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The Diversity of Model Tuning
Practices in Climate Science
Katie Steele and Charlotte Werndl*y

Many examples of calibration in climate science raise no alarms regarding model reli-
ability. We examine one example and show that, in employing classical hypothesis test-
ing, it involves calibrating a base model against data that are also used to confirm the
model. This is counter to the ‘intuitive position’ (in favor of use novelty and against dou-
ble counting). We argue, however, that aspects of the intuitive position are upheld by
some methods, in particular, the general cross-validation method. How cross-validation
relates to other prominent classical methods such as the Akaike information criterion and
Bayesian information criterion is also discussed.
1. Introduction. Many climate scientists are apprehensive about calibrat-
ing (or tuning) climate models to increase their reliability. This practice is
commonly identified with including parameterizations in a climate model
that ‘stand in’ for physical processes such as the behavior of clouds that are
notwell enough understood or are smaller than the grid size. Theworry is that
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parameterizations are selected specifically to enhance the fit to the relevant
observational data (say, change in global surface air temperature through-
out the twentieth century), that is, to compensate in an ad hoc way for other
structural errors in the model (see Frisch 2015 and references therein). Given
this understanding of ‘calibration’, it is no wonder that climate scientists are
skeptical about it. Indeed, the consensus, as echoed in the Intergovernmental
Panel on Climate Change Fifth Assessment Report (AR5), is apparently that
empirical fit with the calibrating data provides little to no confirmation for
the calibrated model: “Model tuning directly influences the evaluation of cli-
mate models, as the quantities that are tuned cannot be used in model eval-
uation. Quantities closely related to those tuned will provide only weak tests
of model performance. Nonetheless, by focusing on those quantities not
generally involved in model tuning while discounting metrics clearly related
to it, it is possible to gain insight into model performance” (Flato et al. 2013,
box 9.1).

We dub this the ‘intuitive position’ regarding calibration and confirmation
of base models/theories: that use-novel data have a special role in confirma-
tion and, more strongly, that data cannot be used twice, both for calibration
and confirmation (the no-double-counting rule; Worrall 2010).1 We suggest,
however, that scientists and philosophers alike overlook the diversity ofmodel-
calibration practices in science. Once one moves beyond highly suggestive
examples, it is not obvious that the intuitive position is right. In the sugges-
tive examples, calibration amounts to model construction that is ad hoc. In-
deed, whether it is a calibrated version of Ptolemy’s theory to fit planetary
retrogressions or a calibrated climate model to fit the temperature record,
the problem is that the adjustments to the base model have dubious prima
facie reliability. If we think of calibration in this way—making ad hoc ad-
justments in order to get better fit—scientists are right to be skeptical about
whether there is a net increase in reliability. The gain in empirical fit with
the calibrating datamust be traded off against the loss of physical plausibility
of the model.

More ‘modest’ calibration examples in climate and other sciences pro-
vide better grounds for examining detailed questions of empirical fit vis-à-
vis model confirmation. Indeed, there is much model calibration in climate
science that is subtly at odds with the intuitive position: cases whereby data
are used for both calibration and confirmation. Elsewhere, Steele andWerndl
(2013) examined the calibration of the aerosol forcing parameter. In section2
we will describe an even more pedestrian example of double counting in cli-
mate science.This sort of casediffers from those above in that the ‘tuned’base
1. In this article we use the phrase ‘confirmation’ broadly, as pertaining to assessments
of model reliability. Strictly speaking, confirmation (in philosophy) is about the truth of
hypotheses.
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MODEL TUNING IN CLIMATE SCIENCE 1135
models are not obviously inferior to any other base models under consider-
ation. We can thus focus purely on the significance of model fit with calibra-
tion data.

The main focus of the article is the diversity of formal calibration meth-
ods and how these relate to the intuitive position. Steele and Werndl (2013)
critique the intuitive position from the Bayesian perspective. Here we focus
on the diverse class of classical or frequentist methods. Section 3 shows that
the simplest classical method of hypothesis testing, employed in the case
study described in section 2, is at odds with the intuitive position and is,
in this regard, very similar to the Bayesian method. Section 4 introduces the
general method of cross-validation, which allows for a more nuanced stance
with respect to the intuitive position. Cross-validation can be refined depend-
ing on what frequentist properties of model assessment (estimation or identi-
fication) are considered desirable. In sections 4.1 and 4.2 we examine two
methods, known as theAkaike and theBayesian information criterion,which
can each be related to special cases of cross-validation that accord with one
or the other of these aims. The article concludes in section 5.

2. A Climate Case Study. Stone et al. (2007) aim to explain global mean
surface temperature changes in the past decades. A climate forcingmeasures
the change in the net (downward minus upward) radiative flux at the top of
the atmosphere or at the boundary between the troposphere and the strato-
sphere arising because of a change in an external driver of the climate sys-
tem. Stone and colleagues look at four such forcings: (1) one associated with
tropospheric greenhouse gases, (2) one associated with sulfate emissions,
(3) one associated with stratospheric volcanic aerosols, and (4) one associ-
ated with solar radiation.

There is a specific spatiotemporal pattern of temperature changes (called
a fingerprint) associated with each forcing. In Stone et al. (2007) the finger-
print for each forcing is known from energy balance models that incorpo-
rate information from a general circulation model. Yet what is not known is
the relative extent of the response to a forcing. Hence, the extent of the re-
sponse to a forcing corresponds to a free parameter that has to be estimated
from the data.

Stone et al. (2007) use observations of mean surface temperature changes
from 1940 to 2005 to estimate these free parameters and to measure the fit
of the models with the observations. Estimating the relative extent of re-
sponse to the various forcings amounts to finding the values of bi, 1 ≤ i ≤
4, that give the best fit to the data Tobs. That is, the bi in the following equa-
tion are fitted to minimize, within bounds, the error:

Tobs 5 o
4

i51

biTi 1 ε, (1)
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where Ti is the pattern of temperature change given by the fingerprint for
forcing i and ε is the error term.

More specifically, the base models Stone et al. (2007) consider include
equation (1) and all other nested models derived from this (all in all 16 base
models). That is, there is a base model in which there is only one free param-
eter b1 corresponding to the extent of the response to the greenhouse gases
forcing, a base model in which there are two free parameters corresponding
to the extent of the response to the greenhouse gases forcing (b1) and the sul-
fate emissions forcing (b2), as well as base models with the other combina-
tions of free bi-parameters. Model instances are obtained when the free pa-
rameters are assigned specific values.

Stone et al. (2007) then compare the performance of these 16 base mod-
els, assuming that inclusion of the term biTi is necessary just in case the es-
timated bi is significantly different from zero (at the 95% level). Stone and
colleagues conclude that the base modelM1,2,3 that includes the three free pa-
rameters corresponding to the extent of the greenhouse gases forcing (b1),
the extent of the sulfate emissions forcing (b2), and the extent of the strato-
spheric volcanic aerosols forcing (b3) is confirmed relative to all other base
models. Confidence intervals for the estimates of the greenhouse gases forc-
ing, the sulfate emissions forcing, and the stratospheric volcanic aerosol forc-
ing are provided. Stone and colleagues emphasise that this demonstrates that
both anthropocentric and natural forcings are needed to account for the ob-
servations.

To sum up, Stone et al. (2007) use data about global mean temperature
changes to estimate the values of the free parameters (calibration) and to
confirm M1,2,3 relative to the other 15 base models. That is, they engage in
double counting, and use novelty does not play a role. The next section will
reflect on the case study.

3. Classical Hypothesis Testing Vis-à-Vis the Intuitive Position. The
simplest classical method for assessing models is arguably standard hypoth-
esis testing—the procedure employed in our case study. We first describe
classical hypothesis testing before turning to our case study.

A base model in this context is a set of model hypotheses that all share
the same model structure (model equations) but that differ in the value of
parameters that are considered the free parameters. These are thus referred
to as model-instance hypotheses. Commonly, the dependent variable or
model output is hypothesized to be an accurate representation of some as-
pect of the world. For climate models, the model output might represent, say,
mean global temperature change. Hypothesis testing concerns one base
model, although this includes any nested basemodels (i.e., subsets of the full
set of model-instance hypotheses, where the value for one or more of the free
parameters is zero).
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MODEL TUNING IN CLIMATE SCIENCE 1137
Hypothesis testing considers whether the observational data are ‘in keep-
ing’with one or more of the model-instance hypotheses. If so, these hypoth-
eses are treated as plausible candidates for the truth. What confers reliabil-
ity is the testing procedure: as for all classical methods, long-run properties
matter. More specifically, the hypothesis-testing procedure is as follows: all
model-instance hypotheses for which the n data at hand fall in the unlikely
or rejection region are discarded. The remaining accepted hypotheses form
a confidence interval of plausible parameter values. The long-run properties
of the testing procedure of interest are the type I error or significance level
and the corresponding confidence level. It is assumed that the set of model-
instance hypotheses under consideration form a suitable continuum, and the
true hypothesis is among them. As such, the type I error is the (long-run
frequentist) probability of rejecting any given model-instance hypothesis
when it is in fact true (typically set at 0.05 or 0.01). The confidence level
is the flip side of the type I error; the two values add to 1; the confidence
level gives the (long-run frequentist) probability that the set of accepted
model hypotheses, that is, the confidence interval for the various parameter
values, contains the true hypothesis/parameter values, if the same testing
procedure (with n data) were repeated indefinitely.

We return to our climate science example. Recall that the base model
here is a linear combination of the ‘fingerprints’ of the various forcings (de-
noted by Ti):

Tobs 5 o
4

i51

biTi 1 ε, (2)

where the free parameters, bi, 1 ≤ i ≤ 4, indicate the extent of the forcings
(and ε specifies probabilistic model error). The data are records of mean
global temperature changes for the given time period, Tobs.

Hypothesis testing treats every possible combination of bi values associ-
ated with the base model as a model-instance hypothesis. Any hypothesis
for which the observed temperature record is too ‘unlikely’ (with type I er-
ror set at 0.05) is discarded, yielding a 95% confidence interval for the true
model-instance hypothesis, which can be articulated in terms of 95% con-
fidence intervals for each of the four bi terms. It turned out that three of these
bi confidence intervals did not contain zero: the bi associated with the green-
house gases forcing, the sulfate emissions forcing, and the stratospheric vol-
canic aerosol forcing. Thus, the base model that includes these parameters is
deemed more reliable (or confirmed) relative to the nested base models that
do not include these parameters (effectively setting them to zero).2
2. This is a weaker conclusion than those of Stone et al. (2007). By our analysis, the base
models that do not have positive values for b1, b2, and b3 are falsified; all other base
models are consistent with the data.
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Contrary to the intuitive position, classical hypothesis testing does not re-
spect use novelty and the no-double-counting rule: calibration is the assess-
ment of particular model-instance hypotheses—these hypotheses are either
accepted in the confidence interval or rejected. When forming a confidence
interval, one base model may be accepted over another otherwise nested base
model (when the confidence interval for some free parameter does not in-
clude zero).3 Thus, there is double counting, and data used for confirmation
are not use novel.

4. Cross-Validation Vis-à-Vis the Intuitive Position. While hypothesis
testing may be the most widely used classical method, other classical meth-
ods have been proposed. For all these methods, the focus is the long-run
properties of the procedure that is used to assess/identify models. The hy-
pothesis tester asks herself: What confidence level, 1 2 a, is suitable for
my purposes, given that if I were to repeat this procedure indefinitely, then
my confidence interval would contain the true hypothesis in (1 2 a)% of
cases? The crucial assumption is that the base model (or otherwise a nested
counterpart) is true. But there may be contexts in which the scientist is not
sure which base model is true, and the plausible candidates do not simply
amount to a nested family of base models. In this case, hypothesis testing is
not very telling—we are assured only of the long-run accuracy of the con-
fidence interval for each base model, conditional on that base model being
true. This does not license any comparison of base models, unless they are
nested. The cross-validation method, by contrast, is more general. It also
sheds a different light on the intuitive position with respect to use novelty
and double counting.

Cross-validation is a general method for assessing/identifying models
for prediction, which has also been applied and discussed in climate science
(e.g., Michaelsen 1987; Elsner and Schwertmann 1994). It has several main
components that can be adjusted, depending on the context and the desired
long-run properties. The first component is the procedure that is being as-
sessed for each base model. This is the calibration step and is akin to the
hypothesis-testing procedure but is generally an abbreviated version whereby
what is identified is just the model instance for each base model that gives
the best fit with (confers highest probability to) the n data points. This is re-
ferred to as the maximum likelihood estimator for the base model. The sec-
ond component is the performance measure for the base-model procedure.
Typically it is the mean predictive accuracy (with respect to predicting a
new data point) of the base-model procedure, if it were conducted indef-
3. Admittedly, the most inclusive base model is simply assumed true in hypothesis test-
ing and so cannot be confirmed or disconfirmed. Subsets of this base model may, how-
ever, be confirmed relative to other subsets.
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MODEL TUNING IN CLIMATE SCIENCE 1139
initely in response to n data generated randomly by nature. Given that we do
not know nature’s data-generating mechanism, we must estimate the mean
predictive accuracy of the base-model procedure. The way this estimate is
determined is the key characteristic of any model selection method.

The typical (n 2 1)-cross-validation estimator for the mean predictive
accuracy is calculated as follows: Given n data points, one starts by using
the first n 2 1 data points to construct the best-fitting model instance of the
base model given these data and then uses the remaining data points to as-
sess the performance of the model instance (by calculating the distance be-
tween the predicted data point and the actual data point). This is repeated for
all possible selections of n 2 1 data points to calculate the mean distance
between the predicted and actual data points. An alternative is (n 2 k)-
cross-validation, where n 2 k data points are used to find the best-fitting
model instance, and the remaining k data points are used to assess predictive
accuracy. The key assumption is that the data are independently and iden-
tically distributed (Arlot and Celisse 2010).

Unlike hypothesis testing, cross-validation gives use-novel data a special
standing. It effectively involves repeated tests whereby one or more data
points are ‘left out of calibration’ to serve as the telling novel data. How-
ever, cross-validation does not respect the no-double-counting rule: all data
are used for confirmation and calibration.

The cross-validation estimators of the long-run predictive accuracy of
base-model procedures themselves have long-run properties. One property
is the bias: how well the expected estimate of predictive accuracy matches
the true predictive accuracy of the maximum-likelihood procedure. The
smaller the value for k in (n 2 k)-cross-validation, the less biased the esti-
mator. The (n 2 1)-cross-validation estimator, for instance, is an asymptot-
ically unbiased estimator (Linhart and Zucchini 1986; Zucchini 2000; Arlot
and Celisse 2010). For larger values of k, we get biased estimates because
we are assessing the performance of the base-model procedure when n 2 k
data points are used for calibration and not what one would like to test: the
performance of the procedure when n data points are used for calibration (as
is actually done).

Whether one should opt for a biased or an unbiased estimator of predic-
tive accuracy is related to the question of one’s aims in model selection (Ar-
lot and Celisse 2010). A method is efficient if, as the number of data points,
n, approaches infinity, the probability approaches one that the base-model
procedure (maximum likelihood estimator) with greatest predictive accu-
racy is selected. This property characterizes the goal of estimation. Amethod
is model consistent if, as the number of data points, n, approaches infinity,
the probability approaches one that the true model instance is selected. This
property characterizes the goal of identification. As it happens, the usual sit-
uation is that it is not possible for a cross-validation method to have both
This content downloaded from 158.143.037.170 on February 16, 2017 05:13:05 AM
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properties. Indeed, efficiency corresponds to an unbiased estimator, while
model consistency corresponds to a biased estimator. In what follows, we
analyze this distinction further by relating cross-validation to two well-
known model selection methods: the Akaike information criterion (AICc)
and the Bayesian information criterion (BIC). This comparison also allows
a clearer picture of how AICc and BIC measure up with respect to use nov-
elty and no double counting.

4.1. Comparison to the Akaike Information Criterion. The AICc for
finite sample sizes aims at estimation, that is, to determine the base-model
procedure that performs best for predictive tasks. For AICc the distance be-
tween the actual and the simulated observations ismeasured by theKullback-
Leibler discrepancy,4 and the data have to be independently and identically
distributed (there are some further technical assumptions; see Linhart and
Zucchini 1986; Burnham and Anderson 1998).

As usual in model selection, AICc estimates the predictive accuracy of
the maximum likelihood estimator. So the calibration step is to identify the
best-fitting model instance for each base model relative to the n data points;
these are the model instances that would be used for prediction. To estimate
the long-run average predictive accuracy of each base-model procedure, first
the discrepancy between the best-fitting model instance and the actual data
points is calculated. It is 2 ln½L�=n, where L is the maximum of the likeli-
hood function (Zucchini 2000, 52–53). The following expression then gives
the score estimating the average predictive accuracy of the base-model pro-
cedure given n data points:

CAICc 5 2
ln½L�
n

1
p

n
1

p( p 1 1)

n(n 2 p 2 1)

� �
, (3)

where p is the number of free parameters. CAICc can be shown to be an unbi-
ased estimator (Linhart and Zucchini 1986; Burnham and Anderson 1998).

Clearly, for AICc there is double counting: all the data are used first for
calibration and then for confirmation (i.e., to calculate the score [3]). Also,
clearly, the data used for confirmation are not use novel since the maximum
likelihood given all the data is used for calculating the score (3). So, in con-
trast to cross-validation, there is no apparent assessment of how the base-
model procedure fares on new data. Despite this, in a precise sense, there
is a penalty term in the expression for the estimation of the predictive accu-
racy (3) because of the data already having been used for calibration. To
demonstrate this, we now compare two methods for estimating the average
predictive accuracy of procedures where n data points are used for calibra-
4. Our conceptual points carry over to other distance measures.
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MODEL TUNING IN CLIMATE SCIENCE 1141
tion with the only difference that (A) in the first case the data used for con-
firming the procedure are use novel, and (B) in the second case they are not.

We start with case A. Here one first engages in calibration; that is, one
uses the n data to determine the model instance that fits the data best. Then
with n novel data points the distance between the predicted and the actual
data points is calculated in order to estimate the average predictive accuracy
of the procedure (n data points are considered because later we compare this
method to the AICc, where also n data points are used for confirmation). As
explained above, this yields an unbiased estimator of the average predic-
tive accuracy of the maximum likelihood estimator constructed from n data
points (Linhart and Zucchini 1986; Zucchini 2000).5

We now turn to AICc and case B, where the data are not use novel. One
starts as in A and uses n data points for calibration to determine the best
model instance. Yet for confirmation one now uses the same n data points
that have been used for calibration before (hence, these are not use novel).
More specifically, these n data points are used exactly as in A to determine
the average Kullback-Leibler divergence between the n data points and the
best-fitting model instance. In this way one obtains the term on the left-hand
side of CAICc. Note that the way we proceeded so far has been exactly as in
A, with the only difference that the data are not use novel. Yet the term on
the left-hand side of CAICc would lead to a statistically very biased estimate
(the fit is assessed by the same data that have been used to determine the
model instance and is thus likely to be better than if novel data had been
used). In order to obtain an unbiased estimator (when n data points are used
for calibration), the term on the right-hand side of CAICc is needed. Conse-
quently, the term on the right-hand side amounts to a penalty term because
the data have already been used for calibration.

In sum: for AICc the data are not use novel, and there is double counting.
Still, comparison with cross-validation yields that use novelty plays a role:
since the data have already been used for calibration, there is a penalty term
in the score that measures confirmation.6

4.2. Comparison to the Bayesian Information Criterion. The BIC, in
contrast to AICc, aims at identification of the true model. Indeed, as the
name suggests, BIC is purportedly a Bayesian approach that aims to assess
base models in terms of their comparative posterior probabilities. The pos-
teriors for base models are measured in terms of the marginal likelihoods of
the base-model hypotheses (the weighted average of the likelihoods for the
5. The estimator would also be unbiased if more than n data points were used for con-
firmation.

6. Another important result is that (n2 1)-cross-validation is asymptotically equivalent
to the AICc (Stone 1977).
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relevant model-instance hypotheses). The marginal likelihoods track the
posterior probabilities just in case the prior probabilities for the base models
are the same (or in case n is very large, such that the prior probabilities have
negligible importance).

The BIC score for a base model is eventually an approximation of 22
times the log of the marginal likelihood of the base model. It is assumed that
the likelihood probability density functions (with regard to the Lebesgue
measure m) belong to the exponential family. The approximating expression
is as follows (for derivation, see Schwarz 1978; reproduced in Sprenger
2013):

BIC 5 22 � ln½L� 1 k ln½n�, (4)

where L is the maximum of the likelihood function (the likelihood for the
maximum likelihood estimator), n is the number of data, and k is the num-
ber of free parameters for the base model. In short, the term k ln½n� corrects
for the fact that the likelihood for the maximum likelihood estimator over-
estimates the marginal likelihood for the base model, in a way dependent on
both the number of free parameters and the number of data. The lower the
BIC score, the more ‘choice-worthy’ the base model.

Strictly speaking, BIC assesses models in terms of their marginal likeli-
hoods rather than their posterior probabilities; it is only in special cases that
the two yield the same results (cf. Sober 2008; Romeijn, van der Schoot,
and Hoijtink 2012). Indeed, where nested models are concerned, the base
models do not have the same prior probabilities (except for trivial cases),
and neither prior nor posterior probabilities will ever favor the more nested
base model, since logic dictates that it has lesser probability than any wider
base model that it entails. Thus, BIC is not exactly Bayesian, because it is
unclear why a Bayesian should care about the relative marginal likelihoods
of base models if these do not track posterior probabilities.7 Indeed, the use
of BIC to compare models is generally justified in terms of the frequentist
properties of this method, such as model consistency, as discussed above—
hence, our grouping of BIC with classical model selection methods.

As for AICc, there is double counting for BIC because all the data are
used for calibration and confirmation (i.e., to determine the score [4]), and
the data used for confirmation are not use novel since the maximum of the
likelihood function is used to calculate the score (4). Still, as for AICc,
one can compare BIC with cross-validation to see that k � ln½n�—the term
on the right-hand side of equation (4)—corresponds to a penalty term due to
the data having already been used for calibration (although the comparison
7. It is also not clear why Bayesians should care about sets of model hypotheses rather
than individual model hypotheses.
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MODEL TUNING IN CLIMATE SCIENCE 1143
is much less general because it has been established rigorously only for cer-
tain cases, including linear regression; Arlot and Celisse 2010).More specif-
ically, for linear regression, (n 2 k)-cross-validation (where use novelty is
important), when k/n goes to 1 as n goes to infinity, is consistent (Arlot
and Celisse 2010). BIC is consistent too, and by comparing it to (n 2 k)-
cross-validation when k/n goes to 1 as n goes to infinity, we see that the term
k � ln½n� can be interpreted as a penalty term because the data have already
been used before for calibration.8

In sum: for BIC the data are not use novel, and there is double counting.
Still, for certain cases there is at least a role for use novelty in the sense that
there is a penalty term in the score that measures confirmation, because of
the data having been used already for calibration.

5. Conclusion. This article focused on the diversity of calibration methods
and how these relate to the ‘intuitive position’, which claims that data for
confirmation have to be use novel and that double counting (using the same
data for calibration and confirmation) is illegitimate. We first showed that
the simplest classical method of hypothesis testing (employed in many cli-
mate science papers) is at odds with the intuitive position. Then we discussed
the general method of cross-validation, which presented us with a more nu-
anced stance with respect to use novelty and double counting: here use nov-
elty is important, but there is still double counting. Cross-validation can be
refined depending on what frequentist properties of model assessment (esti-
mation or identification) are considered desirable. Finally, we compared
cross-validation with the AICc and BIC: in this way we have seen that while
for these criteria the data are not use novel, the idea of novel data is still rel-
evant in the sense that there is a penalty term in the score that measures con-
firmation because the data have been used for calibration before.

Our discussion has normative bearing in the following sense: if the intu-
itive position is inconsistent with prominent formal methods of calibration,
as we have shown here, so much the worse for the intuitive position. At the
very least, this suggests that the intuitive position must be refined. We leave
the question open as to whether the most minimal refinement of the intuitive
position (arguably the class of cross-validation methods) is to be preferred,
normatively speaking.
8. For AICc and cross-validation, the comparison is neater (it is more general), and for
both cross-validation and AICc, the number of data points (n) used for calibration and
for confirmation is the same. In contrast, when comparing (n2 k)-cross-validation with
BIC, the number of data points is different: for cross-validation, n 2 k data are used for
calibration and then k for confirmation, but for BIC, n data are used for calibration and
confirmation.
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