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Abstract An ordinary circle of a set P of n points in the plane is defined as a circle
that contains exactly three points of P . We show that if P is not contained in a line or
a circle, then P spans at least n2/4− O(n) ordinary circles. Moreover, we determine
the exact minimum number of ordinary circles for all sufficiently large n and describe
all point sets that come close to this minimum. We also consider the circle variant of
the orchard problem. We prove that P spans at most n3/24 − O(n2) circles passing
through exactly four points of P . Here we determine the exact maximum and the
extremal configurations for all sufficiently large n. These results are based on the
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following structure theorem. If n is sufficiently large depending on K , and P is a set
of n points spanning at most Kn2 ordinary circles, then all but O(K ) points of P lie
on an algebraic curve of degree at most four. Our proofs rely on a recent result of
Green and Tao on ordinary lines, combined with circular inversion and some classical
results regarding algebraic curves.

Keywords Ordinary circles · Circular curves · Inversion · Sylvester–Gallai ·
Green–Tao

Mathematics Subject Classification 52C35 (52C10 14N10 14H50)

1 Introduction

1.1 Background

The classical Sylvester–Gallai theorem states that any finite non-collinear point set in
R
2 spans at least one ordinary line (a line containing exactly two of the points). A

more sophisticated statement is the so-called Dirac–Motzkin conjecture, according to
which every non-collinear set of n > 13 points in R2 determines at least n/2 ordinary
lines. This conjecture was proved by Green and Tao [13] for all sufficiently large n.
Their proof was based on a structure theorem, which roughly states that any point set
with a linear number of ordinary lines must lie mostly on a cubic curve (see Theorem
5.1 for a precise statement).

It is natural to ask the corresponding question for ordinary circles (circles that
contain exactly three of the given points); see for instance [8, Sect. 7.2] or [17, Chap. 6].
Elliott [12] introduced this question in 1967, and proved that any n points, not all on
a line or a circle, determine at least 2n2/63 − O(n) ordinary circles. (Throughout
the paper, by O( f (n)) we mean a function g(n) such that 0 � g(n) � C f (n) for
some constant C > 0 and all sufficiently large n. Thus, −O(n) is a function g(n)

satisfying −Cn � g(n) � 0 for sufficiently large n.) He suggested, cautiously, that
the optimal bound is n2/6 − O(n). Elliott’s result was improved by Bálintová and
Bálint [1, Rem., p. 288] to 11n2/247−O(n), and Zhang [26] obtained n2/18−O(n).
Zhang also gave constructions of point sets on two concentric circles with n2/4−O(n)

ordinary circles.
We will use the results of Green and Tao to prove that n2/4 − O(n) is asymptoti-

cally the right answer, thus disproving the bound suggested by Elliott [12]. Nassajian
Mojarrad and de Zeeuw proved this bound in an earlier preprint [19], which is sub-
sumed by this paper, and will not be published independently. We will find the exact
minimum number of ordinary circles, for sufficiently large n, and we will determine
which configurations attain or come close to that minimum. We make no attempt to
specify the threshold implicit in the phrase ‘for sufficiently large n’; any improvement
would depend on an improvement of the threshold in the result of Green and Tao [13].
For small n, the bound 1

9

(n
2

)
due to Zhang [26] remains the best known lower bound

on the number of ordinary circles.
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Green and Tao [13] also solved (for large n) the even older orchard problem, which
asks for the exact maximum number of lines passing through exactly three points of a
set of n points in the plane. We refer to [13] for the history of this problem. The upper
bound 1

3

(n
2

)
is easily proved by double counting, but it is not the exact maximum.

Using group laws on certain cubic curves, one can construct n non-collinear points
with �n(n − 3)/6+ 1� 3-point lines, and Green and Tao [13] proved (for large n) that
this is optimal. This does not follow directly from the Dirac–Motzkin conjecture, but
it does follow from the above-mentioned structure theorem of Green and Tao for sets
with few ordinary lines (Theorem 5.1).

The analogous orchard problem for circles asks for the maximum number of circles
passing through exactly four points from a set of n points. As far as we know, this
question has not been asked before.We determine the exactmaximumand the extremal
sets for all sufficiently large n.

Although we do not consider other related problems, we remark that similar ques-
tions have been asked for ordinary conics [7,10,25], ordinary planes [2], and ordinary
hyperplanes [3].

1.2 Results

Our first main result concerns the minimum number of ordinary circles spanned by a
set of n points, not all lying on a line or a circle, and the structure of sets of points
that come close to the minimum. The first part of the theorem solves Problem 6 in
[8, Sect. 7.2].

Theorem 1.1 (Ordinary circles)

(i) If n is sufficiently large, the minimum number of ordinary circles determined by
n points in R

2, not all on a line or a circle, equals

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

4
n2 − 3

2
n if n ≡ 0 (mod 4),

1

4
n2 − 3

4
n + 1

2
if n ≡ 1 (mod 4),

1

4
n2 − n if n ≡ 2 (mod 4),

1

4
n2 − 5

4
n + 3

2
if n ≡ 3 (mod 4).

(ii) Let C be sufficiently large. If a set P of n points in R
2 determines fewer than

n2/2 − Cn ordinary circles, then P lies on the disjoint union of two circles, or
the disjoint union of a line and a circle.

In Sect. 4, we will describe constructions that meet the lower bound in part (i) of
Theorem1.1. For even n, the bound in part (i) is attained by certain constructions on the
disjoint union of two circles, while for odd n, the bound is attained by constructions
on the disjoint union of a line and a circle. The main tools in our proof are circle
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inversion and the structure theorem of Green and Tao [13] for sets with few ordinary
lines, together with some classical results about algebraic curves and their interaction
with inversion.

Let us define a generalised circle to be either a circle or a line. Because inversion
maps circles and lines to circles and lines, it turns out that in our proof it is more natural
to work with generalised circles. Alternatively, we could phrase our results in terms
of the inversive plane (or Riemann sphere) R2 ∪ {∞}, where ∞ is a single point that
lies on all lines, which can then also be considered as circles. Yet another equivalent
view would be to identify the inversive plane with the sphere S

2 via stereographic
projection, and consider circles on S2, which are in bijection with generalised circles.
All our statements about generalised circles in R

2 could thus be formulated in terms
of circles in R2 ∪ {∞} or on S2.

We define an ordinary generalised circle to be one that contains three points from a
given set. Our proof of Theorem 1.1 proceeds via an analogous theorem for ordinary
generalised circles, which turns out to be somewhat easier to obtain.

Theorem 1.2 (Ordinary generalised circles)

(i) If n is sufficiently large, the minimum number of ordinary generalised circles
determined by n points in R

2, not all on a generalised circle, equals

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

4
n2 − n if n ≡ 0 (mod 4),

3

8
n2 − n + 5

8
if n ≡ 1 (mod 4),

1

4
n2 − 1

2
n if n ≡ 2 (mod 4),

3

8
n2 − 3

2
n + 17

8
if n ≡ 3 (mod 4).

(ii) Let C be sufficiently large. If a set P of n points in R
2 determines fewer than

n2/2−Cn ordinary generalised circles, then P lies on two disjoint generalised
circles.

We also solve the analogue of the orchard problem for circles (for sufficiently
large n). We define a 4-point (generalised) circle to be a (generalised) circle that
passes through exactly four points of a given set of n points. The ‘circular cubics’ in
part (ii) will be defined in Sect. 2.

Theorem 1.3 (4-Point generalised circles)

(i) If n is sufficiently large, the maximum number of 4-point generalised circles
determined by a set of n points in R2 is equal to
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

24
n3 − 1

4
n2 + 5

6
n − 2 if n ≡ 0 (mod 8),

1

24
n3 − 1

4
n2 + 11

24
n − 1

4
if n ≡ 1, 3, 5, 7 (mod 8),

1

24
n3 − 1

4
n2 + 7

12
n − 1

2
if n ≡ 2, 6 (mod 8),

1

24
n3 − 1

4
n2 + 5

6
n − 1 if n ≡ 4 (mod 8).

(ii) Let C be sufficiently large. If a set P of n points in R
2 determines more than

n3/24 − 7n2/24 + Cn 4-point generalised circles, then up to inversions, P lies
on an ellipse or a smooth circular cubic.

Theorem 1.3 remains true if we replace ‘generalised circles’ by ‘circles’. This is
because we can apply an inversion to any set of n points with a maximum number
of generalised circles in such a way that all straight-line generalised circles become
circles. Therefore, the maximum is also attained by circles only.

The proofs of the above theorems are based on the following structure theorems in
the style of Green and Tao [13]. The first gives a rough picture, by stating that a point
set with relatively few ordinary generalised circles must lie on a bicircular quartic, a
specific type of algebraic curve of degree four that we introduce in Sect. 2.

Theorem 1.4 (Weak structure theorem) Let K > 0 and let n be sufficiently large
depending on K . If a set P of n points in R2 spans at most Kn2 ordinary generalised
circles, then all but at most O(K ) points of P lie on a bicircular quartic.

Ball [2] concurrently obtained a similar result as a consequence of a structure
theorem for ordinary planes in R

3. He shows that n points with O(n2+1/6) ordinary
circles must lie mostly on a quartic curve.

We define bicircular quartics in Sect. 2; they can be reducible, so in Theorem 1.4
the set P may also lie mostly on a lower-degree curve contained in a bicircular quartic.
Our proof actually gives a more precise list of possibilities. The curve that P mostly
lies on can be: a line; a circle; an ellipse; a line and a disjoint circle; two disjoint circles;
a circular cubic that is acnodal or smooth; or a bicircular quartic that is an inverse of
an acnodal or smooth circular cubic.

A more precise characterisation of the possible configurations with few ordinary
generalised circles is given in the following theorem. The group structures referred to
in the theorem are defined in Sect. 3; the circular points at infinity (α and β) referred to
in Case (iii) are introduced in Sect. 2; and the ‘aligned’ and ‘offset’ double polygons
are defined in Sect. 4.

Theorem 1.5 (Strong structure theorem) Let K > 0 and let n be sufficiently large
depending on K . If a set P of n points in R2 spans at most Kn2 ordinary generalised
circles, then up to inversions and similarities, P differs in at most O(K ) points from
a configuration of one of the following types:

(i) a subset of a line;
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(ii) a subgroup of an ellipse;
(iii) a coset H ⊕ x of a subgroup H of a smooth circular cubic, for some x such that

4x ∈ H ⊕ α ⊕ β, where α and β are the two circular points at infinity;
(iv) a double polygon that is ‘aligned’ or ‘offset’.

Conversely, every set of these types defines at most O(Kn2) ordinary generalised
circles.

In Sect. 2, we carefully introduce circular cubics and bicircular quartics, and show
their connection to inversion. In Sect. 3, we define group laws on these curves, which
help us construct point sets with few ordinary (generalised) circles in Sect. 4. In Sect. 5,
which forms the core of our proof, we derive Theorems 1.4 and 1.5 from the structure
theorem of Green and Tao [13]. In Sect. 6, we combine the structure theorems with
our analysis of the constructions from Sect. 4 to establish the precise statements in
Theorems 1.1, 1.2, and 1.3.

2 Circular Curves and Inversion

The key tool in our proof is circle inversion, as it was in the earlier papers [1,12,26]
on the ordinary circles problem; the first to use circle inversion in Sylvester–Gallai
problems was Motzkin [18]. The simple reason for the relevance of circle inversion
is that if we invert in a point of the given set, an ordinary circle through that point is
turned into an ordinary line. Thus we can use results on ordinary lines, like those of
Green and Tao [13], to deduce results about ordinary circles. To do this successfully,
we need a thorough understanding of the effect of inversion on algebraic curves, and
in particular we need to introduce the special class of circular curves.

2.1 Circular Curves and Circular Degree

In this subsection, we work in the real projective planeRP2, and partly in the complex
projective plane CP

2. See for instance [22, App. A] for an appropriate introduction
to projective geometry. We use the homogeneous coordinates [x : y : z] for points in
RP

2 or CP2, and we think of the line with equation z = 0 as the line at infinity. An
affine algebraic curve in R

2, defined by a polynomial f ∈ R[x, y], can be naturally
extended to a projective algebraic curve, by taking the zero set of the homogenisation
of f . This curve in RP

2 then extends to CP
2, by taking the complex zero set of the

homogenised polynomial.
We define the circular points to be the points

α = [i : 1 : 0], β = [−i : 1 : 0]

on the line at infinity in CP
2. The circular points play a key role in this paper, due

to the fact that every circle contains both circular points. Moreover, any real conic
containing α and β is either a circle, or a union of a line with the line at infinity. We
could thus consider a generalised circle to be a conic that contains both circular points.
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Definition 2.1 An algebraic curve inRP2 is circular if it contains α and β. For k � 2,
an algebraic curve in RP

2 is k-circular if it has singularities of multiplicity at least k
at both α and β.

A classical reference for circular curves is Johnson [16], while a more modern one
is Werner [24]. Let us make the definition more explicit in three concrete cases.

A generalised circle is an algebraic curve of degree two that contains α and β;
equivalently, it is a curve in RP2 defined by a homogeneous polynomial of the form

t (x2 + y2) + �(x, y, z)z,

where t ∈ R, and � ∈ R[x, y, z] is a non-trivial linear form. If t 	= 0, then the curve
is a circle, while if t = 0, the curve is the union of a line with the line at infinity.

A circular cubic is an algebraic curve of degree three that contains α and β; equiv-
alently, it is any curve in RP2 defined by a homogeneous polynomial of the form

(ux + vy)(x2 + y2) + q(x, y, z)z, (1)

where u, v ∈ R, and q ∈ R[x, y, z] is a non-trivial quadratic homogeneous polyno-
mial. Note that we do not require a circular cubic to be irreducible or smooth. For
instance, the union of a line and a circle is a circular cubic, and so is the union of any
conic with the line at infinity (take u = v = 0 in (1)).

A bicircular quartic is an algebraic curve of degree four that is 2-circular; equiva-
lently, it is any curve in RP2 defined by a homogeneous polynomial of the form

t (x2 + y2)2 + (ux + vy)(x2 + y2)z + q(x, y, z)z2, (2)

where t, u, v ∈ R, and q ∈ R[x, y, z] is a non-trivial homogeneous quadratic poly-
nomial (see [24, Sect. 8.2] for a proof that a quartic is 2-circular if and only if its
equation has the form (2)). A noteworthy example of a bicircular quartic is a union
of two circles, for which it is easy to see that the curve has double points at α and β,
since both circles contain those points.

Every circular cubic is contained in a bicircular quartic, since for t = 0 in (2) we
get a union of a circular cubic and the line at infinity. A non-circular conic is also
contained in a bicircular quartic, since for t = u = v = 0 in (2) we get a union of a
conic and z2 = 0, which is a double line at infinity.

Definition 2.2 The circular degree of an algebraic curve γ in RP
2 is the smallest k

such that γ is contained in a k-circular curve of degree 2k.

The circular degree is well-defined, since given any curve γ of degree k, we can
add k copies of the line at infinity, to get a k-circular curve of degree 2k.

For example, a line has circular degree one, since its union with the line at infinity
is a 1-circular curve of degree two. A conic that is not a circle has circular degree two,
since its union with two copies of the line at infinity is a 2-circular curve of degree
four. Similarly, a circular cubic has circular degree two, since its union with the line at
infinity is a 2-circular curve of degree four. We can thus classify curves of low circular
degree as follows:

123



Discrete Comput Geom

• Circular degree one: lines and circles (that is, generalised circles).
• Circular degree two: non-circular conics, circular cubics, and bicircular quartics.
• Circular degree three: non-circular cubics, circular quartics, 2-circular quintics,
and 3-circular sextics.

This classification is important to us, because we will see that circular degree is
invariant under inversion.

Wehave defined circular curves and circular degrees in the projective plane, because
that is their most natural setting. In the rest of the paper, to avoid confusion between
the projective and inversive planes, we will use these notions for curves in R

2, with
the understanding that to inspect the definitions we should consider RP2 and CP

2.

2.2 Inversion

Circular curves are intimately related to circle inversion, which we now introduce. A
general reference is [6].

Definition 2.3 Let C(p, r) be the circle with centre p = (xp, yp) ∈ R
2 and radius

r > 0. The circle inversion with respect to C(p, r) is the mapping Ip,r : R2\{p} →
R
2\{p} defined by

Ip,r (x, y) =
(

r2(x − xp)

(x − xp)2 + (y − yp)2
+ xp,

r2(y − yp)

(x − xp)2 + (y − yp)2
+ yp

)

for (x, y) 	= p. We write Ip for Ip,1. We call p the centre of the inversion Ip,r .

In the inversive plane R
2 ∪ {∞}, the inversion map can be completed by setting

Ip,r (p) = ∞ and Ip,r (∞) = p, so that inversions take generalised circles to gener-
alised circles. The group of transformations of the inversive plane generated by the
inversions and the similarities is called the inversive group. It is known that a bijection
of the inversive plane that takes generalised circles to generalised circles has to be an
element of this group, and that any element of this group is either a similarity or an
inversion followed by an isometry [9, Thm. 6.71].

The image of an algebraic curve inR2 under an inversion is also an algebraic curve,
in the following sense.

Definition 2.4 For any algebraic curve γ there is an algebraic curve γ ′ such that

Ip,r (γ \{p}) = γ ′\{p}.

We refer to γ ′ as the inverse of γ with respect to the circle C(p, r), and abuse notation
slightly by writing γ ′ = Ip,r (γ ). Also, since for different choices of radius r , Ip,r (γ )

differs only by a dilatation in p, we will often only consider the inverse Ip(γ ) =
Ip,1(γ ) and refer to it as the inverse of γ in the point p.

If a curve has degree d, then its inverse has degree at most 2d [24, Thm. 4.14].
If γ is irreducible, then its inverse is also irreducible. Note that inverses of algebraic
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curves can behave somewhat unintuitively; for instance, Proposition 2.6 states that
the inverse of an ellipse has an isolated point, which is surprising if one thinks of an
ellipse as just a closed continuous curve.

It is well known that the inverses of generalised circles are again generalised circles.
It turns out that, more generally, circular degree is preserved under inversion. We now
make precise what this means for curves of low circular degree. A proof can be found
in the classical paper [16]; for a more modern reference, see [24, Sect. 9.2].

Lemma 2.5 (Inversion and circular degree) Let Ck be a curve of circular degree k.
Then:

(i) The inverse of C1 in a point on C1 is a line; the inverse of C1 in a point not on
C1 is a circle.

(ii) The inverse of C2 in a singular point on C2 is a non-circular conic; the inverse
of C2 in a regular point on C2 is a circular cubic; the inverse of C2 in a point
not on C2 is a bicircular quartic.

(iii) The inverse of C3 in a singularity of multiplicity three is a non-circular cubic;
the inverse of C3 in a singularity of multiplicity two is a circular quartic; the
inverse of C3 in a regular point on C3 is a 2-circular quintic; the inverse of C3
in a point not on C3 is a 3-circular sextic.

One particular subcase of Case (ii) will play an important role in our paper, and
we state it separately in Proposition 2.6. A proof can be found in [14, p. 202]. Let us
recall that an acnodal cubic is a singular cubic with a singularity that is an isolated
point; for example, (2x − 1)(x2 + y2) − y2 = 0 is an acnodal circular cubic with a
singularity at the origin.

Proposition 2.6 The inverse of an ellipse in a point on the ellipse is an acnodal
circular cubic with the centre of inversion as its singularity; the inverse of an acnodal
circular cubic in its singularity is an ellipse through the singularity.

For example, the inverse of the cubic (2x − 1)(x2 + y2)− y2 = 0 in its singularity
at the origin is the ellipse (x − 1)2 + 2y2 = 1.

3 Groups on Circular Curves

3.1 Groups on Irreducible Circular Cubics

The extremal configurations in our main theorems are all based on group laws on
certain circular curves. It is well known that irreducible smooth cubics (elliptic curves)
have a group law (see for instance [22]). These groups play a crucial role in the work
of Green and Tao [13]. The reason that these groups are relevant to ordinary lines is
the following collinearity property of this group (when defined in the standard way).
Three points on the curve are collinear if and only if in the group they sum to the
identity element. For this property to hold, the identity element must be an inflection
point. Here we will define a group in a slightly different way (described for instance
in [22, Sect. 1.2]), in which the identity element is not necessarily an inflection point,
and the same collinearity property does not hold. However, for circular cubics, we
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Fig. 1 Group law on a smooth
circular cubic curve

o

a b a ∗ b

a ⊕ b

ω

�a

show that we can choose the identity element so that we get a similar property for
concyclicity.

First let γ be any irreducible cubic, write γ ∗ for its set of regular points, and pick
an arbitrary point o ∈ γ ∗. We describe an additive group operation⊕ on the set γ ∗ for
which o is the identity element. The construction is depicted in Fig. 1. Given a, b ∈ γ ∗,
let a ∗ b be the third intersection point of γ and the line ab, and define a ⊕ b to be
(a ∗ b) ∗ o, the third intersection point of γ and the line through a ∗ b and o. When
a = b, the line ab should be interpreted as the tangent line at a; when a ∗ b = o, the
line through a ∗ b and o should be interpreted as the tangent line to γ at o. We refer
to [22] for a more careful definition and a proof that this operation really does give a
group.

Now consider a circular cubic γ . Since the circular points α and β lying on it
are conjugate, γ has a unique real point on the line at infinity, which we choose as
our identity element o. We define the point ω to be the third intersection point of the
tangent line to γ at o (if there is no third intersection point, then o is an inflection point,
and we consider o itself to be the third point). Throughout this paper we will use ω to
denote this special point on a circular cubic; note that ω is not fixed like α and β, but
depends on γ . Also note that ω is real, since it corresponds to the third root of a real
cubic polynomial whose other two roots correspond to the real point o. Observe that

ω = α ⊕ β,

since α ∗ β = o, and by definition o ∗ o = ω.
With this group law, we no longer have the property that three points are collinear

if and only if they sum to o (unless o happens to be an inflection point). Nevertheless,
one can check that three points a, b, c ∈ γ ∗ are collinear if and only if a⊕ b⊕ c = ω.
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asymptote

a b

c

σ

�2

a ∗ b

�1

a ⊕ b

�3

d′ = d

Fig. 2 Concyclicity of four regular points on a circular cubic

More important for us, four points of γ ∗ lie on a generalised circle if and only if
they sum to ω. This amounts to a classical fact (see [4, Art. 225] for an equivalent
statement), but we include a proof for completeness. We use the following version of
the Cayley–Bacharach Theorem, due to Chasles (see [11]).

Theorem 3.1 (Chasles) Suppose two cubic curves inCP2 with no common component
intersect in nine points, counting multiplicities. If γ is another cubic curve containing
eight of these intersection points, counting multiplicities, then γ also contains the
ninth.

Recall from Sect. 2 that a generalised circle, viewed projectively, is either a circle,
or the union a line with the line at infinity.

Proposition 3.2 Let γ be an irreducible circular cubic inRP2, and let a, b, c, d ∈ γ ∗
be points that are not necessarily distinct. A generalised circle intersects γ in the points
a, b, c, d (taking into account multiplicity) if and only if a ⊕ b ⊕ c ⊕ d = ω.

Proof We consider the cubic γ extended to CP2. We first show the forward direction.
All statements in the proof should be considered with multiplicity.

If the generalised circle is the union of a line � and the line at infinity �∞, then
� ∪ �∞ intersects γ in a, b, c, d, α, β. Since � intersects γ in at most three points,
one of the points a, b, c, d must equal o, say d = o. Since �∞ also intersects γ in at
most three points, we must have a, b, c ∈ �. Thus a, b, c are collinear, and we have
a ⊕ b ⊕ c = ω, by the definition of the group law. It then follows from d = o that
a ⊕ b ⊕ c ⊕ d = ω.

Suppose next that the generalised circle is a circle σ , and intersects γ in
a, b, c, d, α, β. The construction that follows is depicted in Fig. 2. Let �1 be the line
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through o and a ∗ b (and thus through a ⊕ b), �2 the line through a and b (and thus
through a ∗ b), and �3 the line through c and a ⊕ b. Note that σ and �∞ intersect in α

and β. Then γ1 = σ ∪ �1 and γ2 = �2 ∪ �3 ∪ �∞ are two cubic curves that intersect in
nine points, of which the eight points a, b, c, a ∗ b, a ⊕ b, o, α, and β certainly lie on
γ ; the remaining point is the third intersection point of γ1 and �3 beside c and a ⊕ b,
which we denote by d ′. By Theorem 3.1, γ contains d ′. By the group law on γ , we
have d ′ = (a ⊕ b) ∗ c. Moreover, d ′ must be the sixth intersection point of γ and σ

beside a, b, c, α, β, which is d, so d = d ′ = (a⊕b)∗c. By the definition of the group
law, this implies a ⊕ b ⊕ c = o ∗ d, so (a ⊕ b ⊕ c) ∗ d = (o ∗ d) ∗ d = o, and finally
a ⊕ b ⊕ c ⊕ d = o ∗ o = ω.

For the converse, suppose that a ⊕ b ⊕ c ⊕ d = ω, and let d ′ be the fourth point
where the generalised circle σ through a, b, c intersects γ . Then, by what we have
just shown, a ⊕ b ⊕ c ⊕ d ′ = ω, and it follows that d = d ′, and a, b, c, d lie on σ . 
�

This proposition is a consequence of the more general fact that six points on a
circular cubic lie on a conic if and only if they sum to 2ω. (In the standard group
structure on a cubic, where the identity o is chosen as an inflection point, they would
sum to o; see [23, Thm. 9.2].) Since a generalised circle in RP2 is a conic containing
α and β, and α ⊕ β = ω, it follows that four points a, b, c, d (possibly including o)
lie on a generalised circle if and only if they sum to ω.

3.2 Groups on Other Circular Curves

We now define group laws on two other types of curves of circular degree two, and
observe that they satisfy similar concyclicity properties. Let us note at this point that
most bicircular quartics can also be given a group structure (if an irreducible bicircular
quartic has no singularities besides α and β, then it is a curve of genus one, and thus
has a group law by [21, Sect. III.3]). However, in our proofs we will handle bicircular
quartics by inverting in a point on the curve, which by Lemma 2.5 transforms a
bicircular quartic into a circular cubic. For that reason, we do not need to study the
group law on bicircular quartics separately.

Ellipses We discuss a group law on ellipses, although we do not actually need it
in our proof, because inversion lets us transform an ellipse into an acnodal cubic
(Proposition 2.6), which we have already given a group structure in the previous
subsection.Nevertheless,we treat the group lawon ellipses here because it is especially
elementary, and it would be strange not to mention it.

Consider the ellipse σ given by the equation x2 + (y/s)2 = 1, with s 	= 0, 1. For
any point a ∈ σ , we project a vertically to the point a′ on the unit circle around the
origin, as in Fig. 3, and call the angle θa the eccentric angle of a. We define the sum of
two points a, b ∈ σ to be the point c = a ⊕ b whose eccentric angle is θc = θa + θb.
This gives σ a group structure isomorphic to R/Z. The identity element is o = (1, 0),
and the inverse of a point is its reflection in the x-axis. We have the following classical
fact that describes when four points on an ellipse are concyclic (see [15] for the oldest
reference we could find, and [5, Problem 17.2] for two detailed proofs).
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Fig. 3 Eccentric angle of a
point on an ellipse

a

a′

θa

Proposition 3.3 Four points a, b, c, d ∈ σ are concyclic if and only if a ⊕ b ⊕
c ⊕ d = o. We may allow two of the points to be equal, in which case the circle
through the three distinct points is tangent to the ellipse at the repeated point.

Another way to look at this group law is that we are parametrising the ellipse using
lines through o = (1, 0) (see for instance [22, Sect. 1.1]). More precisely, each point
a ∈ σ corresponds to the line oa; oa makes an angle π −θa/2 with the x-axis, and the
set of lines through o thus has a group structure equivalent to the one above. This view
lets us relate the group on the ellipse to the group on the acnodal cubic. By Proposition
2.6, inverting in o maps the ellipse to an acnodal circular cubic γ , with o becoming
the isolated point of the cubic. The lines through o now parametrise the cubic, and
this parametrisation gives the same group on γ as the line construction that we gave
in Sect. 3.1 (see [22, Sect. 3.7]).

Concentric circles We now define a group on the union of two disjoint circles. For
notational convenience, we identifyR2 withC. After an appropriate inversion, we can
assume the circles to be

{
e2π i t

∣∣
∣ t ∈ [0, 1)

}
,

{
re−2π i t

∣∣
∣ t ∈ [0, 1)

}
,

with r > 1, and we represent each element of σ1 ∪ σ2 as rεe2π i t with ε ∈ Z2 (with
the obvious convention r0 = 1 and r1 = r ). We define a group operation on σ1 ∪ σ2
by

rε1e2π i t1 ⊕ rε2e2π i t2 = r (ε1+ε2) mod 2 e2π i(t1+t2),

which turns σ1 ∪ σ2 into a group isomorphic to R/Z × Z2, with identity element
o = 1 = r0e2π i ·0. We again have the following concyclicity property, which is easily
seen using symmetry.

Proposition 3.4 Points a, b ∈ σ1 and c, d ∈ σ2 lie on a generalised circle if and only
if a ⊕ b ⊕ c ⊕ d = o. If a = b or c = d, then the generalised circle is tangent at that
point.
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4 Constructions

4.1 Ellipse

Let σ be the ellipse defined by x2 + (y/s)2 = 1, with the group structure introduced
in Sect. 3.2. Let n � 5. We have a finite subgroup of size n given by

S =
{(

cos

(
2πk

n

)
, s sin

(
2πk

n

)) ∣∣∣∣ k = 0, . . . , n − 1

}
⊂ σ.

By Proposition 3.3, the circle through any three points a, b, c ∈ S passes through the
point d = �a � b � c ∈ S. Therefore, the only way S spans an ordinary circle is
when d coincides with one of the points a, b, c (which occurs if the circle is tangent
to σ at that point). It follows that the number of ordinary circles is equal to

1

2

∣∣∣
{
(k1, k2, k3) ∈ Z

3
n

∣∣∣ 2k1 + k2 + k3 ≡ 0 (mod n), k1, k2, k3 distinct
} ∣∣∣,

which is n2/2 − O(n).
Similarly, the number of 4-point circles is equal to

1

4!
∣∣
∣
{
(k1, k2, k3, k4) ∈ Z

4
n

∣∣
∣ k1 + k2 + k3 + k4 ≡ 0 (mod n), k1, k2, k3, k4 distinct

} ∣∣
∣,

which is, by inclusion–exclusion, equal to (n3 − 6n2 + (8+ 3δn)n − 6εn)/24, where
δn is the number of solutions in Zn to the equation 2k = 0 and εn is the number of
solutions in Zn to the equation 4k = 0. This works out to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

24
n3 − 1

4
n2 + 7

12
n − 1 if n ≡ 0 (mod 4),

1

24
n3 − 1

4
n2 + 11

24
n − 1

4
if n ≡ 1, 3 (mod 4),

1

24
n3 − 1

4
n2 + 7

12
n − 1

2
if n ≡ 2 (mod 4).

4.2 Circular Cubic Curve

Let γ be an irreducible circular cubic, and let ⊕ be the group operation defined in
Sect. 3.1. It is well known (see for instance [13]) that the group (γ ∗,⊕) is isomorphic
to the circle R/Z if γ is acnodal or if γ is smooth and has one connected component,
and is isomorphic to R/Z × Z2 if γ is smooth and has two connected components.
Let Hn be a subgroup of order n of γ ∗, and let x ∈ γ ∗ be such that 4x = ω � h for
some h ∈ Hn . By Proposition 3.2, the number of ordinary generalised circles in the
coset S = Hn ⊕ x equals

1

2

∣∣∣
{
(a, b, c) ∈ H3

n

∣∣∣ 2a ⊕ b ⊕ c = h, a, b, c distinct
} ∣∣∣,
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Fig. 4 ‘Aligned’ double
hexagon

σ1
σ2

which is easily seen to equal n2/2 − O(n). Similarly, the number of ordinary circles
in S = Hn ⊕ x equals

1

2

∣
∣∣
{
(a, b, c) ∈ H3

n

∣
∣∣ 2a ⊕ b ⊕ c = h, a, b, c 	= �x and distinct

} ∣
∣∣,

which also equals n2/2 − O(n).
As in the previous construction, if o /∈ S (equivalently, x /∈ Hn) then the number of

4-point circles is equal to (n3 − 6n2 + (8+ 3δn)n − 6εn)/24, where δn is the number
of solutions in Hn to the equation 2k = h and εn is the number of solutions in Hn to
the equation 4k = h. If Hn is cyclic, then we get the same numbers as in the previous
construction. Otherwise, n = 0 (mod 4), Hn ∼= Zn/2×Z2, and the number of 4-point
circles equals

⎧
⎪⎨

⎪⎩

1

24
n3 − 1

4
n2 + 5

6
n − 2 if n ≡ 0 (mod 8),

1

24
n3 − 1

4
n2 + 5

6
n − 1 if n ≡ 4 (mod 8),

which is greater than the corresponding number in the previous construction.

4.3 ‘Aligned’ Double Polygons

Let n � 6 be even and set m = n/2. We identify R
2 with C. Let σ1 be the

circle with centre the origin and radius one, and σ2 the circle with centre the
origin and radius r > 1. Let S1 = {

e2π ik/m
∣∣ k = 0, . . . ,m − 1

} ⊂ σ1 and
S2 = {

re2π ik/m
∣
∣ k = 0, . . . ,m − 1

} ⊂ σ2. Thus, S1 and S2 are the vertex sets of
regular m-gons on σ1 and σ2 that are ‘aligned’ in the sense that their points lie at the
same set of angles from the common centre (see Fig. 4).

Let S = S1∪ S2. By Proposition 3.4, the points a, b ∈ σ1, c, d ∈ σ2 are collinear or
concyclic if and only if a⊕b⊕ c⊕d = o. In particular, if a = b, then the generalised
circle through the three points is tangent to σ1. It follows that if n � 8, the ordinary
generalised circles of S are exactly those through e2π ik1/m, re−2π ik2/m, re−2π ik3/m

or through re−2π ik1/m, e2π ik2/m, e2π ik3/m where 2k1 + k2 + k3 ≡ 0 (mod m), with
k2 	≡ k3 (mod m).
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For generic r > 1, we then obtain that the number of ordinary generalised circles
equals

∣
∣∣
{
(k1, k2, k3) ∈ Z

3
m

∣
∣∣ 2k1 + k2 + k3 ≡ 0 (mod n), k2, k3 distinct

} ∣
∣∣

(although k2 and k3 are not ordered, we either have two points on σ1 or two points on
σ2). This equals m(m − 2) if m is even and m(m − 1) if m is odd. That is, for generic
r , we obtain n2/4− n ordinary generalised circles if n ≡ 0 (mod 4) and n2/4− n/2
ordinary generalised circles if n ≡ 2 (mod 4).

If we choose r = (cos(2πk/m))−1 (there are �m/4� choices for r ), then the tangent
lines at points of S1 pass through two points of S2, so are ordinary generalised circles.
Thus, for these choices of r we losem ordinary circles, and obtain n2/4−3n/2 ordinary
circles if n ≡ 0 (mod 4) and n2/4 − n ordinary circles if n ≡ 2 (mod 4). Note that
this is much less than the number of ordinary circles given by Constructions 4.1 and
4.2.

Similarly, the number of 4-point generalised circles spanned by S equals

1

4

∣∣
∣
{
(k1, k2, k3, k4) ∈ Z

4
m

∣∣
∣ k1 + k2 + k3 + k4 ≡ 0 (modm), k1 	= k2 and k3 	= k4

} ∣∣
∣,

which is m3/4 − O(m2) = n3/32 − O(n2), also much less than the number in
Constructions 4.1 and 4.2.

4.4 ‘Offset’ Double Polygons

We modify the previous construction by rotating S2 around the origin by an angle
of πk/m. This results in S′

2 = {
re−iπ(2k−1)/m

∣∣ k = 0, . . . ,m − 1
}
and S′ =

S1 ∪ S′
2 (see Fig. 5). As before, if n � 8, the ordinary generalised circles of

S′ are exactly those through e2π ik1/m, re−iπ(2k2−1)/m, re−iπ(2k3−1)/m or through
re−iπ(2k1−1)/m, e2π ik2/m, e2π ik3/m , where 2k1 + k2 + k3 ≡ 1 (mod m) with k2 	≡ k3
(mod m).

Fig. 5 ‘Offset’ double hexagon

σ1

σ2
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For generic r > 1, we now have to count the number of ordered triples in the set

{
(k1, k2, k3) ∈ Z

3
m

∣∣∣ 2k1 + k2 + k3 ≡ 1 (mod n), k2, k3 distinct
}

.

This equalsm2 ifm is even andm(m−1) ifm is odd. That is, for generic r , we obtain
n2/4 ordinary generalised circles if n ≡ 0 (mod 4), worse than Construction 4.3, and
n2/4 − n/2 ordinary generalised circles if n ≡ 2 (mod 4), the same number as in
Construction 4.3.

Again, if we choose r = (cos(2πk/m))−1 (there are �m/4� choices for r ), we lose
m ordinary circles. Thus, we obtain n2/4 − n ordinary circles if n ≡ 2 (mod 4), the
same number as in Construction 4.3.

As in Construction 4.3, we get n3/32 − O(n2) 4-point circles.

4.5 Punctured Double Polygons

Let n = 2m − 1 � 11 be odd. Take Construction 4.3 with n + 1 = 2m points and
remove an arbitrary point p ∈ S1.

First assume that m is odd. Before we remove p, there are m(m − 1) ordinary
generalised circles. Of these, there are (m − 1)/2 tangent at p. There are also m − 1
ordinary generalised circles through p tangent at some point of S2. Thus, by removing
p, we destroy 3(m − 1)/2 ordinary generalised circles and create

(m
2

) − (m − 1)/2
new ones. Therefore, S\{p} has

m(m − 1) − 3

2
(m − 1) +

(
m
2

)
− 1

2
(m − 1) = 3

2
m2 − 7

2
m + 2

ordinary generalised circles. That is, there are 3n2/8 − n + 5/8 ordinary generalised
circles if n ≡ 1 (mod 4).

Next assume that m is even. Before we remove p, there are m(m − 2) ordinary
generalised circles, of which there are (m − 2)/2 through two different points of S2
tangent at p, and there are also m − 2 ordinary generalised circles through p tangent
at a point of S2. As before, we obtain

m(m − 2) − 3

2
(m − 2) +

(
m

2

)
− 1

2
(m − 2) = 3

2
m2 − 9

2
m + 4

ordinary generalised circles. Thus,weobtain 3n2/8−3n/2+17/8ordinary generalised
circles if n ≡ 3 (mod 4).

Instead of starting with Construction 4.3, we can take the ‘offset’ Construction 4.4
and remove a point. It is easy to see that when n ≡ 1 (mod 4) we obtain the same
number of ordinary generalised circles, while if n ≡ 3 (mod 4) we obtain more.

Since there are no 5-point circles in Constructions 4.3 and 4.4 when m � 6,
removing a point does not add any 4-point circle, but destroys O(n2) of them.We thus
get n3/32 − O(n2) 4-point generalised circles, which is asymptotically the same as
in Constructions 4.3 and 4.4.
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4.6 Inverted Double Polygons

We can use inversion to make new constructions out of old ones.
Invert Construction 4.5 in the removed point p. The resulting point set hasm points

on a circle and m − 1 points on a line disjoint from the circle. Every ordinary circle
after the inversion corresponds to an ordinary generalised circle not passing through
p before the inversion. If m is odd, there are (m − 1)/2 ordinary generalised circles
tangent at p and a further m − 1 ordinary generalised circles through p tangent to σ2,
so we obtain m(m − 1) − 3(m − 1)/2 = (m − 1)(2m − 3)/2 ordinary circles. For
even m we similarly obtain m(m − 2) − 3(m − 2)/2 = (m − 2)(2m − 3)/2 ordinary
circles. That is, we have (n−1)(n−2)/4 = n2/4−3n/4+1/2 ordinary circles when
n ≡ 1 (mod 4) and (n − 3)(n − 2)/4 = n2/4 − 5n/4 + 3/2 ordinary circles when
n ≡ 3 (mod 4).

If we remove another point from this inverted construction, we obtain a set of n
points where n is even, with 3n2/8 − O(n) ordinary circles.

4.7 Other Inverted Examples

If we invert Construction 4.1 in a point on the ellipse that is not in the set S, then by
Proposition 2.6, we obtain points on an acnodal circular cubic (without its acnode) as
in Construction 4.2, with the same number of ordinary and 4-point generalised circles.

If we invert a circular cubic in a point not on the curve, then we obtain a bicircular
quartic by Lemma 2.5. There will again be n2/2− O(n) ordinary circles (or ordinary
generalised circles) and n3/24 − O(n2) 4-point circles among the inverted points.

5 The Structure Theorems

5.1 Proof of the Weak Structure Theorem

The proofs of our structure theorems for sets with few ordinary circles crucially rely
on the following structure theorem for sets with few ordinary lines due to Green and
Tao [13]. Recall that an ordinary line is a line containing exactly two points of the
given point set.

Theorem 5.1 (Green–Tao) Let K > 0 and let n be sufficiently large depending on K .
If a set P of n points in R2 spans at most Kn ordinary lines, then P differs in at most
O(K ) points from an example of one of the following types:

(i) n − O(K ) points on a line;
(ii) m points each on a line and a disjoint conic, for some m = n/2 ± O(K );
(iii) n ± O(K ) points on an acnodal or smooth cubic.

We commence the proof of Theorem 1.4. Let P be a set of n points spanning at most
Kn2 ordinary generalised circles. We wish to show that P lies mostly on a bicircular
quartic (we will repeatedly use ‘mostly’ to mean ‘for all but O(K ) points’).
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Note that for at least 2n/3 points p of P , there are at most 9Kn ordinary circles
through p, hence the set Ip(P\{p}) spans at most 9Kn ordinary lines. Let P ′ be the
set of such points. For n sufficiently large depending on K , applying Theorem 5.1 to
Ip(P\{p}) for any p ∈ P ′ gives that Ip(P\{p}) lies mostly on a line, a line and a
conic, an acnodal cubic, or a smooth cubic.

If there exists p ∈ P ′ such that Ip(P\{p}) lies mostly on a line, then inverting
again in p, we see that P must lie mostly on a line or a circle.

If there exists p ∈ P ′ such that Ip(P\{p}) lies mostly on a line � and a disjoint
conic σ , we have two cases, depending on whether p lies on � or not.

If p ∈ �, we invert again in p to find that P lies mostly on the union of � and
Ip(σ ). By Lemma 2.5, Ip(σ ) is either a circle (if σ is a circle) or an irreducible
bicircular quartic (if σ is a non-circular conic). Furthermore, p is the only point that
could possibly lie on both � and Ip(σ ). Since roughly n/2 points of P lie on �, there
must be another point q ∈ � ∩ P ′ that does not lie on Ip(σ ). In Iq(P\{q}), the line
� remains a line, and by definition of P ′ the set Iq(P\{q}) spans few ordinary lines,
so Theorem 5.1 tells us Iq(Ip(σ )) is a conic. It follows from Lemma 2.5 that Ip(σ )

cannot be a quartic, since we inverted in the point q outside Ip(σ ) and did not obtain
a quartic. That means Ip(σ ) has to be a circle, and it is disjoint from �. Thus, P lies
mostly on the union of a line and a disjoint circle.

If p /∈ �, we invert in p to see that P lies mostly on the union of the circle Ip(�)
and the curve Ip(σ ), which is either a circle or a quartic. Again p is the only point that
can lie on both curves. Inverting in another point q ∈ Ip(�) ∩ P ′, Iq(Ip(�)) becomes
a line, so Theorem 5.1 tells us that Iq(Ip(σ )) is a conic, so that Ip(σ ) must be a circle
disjoint from Ip(�) as before. Thus, P lies mostly on the union of two disjoint circles.

The case that remains is when for all p ∈ P ′, the set Ip(P\{p}) lies mostly on an
acnodal or smooth cubic γ . Fix such a p, and consider Ip(γ ), which mostly contains
P . If γ is not a circular cubic, then by the classification in Sect. 2 it has circular degree
three, so Ip(γ ) has circular degree three as well. For any q ∈ Ip(γ ) ∩ P ′ other than
p, the curve Iq(Ip(γ )) is also a cubic curve, by the definition of P ′ and Theorem 5.1.
By Case (iii) of Lemma 2.5, this can only happen if q is a singularity of Ip(γ ). But
Ip(γ ) is an irreducible curve of degree at most six, and so has at most ten singularities
by [23, Thm. 4.4], which is a contradiction. So γ must be a circular cubic that is
acnodal or smooth. If γ is acnodal, then Ip(γ ) is either a bicircular quartic (if p /∈ γ ),
an acnodal circular cubic (if p is a regular point of γ ), or a non-circular conic (if p is
the singularity of γ ). In the last case, the conic is an ellipse by Proposition 2.6. If γ is
smooth, then Ip(γ ) is either a bicircular quartic or a smooth circular cubic.

We have encountered the following curves that P could mostly lie on: a line, a
circle, an ellipse, a disjoint union of a line and a circle, a disjoint union of two circles,
a circular cubic, or a bicircular quartic. All of these are subsets of bicircular quartics,
which proves the statement of Theorem 1.4. 
�

5.2 Proof of the Strong Structure Theorem

We now prove Theorem 1.5. First of all, as explained in Sect. 4, a subgroup of an
ellipse and an appropriate coset of a subgroup of a smooth circular cubic both have
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at most n2/2 ordinary generalised circles, and a double polygon has at most n2/4
ordinary generalised circles. It follows from Lemma 5.2 below that if we add and/or
remove O(K ) points, then there will be at most O(Kn2) ordinary generalised circles.

Lemma 5.2 Let S be a set of n points in R
2 with s ordinary generalised circles. Let

T be a set that differs from S in at most K points: |S � T | � K. Then T has at most
s + O(Kn2 + K 2n + K 3) ordinary generalised circles.

Proof First note that if we add a point to any set of n points, we create at most
(n
2

)

ordinary generalised circles. Secondly, since two circles intersect in atmost two points,
the number of 4-point circles through a fixed point in a set of n points is at most 13

(n−1
2

)
,

so by removing a point we create at most 1
3

(n−1
2

)
<

(n
2

)
ordinary generalised circles.

It follows that by adding and removing O(K ) points, we create at most

(
n

2

)
+

(
n + 1

2

)
+ · · · +

(
n + K − 1

2

)
= O(Kn2 + K 2n + K 3)

ordinary generalised circles. 
�
Next, let P be a set of n points with at most Kn2 ordinary generalised circles. From

the proof of Theorem 1.4 above, we see that P differs in at most O(K ) points from a
line, a circle, an ellipse, a disjoint union of a line and a circle, a disjoint union of two
circles, a circular cubic, or a bicircular quartic. Moreover, in the proof we saw that
the circular cubic must be acnodal or smooth, and that the bicircular quartic has the
property that if we invert in a point on the curve, the resulting circular cubic is acnodal
or smooth.

Using inversions, we can reduce the number of types of curves that we need to
analyse further.

• If P lies mostly on a line, then we are in Case (i) of Theorem 1.5, so we are done.
• If P lies mostly on a circle, then inverting in a point on the circle puts us in Case (i)
again.

• If P lies mostly on an ellipse, then inverting in a point of the ellipse places P
mostly on an acnodal circular cubic.

• If P lies mostly on a bicircular quartic, then inverting in any regular point on
the curve gives us a circular cubic. As mentioned above, this cubic is acnodal or
smooth.

• If P lies mostly on a line and a disjoint circle, then an inversion in a point not on
the line or circle places P mostly on two disjoint circles.

• If P lies mostly on the disjoint union of two circles, we can apply an inversion
that maps the two disjoint circles to two concentric circles [6, Thm. 1.7].

So, up to inversions, we need only consider the cases when P lies mostly on
an acnodal or smooth circular cubic, or on two concentric circles. We do this in
Lemmas 5.5 and 5.6 below, which will complete the proof of Theorem 1.5.

To determine the structure of P , we use a variant of a lemma from additive combi-
natorics that was used by Green and Tao [13]. It captures the principle that if a finite
subset of a group is almost closed under addition, then it is close to a subgroup. The
following statement is Proposition A.5 in [13].
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Proposition 5.3 Let K > 0 and let n be sufficiently large depending on K . Let
A, B,C be three subsets of some abelian group (G,⊕), all of cardinality within K of
n. Suppose there are at most Kn pairs (a, b) ∈ A × B for which a ⊕ b /∈ C. Then
there is a subgroup H � G and cosets H ⊕ x, H ⊕ y such that

|A � (H ⊕ x)|, |B � (H ⊕ y)|, |C � (H ⊕ x ⊕ y)| = O(K ).

The variant that we need is a simple corollary of Proposition 5.3.

Corollary 5.4 Let K > 0 and let n be sufficiently large depending on K . Let
A, B,C, D be four subsets of some abelian group (G,⊕), all of cardinality within
K of n. Suppose there are at most Kn2 triples (a, b, c) ∈ A × B × C for which
a ⊕ b ⊕ c /∈ D. Then there is a subgroup H � G and cosets H ⊕ x, H ⊕ y, H ⊕ z
such that

|A � (H ⊕ x)|, |B � (H ⊕ y)|, |C � (H ⊕ z)|, |D � (H ⊕ x ⊕ y ⊕ z)| = O(K ).

Proof By the pigeonhole principle, there exists an a0 ∈ A such that there are at most
K ′n (where K ′ = O(K )) pairs (b, c) ∈ B × C for which a0 ⊕ b ⊕ c /∈ D, or
equivalently b ⊕ c /∈ D � a0. Applying Proposition 5.3, we have a subgroup H � G
and cosets H ⊕ y, H ⊕ z such that

|B � (H ⊕ y)|, |C � (H ⊕ z)|, |(D � a0) � (H ⊕ y ⊕ z)| = O(K ).

Since |B ∩ (H ⊕ y)| � n − O(K ), we repeat the argument above to obtain b0 ∈
B∩(H⊕y) such that there are atmostO(Kn) pairs (a, c) ∈ A×C witha⊕b0⊕c /∈ D,
and Proposition 5.3 gives a subgroup H ′ � G and cosets H ′ ⊕ x , H ′ ⊕ z′ such that

|A � (H ′ ⊕ x)|, |C � (H ′ ⊕ z′)|, |(D � b0) � (H ′ ⊕ x ⊕ z′)| = O(K ).

From this, it follows that |(H⊕z)�(H ′⊕z′)| = O(K ), hence |(H⊕z)∩(H ′⊕z′)| �
n − O(K ). Since (H ⊕ z) ∩ (H ′ ⊕ z′) is not empty, it has to be a coset of H ′ ∩ H .
If H ′ 	= H , then |H ′ ∩ H | � n/2 + O(K ), a contradiction. Therefore, H = H ′ and
H ⊕ z = H ′ ⊕ z′. So we have |A�(H ⊕x)|, |B�(H ⊕ y)|, |C�(H ⊕ z)|, |D�(H ⊕
x ⊕ b0 ⊕ z)| = O(K ). Since b0 ∈ H ⊕ y, we obtain |D� (H ⊕ x ⊕ y ⊕ z)| = O(K )

as well. 
�
Lemma 5.5 (Circular cubic) Let K > 0 and let n be sufficiently large depending on
K . Suppose P is a set of n points in R

2 spanning at most Kn2 ordinary generalised
circles, and all but at most K points of P lie on an acnodal or smooth circular cubic
γ . Then there is a coset H ⊕ x of a subgroup H � γ ∗, with 4x ∈ H ⊕ ω, such that
|P � (H ⊕ x)| = O(K ).

Proof Let P ′ = P ∩ γ ∗. Then |P � P ′| = O(K ), and by Lemma 5.2, P ′ spans at
most O(Kn2) ordinary circles. If a, b, c ∈ γ are distinct, then by Proposition 3.2, the
generalised circle through a, b, cmeets γ again in the unique point d = ω�(a⊕b⊕c).
This implies that d ∈ P ′ for all but atmost O(Kn2) triples a, b, c ∈ P ′, or equivalently
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a⊕b⊕c ∈ ω� P ′. Applying Corollary 5.4 with A = B = C = P ′ and D = ω� P ′,
we obtain H � γ ∗ and a coset H ⊕ x such that |P � (H ⊕ x)| = O(K ) and
|(ω� P ′)� (H ⊕3x)| = O(K ), which is equivalent to |P� (H �3x ⊕ω)| = O(K ).
Thus we have |(H ⊕ x) � (H � 3x ⊕ ω)| = O(K ), which implies 4x ∈ H ⊕ ω. 
�
Lemma 5.6 (Concentric circles) Let K > 0 and let n be sufficiently large depending
on K . Suppose P is a set of n points inR2 spanning at most Kn2 ordinary generalised
circles. Suppose all but at most K of the points of P lie on two concentric circles, and
that P has n/2 ± O(K ) points on each. Then, up to similarity, P differs in at most
O(K ) points from an ‘aligned’ or ‘offset’ double polygon.

Proof By scaling and rotating, we can assume that P lies mostly on the two concentric
circles

{
e2π i t

∣∣ t ∈ [0, 1)} and
{
re−2π i t

∣∣ t ∈ [0, 1)}, r > 1, which we gave a group
structure in Sect. 3.2.

Let P1 = P ∩ σ1 and P2 = P ∩ σ2. Then |P � (P1 ∪ P2)| = O(K ), and by
Lemma 5.2, P1 ∪ P2 spans at most O(Kn2) ordinary circles. If a, b ∈ σ1 and c ∈ σ2
with a 	= b, then by Lemma 3.4, the generalised circle through a, b, c meets σ1 ∪ σ2
again in the unique point d = �(a ⊕ b ⊕ c). This implies d ∈ P2 for all but at most
O(Kn2) triples (a, b, c) with a, b ∈ P1 and c ∈ P2. Applying Corollary 5.4 with
A = B = P1, C = P2 and D = �P2, we get cosets H ⊕ x and H ⊕ y of σ1 ∪σ2 such
that |P1 � (H ⊕ x)|, |P2 � (H ⊕ y)| = O(K ) and 2x ⊕ 2y ∈ H , where x ∈ σ1 and
y ∈ σ2. It follows that H � σ1, hence H is a cyclic group of order m = n/2± O(K ),
and H ⊕ x and H ⊕ y are the vertex sets of regular m-gons inscribed in σ1 and σ2,
respectively, either ‘aligned’ or ‘offset’ depending on whether x ⊕ y ∈ H or not. 
�

Together these lemmas prove Theorem 1.5. It just remains to remark that if P differs
in O(K ) points from a coset on an acnodal circular cubic, then we apply inversion
in its singularity. By Proposition 2.6, we obtain that P differs in O(K ) points from a
coset H ⊕ x of a finite subgroup H of an ellipse, where 4x = o. Thus, x is a point
of the ellipse with eccentric angle a multiple of π/2. After a rotation, we can assume
that x = o, which is Case (ii) of Theorem 1.5. 
�

6 Extremal Configurations

In this section we prove Theorems 1.1, 1.2, and 1.3. We first consider generalised
circles.

6.1 Ordinary Generalised Circles

Suppose P is an n-point set in R
2 spanning fewer than n2/2 ordinary generalised

circles, and that P is not contained in a generalised circle. Applying Theorem 1.5, we
can conclude that, up to inversions, P differs in O(1) points from one of the following
examples: points on a line, a coset of a subgroup of an acnodal or smooth circular
cubic, or a double polygon.

The first type of set is very easy to handle. Note that the lower bound is on the
number of ordinary circles, not counting 3-point lines.
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Lemma 6.1 Let K � 1 and n � 2K + 4. If all except K points of a set P ⊂ R
2 of n

points lie on a line, then P spans at least
(n−1

2

)
ordinary circles.

Proof Let � be a line such that |P ∩ �| = n − K . For any p ∈ P ∩ � and q ∈ P\�
there are at most K − 1 non-ordinary circles through p, q, another point on P ∩ �,
and another point in P\�. Therefore, there are at least K (n − 2K ) ordinary circles
through p. This holds for any of the n − K points p ∈ P ∩ �, and we obtain at least
K (n−2K )(n−K )/2 ordinary circles. It is easy to see that when 1 � K � (n−4)/2,
K (n − 2K )(n − K )/2 is minimised when K = 1. 
�

Cosets on cubics are also relatively easy to handle. We again obtain a lower bound
on the number of ordinary circles, not including 3-point lines.

Lemma 6.2 Suppose P ⊂ R
2 differs in K points from a coset H ⊕ x of an acnodal

or smooth circular cubic, where |H | = n ± O(K ) and 4x � ω ∈ H. Then P spans at
least n2/2 − O(Kn) ordinary circles.

Proof Suppose that P differs in K points from H⊕x .We know fromConstruction 4.2
that H ⊕ x spans n2/2−O(n) ordinary circles, all of which are tangent to γ . We show
that adding or removing K points destroys no more than O(Kn) of these ordinary
circles, so that the resulting set P still spans at least n2/2 − O(Kn) ordinary circles.

Suppose we add a point q /∈ H ⊕ x . For p ∈ H ⊕ x , at most one circle tangent to
γ at p can pass through q. Thus, adding q destroys at most n ordinary circles. Now
suppose we remove a point p ∈ H ⊕ x . Since ordinary circles of H ⊕ x correspond
to solutions of 2p ⊕ q ⊕ r = ω or p ⊕ 2q ⊕ r = ω, there are at most O(n) solutions
for a fixed p. Thus removing p destroys at most O(n) ordinary circles.

Repeating K times, we see that adding or removing K points to or from H ⊕ x
destroys at most O(Kn) ordinary generalised circles out of the n2/2− O(n) spanned
by H ⊕ x . This proves that P spans at least n2/2 − O(Kn) ordinary circles. 
�

From the two lemmas above we know that there is an absolute constant C such that
a set of n points, not all collinear or concyclic, spanning at most n2/2 − Cn ordinary
generalised circles, differs in O(1) points from Case (iv) in Theorem 1.5. This case,
where P is close to the vertex set of a double polygon, requires a more careful analysis
of the effect of adding or removing points.

We use the following special case of a result due to Raz et al. [20].

Proposition 6.3 If P ⊂ R
2 is a set of n points contained in two circles, then the

number of lines with at least three points of P is at most O(n11/6).

Proof Denote the two circles by σ1 and σ2.We use [20, Thm. 6.1], which states that for
(not necessarily distinct) algebraic curvesC1,C2,C3 of constant degree, and finite sets
Si ⊂ Ci , the number of collinear triples (p1, p2, p3) ∈ S1 × S2 × S3, with p1, p2, p3
distinct, is bounded by O(|S1|1/2|S2|2/3|S3|2/3 + |S1| + |S1|1/2|S2| + |S1|1/2|S3|),
unless C1 ∪ C2 ∪ C3 is a line or a cubic. Let C1 = σ1 and C2 = C3 = σ2. Set
Si = P ∩ Ci for i = 1, 2, 3. Every line with at least one point of S1 and two points
of S2 = S3 corresponds to a collinear triple in S1 × S2 × S3. Since the union of two
circles is not a line or a cubic, we can apply the theorem to get the bound O(n11/6)
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for the number of collinear triples in P with one point in σ1 and two points in σ2.
Similarly, the number of collinear triples in P with one point in σ2 and two points
in σ1 is also O(n11/6). Since a line intersects σ1 ∪ σ2 in at most four points, we also
obtain the bound O(n11/6) for the number of lines with at least three points. 
�
Lemma 6.4 Let S be a double polygon with m points on each circle. Let P = (S\A)

∪ B be a set of n points, where A is a subset of S with a = O(1) points and B is a
set disjoint from S with b = O(1) points. Then P spans at least (2 + a + 4b)n2/8 −
O(n11/6) ordinary generalised circles.

Proof We know from Constructions 4.3 and 4.4 that S spans n2/4 − O(n) ordinary
generalised circles.

Consider first the number of ordinary generalised circles spanned by S\A. As we
saw in Construction 4.5, removing a point p ∈ S destroys at most 3m/2 ordinary
generalised circles spanned by S, and adds m2/2 − O(m) = n2/8 − O(n) ordinary
generalised circles. Noting that there are at mostm 4-point generalised circles spanned
by S that go through any two given points of A, we thus have by inclusion–exclusion
that S\A determines at least (1/4 + a/8)n2 − O(n) ordinary generalised circles.

Now consider adding q ∈ B to S. For any pair of points from S\A, adding q ∈ B
creates a new ordinary generalised circle, unless the generalised circle through the
pair and q contains three or four points of S\A. We already saw that the number of
ordinary generalised circles hitting a fixed point is O(n), so it remains to bound the
number of 4-point generalised circles of S that hit q. If q lies on one of the concentric
circles, then no 4-point generalised circles hit q, so we can assume that q does not.
Applying inversion in q reduces the problem to bounding the number of 4-point lines
determined by a subset of two circles. By Proposition 6.3, this number is bounded by
O(n11/6), so p lies on at most O(n11/6) of the 4-point generalised circles spanned
by S. Adding q to S thus creates at least

(n
2

) − O(n11/6) ordinary generalised circles.
Note that each p ∈ A that was removed destroys at most n of these circles.

Adding q to S\A also destroys at most O(n) ordinary circles, since for each p ∈ S
there is only one circle tangent at p and going through q, and for each p ∈ A, at most
m ordinary circles spanned by S\A go through p. Finally, since there are at most 2m
circles through two points of B that also go through two points of S\A, P = (S\A)∪B
spans at least (1/4 + a/8 + b/2)n2 − O(n11/6) ordinary generalised circles. 
�

Theorem 1.2 then follows easily from the lemmas above.

Proof of Theorem 1.2 Suppose that P is a set of n points in R
2 with fewer than

n2/2−Cn ordinary generalised circles, where C is sufficiently large. Without loss of
generality, n is also sufficiently large. By Lemmas 6.1 and 6.2, we need only consider
the case where P differs by O(1) points from a double polygon. In the notation of
Lemma 6.4, we have P = (S\A) ∪ B and (2 + a + 4b)/8 < 1/2, which implies that
a � 1 and b = 0. So P is either equal to S, or is obtained from S by removing one
point, which are exactly the cases in Constructions 4.3, 4.4, and 4.5 . In particular,
the minimum number of ordinary generalised circles occurs in Construction 4.3 when
n ≡ 0 (mod 4), in Construction 4.5when n ≡ 1, 3 (mod 4), and in Constructions 4.3
and 4.4 when n ≡ 2 (mod 4). 
�
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6.2 Ordinary Circles

We now consider what happens if we do not count generalised circles that are lines,
and prove Theorem 1.1.

Proof of Theorem 1.1 Let P be a set of n points not all on a line or a circle, with atmost
n2/2 − Cn ordinary circles, for a sufficiently large C . By a simple double counting
argument, there are at most n2/6 3-point lines, so there are at most 2n2/3 − O(n)

ordinary generalised circles. By Theorem 1.5, up to inversions and up to O(1) points,
P lies on a line, an ellipse, a smooth circular cubic, or two concentric circles. By
Lemmas 6.1 and 6.2, the first three cases give us at least n2/2−O(n) ordinary circles,
contrary to assumption. Therefore, we only need to consider the case where, when P
is transformed by an inversion to P ′, we have P ′ = (S\A) ∪ B, where S is a double
polygon (‘aligned’ or ‘offset’), and |A| = a, |B| = b.

By Lemma 6.4, P ′ has at least (2+ a + 4b)n2/8− O(n11/6) ordinary generalised
circles, which gives us the inequality (2 + a + 4b)/8 < 2/3, which in turn gives us
a � 3 and b = 0. Therefore, P ′ lies on two concentric circles, and P lies on the
disjoint union of two circles or the disjoint union of a line and a circle.

Suppose that a = 3 (and b = 0). Then P ′ has 5n2/8 − O(n) ordinary generalised
circles. Those passing through the centre of the inversion that transforms P to P ′, are
inverted back to straight lines passing through three points of P . As in the proof of
Lemma 6.4, there are n2/8− O(n) ordinary generalised circles that pass through any
point of A. Also, we can use Lemma 6.5 below to show that there are at most O(n)

ordinary generalised circles spanned by S\A that intersect in the same point not in S.
Indeed, by Lemma 6.5, there are at most n/2 ordinary generalised circles of S that
intersect in the same point p /∈ S. Furthermore, for each point q ∈ A there are O(n)

generalised circles through p, q, and two more points of S. It follows that there are
O(n) ordinary generalised circles spanned by S\A through p.

Thus, if the centre of inversion is in A, P has n2/2− O(n) ordinary circles, which
is a contradiction if C is chosen large enough. On the other hand, if the centre of
inversion is not in A, then P has 5n2/8− O(n) ordinary circles, also a contradiction.

Therefore, we have a � 2, which means that P ′ is a set of n points as in Construc-
tions 4.3, 4.4, 4.5, or 4.6.

Next, suppose that n is even. If a = 2, then there are n2/2 − O(n) ordinary
generalised circles and through both points of A there are n2/8 − O(n) ordinary
generalised circles. If we invert in one of these points in A, we obtain a set with 3n2/8−
O(n) ordinary circles (as in Construction 4.6), which is not extremal. Otherwise,
a = 0, P ′ is as in Constructions 4.3 or 4.4, and there are at least n2/4 − n ordinary
generalised circles if n ≡ 0 (mod 4) and n2/4 − n/2 if n ≡ 2 (mod 4). Let p be
the centre of the inversion that transforms P to P ′. Then all the 3-point lines of P
are inverted to ordinary circles in the double polygon P ′, all passing through p. By
Lemma 6.5 below, there are at most n/2 ordinary circles that intersect in the same point
not in P ′. Thus, in P there at most n/2 3-point lines, and the number of ordinary circles
(not including lines) is at least n2/4 − 3n/2 if n ≡ 0 (mod 4) and n2/4 − n if n ≡ 2
(mod 4), which match Construction 4.3 (and Construction 4.4 if n ≡ 2 (mod 4)), if
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Fig. 6 Bitangent circles
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the radii are chosen so that each vertex of the inner polygon has an ordinary generalised
circle that is a straight line tangent to it.

Finally, suppose that n is odd. Then a = 1 and P ′ is as in Construction 4.5,
with 3n2/8 − O(n) ordinary generalised circles. It follows that P must be as in
Construction 4.6, with n2/4 − 3n/4 + 1/2 ordinary circles if n ≡ 1 (mod 4) and
n2/4 − 5n/4 + 3/2 ordinary circles if n ≡ 3 (mod 4). This finishes the proof. 
�
Lemma 6.5 Let S be a double polygon (‘aligned’ or ‘offset’) with m points on each
circle. Then a point q /∈ S lies on at most m ordinary generalised circles spanned
by S.

Proof Denote the inner circle by σ1 and the outer circle by σ2, both with centre o. We
proceed by case analysis on the position of q with respect to σ1 and σ2. Note that for
each point p ∈ S, at most one of the ordinary generalised circles tangent at p can go
through q.

If q lies on either σ1 or σ2, then q does not lie on any ordinary generalised circle
spanned by S.

If q lies inside σ1, then q lies on at most m ordinary generalised circles spanned by
S, since ordinary generalised circles tangent to σ1 cannot pass through q. Similarly,
if q lies outside σ2, it lies on at most m ordinary generalised circles, since ordinary
generalised circles tangent to σ2 lie inside σ2.

The remaining case to consider is when q lies in the annulus bounded by σ1 and σ2.
Consider the subset S′ ⊂ S of points p such that there exists an ordinary generalised
circle tangent at p going through q. Consider the four circles passing through q and
tangent to both σ1 and σ2. They touch σ1 at a1, b1, c1, d1 and σ2 at a2, b2, c2, d2 as
in Fig. 6. Any circle through q tangent to σ1 and intersecting σ2 in two points, must
touch σ1 on one of the open arcs a1b1 or c1d1. Similarly, any circle through q tangent
to σ2 and intersecting σ1 in two points, must touch σ2 on one of the open arcs a2c2 or

123



Discrete Comput Geom

b2d2. It follows that S′ must be contained in the relative interiors of one of these four
arcs. Since S consists of m equally spaced points on each of σ1 and σ2,

|S′| <

⌈
2m( 	 a1ob1 + 	 c1od1 + 	 b2od2 + 	 a2oc2)

4π

⌉
=

⌈
m(θ + ϕ)

π

⌉
,

where θ and ϕ are as indicated in Fig. 6. In order to show that |S′| � m, it suffices to
show that the angle sum θ + ϕ is strictly less than π . This is clear from Fig. 6 (note
that a1, o, a2 are collinear with a1 and a2 on opposite sides of o). 
�

6.3 Four-Point Circles

Proof of Theorem 1.3 Let P be a set of n points inR2 with at least n3/24−7n2/24+
O(n) 4-point generalised circles. Let ti denote the number of i-point lines (i � 2) and
si the number of i-point circles (i � 3) in P . By counting unordered triples of points,
we have

(
n

3

)
=

∑

i�3

(
i

3

)
(ti + si ) � t3 + s3 + 4(t4 + s4),

hence

1

6
n3 − O(n2) � t3 + s3 + 4

(
1

24
n3 − O(n2)

)

and t3 + s3 = O(n2), so we can apply Theorem 1.5. We next consider each of the
cases of that theorem in turn.

If all except O(1) points of P lie on a straight line, it is easy to see that P determines
only O(n2) generalised circles, contrary to assumption.

If all except O(1) are vertices of two regular m-gons on concentric circles where
m = n/2±O(1), thenwe know fromConstructions 4.3, 4.4, and 4.5 that P determines
at most n3/32 + O(n2) 4-point generalised circles, again contrary to assumption.

Suppose next that P = ((H ⊕ x)\A) ∪ B, where H is a finite subgroup of order
m = n ± O(1) of a smooth circular cubic, A is a subset of H ⊕ x with a = O(1)
points, and B is a set disjoint from H ⊕ x with b = O(1) points. Then n = m−a+b.
The number of 4-point generalised circles in H ⊕ x is m3/24 − m2/4 + O(m). We
next determine an upper bound for the number of 4-point generalised circles in P .

For each p ∈ A, let Cp be the set of 4-point generalised circles of H ⊕ x that pass
through p. Then |Cp| = m2/6− O(m) and |Cp ∩Cq | = O(m) for distinct p, q ∈ A.
By inclusion–exclusion, we destroy at least

∣∣⋃
p∈A Cp

∣∣ � am2/6 − O(m) 4-point

generalised circles by removing A, and we still have at mostm3/24−m2/4−am2/6+
O(m) 4-point generalised circles in (H ⊕ x)\A.

For each p ∈ B, the number of ordinary generalised circles spanned by H ⊕ x
passing through p is at most O(m). This is because each such generalised circle is
tangent to the cubic at one of the points of H ⊕ x , and there is only one generalised
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circle through p and tangent at a given point of H ⊕ x . Also, for each pair of distinct
p, q ∈ B, there are at most O(m) generalised circles through p and q and two points
of H ⊕ x ; and for any three p, q, r ∈ B there are at most O(1) generalised circles
through p, q, r and one point of H ⊕ x . Therefore, again by inclusion–exclusion, by
adding B we gain at most O(m) 4-point generalised circles.

It follows that the number of 4-point generalised circles determined by P is

t4 + s4 � 1

24
m3 − 1

4
m2 − 1

6
am2 + O(m) = n3 − (a + 3b + 6)n2 + O(n)

24
.

Since we assumed that

t4 + s4 � n3 − 7n2 + O(n)

24
,

we obtain a+ 3b < 1. Therefore, a = b = 0 and P = H ⊕ x . The maximum number
of 4-point circles in a coset has been determined in Constructions 4.1 and 4.2.

The final case, when all but O(1) points of P lie on an ellipse, can be reduced to the
previous case. Indeed, by Lemma 2.6, if we invert the ellipse in a point on the ellipse,
we obtain an acnodal circular cubic, and then the above analysis holds verbatim for
the group of regular points on this cubic. 
�
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