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Abstract

Integrated covariance matrices arise in intra-day models of asset returns, which allow volatility to

change across the trading day. When the number of assets is large, the natural estimator of such

a matrix suffers from bias, contributed from extreme eigenvalues. We introduce a novel nonlinear

shrinkage estimator for the integrated covariance matrix which shrinks the extreme eigenvalues of a

realized covariance matrix back to an acceptable level, and enjoys a certain asymptotic efficiency when

the number of assets is of the same order as the number of data points. Novel maximum exposure

and actual risk bounds are derived when our estimator is used in constructing the minimum variance

portfolio. Compared to other methods, our estimator performs favorably in both simulations and a

real data analysis.
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1 Introduction

Intra-day data on financial asset returns are of increasing interest for portfolio allocation and risk manage-

ment (Fan et al., 2012). Models for such data need to account for rapid changes in volatility during a trading

day. To capture such changes, it is natural to consider covolatility processes and to combine covariances

between pairs of asset returns over time through what is called an integrated covariance matrix, defined

formally in the next section. There are various challenges to estimating this matrix (Aı̈t-Sahalia et al.,

2005, Asparouhova et al., 2013). In this paper, we consider the bias arising when p, the number of assets

observed, is large. Specifically, we suppose that p is the same order as the sample size n, i.e., p/n → c > 0

for some constant c > 0. If prices are observed at synchronous time points, a natural estimator of the

integrated covariance matrix can be obtained from an empirical covariance matrix of the observed returns.

However, this estimator suffers from bias, which may be expressed via bias of its extreme eigenvalues

(Bai & Silverstein, 2010).

To rectify this bias problem, many researchers have focused on regularized estimation of covariance

or precision matrices with special structures, from banded (Bickel & Levina, 2008b) or sparse covariance

matrices (Bickel & Levina, 2008a, Cai & Zhou, 2012, Lam & Fan, 2009, Rothman et al., 2008), sparse pre-

cision matrices (Friedman et al., 2008, Meinshausen & Bühlmann, 2006), sparse modified Cholesky factors

(Pourahmadi, 2007), to a spiked covariance matrix from a factor model (Fan et al., 2008, 2011), or combi-

nations of these (Fan et al., 2013).

Ledoit & Wolf (2012) proposed a nonlinear shrinkage formula for shrinking the extreme eigenvalues in

a sample covariance matrix without a particular structure for the true covariance matrix. However, their

approach is not applicable to non-identically distributed random vectors, as arise with intra-day return

data.

Lam (2016) proves that by splitting the data into two independent portions, one can achieve the same

nonlinear shrinkage asymptotically without the need to evaluate a shrinkage formula. In this paper, we

modify this method to achieve nonlinear shrinkage of eigenvalues in a covariance matrix. Our method

produces a positive definite estimator of the integrated covariance matrix asymptotically almost surely,

and involves only eigen-decompositions of matrices of size p × p, which is not computationally expensive

when p is of order of hundreds, the typical order for p in portfolio allocation. We also present the maximum

exposure and actual risk bounds for minimum variance portfolio construction using our estimator. The

maximum exposure bound is of particular importance since it is shared by the theoretical minimum variance

portfolio which assumes the integrated covariance matrix is known.

1



2 Framework and Methodology

2.1 Integrated and realized covariance matrices

Let Xt = (X
(1)
t , . . . , X

(p)
t )T be a p-dimensional log-price diffusion process modeled by

dXt = µtdt+ΘtdWt (0 ≤ t ≤ 1), (2.1)

where µt is the drift, Θt is a p×pmatrix of instantaneous covolatility processes, andWt = (W
(1)
t , . . . ,W

(p)
t )T

is a p-dimensional standard Brownian motion. We want to estimate the integrated covariance matrix

Σp =

∫ 1

0

ΘtΘ
T

t dt. (2.2)

This matrix is important in risk management, hedging and pricing of financial derivatives or portfolio

allocation, to name but a few areas in finance (Hounyo, 2017). In portfolio allocation, Σp replaces the

usual population covariance matrix for inter-day data. If Θt is constant, then we can take Θt = Σ
1/2
p , and

Σp is just the usual covariance matrix for asset returns.

In this paper, we consider sparsely sampled return data synchronized by refresh times (Andersen et al.,

2001, Barndorff-Nielsen et al., 2011). Suppose we observeXt at synchronous time points τn,ℓ (ℓ = 0, . . . , n).

The realized covariance matrix is then

ΣRCV
p =

n∑

ℓ=1

∆Xℓ∆XT

ℓ , ∆Xℓ = Xτn,ℓ
−Xτn,ℓ−1

(ℓ = 1, . . . , n). (2.3)

Jacod & Protter (1998) shows that as n → ∞, ΣRCV
p → Σp weakly when p is fixed.

2.2 Time-variation adjusted realized covariance matrix

In this section, we present the method of Zheng & Li (2011). Write dX
(j)
t = µ

(j)
t +σ

(j)
t dZ

(j)
t (j = 1, . . . , p),

where µ
(j)
t , σ

(j)
t are assumed to be càdlàg over [0, 1], and the Z

(j)
t ’s are one-dimensional standard Brownian

motions. Define 〈X,Y 〉t to be the quadratic covariation between the processes X and Y .

Assumption 1. The correlation matrix process of Zt = (Z
(1)
t , . . . , Z

(p)
t )T, 〈Z(j), Z(k)〉t/t (j, k = 1, . . . , p),

is constant and non-zero on (0, 1] for each j, k. Furthermore, the correlation matrix process of Xt,
∫ t

0
σ
(j)
s σ

(k)
s d〈Z(j), Z(k)〉s{

∫ t

0
(σ

(j)
s )2ds

∫ t

0
(σ

(k)
s )2ds}−1/2 (j, k = 1, . . . , p), is constant on (0, 1] for each j, k.

Then, by Proposition 4 of Zheng & Li (2011), there exists a càdlàg process (γt)t∈[0,1] and a p×p matrix

Λ satisfying tr(ΛΛT) = p such that we can decompose Θt = γtΛ, implying that Σp =
( ∫ 1

0
γ2
t dt

)
ΛΛT. The
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time-variation adjusted realized covariance matrix is defined by

Σ̌p =
tr(ΣRCV

p )

p
Φ̌, Φ̌ =

p

n

n∑

ℓ=1

∆Xℓ∆XT

ℓ∥∥∆Xℓ

∥∥2 , (2.4)

where
∥∥ ·

∥∥ denotes the L2 norm of a vector. It is shown in Zheng & Li (2011) that tr(ΣRCV
p )/p is a good

estimator for
∫ 1

0
γ2
t dt, while Φ̌ estimates Φ = ΛΛT.

2.3 Nonlinear shrinkage estimator

The estimator Φ̌ is a sample covariance matrix of rℓ = p1/2∆Xℓ/
∥∥∆Xℓ

∥∥ (ℓ = 1, . . . , n), the self-normalized

returns. Under the setting p/n → c > 0, the eigenvalues in Φ̌ are biased estimators of those in Φ. The

way that each rℓ (ℓ = 1, . . . , n) is defined means that we cannot apply the nonlinear shrinkage formula in

Ledoit & Wolf (2012) directly. Instead, we use the data-splitting idea for nonlinear shrinkage of eigenvalues

in Lam (2016).

To this end, we permute the return dataM times. At the jth permutation, we split the data ∆X(j) into

two independent parts, say ∆X(j) = (∆X
(j)
1 ,∆X

(j)
2 ) (j = 1, . . . ,M), with ∆X

(j)
i having size p×ni (i = 1, 2)

such that n1 = m and n2 = n−m. Define Φ̃
(j)
i = n−1

i

∑
ℓ∈Ii,j

rℓr
T

ℓ , where Ii,j = {ℓ : ∆Xℓ ∈ ∆X
(j)
i } (i =

1, 2; j = 1, . . . ,M). Carrying out an eigen-analysis on Φ̃
(j)
1 , suppose Φ̃

(j)
1 = P

(j)
1 D

(j)
1 P

(j)T
1 (j = 1, . . . ,M).

Then we introduce our estimator as

Σ̂m,M =
tr(ΣRCV

p )

p

1

M

M∑

j=1

Φ̂(j), Φ̂(j) = P
(j)
1 diag(P

(j)T
1 Φ̃

(j)
2 P

(j)
1 )P

(j)T
1 , (2.5)

where diag(·) sets all non-diagonal elements of a matrix to 0. The estimator Φ̂(j)(j = 1, . . . ,M) belongs

to a class of rotation-equivariant estimator Φ(D) = P
(j)
1 DP

(j)T
1 , where D is diagonal. We choose D =

diag(P
(j)T
1 Φ̃

(j)
2 P

(j)
1 ) since diag(P

(j)T
1 ΦP

(j)
1 ) solves minD

∥∥P (j)
1 DP

(j)T
1 − Φ

∥∥
F
where

∥∥A
∥∥
F

= tr1/2(AAT),

and by Lemma 1, D(j) = diag(P
(j)T
1 Φ̃

(j)
2 P

(j)
1 ) estimates diag(P

(j)T
1 ΦP

(j)
1 ) well. We use the Frobenius norm

mainly for the ease of deriving theoretical results. The inverse Stein loss is also considered in Theorem 2.

3 Asymptotic Theory and Practical Implementation

We introduce four more assumptions needed for our results to hold.

Assumption 2. The drift in (2.1) satisfies µt = 0 for t ∈ [0, 1], and Θt is deterministic. All eigenvalues

of ΘtΘ
T

t are bounded uniformly from 0 and infinity in t ∈ [0, 1]. Also, M is finite.
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Assumption 3. The observation times τn,ℓ are independent of the log-price Xt, and there exists a constant

C > 0 such that for all positive integer n, maxℓ=1,...,n n(τn,ℓ − τn,ℓ−1) ≤ C.

Assumption 4. Let vn,1 ≥ · · · ≥ vn,p be the p eigenvalues of Φ. Let Hn(v) = p−1
∑p

i=1 1{vn,i≤v} be the

empirical distribution function of the vn,i’s. We assume Hn(v) converges to some non-random limit H at

every point of continuity of H.

Assumption 5. The support of H defined above is the union of a finite number of compact intervals

bounded away from zero and infinity. Also, there exists a compact interval in (0,+∞) that contains the

support of Hn for each n.

We set µt = 0 in Assumption 2 for the ease of proofs and presentation. If µt is slowly varying locally,

the results to be presented remain valid at the expense of longer proofs. The deterministic nature of Θt is

essential to the independence of the ∆Xℓ’s. The uniform bounds on the eigenvalues of ΘtΘ
T

t are needed

so that individual volatility process for each X
(i)
t is bounded uniformly, the integral

∫ 1

0
γ2
t dt > 0 uniformly,

and finally
∥∥Σp

∥∥ = O(1) uniformly. The last two assumptions are essentially Assumptions (A3) and (A4)

in Lam (2016) applied on Φ.

Lemma 1. Let Assumptions 1, 2 and 3 hold for Xt in (2.1). If p/n → c > 0 and
∑

n2≥1 pn
−5
2 < ∞, then

maxj=1,...,M

∥∥diag(P (j)T
1 Φ̃

(j)
2 P

(j)
1 )diag−1(P

(j)T
1 ΦP

(j)
1 )− 1

∥∥ → 0 almost surely.

With this result, we can present the following theorem.

Theorem 1. Let all the assumptions in Lemma 1 hold. Then Σ̂m,M defined in (2.5) is asymptotically

almost surely positive definite.

This is an important result since Σp is positive definite, which is not always the case for a realized

covariance matrix, especially when p > n.

To present the rest of the results, we introduce a benchmark ideal estimator,

Σideal =
(∫ 1

0

γ2
t dt

)
Pdiag(PTΦP )PT.

This is similar to Σ̂m,M defined in (2.5), except that tr(ΣRCV
p )/p is replaced by the population counter-

part
∫ 1

0
γ2
t dt, while Φ̂(j) is replaced by Pdiag(PTΦP )PT, where P is such that Φ̌ = PĎPT, the eigen-

decomposition of Φ̌ defined in (2.4). Define the efficiency loss of Σ̂ as

EffLoss(Σp, Σ̂) = 1−
L(Σp,ΣIdeal)

L(Σp, Σ̂)
,
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where L(Σp, Σ̂) is a loss function. We consider L(Σp, Σ̂) =
∥∥Σ̂−Σp

∥∥2
F
, the squared Frobenius loss, and the

inverse Stein loss L(Σp, Σ̂) = tr(ΣpΣ̂
−1) − log det(ΣpΣ̂

−1) − p. If Σ̂ incurs a larger loss then ΣIdeal, then

EffLoss(Σp, Σ̂) > 0, and vice versa.

Theorem 2. Let all the assumptions in Lemma 1 hold, together with Assumptions 4 and 5. Furthermore,

if n1/n → 1 and n2 → ∞, then EffLoss(Σp, Σ̂p) ≤ 0 asymptotically almost surely with respect to both the

squared Frobenius and the inverse Stein loss functions, provided p−1L(Σp,ΣIdeal) 6→ 0 almost surely.

The requirement p−1L(Σp,ΣIdeal) 6→ 0 almost surely eliminates the case Σp = (
∫ 1

0 γ2
t dt)Ip, when both

the loss functions attain 0 for ΣIdeal. Simulation confirms that Σ̂m,M performs well even in this special

case.

To find the best split location m empirically, we minimize

g(m) =
∥∥∥ 1

M

M∑

j=1

(Φ̂(j)
p − Φ̃

(j)
2 )

∥∥∥
2

F
.

In practice, we use M = 50 which provides a good trade-off between computational complexity and

estimation accuracy. We search the following split locations for minimizing g(m):

m = [2n1/2, 0.2n, 0.4n, 0.6n, 0.8n, n− 2.5n1/2, n− 1.5n1/2].

The location 2n1/2 is suitable for Σp = (
∫ 1

0
γ2
t dt)Ip, while [n−2.5n1/2] and [n−1.5n1/2] satisfy

∑
n2≥1 pn

−5
2 <

∞, n1/n → 1 and n2 → ∞ needed in Theorem 2. We include 0.2n to 0.8n for boosting finite sample per-

formance.

4 Empirical Results

4.1 Simulations with varying γt

In this section, we compare our method to banding (Bickel & Levina, 2008b), the grand average estimator

(Abadir et al., 2014), nonlinear shrinkage (Ledoit & Wolf, 2012), principal orthogonal complement thresh-

olding (Fan et al., 2013), the graphical lasso (Friedman et al., 2008), and pure adaptive soft-thresholding.

All these methods are applied to Φ̌ in (2.4).

Consider two different scenarios for the diffusion process {Xt}:
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Table 1: Mean loss for different methods. Standard errors are subscripted. For the Frobenius loss, all
values are multiplied by 10000. The realized covariance matrix is badly conditioned when n = p = 200,
so the inverse Stein loss does not exist. RCV, realized covariance; Grand Avg, grand average; NONLIN,
nonlinear shrinkage; POET, principal orthogonal complement thresholding; GLASSO, graphical lasso;
SCAD, adaptive thresholding with the smoothly clipped absolute deviation penalty.

p = 100 p = 200
n = 200 Design I Losses Design II Losses Design I Losses Design II Losses

Frobenius Inverse Frobenius Inverse Frobenius Inverse Frobenius Inverse
Stein Stein Stein Stein

RCV 944 329.711.7 2079 271.510.3 1574 − 3439 −

Proposed 613 18.70.9 1387 18.70.9 833 32.51.2 1856 32.41.1
Banding 737 38.18.7 16514 38.47.9 11215 76.023.1 25234 75.827.4
Grand avg 583 10.90.3 1307 10.90.3 763 27.10.6 1706 27.10.6
NONLIN 653 21.51.3 1477 21.61.3 913 134.91032.8 2047 66.7240.4
POET 773 11.30.6 1758 11.40.6 1124 24.80.9 2528 24.91.0
GLASSO 350 32.10.6 791 32.20.6 500 64.70.8 1121 64.70.7
SCAD 603 16.20.9 1357 16.20.9 883 54.53.8 1976 54.93.9

Design I: Piecewise constants. We take γt to be

γt =





0.01× 71/2 (0 ≤ t < 1/4; 3/4 ≤ t ≤ 1),

0.01 (1/4 ≤ t < 3/4).

Design II: Continuous path. We take γt to be

γt = {0.0009 + 0.0008 cos(2πt)}1/2 (0 ≤ t ≤ 1).

We assume Λ = (0.5|i−j|)i,j=1,...,p, and the observation times are τn,ℓ = ℓ/n (ℓ = 1, . . . , n). We generate

{Xt} using model (2.1) and get n = 200 observations, and consider p = 100, 200. For each design and (n, p)

combination, we repeat the simulations 500 times , and compare the mean Frobenius and inverse Stein

losses for the estimators. We use a five-fold cross-validation to choose the tuning parameter for banding,

and K = 3 factors for the principal orthogonal complement thresholding with θ = 0.5 as the thresholding

parameter, the same as for pure adaptive thresholding. Finally we use θ = 0.8 for the tuning parameter of

graphical lasso. These parameters are chosen to allow the methods to have the best possible performances

overall. Pre-setting these parameters also speeds up the simulations significantly.

Table 1 presents the simulation results. All methods are better than the realized covariance, as ex-

pected. The graphical lasso is the best for minimizing the Frobenius loss, while the grand average estimator

at p = 100, and the principal orthogonal complement thresholding at p = 200, are the best for the inverse

Stein loss. Both our method and the grand average estimator outperform nonlinear shrinkage, which is

expected since nonlinear shrinkage cannot be readily applied to self-normalized vectors. Although the way

that Λ is defined favours banding, it has substantially larger standard deviations in all the settings.
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4.2 Portfolio allocation on New York Stock Exchange data

As an application in finance, we construct minimum variance portfolios using the seven different estimators

compared in the previous section, except for the graphical lasso because of non-convergence issues. Given

an integrated covariance matrix Σp, the minimum variance portfolio solves minw:wT1p=1 w
TΣpw, where 1p

is a vector of p ones. The solution is

wopt =
Σ−1

p 1p

1T

pΣ
−1
p 1p

. (4.6)

Before presenting the empirical results, we present a theorem concerning wopt constructed with Σp

substituted by Σ̂m,M . In the sequel, we denote
∥∥ ·

∥∥
max

the maximum absolute value of a vector, and define

the condition number of a positive semi-definite matrix A to be Cond(A) = λmax(A)/λmin(A).

Theorem 3. Let all the assumptions in Lemma 1 hold. Then, almost surely,

p1/2
∥∥ŵopt

∥∥
max

≤ Cond(Φ), p1/2R(ŵopt) ≤ Cond(Φ)λ1/2
max(Σp),

p1/2
∥∥wopt

∥∥
max

≤ Cond(Φ), p1/2R(wopt) ≤ λ1/2
max(Σp),

where ŵopt is defined in (4.6) with Σp substituted by Σ̂p,M . The function R(w) = (wTΣpw)
1/2 represents

the actual risk when investing using w as the portfolio weights.

This theorem shows that the maximum absolute weight, which we define as the maximum exposure

of the portfolio, is decaying at a rate p−1/2, the same as that for the actual risk. This maximum expo-

sure bound is important, since the theoretical minimum variance portfolio satisfies the same bound. If

Cond(Φ) = 1, the actual risk for our portfolio can also enjoy the same upper bound as its theoretical

counterpart.

We consider p = 154 finance stocks with large capitalization from the New York Stock Exchange. There

are 82 weeks of data, which starts from June of 2014 to the end of December of 2015. We downloaded all the

trades of these stocks from Wharton Research Data Services. The raw data are high-frequency. The stocks

have non-synchronous trading times and all the log-prices are contaminated by market microstructure noise

(Asparouhova et al., 2013).

We consider trades in 15-minute intervals on every trading day from 9:30 to 16:00, with each log-price

being the observed one from a trade right before a 15-minute interval ends. This results in a total of

n = 10267 synchronized return data points. Overnight returns are not included in all calculations since

overnight price jumps are usually influenced by the arrival of news, which is irrelevant to the comparison

of portfolios. At the start, we invest 1 unit of capital using (4.6) constructed from different estimators
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Table 2: Results for the New York Stock Exchange large capitalization finance stocks analysis. Graphical
lasso is omitted because of non-convergence issues. Standard errors are subscripted. All abbreviations are
the same as in Table 1.

p = 154 Annualized Annualized Sharpe Maximum Max. of Max.
Return(%) Std. Dev.(%) Ratio Exposure (%) Exposure (%)

Weekly rebalancing with 2-week training windows
RCV 21.8 12.5 1.7 25.312.5 81.3
Proposed 10.2 9.4 1.1 7.21.7 13.6
Banding 12.5 8.5 1.5 15.98.7 39.2
Grand Avg 10.4 8.9 1.2 7.42.1 14.0
NONLIN −0.3 8.2 0.0 5.63.5 14.1
POET −3.9 11.2 −0.3 19.944.2 399.3
SCAD −15.5 21.2 −0.7 29.743.6 326.3

Weekly rebalancing with 4-week training windows
RCV 10.8 11.0 1.0 20.911.4 48.4
Proposed 13.4 9.8 1.4 8.72.7 17.4
Banding 9.3 10.0 0.9 17.07.5 37.6
Grand Avg 11.4 11.1 1.0 8.01.7 13.3
NONLIN 7.6 7.8 1.0 7.76.0 22.8
POET 1.1 11.4 0.1 20.832.9 235.3
SCAD −4.3 13.7 −0.3 27.997.1 860.6

Weekly rebalancing with 6-week training windows
RCV 8.7 8.8 1.0 19.611.3 46.0
Proposed 7.5 10.2 0.7 10.04.4 21.7
Banding 3.7 12.0 0.3 16.27.5 33.6
Grand Avg 2.9 12.2 0.2 8.72.5 14.8
NONLIN 6.8 7.3 0.9 9.07.4 26.1
POET −9.3 14.4 −0.6 21.532.5 259.6
SCAD 114.9 140.7 0.8 130.3959.1 8375.3

of Σp. We consider 2-week, 4-week and 6-week training windows and re-evaluate portfolio weights every

week. We use the annualized out-of-sample standard deviation σ̂, together with the annualized portfolio

return µ̂ and the Sharpe ratio µ̂/σ̂ to gauge the performance of each method. For ℓ-week training windows

and weekly re-evaluation period, µ̂ and σ̂ are defined by

µ̂ = 52×
1

30− ℓ

30∑

i=ℓ+1

wT

i ri, σ̂ =
{
52×

1

30− ℓ

30∑

i=ℓ+1

(wT

i ri − µ̂/52)2
}1/2

(ℓ = 2, 4, 6),

where wi and ri are portfolio weights and returns respectively for the i-th week. We also report the mean

and the maximum of
∥∥ŵopt

∥∥
max

over all investment periods for the portfolios constructed under different

methods.

Table 2 shows the results. Principal orthogonal complement thresholding and pure adaptive threshold-

ing are unstable, with maximum exposures going over 200% at times, meaning the long or short position

on a single stock can be over 200%. This is not practically sound without further information on the

stocks. The nonlinear shrinkage method has the smallest σ̂ in all settings, followed by our method, band-

ing and grand average. With 6-week training windows, realized covariance has the second smallest σ̂, but

on average the maximum exposures are much larger than our method and grand average. Our method

has small maximum exposures while maintaining Sharpe ratios larger than 0.7 in all settings. It has the
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largest Sharpe ratio when we use 4-week training windows.

Supplementary material

Supplementary material includes a set of market trading simulation results and the proof of Lemma 1,

Theorem 1, 2 and 3.
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Meinshausen, N. & Bühlmann, P. (2006). High-dimensional graphs and variable selection with the

lasso. The Annals of Statistics 34, 1436–1462.

Pourahmadi, M. (2007). Cholesky decompositions and estimation of a covariance matrix: Orthogonality

of variancecorrelation parameters. Biometrika 94, 1006–1013.

Rothman, A. J., Bickel, P. J., Levina, E. & Zhu, J. (2008). Sparse permutation invariant covariance

estimation. Electron. J. Statist. 2, 494–515.

Zheng, X. & Li, Y. (2011). On the estimation of integrated covariance matrices of high dimensional

diffusion processes. Ann. Statist. 39, 3121–3151.

10


	Lam_Nonlinear shirnkage estimation_Cover_2017 
	Lam_Nonlinear shirnkage estimation_Author_2017 
	Introduction
	Framework and Methodology
	Integrated and realized covariance matrices
	Time-variation adjusted realized covariance matrix
	Nonlinear shrinkage estimator

	Asymptotic Theory and Practical Implementation
	Empirical Results
	Simulations with varying t
	Portfolio allocation on New York Stock Exchange data



