9 ="100-110", C10 = "111-121" and C11 = "122-132". Finally, the
gender consists of three categories: M = "male", F = "female" and B = "both", since, data for �eet
vehicles used by either male or female drivers were also available, i.e. shared use. As suggested by
Rigby and Stasinopoulos (2005 and 2009), model selection was performed using the Generalized Akaike
information criterion (GAIC) in order to �nd the variables that are considered as better predictors. The
claim frequency and severity models we consider in our application were the best �tted models.
In what follows, for brevity, we present only the values of the estimated parameters of the claim

severity models, i.e. the Exponential, Gamma, Weibull, GB2 and Pareto9 and their two and three
component mixture regression models for assessing claim severity. Tables 1 and 2 summarize our �ndings
with respect to the one, two and three component mixture models respectively10 .

8 In principle one could use more components regarding the data set examined and then select the best models.
9The GAMLSS package allows us to �nd the maximum likelihood estimators of the parameters of the regres-

sion model where the distribution of the response variable is the Pareto2 (m0; s0) distribution, with pdf given by

f (x) = s0m0s0 (x+m0)
�s0�1

: The Pareto(m; s) response distribution can be derived from a reparameterization of the

pdf of the Pareto2 (m0; s0) distribution with s0 = s and m0 = (s0 � 1)m. Thus ŝ = ŝ0 and m̂ = m̂0

ŝ0�1 :

10Note that a * in Tables 1 and 2 indicates the estimated values which are statistically signi�cant at a 5% threshold.
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Table 1: Results of the Fitted One and Two Component Severity Mixture Regression Models
EXP 2C EXP GA 2C GA WEI 2C WEI GB2 2C GB2 PA 2C PA

C1 C2 C1 C2
�1 �2 �1 �2 �1 �2 �1 �2 �1 �2
0.509 0.491 0.486 0.514 0.456 0.544 0.619 0.381 0.526 0.474

Variable
Intercept 5.746� 5.746� 5.746� 5.746� 5.865� 5.249� 5.743� 6.573� 5.678� 5.462� 5.282� 5.988� 8.679� 7.678� 7.677�

BM
C2 -0.023 -0.0233 -0.023 -0.023 -0.053� 0.073� -0.041� 0.073 -0.053� 0.020 0.071� -0.050� -0.022 -0.020 -0.020
C3 0.113� 0.1128 0.113 0.113� 0.071� 0.185� 0.093� 0.183� 0.059� 0.149� 0.183� 0.089� 0.115� 0.117 0.117�

C4 -0.702� -0.703� -0.701� -0.702� -0.552� -1.678� -0.502� -1.659� -0.433� -1.279� -1.672� -0.628� -0.727� -0.765� -0.765�

C5 0.411 0.411 0.411 0.411� 0.383� 0.318� 0.405� 0.303 0.407� 0.420� 0.310� 0.318� 0.411 0.412 0.412
HP
C2 -0.210 -0.210 -0.210 -0.210� -0.161 -0.009 -0.199� 0.608 -0.423� -0.185� -0.024 -0.135 -0.211 -0.211 -0.211
C3 -0.201 -0.201 -0.201 -0.201� -0.185� 0.006 -0.234� 0.001 -0.207� -0.139� -0.008 -0.166� -0.198 -0.192 -0.192
C4 -0.016 -0.016 -0.017 -0.016 -0.032 0.171� -0.043 0.166 -0.005� 0.044 0.159� -0.000 -0.013 -0.007 -0.007
C5 0.003 0.003 0.003 0.003 0.002 0.205� -0.018 0.196 0.011� 0.058 0.191� 0.023 0.006 0.010 0.010
C6 0.138 0.138 0.138 0.138� 0.164� 0.278� 0.137� 0.276� 0.191� 0.160� 0.267� 0.178� 0.139 0.141 0.141
C7 0.157 0.158 0.157 0.157� 0.179� 0.319� 0.191� 0.302� 0.247� 0.197� 0.304� 0.166� 0.156 0.156 0.156
C8 0.339� 0.339 0.339� 0.339� 0.325� 0.364� 0.383� 0.371� 0.390� 0.295� 0.353� 0.314� 0.335� 0.331 0.331
C9 0.445� 0.445� 0.444� 0.445� 0.414� 0.416� 0.490� 0.434� 0.444� 0.384� 0.402� 0.400 0.441� 0.435� 0.435�

C10 0.656� 0.656� 0.656� 0.656� 0.626� 0.609� 0.756� 0.596� 0.753� 0.582� 0.602� 0.564 0.646� 0.633� 0.634�

C11 1.090� 1.090� 1.091� 1.090� 1.057� 0.689� 1.313� 1.522� 1.067� 0.859� 0.671� 0.860 1.070� 1.040� 1.039�

Gender
M -0.078� -0.079 -0.078 -0.078� 0.007 0.003 -0.078� -1.328 0.153� -0.109� 0.001 0.021 -0.081 -0.085 -0.085
F -0.023 -0.024 -0.023 -0.023 0.065 0.017 -0.026 -1.313 0.201� -0.067� 0.015 0.066� -0.026 -0.030 -0.030

Parameter - - - � �1 �2 � �1 �2 � �1 �2 s0 s01 s02
- - - 0.427� 0.096� 0.457� 2.234� 12.441� 2.234� 6.155� 17.350� 5.424� 2.962� 2.007� 2.007�

Parameter - - - - - - - - - � �1 �2 - - -
- - - - - - - - - 1.006� 0.878� 0.522� - - -

Parameter - - - - - - - - - s s1 s2 - - -
- - - - - - - - - 0.511� 1.136� 0.935� - - -

Table 2: Results of the Fitted Three Component Severity Mixture Regression Models
3C EXP 3C GA 3C WEI 3C GB2 3C PA

C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3
�1 �2 �3 �1 �2 �3 �1 �2 �3 �1 �2 �3 �1 �2 �3
0.310 0.355 0.335 0.012 0.467 0.521 0.373 0.495 0.132 0.604 0.201 0.195 0.363 0.310 0.327

Variable
Intercept 5.745� 5.745� 5.746� 5.094� 5.247� 5.890� 5.320� 5.723� 6.322� 5.283� 5.747� 6.448� 7.677� 7.678� 7.677�

BM
C2 -0.023 -0.023 -0.023 0.095� 0.069� -0.042� 0.071� -0.049� 0.070� 0.068� 0.059� -0.150 -0.020 -0.019 -0.020
C3 0.113 0.113 0.113 0.209 0.182� 0.082 0.181� 0.013 0.744� 0.182� 0.198� -0.074 0.117 0.117 0.117
C4 -0.702� -0.702� -0.702� -1.660� -1.663� -0.546� 0.647 -0.702� -0.033 -0.359� -2.251� -0.370� -0.764� -0.767� -0.765�

C5 0.411 0.411 0.411 0.248 0.334� 0.414 0.256 -0.930 0.319 0.318� 0.209� 0.608� 0.412 0.412 0.412
HP
C2 -0.210 -0.210 -0.210 0.480 -0.020 -0.149� 0.513 -0.283 -0.577 -0.024 0.090 -0.364� -0.211 -0.211 -0.211
C3 -0.201 -0.201 -0.201 0.391 -0.005� -0.174� 0.523 -0.336� -0.561 -0.003 0.088 -0.454� -0.192 -0.192 -0.192
C4 -0.016 -0.016 -0.016 1.635 0.160� -0.020 0.207� 0.304 -0.359 0.169� 0.253� -0.270� -0.007 -0.007 -0.007
C5 0.003 0.003 0.003 1.702 0.192� 0.012 0.103� 0.079 0.254 0.198� 0.263� -0.220 0.010 0.010 0.010
C6 0.138 0.138 0.138 1.706 0.270� 0.169 0.207� 0.304 -0.359 0.277� 0.310� 0.084 0.141 0.142 0.141
C7 0.157 0.157 0.158 0.407 0.307� 0.183� 0.209� 0.157 0.010 0.314� 0.298� 0.104 0.156 0.157 0.156
C8 0.339 0.339 0.339 3.027 0.352� 0.328� 0.305� 0.327� 0.037 0.359� 0.350� 0.318� 0.331 0.332 0.331
C9 0.444 0.444 0.445 0.360� 0.403� 0.424� 0.305 0.516� 0.037 0.416� 0.408� 0.416� 0.435 0.435 0.435
C10 0.656� 0.656� 0.656� 1.071� 2.228� 0.356� 0.541� 0.868� 0.423� 0.631� 0.525� 0.674� 0.634� 0.633� 0.634�

C11 1.088� 1.088� 1.094� 0.779� 0.681� 1.053� 0.568� 1.482� 0.362� 0.800� 0.768� 1.176� 1.039� 1.040� 1.039�

Gender
M -0.078 -0.078 -0.079 -1.311 0.017� -0.030� 0.018� -0.012 -0.492 -0.017 0.040 -0.064 -0.084 -0.085 -0.085
F -0.023 -0.023 -0.023 -1.307 0.031� 0.019 0.036� 0.056 -0.509 -0.001 0.023 0.054 -0.030 -0.031 -0.030

Parameter - - - �1 �2 �3 �1 �2 �3 �1 �2 �3 s01 s02 s03
- - - 9.3e-08� 0.096� 0.453� 12.317� 2.156� 14.311� 15.100� 11.790� 4.482� 2.007� 2.007� 2.007�

Parameter - - - - - - - - - �1 �2 �3 - -
- - - - - - - - - 0.932� 1.090� 0.398� - -

Parameter - - - - - - - - - s1 s2 s3 - -
- - - - - - - - - 0.994� 0.915� 1.146� - -
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5.2 Models Comparison

So far, we have several competing models for the claim frequency and severity components. The di¤er-
ences between models produce di¤erent premiums. Consequently, to distinguish between these models,
this section compares them so as to select the best for each case.

5.2.1 Claim Frequency Models

The distributions and regression models we have for the claim frequency component are all nested. In
order to accept or reject some models, classical hypothesis/speci�cation tests for nested models can be
used (see Boucher et al., 2007, 2008). The three standard tests are the log-likelihood ratio (LR), Wald,
and Score (or Lagrange Multiplier, LM) tests, which are all asymptotically equivalent. Another standard
method of comparing nested models (and also non-nested models) is to use the information criteria, such
as the Global Deviance, AIC or the SBC (see Rigby and Stasinopoulos, 2009). Table 3 reports our
results with respect to these nested comparisons. Speci�cally, from Panel A and Panel B we observe the
superiority of the two component mixture distributions/regression models vs those with one component
and the superiority of Negative Binomial vs Poisson. Overall, the best �t is given by the two component
Negative Binomial mixture distribution/regression model.

Table 3: Claim Frequency Models Comparison
Panel A: Based on Likelihood Ratio Test

Distributions Regression Models

Null Hypothesis Alternative Hypothesis Value Decision Value Decision
Poisson NBI 1032.2� Reject 649.2� Reject
Poisson Poisson (C = 2) 986.5� Reject 784.2� Reject
NBI NBI (C = 2) 1043� Reject 158.3� Reject

Poisson (C = 2) NBI (C = 2) 1088.7� Reject 23.3� Reject

Panel B: Based on Global Deviance, AIC, SBC

Distributions Regression Models

Model df AIC SBC df Global Deviance AIC SBC
Poisson 1 30368.8 30376.4 9 29067.1 29085.1 29154.0
NBI 2 29338.6 29353.9 10 28417.9 28437.9 28514.5

Poisson (C=2) 3 29386.3 29409.3 19 28282.9 28320.9 28466.4
NBI (C=2) 5 29307.3 29345.6 21 28259.6 28301.6 28462.4

5.2.2 Claim Severity Models

Regarding the claim severity component, there are both nested and non-nested distributions/regression
models comparisons.
Table 4 reports our results with respect to the nested comparisons. We observe that there is a

superiority of Gamma, Weibull and GB2 with two or three components vs Gamma, Weibull, and GB2
respectively, while for Exponential we do not reject the null hypothesis. In the case of Pareto distribution
we do not reject the null hypothesis, whereas when a regression component is included, the model with
two components is superior. When we compare the Exponential with one component vs the Gamma,
Weibull, and GB2 with two or three components, we can conclude that mixture distributions/regression
models are superior to the simpler ones. Also, the �nite mixtures of GB2 employing two and three
components provided better �tting performance compared to the Pareto with one component.
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Table 4: Nested Severity Models Comparison Based on Likelihood Ratio Test
Distributions Regression Models

Null Hypothesis Alternative Hypothesis Value p-value Decision Value p-value Decision
Exponential Gamma (C = 1) 4004.4 0.00 Reject 5544.9 0.00 Reject
Exponential Gamma (C = 2) 5844.3 0.00 Reject 9011.0 0.00 Reject
Exponential Gamma (C = 3) 6340.8 0.00 Reject 10283.5 0.00 Reject
Exponential Weibull (C = 1) 2893.4 0.00 Reject 4639.8 0.00 Reject
Exponential Weibull (C = 2) 5480.9 0.00 Reject 8215.6 0.00 Reject
Exponential Weibull (C = 3) 69784.8 0.00 Reject 7785.0 0.00 Reject
Exponential Exponential (C = 2) 0.00 1.00 No Reject 0.00 1.00 No Reject
Exponential Exponential (C = 3) 0.00 1.00 No Reject 0.00 1.00 No Reject

Exponential (C = 2) Exponential (C = 3) 0.00 1.00 No Reject 0.00 1.00 No Reject
Gamma Gamma (C = 2) 1839.9 0.00 Reject 3466.1 0.00 Reject
Gamma Gamma (C = 3) 2336.4 0.00 Reject 4738.6 0.00 Reject

Gamma (C = 2) Gamma (C = 3) 496.5 0.00 Reject 1272.5 0.00 Reject
Weibull Weibull (C = 2) 357.4 0.00 Reject 3575.8 0.00 Reject
Weibull Weibull (C = 3) 3282.3 0.00 Reject 3145.2 0.00 Reject

Weibull (C = 2) Weibull (C = 3) 694.8 0.00 Reject 430.6 0.00 Reject
GB2 GB2 (C = 2) 1095.5 0.00 Reject 2088 0.00 Reject
GB2 GB2 (C = 3) 1350.5 0.00 Reject 2807 0.00 Reject

GB2 (C = 2) GB2 (C = 3) 255 0.00 Reject 719 0.00 Reject
Pareto GB2 (C = 1) 5158.1 0.00 Reject 6925 0.00 Reject
Pareto GB2 (C = 2) 6253.6 0.00 Reject 9013 0.00 Reject
Pareto GB2 (C = 3) 6508.6 0.00 Reject 9732 0.00 Reject
Pareto Pareto (C = 2) 4.9 0.17 No Reject 367.2 0.00 Reject
Pareto Pareto (C = 3) 4.8 0.56 No Reject 232.3 0.00 Reject

Pareto (C = 2) Pareto (C = 3) 0.1 0.99 No Reject 0.1 1.00 No Reject

In Table 5 (Panels A and B) we compare the non-nested severity distributions/regression models.
Overall, with respect to Global Deviance, AIC and SBC criteria and the Vuong test, the best �t is given
by the GB2 when one, two or three components are used.

Table 5: Non - Nested Severity Models Comparison
Panel A: Based on Global Deviance, AIC, SBC

Distributions Regression Models

Model df AIC SBC df Global Deviance AIC SBC
Exponential 1 75946.5 75953.1 17 75520.6 75554.6 75667.3
Gamma 2 71944.1 71957.3 18 69975.7 70011.7 70131.0
Weibull 2 73055.1 73068.3 18 70880.8 70916.8 71036.1
GB2 4 70835.2 70861.7 20 68821.9 68861.9 68994.5
Pareto 2 75989.3 76002.5 18 75746.9 75782.9 75902.2

Exp (C=2) 3 75950.5 75970.4 35 75520.6 75590.6 75822.6
Gamma (C=2) 5 70110.2 70143.4 37 66509.6 66583.6 66828.8
Weibull (C=2) 5 70473.6 70506.8 37 67305.0 67379.0 67624.3
GB2 (C=2) 9 69749.7 69809.4 41 66733.9 66815.9 67087.7
Pareto (C=2) 5 76000.2 76033.3 37 76114.1 76188.1 76433.4
Exp (C=3) 5 75954.5 75987.6 53 75520.6 75626.6 75978.0

Gamma (C=3) 8 69619.7 69672.7 56 65237.1 65349.1 65720.3
Weibull (C=3) 8 69784.8 69837.8 56 67735.6 67847.6 68218.8
GB2 (C=3) 14 69504.7 69597.5 62 66014.9 66138.9 66549.9
Pareto (C=3) 8 76006.1 76059.2 56 76114.2 76226.2 76597.4
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Table 5 (continued)

Panel B: Based on Vuong test

Distributions Regression Models

Model 1 Model 2 Vuong Test p-value Decision Vuong Test p-value Decision
Exponential GB2 -33.81 0.00 GB2 -35.49 0.00 GB2
Exponential Pareto 17.38 0.00 Exp 99.87 0.00 Exp
Gamma GB2 -9.05 0.00 GB2 -10.76 0.00 GB2
Gamma Pareto 23.64 0.00 Gamma 36.79 0.00 Gamma
Weibull Gamma -14.38 0.00 Gamma -10.71 0.00 Gamma
Weibull GB2 -12.43 0.00 GB2 -11.80 0.00 GB2
Weibull Pareto 14.73 0.00 Weibull 34.39 0.00 Weibull

Exp (C=2) GB2 (C=2) -43.96 0.00 GB2 -47.35 0.00 GB2
Exp (C=2) Pareto (C=2) 16.56 0.00 Exp 110.19 0.00 Exp

Gamma (C=2) GB2 (C=2) -8.29 0.00 GB2 -0.45 0.32 None
Gamma (C=2) Pareto (C=2) 38.48 0.00 Gamma 51.19 0.00 Gamma
Weibull (C=2) Gamma (C=2) -4.67 0.00 Gamma -6.00 0.00 Gamma
Weibull (C=2) GB2 (C=2) -6.45 0.00 GB2 -6.42 0.00 GB2
Weibull (C=2) Pareto (C=2) 32.39 0.00 Weibull 49.73 0.00 Weibull
Exp (C=3) GB2 (C=3) -47.99 0.00 GB2 -37.31 0.00 GB2
Exp (C=3) Pareto (C=3) 16.65 0.00 Exp 110.12 0.00 Exp

Gamma (C=3) GB2 (C=3) -33.84 0.00 GB2 8.57 0.00 Gamma
Gamma (C=3) Pareto (C=3) 47.59 0.00 Gamma 49.83 0.00 Gamma
Weibull (C=3) Gamma (C=3) -27.98 0.00 Gamma -5.84 0.00 Gamma
Weibull (C=3) GB2 (C=3) 13.79 0.00 Weibull -3.18 0.00 Weibull
Weibull (C=3) Pareto (C=3) 45.65 0.00 Weibull 51.04 0.00 Weibull

5.3 Optimal BMS

Based on the current methodology as presented in Sections 3 and 4, we compute an optimal BMS with
a frequency and a severity component based on the a posteriori criteria and based both on the a priori
and the a posteriori criteria. When both criteria are considered, we examine a group of policyholders
who share the following common characteristics: We consider that the policyholder i is a woman, who
belongs to the �rst BM category, and has a car with HP between 0-33. We calculate the premium rates
using the net premium principle for the set of the distributions/regression models that were presented in
these sections. These premium rates will be divided by the premium when t = 0; since we are interested
in the di¤erences between various classes and the results are presented so that the premium for a new
policyholder is 100.
We consider �rst the optimal BMS resulting from the claim frequency distributions/regression models.

For the two component Poisson mixture we assume that a policyholder who belongs to the �rst category
is a good risk while one who belongs to the second category is a bad risk. In the Table 6 (Panels A
and B), we consider that the speci�c policyholder belongs to the second category11 . If the policyholder
i has a claim free year, the probability of being a bad risk and the premium rates reduce, whereas if she
has one or more claims, the probability of being a bad risk and the premium rates increase, resulting
in bonus or malus respectively. For example, from Panel B we observe that if the policyholder has one
claim in the �rst year, she faces a malus of 72.44% in her premium.

Table 6: Optimal BMS, Two Component Poisson Mixture Model
Panel A: Optimal BMS - A Posteriori Criteria Panel B: Optimal BMS - Both Criteria

Number of Claims Number of Claims
Year k Year k
t 0 1 2 3 4 t 0 1 2 3 4
0 100.00 0.00 0.00 0.00 0.00 0 100.00 0.00 0.00 0.00 0.00
1 89.02 165.00 276.11 328.50 340.90 1 88.27 172.44 322.10 395.03 410.54
2 81.00 141.13 254.10 321.76 339.53 2 80.33 142.15 288.65 385.29 408.81

11The analogous procedure can be applied for a policyholder who belongs in the �rst category.
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As we mentioned previously, the optimal BMS resulting from the two component Negative Binomial
mixture can be derived in two alternative (not equivalent) ways, either by updating the posterior proba-
bility or by updating the posterior mean. Table 7 (Panels A and B) summarizes our �ndings. Note that
in the case of updating the posterior probability based on the a posteriori criteria (Panel A, A1) and in
the case of updating the posterior probability (Panel B, B1) and posterior mean (see Panel B, B2) based
on both criteria, the explicit claim frequency history determines the calculation of the premium rates
and not just the total number of claims as in the case of the two component Poisson mixture. For this
reason in Panel A, A1 and Panel B we specify the exact order of the claims history in order to calculate
the premium rates. For instance, when we update the posterior probability (Panel B, B1) and consider
a bad risk policyholder, we observe that if she has at t = 2 claim frequency history k1 = 0; k2 = 2 (i.e.
total number of claims K = 2 at t = 2) then the posterior probability of being a bad risk increases and
thus her premium increases from 100 to 222.03 while if she has k1 = 1; k2 = 1 claim frequency history
(i.e. total number of claims K = 2 at t = 2) then the posterior probability of being a bad risk increases
and subsequently her premium increases from 100 to 219.72. When we update the posterior mean based
on both criteria (Panel B, B2) we see that if she has at t = 2 claim frequency history k1 = 0; k2 = 2 then
her premium increases from 100 to 237.37, while if she has k1 = 1; k2 = 1 claim frequency history her
premium reaches 233.12.

Table 7: Optimal BMS, Two Component Negative Binomial Mixture Model
Panel A: Optimal BMS - A Posteriori Criteria Panel B: Optimal BMS - Both Criteria

A1: Update of the B1: Update of the B2: Update of the
Posterior Probability Posterior Probability Posterior Mean

Year Number of Claims kt
t = 0 k0 = 0 100 100 100

t = 1
k1 = 0
k1 = 1
k1 = 2

99.56
102.94
105.08

92.43
146.16
243.16

95.14
208.54
245.46

t = 2
k1 = 0; k2 = 0
k1 = 0; k2 = 1
k1 = 0; k2 = 2

99.13
102.50
104.64

86.67
129.65
222.03

90.99
201.72
237.37

t = 2
k1 = 1; k2 = 0
k1 = 1; k2 = 1
k1 = 1; k2 = 2

102.50
105.85
107.88

129.65
219.72
299.50

109.49
233.12
342.75

t = 2
k1 = 2; k2 = 0
k1 = 2; k2 = 1
k1 = 2; k2 = 2

104.64
107.88
109.77

222.03
299.50
329.81

233.12
342.75
388.13

A2: Update of the Posterior Mean

Number of Claims
Year k
t 0 1 2 3 4
0 100.00 0.00 0.00 0.00 0.00
1 97.12 119.58 142.04 164.49 186.95
2 94.42 116.21 138.00 159.79 181.58

For the severity component, we consider the optimal BMS determined by the two and three component
Exponential, Gamma, Weibull and GB2 mixture distributions/regression models for the case of updating
the posterior probability and the system resulting from the two and three component Pareto mixture
distribution/regression model for the case of updating the posterior mean. Table 8 (Panels A and B)
displays the premium rates resulting from these models with respect to the a posteriori criteria (Panel
A, column A1 and Panel B, column B1) and to both the a priori and the a posteriori criteria (Panel
A, column A2 and Panel B, column B2). From Table 8 we observe that the premium is equal to 100,
the basic premium, in the case of the two and three component Exponential mixture, revealing the
unnecessity of the two and three components. As expected, in the case of the two and three component
Gamma, Weibull, GB2 and Pareto mixtures the premium values increase proportionally to the claim
severity. For example, from Panel A, column A2, and Panel B, column B2, we see that for one claim size
of 400 in the �rst year the premium increases from 100 to 130.884, 126.621, 161.237 and 101.043, and
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to 129.747, 116.587, 140.785 and 101.105 for the case of the Gamma, Weibull, GB2 and Pareto mixture
regression models with two and three components respectively.

Table 8: Optimal BMS, Two and Three Component Mixture Models for Assessing Claim Severity, One
Claim in the First Year of Observation

Panel A: Two component Mixture Models

Claim Size Exponential Gamma Weibull GB2 Pareto

A1 A2 A1 A2 A1 A2 A1 A2 A1 A2
200 100 83.856 73.436 82.1181 75.316 83.634 69.528 99.488 92.945
300 100 92.995 130.883 107.106 126.621 94.622 161.049 99.883 96.994
400 100 120.098 130.884 122.941 126.621 118.517 161.237 100.279 101.043

Panel B: Three component Mixture Models

Claim Size Exponential Gamma Weibull GB2 Pareto

B1 B2 B1 B2 B1 B2 B1 B2 B1 B2
200 100 79.481 75.180 80.818 81.179 77.176 72.365 99.485 93.003
300 100 93.682 129.744 113.637 115.930 89.795 125.452 99.878 97.054
400 100 128.462 129.747 121.039 116.587 145.876 140.785 100.271 101.105

Finally, we present the optimal BMS with a frequency and severity component. The premiums
resulting from this system are calculated via the product of the expected claim frequency and the expected
claim severity with independence between the two components assumed. Table 9 (Panels A, B and C)
summarizes our �ndings with respect to the a posteriori criteria (Panel A, column A1, Panel B, column
B1 and Panel C, column C1) and to both the a priori and the a posteriori criteria (Panel A, column A2,
Panel B, column B2 and Panel C, column C2). We observe that for one claim size of 400 in the �rst year
the premium increases from 100 to 172.44, 225.696, 218.344, 278.038, 174.240 in the two component
Poisson mixture model and the corresponding two component severity models (Panel A, column A2),
to 146.16, 191.300, 185.070, 235.664, 174.240 in the two component Negative Binomial mixture model
(updating the posterior probability) and the corresponding two component severity models (Panel B,
column B2), to 208.54, 272.945, 264.054, 336.244, 210.716 in the two component Negative Binomial
mixture model (updating the posterior mean) and the corresponding two component severity models
(Panel C, column C2).
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Table 9: Optimal BMS Based on the Alternative Two Component Poisson Mixture Models for Assessing
Claim Frequency and the Various Two Component Mixture Models for Assessing Claim Severity, One
Claim in the First Year of Observation

Panel A: Two Component Poisson Mixture Model
(Update of the Posterior Probability)

Claim Size POIS-EXP POIS-GA POIS-WEI POIS-GB2 POIS-PA

A1 A2 A1 A2 A1 A2 A1 A2 A1 A2
200 165.00 172.44 138.362 126.634 135.495 129.875 138.000 119.8955 164.155 160.274
300 165.00 172.44 153.442 225.693 176.726 218.344 156.127 277.713 164.808 167.257
400 165.00 172.44 198.162 225.696 202.853 218.344 195.553 278.038 165.460 174.240

Panel B: Two Component Negative Binomial Mixture Model
(Update of the Posterior Probability)

Claim Size NB-EXP NB-GA NB-WEI NB-GB2 NB-PA

B1 B2 B1 B2 B1 B2 B1 B2 B1 B2
200 102.94 146.16 86.321 107.335 84.532 110.082 86.093 101.622 102.413 160.274
300 102.94 146.16 95.729 191.298 110.256 185.070 97.404 235.390 102.820 167.260
400 102.94 146.16 123.629 191.300 126.556 185.070 122.001 235.664 103.230 174.240

Panel C: Two Component Negative Binomial Mixture Model
(Update of the Posterior Mean)

Claim Size NB-EXP NB-GA NB-WEI NB-GB2 NB-PA

C1 C2 C1 C2 C1 C2 C1 C2 C1 C2
200 119.58 208.54 100.275 153.144 98.197 157.064 100.001 144.994 118.970 193.830
300 119.58 208.54 111.203 272.942 128.078 264.054 113.150 335.852 119.441 202.272
400 119.58 208.54 143.613 272.945 147.013 264.054 141.723 336.244 119.913 210.716

6 Conclusions

In this paper, we developed the design of an optimal BMS that takes into account the number of
claims of each policyholder and the exact size of loss that these claims incurred using various �nite
mixtures of distributions. For the frequency component we considered that the number of claims is
distributed according to a �nite Poisson, Delaporte and Negative Binomial mixture, and for the severity
component we consider that the losses are distributed according to a �nite Exponential, Gamma, Weibull
and GB2 mixture. These optimal BMS were obtained by updating the posterior probability of the
policyholder�s risk class. Furthermore, we extended the setup of Frangos and Vrontos (2001) for Negative
Binomial and Pareto mixtures and designed an optimal BMS based on posterior distributions of the
mean claim frequency and size, given the information we have about the claim frequency and size history
for each policyholder. We have also developed a generalized BMS that integrates the a priori and a
posteriori information on an individual basis, extending the framework developed by Dionne and Vanasse
(1989, 1992) and Frangos and Vrontos (2001) using �nite mixtures of regression models that allow us
to account for unobserved heterogeneity. The optimal BMS obtained have all the attractive properties
of the BMS developed by Lemaire (1995), Frangos and Vrontos (2001) and Dionne and Vanasse (1989,
1992). Extensions to other distributions/regression models can be obtained in a similar straightforward
way.
A possible line of further research is to apply the same mixtures to all the contracts of the same

insured so a dependence between the contracts can be modeled (longitudinal data) see, for instance,
Boucher et al. (2007).
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