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Abstract 
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1 Introduction

The first welfare theorem states that market equilibria are efficient under perfect competition

in the absence of externalities and other market failures. A laissez-faire market allocation

corresponds, in that case, to an optimal allocation that a benevolent social planner would

choose. When firms operate in a monopolistically competitive environment, however, the

market economy does typically not lead to an efficient outcome.

This insight has a long tradition in the literature, dating back at least to Spence (1976)

and Dixit and Stiglitz (1977). More recently, the welfare distortions under monopolistic

competition have been revisited by Dhingra and Morrow (2014), Nocco, Ottaviano, and

Salto (2014), and Parenti, Ushchev, and Thisse (2016) who argue that the market delivers, in

general, the wrong selection of firms and the wrong firm-level outputs from a social point of

view. Those analyses have been limited to models with a single monopolistically competitive

industry that consists of heterogeneous firms.

Such settings ignore the salient heterogeneity across different sectors that we observe in

the data. In France in 2008, for example, there are 4,889 textile and footwear producers,

which vastly differ in size and compete for an aggregate expenditure share of 2% by the

French consumers. Those firms operate, arguably, in a different market and face different

demands than the 4,607 manufacturers of wood products or the 124,202 health and personal

service providers, on which French consumers spend less than 0.1% and almost 20% of

aggregate income, respectively.1

When the economy is represented by heterogeneous sectors consisting of heterogeneous

firms, a new margin for misallocations arises: the market may not only allocate resources

inefficiently within, but also between sectors in general equilibrium. For example, the textile

industry may not only have some firms that produce too little, and others that produce too

much from a social perspective. It may also have the wrong overall size, i.e., employ too

many (or too few) workers in equilibrium, which in turn means that some other industries

may have fewer (or more) workers than is socially optimal. Characterizing those distortions

theoretically and quantifying their implied welfare losses are the two objectives of this paper.

To achieve our first goal, we develop a general equilibrium model of monopolistic compe-

tition with multiple asymmetric sectors and heterogeneous firms. We build on Zhelobodko,

Kokovin, Parenti, and Thisse (2012) and Dhingra and Morrow (2014), who study the pos-

1See Section 4 below, in particular Table 1 for more details about the data. Notice the large number of
competitors in each sector, which suggests that monopolistic competition may be a reasonable approximation
of the market structure.
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itive and normative aspects of a single monopolistically competitive industry, respectively.

We extend their approach to a multi-sector model and allow the sectors to differ in various

dimensions. Imposing standard assumptions on the upper-tier utility function, we establish

existence and uniqueness of the equilibrium and the optimal allocations and, by compar-

ing the two, we characterize the distortions that arise in our economy. The latter include

inefficient firm selection and output distortions within sectors — as in existing models —

and inefficiencies in the labor allocation and the masses of entrants between sectors. These

intersectoral distortions are the novel feature of our framework.

We derive general results that the revenue-to-utility ratio and the elasticity of the upper-tier

utility are crucial for characterizing labor and entry distortions between sectors, and we

explain the intuition for those two sectoral statistics in detail below. Contrary to the con-

ventional approach in industrial organization, which has studied single industries in partial

equilibrium while ignoring interdependencies between them, we analyze those inefficiencies

in a framework that fully recognizes the general equilibrium nature of the problem: there

cannot be too many (or too few) workers and entrants simultaneously in all sectors, and the

distortions in one sector depend on the characteristics of all sectors in the economy.

Our second goal is to explore the magnitude of entry and selection distortions at the

sectoral level, and to assess how large the aggregate welfare loss is from a quantitative point

of view. For this purpose we develop two specific parametrized examples of our general

model. Those examples allow for closed-form solutions and lend themselves naturally to

a simple quantification exercise which only requires data that is easily accessible for many

countries.

The first example uses Cobb-Douglas upper-tier and constant elasticity of substitution

(ces) subutility functions. This ubiquitous ces model has dominated much of the literature

on monopolistic competition in various fields, and it exhibits some very special properties

(Zhelobodko et al., 2012; Dhingra and Morrow, 2014). In particular, from the one-sector

model by Dhingra and Morrow (2014) we know that selection and firm-level outputs are

efficient if the subutility function is of the ces form. However, in this multi-sector example,

distortions in entry and the sectoral labor allocation disappear if and only if the revenue-to-

utility ratio happens to be identical in all sectors. Otherwise, the allocation is efficient within

but not between sectors.2

Our second example is a fully tractable model with variable elasticity of substitution

2This insight is consistent with Epifani and Gancia (2011), who compare equilibrium and optimal allocations
in a multi-sector ces model with homogeneous firms. Our paper, by contrast, develops a model with general
consumer preferences and heterogeneous firms where ces subutilities are considered as one example.
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(ves), where demands exhibit smaller price elasticity at higher consumption levels of a vari-

ety. Unlike the ces model, this ves model can account for the empirically well-documented

facts of variable markups and incomplete pass-through across firms within industries (e.g.,

Hottman, Redding, and Weinstein, 2016; Yilmazkuday, 2016). It features all distortions in

the allocation of resources within and between sectors that were highlighted in the general

framework. In particular, we show that productive firms always produce too little and un-

productive firms too much from a social perspective, and that the market delivers too little

selection compared to the social optimum. Entry and the labor allocation are also inefficient,

and the market allocates too many firms and workers to sectors with a higher concentration

of low-productivity firms.

Quantifying the ces and ves models using data from France and the United Kingdom,

we obtain four key results. First, there is a substantial aggregate welfare distortion both in

France and in the UK. In the multi-sector ves model, it is equivalent to 6–8% of the total labor

input in either country.3 Second, intersectoral misallocations are crucial for this aggregate

distortion. When we constrain the economy to consist of a single sector, thereby shutting

down inefficiencies in entry and the labor allocation, the aggregate distortion can be 30%

lower than the one predicted in the multi-sector economy. Put differently, a single-sector

model yields downward-biased predictions for the total welfare loss. Third, we find that the

multi-sector ces model predicts a much smaller aggregate distortion (of less than 1% in both

France and the UK) than the ves model. The intuition is that the ces model displays efficient

selection and firm-level outputs by construction. It therefore misses the cutoff and output

distortions, which according to our results from the ves model account for an important part

of the aggregate welfare loss. Last, at the sectoral level, we find similar patterns of inefficient

entry and selection between the two countries. Insufficient entry arises almost exclusively

for services, while manufacturing sectors tend to exhibit excessive entry. Manufacturing

sectors are, however, more efficient when it comes to selecting the right set of surviving

firms from the pools of entrants, i.e., they tend to exhibit smaller cutoff distortions than

most service sectors.

Our paper is most closely related to the recent literature that investigates the efficiency of

market allocations in models with a single monopolistically competitive sector, most notably

Dhingra and Morrow (2014), Nocco, Ottaviano, and Salto (2014), and Parenti, Ushchev and

Thisse (2016).4 We make two contributions: first, our model considers multiple monopolis-

3This result relies on the concept of the Allais surplus (see Allais 1943, 1977) which determines the resource-
cost minimizing allocation to achieve the equilibrium utility level.

4Our equilibrium analysis is related to Zhelobodko et al. (2012) and Mrazova and Neary (2014). It is more
broadly related to the work by Fabinger and Weyl (2013) on pass-through under general demand structures.
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tically competitive sectors while maintaining general additively separable preferences and

productivity distributions. Second, while those papers focus exclusively on theory, we also

explore the quantitative importance of various distortions.

Our work is also related to the classic literature in industrial organization that studies

welfare implications of market power and inefficient entry for single industries in partial

equilibrium. Harberger (1954) is a seminal reference for the former, and Mankiw and Whin-

ston (1986) for the latter aspect. Our monopolistic competition model is complementary to

this line of research, and recognizes general equilibrium interdependencies between sectors.

The rest of the paper is organized as follows. Section 2 presents our general model, while

Section 3 turns to the specific solvable examples. The quantification procedure and results

are discussed in Section 4. Section 5 concludes.

2 General model

Consider an economy with a mass L of agents. Each agent is both a consumer and a

worker, and supplies inelastically one unit of labor, which is the only factor of production.

There are j = 1, 2, . . . , J sectors producing final consumption goods. Each good is supplied

as a continuum of differentiated varieties, and each variety is produced by a single firm

under monopolistic competition. Firms can differ by productivity, both within and between

sectors. We denote by Gj the continuously differentiable cumulative distribution function,

from which firms draw their marginal labor requirement, m, after entering sector j. An

entrant need not operate and only firms with high productivity 1/m survive. Let NE
j and

md
j be the mass of entrants and the marginal labor requirement of the least productive firm

in sector j, respectively. Given NE
j , a mass NE

j Gj(md
j ) of varieties are then supplied by firms

with m ≤ md
j .

2.1 Equilibrium allocation

The utility maximization problem of a representative consumer is given by:

max
{qj(m), ∀j,m}

U ≡ U
(
U1,U2, . . . ,UJ

)

Uj ≡ NE
j

∫ md
j

0
uj
(
qj(m)

)
dGj(m)

s.t.
J

∑
j=1

NE
j

∫ md
j

0
pj(m)qj(m)dGj(m) = w, (1)
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where U is a strictly increasing and strictly concave upper-tier utility function that is twice

continuously differentiable in all its arguments; uj is a strictly increasing, strictly concave,

and thrice continuously differentiable sector-specific subutility function satisfying uj(0) =

0; pj(m) and qj(m) are the price and consumption of a sector-j variety produced with

marginal labor requirement m; and w denotes a consumer’s income. We assume that

limUj→0(∂U/∂Uj ) = ∞ for all sectors to be active.

Let λ denote the Lagrange multiplier associated with (1). The utility-maximizing con-

sumptions satisfy the following first-order conditions:

u′j
(
qj(m)

)
= λjpj(m), where λj ≡

λ

∂U/∂Uj
. (2)

To alleviate notation, let pdj ≡ pj(m
d
j ) and qdj ≡ qj(m

d
j ) denote the price set and quantity

sold by the least productive firm operating in sector j, respectively. From the first-order

conditions (2), which hold for any sector j and any firm with m ≤ md
j , we then have

u′j(q
d
j )

u′j
(
qj(m)

) =
pdj

pj(m)
and

u′j(q
d
j )

u′ℓ(q
d
ℓ )

=
λj

λℓ

pdj

pdℓ
, (3)

which determine the equilibrium intra- and intersectoral consumption patterns, respectively.

We assume that the labor market is competitive, and that workers are mobile across

sectors. All firms hence take the common wage w as given. Turning to technology, entry

into each sector j requires to hire a sunk amount Fj of labor paid at the market wage. After

paying the sunk cost, Fjw > 0, each firm draws its marginal labor requirement from Gj ,

which is known to all firms. Conditional on survival, production takes place with constant

marginal cost, mw, and sector-specific fixed cost, fjw ≥ 0.

Let πj(m) denote the operating profit of a firm with productivity 1/m, divided by the

wage rate w. Making use of condition (2), and of the equivalence between price and quantity

as the firm’s choice variable under monopolistic competition with a continuum of firms

(Vives, 1999), the firm maximizes its operating profit

πj(m) = L

[
u′j
(
qj(m)

)

λjw
−m

]
qj(m)− fj (4)

with respect to quantity qj(m). Although λjw contains the information of all the other

sectors by (2), each firm takes this market aggregate as given because there is a continuum
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of firms. From (4), the profit-maximizing price satisfies

pj(m) =
mw

1 − ruj
(
qj(m)

) , (5)

where ruj (x) ≡ −xu′′j (x)/u
′
j(x) denotes the ‘relative risk aversion’ or the ‘relative love for

variety’ (Behrens and Murata, 2007; Zhelobodko et al., 2012).5 In what follows, we refer to

1/[1 − ruj (qj(m))] as the private markup charged by a firm that produces output qj(m).

To establish the existence and uniqueness of an equilibrium cutoff, (md
j )

eqm, and equi-

librium quantities, q
eqm
j (m) for all m ∈ [0,md

j ], we consider the zero cutoff profit (zcp)

condition, given by πj(md
j ) = 0, and the zero expected profit (zep) condition, defined as

∫ md
j

0 πj(m)dGj(m) = Fj . Using (2), (4), and (5), the zcp and zep conditions can be expressed

respectively as follows:

[
1

1 − ruj
(
qdj
) − 1

]
md

j q
d
j =

fj

L
, (6)

L

∫ md
j

0

[
1

1 − ruj (qj(m))
− 1
]
mqj(m)dGj(m) = fjGj(m

d
j ) + Fj , (7)

which – even in our multi-sector economy – allow us to prove the existence and unique-

ness of the sectoral cutoff and quantities as in the single-sector analysis by Zhelobodko et

al. (2012).

Proposition 1 (Equilibrium cutoff and quantities) Assume that the fixed costs, fj , and sunk

costs, Fj , are not too large. Then, the equilibrium cutoff and quantities {(md
j )

eqm, q
eqm
j (m), ∀m ∈

[0, (md
j )

eqm]} in each sector j are uniquely determined.

Proof See Appendix A.1. �

Turning to the equilibrium labor allocation, Lj , and the equilibrium mass of entrants, NE
j ,

in each sector j, we first provide two important expressions that must hold in equilibrium.6

We then establish the existence and uniqueness of the equilibrium labor allocation and entry.

Lemma 1 (Labor allocation and entry) Any equilibrium labor allocation in sector j = 1, 2, . . . , J

satisfies

Lj = ejL =

Rj

Uj
EU ,Uj

∑
J
ℓ=1

Rℓ
Uℓ
EU ,Uℓ

L, (8)

5We assume that the second-order conditions for profit maximization, ru′
j
(x) ≡ −xu′′′j (x)/u′′j (x) < 2 for all

j = 1, 2, . . . , J , hold (Zhelobodko et al., 2012, p.2771).
6To alleviate notation, we henceforth suppress the ‘eqm’ superscript when there is no possible confusion.
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where ej ≡ NE
j

∫ md
j

0 pj(m)qj(m)dGj(m)/w is the expenditure share for sector-j varieties; Rj/Uj

is the real revenue-to-utility ratio, where Rj ≡ NE
j

∫ md
j

0 u′j(qj(m))qj(m)dGj(m) is the sectoral

real revenue; and EU ,Uj
≡ (∂U/∂Uj)(Uj/U) is the elasticity of the upper-tier utility function with

respect to the lower-tier utility in sector j. Furthermore, any equilibrium mass of entrants satisfies

NE
j = ejL





1 −
∫ md

j

0 [1 − ruj (qj(m))]νj (qj(m))dGj(m)

fjGj(md
j ) + Fj



 , (9)

where νj(qj(m)) = u′j(qj(m))qj(m)/
∫ md

j

0 u′j(qj(m))qj(m)dGj(m) is the revenue share of a vari-

ety produced with marginal labor requirement m in sector j.

Proof See Appendix B.1. �

Lemma 1 shows that, in any equilibrium, the labor share Lj/L must be the same as the

expenditure share ej for all sectors. More importantly, the latter can be expressed by the real

revenue-to-utility ratios Rj/Uj and the elasticities EU ,Uj
of the upper-tier utility function.

We will discuss the intuition of those terms in Section 2.3. The mass of entrants is more

complicated since it is affected not only by ej , but also by effective entry cost fjGj(md
j ) +Fj ,

the distribution of the markup terms 1 − ruj (qj(m)), and the revenue shares νj(qj(m)).

It is worth emphasizing that we have not specified functional forms for either utility or

productivity distributions to derive those results.

Note that Lemma 1 does not yet imply existence and uniqueness of the equilibrium labor

allocation and the equilibrium mass of entrants. The reason is that, while the expression in

the braces in (9) is uniquely determined by Proposition 1, the expenditure share ej can

depend on {NE
j }j=1,2,...,J via EU ,Uj

. Thus, to establish those properties, we impose some

separability on the upper-tier utility function. More specifically, assume that the derivative

of the upper-tier utility function with respect to the lower-tier utility in each sector can be

divided into an own-sector and an economy-wide component as follows:

∂U

∂Uj
= γjU

ξj
j Uξ, (10)

where γj > 0, ξj < 0, and ξ > 0 are parameters.7 Specification (10) includes, for example,

7The crucial points are that, under condition (10), the ratio of the derivatives in (2) with respect to j and
ℓ depends on NE

j and NE
ℓ only, and that it satisfies some monotonicity properties. Should the ratio of the

derivatives in (2) depend on all NE
i terms, the system of equations becomes generally intractable.
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the cases where the upper-tier utility function is of either the Cobb-Douglas or the ces form.

When condition (10) holds, we can prove the following result:

Proposition 2 (Equilibrium labor allocation and entry) Assume that (10) holds. Then, the

equilibrium labor allocation and masses of entrants {L
eqm
j , (NE

j )eqm}j=1,2,...,J are uniquely deter-

mined by (8) and (9).

Proof See Appendix A.2. �

2.2 Optimal allocation

Having analyzed the equilibrium allocation, we turn to the optimal allocation.8 Assume

that the planner chooses the quantities, cutoffs, and masses of entrants to maximize welfare

subject to the resource constraint of the economy as follows:

max
{qj(m),md

j ,NE
j ,∀j,m}

L · U
(
U1,U2, . . . ,UJ

)

Uj ≡ NE
j

∫ md
j

0
uj(qj(m))dGj(m)

s.t.
J

∑
j=1

NE
j

{∫ md
j

0
[Lmqj(m) + fj ]dGj(m) + Fj

}
= L. (11)

The planner has no control over the uncertainty of the draws of m, but knows the underlying

distributions Gj . Let δ denote the Lagrange multiplier associated with (11). The first-order

conditions with respect to quantities, cutoffs, and the masses of entrants are given by:

u′j(qj(m)) = δjm, δj ≡
δ

∂U/∂Uj
(12)

L
uj(qdj )

δj
= Lmd

jq
d
j + fj (13)

L

∫ md
j

0

uj(qj(m))

δj
dGj(m) =

∫ md
j

0
[Lmqj(m) + fj ]dGj(m) + Fj . (14)

8In the main text, we consider the ‘primal’ first-best problem where the planner maximizes utility subject
to the economy’s resource constraint. When quantifying the gap between the equilibrium and the optimum in
Section 4, we will analyze a ‘dual’ problem where the planner minimizes the resource cost subject to a utility
level. The latter allows us to derive a welfare measure – the so-called Allais surplus (Allais, 1943, 1977) – that
can be used in contexts where equivalent or compensating variations (or related criteria to compare different
equilibria) cannot be readily applied. More details are relegated to Appendix D and the supplementary
Appendix F.
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From the first-order conditions (12), which hold for any sector j and any firm with m ≤ md
j ,

we then have
u′j(q

d
j )

u′j
(
qj(m)

) =
md

j

m
and

u′j(q
d
j )

u′ℓ(q
d
ℓ )

=
δj

δℓ

md
j

md
ℓ

, (15)

which determine the optimal intra- and intersectoral consumption patterns, respectively.

We start again with the cutoff and quantities. Noting that δj = u′j(qj(m))/m for any

value of m from (12), we can rewrite condition (14) as follows:

L

∫ md
j

0

[
1

Euj ,qj(m)
− 1

]
mqj(m)dGj(m) = fjGj(m

d
j ) + Fj , (16)

where Euj ,qj(m) ≡ qj(m)u′j(qj(m))/uj(qj(m)) is the elasticity of the subutility uj . We refer

to 1/Euj ,qj(m) as the social markup that a firm with marginal labor requirement m should

optimally charge, and to m/Euj ,qj(m) as the shadow price of a variety produced by a firm with

m in sector j.9 Condition (16) may then be understood as the zero expected social profit (zesp)

condition, which is analogous to the zep condition (7). Furthermore, evaluating (12) at md
j

and plugging the resulting expression into (13), we obtain an expression similar to the zcp

condition (6) as follows: (
1

Euj ,qdj

− 1

)
md

jq
d
j =

fj

L
, (17)

which we call the zero cutoff social profit (zcsp) condition. Using (16) and (17), we can establish

the existence and uniqueness of the sectoral cutoff and quantities.

Proposition 3 (Optimal cutoff and quantities) Assume that the fixed costs, fj , and the sunk

costs, Fj , are not too large. Then, the optimal cutoff and quantities {(md
j )

opt, qopt
j (m), ∀m ∈

[0, (md
j )

opt]} in each sector j are uniquely determined.

Proof See Appendix A.3. �

Turning next to the optimal labor allocation, Lj , and the optimal masses of entrants, NE
j ,

we proceed in the same way as for the equilibrium case, and provide the following two

expressions.

9Dhingra and Morrow (2014) refer to 1 − Euj ,qj(m) = [uj(qj(m))− δjmqj(m)]/uj(qj(m)) as the social
markup, which captures the utility from consumption of a variety net of its resource costs. Moreover, they
label [pj(m)−mw]/pj(m) = ruj

(qj(m)) as the private markup. We adopt their terminology but redefine the
two markups in a slightly different way.
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Lemma 2 (Labor allocation and entry) Any optimal labor allocation in sector j = 1, 2, . . . , J

satisfies

Lj = ejL =
EU ,Uj

∑
J
ℓ=1 EU ,Uℓ

L, (18)

where ej ≡ NE
j

∫ md
j

0 mqj(m)/Euj ,qj(m)dGj(m) is the social expenditure share for sector-j varieties

constructed by using their shadow prices and optimal quantities. Furthermore, any optimal mass of

entrants satisfies

NE
j = ejL





1 −
∫ md

j

0 Euj ,qj(m)ζj(qj(m))dGj(m)

fjGj(md
j ) + Fj



 , (19)

where ζj(qj(m)) ≡ uj
(
qj(m)

)
/
∫ md

j

0 uj
(
qj(m)

)
dGj(m) captures the relative contribution of a va-

riety produced with marginal labor requirement m to utility in sector j.

Proof See Appendix B.2. �

Lemma 2 shows that, in any optimal allocation, the sectoral labor share must be the same

as the sectoral expenditure share. Observe that this expression is analogous to that in equi-

librium, with the private expenditure share being replaced by the social expenditure share.

The latter can be expressed solely in terms of the elasticities EU ,Uj
of the upper-tier utility

function, and does not involve the real revenue-to-utility ratio. The optimal mass of entrants

is again more complicated since it also includes effective entry costs, the distribution of so-

cial markup terms Euj ,qj(m), and the shares ζj(qj(m)) that capture the relative contribution

of a variety produced with marginal labor requirement m to utility in sector j.

Finally, similarly as in the equilibrium analysis, Lemma 2 does not yet imply the existence

and uniqueness of the optimal labor allocation and the optimal masses of entrants. We thus

impose again the separability condition (10) to establish those properties as follows:

Proposition 4 (Optimal labor allocation and entry) Assume that (10) holds. Then, the optimal

labor allocation and masses of entrants {L
opt
j , (NE

j )opt}j=1,2,...,J are uniquely determined by (18)

and (19).

Proof See Appendix A.4. �

2.3 Equilibrium versus optimum

Having established existence and uniqueness of the equilibrium and optimal allocations in

Propositions 1–4, we are now ready to investigate how equilibrium and optimum generally

differ.
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First, there are cutoff and output distortions within sectors. By the proofs of Proposi-

tions 1 and 3, we know that λjw and δj are uniquely determined without any information

on the other sectors. Hence, we can study the equilibrium and optimal cutoffs and quantities

on a sector-by-sector basis. The analysis of cutoff and quantity distortions in each sector j

then works as in the single-sector model by Dhingra and Morrow (2014) who characterize

those inefficiencies solely by the properties of uj and Gj . We shall not repeat their general

analysis here, but we illustrate it in the next section using specific examples.

The novel feature of our model lies in labor and entry distortions between sectors. It

is important to notice that, unlike the cutoff and quantity distortions, characterizing labor

and entry distortions for one sector requires information on all sectors. Put differently, the

labor allocation and, thus, entry are interdependent when there are multiple sectors. Hence,

entry distortions in our multi-sector model generally differ from those in models with a

single imperfectly competitive sector such as Mankiw and Whinston (1986) and Dhingra

and Morrow (2014).

To characterize the labor and entry distortions, compare expressions (8) and (9) from

Lemma 1 with (18) and (19) from Lemma 2. We then obtain the following expressions:

L
eqm
j

L
opt
j

=
e

eqm
j

e
opt
j

(20)

(NE
j )eqm

(NE
j )opt =

e
eqm
j

e
opt
j

·
fjGj((md

j )
opt) + Fj

fjGj((md
j )

eqm) + Fj

·
1 −

∫ (md
j )

eqm

0 [1 − ruj (qj(m))]νj (qj(m))dGj(m)

1 −
∫ (md

j )
opt

0 Euj ,qj(m)ζj(qj(m))dGj(m)
. (21)

Starting with the labor allocation, expression (20) implies that the equilibrium labor allo-

cation is efficient – i.e., Leqm
j = L

opt
j – if and only if equilibrium expenditure shares coincide

with their optimal counterparts — i.e., eeqm
j = e

opt
j . Otherwise, the labor share is excessive

(insufficient) in sectors with a suboptimally large (small) budget share.

Turning to the entry distortions, expression (21) shows that (NE
j )eqm/(NE

j )opt depends

on three terms. The first term e
eqm
j /eopt

j is equivalent to L
eqm
j /Lopt

j by (20). In a single-sector

model, this term vanishes because L
eqm
j = L

opt
j = L. In a multi-sector model, however, the

gap between e
eqm
j and e

opt
j plays a crucial role. We will come to this term below. The second

and third terms capture two additional margins, namely ‘effective fixed costs’ and ‘private

and social markups’, which we explain in turn.10

10Note that the cutoff and quantity distortions can influence the entry distortions, although the former
inefficiencies do not depend on the latter ones.
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Effective fixed costs. The second term in (21) shows that if the market delivers too little

selection, (md
j )

eqm > (md
j )

opt, entry tends to be insufficient. The reason is that the higher

survival probability in equilibrium, as compared to the optimum, increases the expected

fixed costs that entrants have to pay. This reduces expected profitability and discourages

entry more in equilibrium than in optimum. In contrast, other things equal, too much

equilibrium selection, (md
j )

eqm < (md
j )

opt, leads to excessive entry.

Private and social markups. The last term in (21) shows that the gap between equilibrium

and optimal entry depends on the private and social markup terms, which may exacerbate

or attenuate excess entry (Mankiw and Whinston, 1986; Dhingra and Morrow, 2014). The

numerator can be related to the business stealing effect: the higher the private markups 1/[1−

ruj (qj(m))], the more excessive the entry. The denominator, in turn, captures the limited

appropriability effect: the greater the social markups 1/Euj ,qj(m), the more insufficient the

entry. Thus, the last term in (21) depends on the relative strength of these two effects,

as well as on the weighting schemes νj(qj(m)) and ζj(qj(m)) that are determined by the

properties the subutility function uj and the productivity distribution function Gj .

The following Proposition summarizes the general result for distortions in the labor

allocation (20) and thus for the first term of entry distortions (21).

Proposition 5 (Distortions in the labor allocation) The equilibrium and optimal labor alloca-

tions satisfy L
eqm
j T L

opt
j if and only if the equilibrium and optimal expenditure shares satisfy

e
eqm
j T e

opt
j , which is equivalent to

Rj

Uj
E

eqm
U ,Uj

∑
J
ℓ=1

Rℓ
Uℓ
E

eqm
U ,Uℓ

T
E

opt
U ,Uj

∑
J
ℓ=1 E

opt
U ,Uℓ

, (22)

where the left- and right-hand sides are evaluated at the equilibrium and at the optimum, respectively.

Assume, without loss of generality, that sectors are ordered such that eeqm
j /eopt

j is non-decreasing in

j. If there are at least two different eeqm
j /eopt

j ’s, then there exists a threshold j∗ ∈ {1, 2, . . . , J − 1}

such that the equilibrium labor allocation is insufficient for sectors j ≤ j∗, whereas it is excessive for

sectors j > j∗. The equilibrium labor allocation is optimal if and only if all eeqm
j /eopt

j terms are the

same.

Proof See Appendix A.5. �

As can be seen from (22), the interdependence of heterogeneous sectors is important for

distortions in the labor allocation. Which sectors display excess labor allocation depends

13



on two types of heterogeneity: the sectoral real revenue-to-utility ratios, Rj/Uj evaluated

at the equilibrium; and the elasticities of the upper-tier utility function, EU ,Uj
, evaluated at

the equilibrium and optimum. We now shed more light on the importance of those two

components to build the intuition for this result.

Real revenue-to-utility ratios. In our setting with heterogeneous firms, the real revenue-

to-utility ratio in sector j can be expressed as follows:

Rj

Uj
=

∫ md
j

0 u′j(qj(m))qj(m)dGj(m)
∫ md

j

0 uj(qj(m))dGj(m)
=
∫ md

j

0
Euj ,qj(m)ζj(qj(m))dGj(m) < 1, (23)

where ζj(qj(m)) is the relative contribution of a variety to utility in sector j; and where the

inverse of the social markup, Euj ,qj(m), captures the appropriability of ζj(qj(m)) by a firm

with productivity 1/m. The inequality in (23) holds because Euj ,qj(m) < 1 for all m ∈ [0,md
j ]

by concavity of uj , and because
∫ md

j

0 Euj ,qj(m)ζj(qj(m))dGj(m) <
∫ md

j

0 ζj(qj(m))dGj (m) = 1

by the definition of ζj(qj(m)) in Lemma 2.

Expression (23) shows that the revenue-to-utility ratio Rj/Uj tends to increase with

a greater appropriability, especially for varieties associated with a greater utility weight

ζj(qj(m)). By construction, Rj/Uj depends on the properties of uj and Gj . Using the defi-

nition of the covariance and
∫ md

j

0 ζj(qj(m))dGj(m) = 1, we can also rewrite (23) as:

Rj

Uj
=

[∫ md
j

0
Euj ,qj(m)dGj(m)

] [∫ md
j

0
ζj(qj(m))dGj(m)

]
+ cov

(
Euj ,qj(m), ζj(qj(m))

)

= Euj ,qj(m) + cov
(
Euj ,qj(m), ζj(qj(m))

)
,

where Euj ,qj(m) ≡
∫ md

j

0 Euj ,qj(m)dGj(m). Hence, the labor allocation tends to be more ex-

cessive in sectors with higher average appropriability Euj ,qj(m) and with larger covariance,

i.e., when varieties with higher approporiability tend to contribute more to the consumers’

utility.

Elasticities of the upper-tier utility function. The second key ingredient of the labor dis-

tortions in (22) are the equilibrium and optimal elasticities of the upper-tier utility function,

E
eqm
U ,Uj

and E
opt
U ,Uj

. Consumers allocate more expenditure to varieties produced in sectors with

higher elasticity. Other things equal, the higher the equilibrium upper-tier elasticities rela-
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tive to the optimal counterpart in one sector, the higher the equilibrium expenditure share

relative to the optimal counterpart in that sector, thereby leading to more excessive entry.

It is worth emphasizing that even when the equilibrium and optimal elasticities of upper-

tier utility in each sector are the same, i.e., Eeqm
U ,Uj

= E
opt
U ,Uj

, their sectoral heterogeneity plays

a crucial role in the labor and entry distortions. Indeed, although E
eqm
U ,Uj

and E
opt
U ,Uj

in the

numerator of (22) cancel each other out when they are identical, the elasticities in the de-

nominator remain. We will elaborate on this point in the next section where we illustrate

some examples.

To sum up, the difference between market equilibrium and social optimum in terms

of the labor allocation and firm entry across heterogeneous sectors depends, in general,

on four key ingredients: effective fixed costs; private and social markups; real revenue-to-

utility ratios; and the elasticities of the upper-tier utility. While distortions in a single-sector

model are characterized solely by uj and Gj for that sector (Dhingra and Morrow, 2014), in a

multi-sector setting characterizing distortions for one sector requires additional information

on the revenue-to-utility ratios Rj/Uj and the elasticities of the upper-tier utility EU ,Uj
for all

sectors. Hence, when assessing distortions we need to take into account the interdependence

between heterogeneous sectors.

3 Examples

We have so far made only few assumptions on functional forms. To derive sharper results,

and ultimately to take our model to the data, we now consider specific functional forms for

both the subutilities and the upper-tier utility that allow for simple closed-form solutions.

Starting with the subutility function uj , we first analyze in Section 3.1 the ubiquitous ces

case that has dominated much of the literature on monopolistic competition. We then turn

to a tractable ‘variable elasticity of substitution’ (ves) model in Section 3.2

In doing so, notice that the lower-tier utility Uj in specification (1) does not nest the stan-

dard homothetic ces aggregator. To nest it, we consider a simple monotonic transformation

of the lower-tier utility in (1) as Ũj(Uj). In Section 3.1 we assume that Ũj(Uj) = U
1/ρj
j =

[NE
j

∫ md
j

0 qj(m)ρj dGj(m)]1/ρj , whereas we retain Ũj(Uj) = Uj in Section 3.2.

Even with the transformation Ũj of the lower-tier utility, we can re-establish the general

results shown in Section 2, as long as we let Ũj(0) = 0, Ũ ′
j > 0, and limUj→∞ Ũj(Uj) = ∞,
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while replacing the condition in (10) with11

∂U

∂Ũj

∂Ũj

∂Uj
= γjŨ

ξj
j Uξ , (24)

where γj > 0, ξj < 0, and ξ > 0 are parameters.

Turning to the upper-tier utility function, we consider in the remainder of this paper

the standard ces form: U = {∑
J
j=1 βj [Ũj(Uj)](σ−1)/σ}σ/(σ−1), where σ ≥ 1, βj > 0 for

all j, and ∑
J
j=1 βj = 1. Thus, the elasticity of the upper-tier utility function is given by

EU ,Uj
≡ (∂U/∂Ũj )(∂Ũj/∂Uj)(Uj/U) = βj(∂Ũj/∂Uj)(Uj/Ũj)(Ũj/U)(σ−1)/σ . When σ → 1,

the upper-tier utility reduces to the Cobb-Douglas form, U = ∏
J
j=1[Ũj(Uj)]βj , so that

EU ,Uj
= βj

(
∂Ũj

∂Uj

Uj

Ũj

)
. (25)

The Cobb-Douglas upper-tier utility function always satisfies condition (24) that guarantees

the existence and uniqueness of the equilibrium and optimal allocations. When the upper-

tier utility function is of the ces form, whereas the lower-tier utility is of the homothetic ces

form with Ũj(Uj) = U
1/ρj
j , we have (∂U/∂Ũj )(∂Ũj/∂Uj) = (βj/ρj)Ũ

σ−1
σ −ρj

j U1/σ . Hence, in

that case, it is required that (σ − 1)/σ < ρj for condition (24) to hold with ξj < 0.12

Those specifications for the upper-tier utility function significantly simplify the analysis

of entry and labor distortions. Retaining σ → 1 for now, we consider two specific forms for

the subutility functions for which the real revenue-to-utility ratios display a simple behavior.

We will return to the case with σ > 1 in Section 4 where we quantify the model.

3.1 ces subutility

We first discuss the case of the ces subutility that has been widely used in the literature.

Assume that uj(qj(m)) = qj(m)ρj and Ũj(Uj) = U
1/ρj
j , where ρj ∈ (0, 1) for all sectors j.

Using (25), the elasticity of the upper-tier utility function can be rewritten as Eeqm
U ,Uj

= E
opt
U ,Uj

=

βj/ρj , whereas the elasticity of substitution between any pair of varieties in sector j is given

11The proofs are virtually identical to the ones in Appendices A and B, except that ∂U/∂Uj needs to be
replaced with (∂U/∂Ũj)(∂Ũj/∂Uj). Observe that in a single-sector model, the choice of Ũj does not affect
distortions because it is a monotonic transformation of the overall utility in that case. In a multi-sector model,
however, sectoral allocations and thus aggregate distortions are affected by Ũj .

12Should (σ − 1)/σ > ρj hold, goods are Hicks-Allen complements (see, e.g., Matsuyama, 1995), so that
multiple equilibria with some inactive sectors may arise, a case that we exclude from our analysis in what
follows.
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by 1/(1 − ρj). Notice that we allow ρj to differ across sectors.

Since the cutoff and quantity distortions can be separated from the labor and entry distor-

tions, we can use the single-sector result by Dhingra and Morrow (2014), i.e., in the ces case

(md
j )

eqm = (md
j )

opt and q
eqm
j (m) = q

opt
j (m) for all m irrespective of the underlying produc-

tivity distribution Gj . However, the equilibrium labor allocation and entry need not be opti-

mal. By Proposition 5, the real revenue-to-utility ratios Rj/Uj evaluated at the equilibrium,

together with the elasticities of upper-tier utility E
eqm
U ,Uj

= E
opt
U ,Uj

= βj/ρj , are crucial for those

inefficiencies. When the subutility function is of the ces form, we know that Euj ,qj(m) = ρj ,

so that Rj/Uj = ρj by (23). Furthermore, since (md
j )

eqm = (md
j )

opt, qeqm
j (m) = q

opt
j (m),

Euj ,qj(m) = 1− rj(qj(m)), and νj(qj(m)) = ζj(qj(m)) for all m holds in the ces case, the sec-

ond and the third terms in (21) vanish, so that (NE
j )eqm/(NE

j )opt = e
eqm
j /eopt

j = L
eqm
j /Lopt

j .

Hence, we can restate Proposition 5 for this specific example as follows:

Corollary 1 (Distortions in the labor allocation and entry with ces subutility) Assume that

the subutility function in each sector is of the ces form, uj(qj(m)) = qj(m)ρj . Then, the labor al-

locations and the masses of entrants satisfy L
eqm
j T L

opt
j and (NE

j )eqm T (NE
j )opt, respectively, if

and only if
J

∑
ℓ=1

βℓ

ρℓ
T 1

ρj
. (26)

Assume, without loss of generality, that sectors are ordered such that ρj is non-decreasing in j. If

there are at least two different ρj ’s, there exists a threshold j∗ ∈ {1, 2, . . . , J − 1} such that sectors

j ≤ j∗ display insufficient entry and insufficient labor allocation, whereas sectors j > j∗ display

excess entry and excess labor allocation. The equilibrium allocation in the ces case is optimal if and

only if all ρj ’s are the same across sectors.

Proof See above. �

Several comments are in order. First, since there are no cutoff and quantity distortions

in the case of ces subutility functions, the market equilibrium is fully efficient if and only if

the ρj ’s are the same across all sectors. However, there are distortions in the labor allocation

and in the masses of entrants when the ρj ’s vary across sectors.13

Second, ρj in the ces model can be related not only to the inverse of the markup, but also

to the elasticity of the upper-tier utility EU ,Uj
and to the elasticity of the subutility Euj ,qj(m).

It is the latter two elasticities that matter for the labor and entry distortions. The reason

13Hsieh and Klenow (2009) consider a heterogeneous firms model where ρj ’s are the same across all sectors.
In contrast, Epifani and Gancia (2011) allow for heterogeneity in ρj across sectors yet consider homogeneous
firms within sectors.
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is that the difference between the equilibrium and optimal expenditure shares comes from

Rj/Uj = ρj and EU ,Uj
= βj/ρj , which are determined by the first derivatives of uj and Ũj as

seen from (23) and (25). In contrast, the markup depends on ruj , which involves the second

derivative of uj . Thus, in the case of the Cobb-Douglas upper-tier utility and ces subutility

functions, markup heterogeneity is not a determinant of labor and entry distortions.

Third, Corollary 1 holds irrespective of the functional form for Gj . Hence, productivity

distributions play no role in the optimality of the market outcome for the standard case with

the Cobb-Douglas upper-tier utility and ces subutility functions.

Last, since Corollary 1 only pertains to the class of ces subutility functions, it must not

be read as a general ‘if and only if’ result for any subutility function. Indeed, as we show in

the next subsection, the labor allocation and entry can be efficient even when the subutility

function is not of the ces form.

3.2 ves subutility

We have so far examined the case of ces subutility functions without cutoff and quantity

distortions. We now turn to our ves example where all types of distortions – cutoff, quantity,

labor, and entry distortions – can operate. Specifically, we consider the ‘constant absolute

risk aversion’ (cara) subutility as in Behrens and Murata (2007), uj(qj(m)) = 1 − e−αjqj(m),

where αj is a strictly positive parameter.

This specification can be viewed as an example of ves preferences analyzed in the sem-

inal paper by Krugman (1979). It is analytically tractable, and generates demand functions

exhibiting smaller price elasticity at higher consumption levels. Unlike the ces model, this

ves case can therefore account for the empirically well-documented facts of incomplete pass-

through and higher markups charged by more productive firms within each sector.

To derive closed-form solutions, assume that Gj follows a Pareto distribution Gj(m) =(
m/mmax

j

)kj , where both the upper bounds mmax
j > 0 and the shape parameters kj ≥ 1

may differ across sectors. In what follows, we assume that Ũj(Uj) = Uj , so that E
eqm
U ,Uj

=

E
opt
U ,Uj

= βj by (25). We relegate most analytical details for the case with cara subutilities

and Pareto productivity distributions to the supplementary Appendix E. We show there that

the equilibrium and optimal cutoffs for this case are given as follows:

(md
j )

eqm =

[
αjFj(mmax

j )kj

κjL

] 1
kj+1

and (md
j )

opt =

[
αjFj(mmax

j )kj (kj + 1)2

L

] 1
kj+1

, (27)
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where κj ≡ kje−(kj+1)
∫ 1

0 (1 + z)
(
z−1 + z − 2

)
(zez)kj ezdz > 0 is a function of the shape

parameter kj only. Using expressions (27), we can establish the following result:

Proposition 6 (Distortions in the cutoff and quantities with cara subutility) Assume that

the subutility function in each sector is of the cara form uj
(
qj(m)

)
= 1 − e−αjqj(m), and that the

productivity distribution follows a Pareto distribution, Gj(m) = (m/mmax
j )kj . Then, the equilib-

rium cutoff exceeds the optimal cutoff in each sector, i.e., (md
j )

eqm > (md
j )

opt. Furthermore, there

exists a unique threshold m∗
j ∈ (0, (md

j )
opt) such that qeqm

j (m) < q
opt
j (m) for all m ∈ [0,m∗

j ) and

q
eqm
j (m) > q

opt
j (m) for all m ∈ (m∗

j , (md
j )

eqm).

Proof See Appendix A.6. �

Three comments are in order. First, in this model, more productive firms with m < m∗
j

underproduce, whereas less productive firms with m > m∗
j overproduce in equilibrium

as compared to the optimum in each sector j. Notice that both types of firms coexist in

equilibrium since the threshold m∗
j satisfies the inequalities 0 < m∗

j < (md
j )

opt < (md
j )

eqm.14

Second, using (27), the gap between the equilibrium and optimal selection can be ex-

pressed as a simple function of the sectoral shape parameter only: (md
j )

opt/(md
j )

eqm =
[
κj(kj + 1)2

]1/(kj+1)
< 1. Since this expression increases with kj , the larger the value of

kj (i.e., a larger mass of the productivity distribution is concentrated on low-productivity

firms) the smaller is the magnitude of insufficient selection in sector j.

Finally, Proposition 6 holds on a sector-by-sector basis, regardless of the labor allocation

and the masses of entrants. Thus, our results on cutoff and quantity distortions would also

apply to a single-sector version of the cara model.

Turning to the labor and entry distortions, the combination of cara subutility functions

and Pareto productivity distributions yields the equilibrium and optimal masses of entrants

as follows (see expressions (E-17) and (E-30) in the supplementary Appendix E):

(NE
j )eqm =

e
eqm
j L

(kj + 1)Fj
=

L
eqm
j

(kj + 1)Fj
and (NE

j )opt =
e

opt
j L

(kj + 1)Fj
=

L
opt
j

(kj + 1)Fj
. (28)

Thus, as in the ces case, we have (NE
j )eqm/(NE

j )opt = e
eqm
j /eopt

j = L
eqm
j /Lopt

j . From

Proposition 5 we know that distortions in the labor allocation are determined by the real

14This need not always be the case, however. For example, Dhingra and Morrow (2014) derive general
conditions for cutoff and quantity distortions in a single-sector framework. In their model with an arbitrary
subutility function and an arbitrary productivity distribution, it is possible that m∗

j exceeds (md
j )

eqm. In that
case, all firms (even the least productive ones) would underproduce, whereas in our model some firms (the
least productive ones) always overproduce from a social point of view.

19



revenue-to-utility ratios Rj/Uj evaluated at the equilibrium, together with the elasticities of

the upper-tier utility function E
eqm
U ,Uj

= E
opt
U ,Uj

= βj . When the subutility function is of the

cara form and the productivity distribution follows a Pareto distribution, we can show that

Rj/Uj depends solely on the sectoral shape parameter kj as follows:

Lemma 3 With a cara subutility function and a Pareto productivity distribution, we have:

Rj

Uj
=

∫ 1
0 (1 − z)ez−1(1 + z)ez−1

(
zez−1

)kj−1
dz

∫ 1
0 (1 − ez−1)(1 + z)ez−1 (zez−1)

kj−1 dz
≡ θj . (29)

Proof See Appendix B.3. �

To characterize the labor and entry distortions, we rank sectors by their real revenue-to-

utility ratios such that θ1 ≤ θ2 ≤ . . . ≤ θJ . Since θj is increasing in kj , ranking sectors by

θj is equivalent to ranking them by kj . Plugging (29) into (22), using EU ,Uj
= βj from the

upper-tier Cobb-Douglas specification, and noting that (NE
j )eqm/(NE

j )opt = L
eqm
j /Lopt

j by

(28), we can restate Proposition 5 for this example as follows:

Corollary 2 (Distortions in the labor allocation and entry with cara subutility) Assume that

the subutility function in each sector is of the cara form, uj
(
qj(m)

)
= 1 − e−αjqj (m), and that the

productivity distribution follows a Pareto distribution, Gj(m) = (m/mmax
j )kj . Then, the labor allo-

cation and the masses of entrants satisfy L
eqm
j T L

opt
j and (NE

j )eqm T (NE
j )opt, respectively, if and

only if

θj T
J

∑
ℓ=1

βℓθℓ. (30)

Assume, without loss of generality, that sectors are ordered such that θj is non-decreasing in j. If

there are at least two different θj ’s, there exists a threshold j∗ ∈ {1, 2, . . . , J − 1} such that sectors

j ≤ j∗ display insufficient entry and insufficient labor allocation, whereas sectors j > j∗ display

excess entry and excess labor allocation. The equilibrium labor allocation and entry in the cara case

are optimal if and only if all θj ’s, and thus all kj ’s, are the same across sectors.

Proof See above. �

Corollary 2 states that sectors with larger values of kj (i.e., sectors where a larger mass of

the productivity distribution is concentrated on low-productivity firms) are more likely to

display excess entry and excess labor allocation in equilibrium. As mentioned after Propo-

sition 6, sectors with larger values of kj also display smaller cutoff distortions. Thus, more
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excessive entry comes with more efficient selection. Furthermore, Corollary 2 shows that

all sectors with θj above the weighted average ∑
J
ℓ=1 βℓθℓ display excess entry and labor al-

location, whereas the opposite is true for all sectors with θj below that threshold. Hence,

interdependence of heterogeneous sectors matters for those distortions: If there is no het-

erogeneity in kj , then the labor allocation and entry are efficient although the cutoffs and

quantities are inefficient in all sectors.

4 Quantification

In this section, we take our model to the data in order to quantify the gap between the

equilibrium and optimal allocations.15 Our approach is based on the two examples in the

previous section, and only requires data that is accessible for many countries. In particular,

we need the expenditure shares across sectors, and some aggregate statistics of the firm-

size distribution within sectors. We make use of firm-level data from France in 2008 and

from the United Kingdom (UK) in 2005. Using two different countries enables us to assess

the robustness of our quantification approach, and to compare the distortions in those two

different cases.

We first focus on the ves model from Section 3.2 that captures all types of distortions.

We then quantify the ces model from Section 3.1, where cutoff and output distortions are

absent. Finally, we put the quantitative predictions of the two models into perspective.

4.1 Data

Our quantification procedure requires firm-level employment data, as well as expenditure

shares and R&D outlays at the sectoral level.16 For France, the firm-level employment data

comes from the ‘Élaboration des Statistiques Annuelles d’Entreprises’ (esane) database,

which combines administrative and survey data to produce structural business statistics.

We use the administrative part of the dataset that contains employment figures for almost

all business organizations in France. It is compiled from annual tax returns that companies

file to the tax authorities and from annual social security data that supply information on

the employees. We focus on the year 2008, for which there are 1,100,220 firms with positive

15Our paper differs from a different strand of literature that quantifies the aggregate welfare impacts of
public policies. Hsieh and Klenow (2009), for example, compare observed equilibria in China and India with
counterfactual equilibria in which those countries would attain the “U.S. efficiency” level. Unlike this literature,
we compare the observed market equilibrium and the optimal allocation that the social planner would choose.

16Further details concerning the datasets can be found in Appendix C.1.
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employment records.17 For each firm, we also have information about its sectoral affilia-

tion. The French input-output tables contain information on 35 sectors, the public sector

plus 34 private sectors, roughly corresponding to 2-digit nace (revision 1.1) codes. This

dictates the level of aggregation in our analysis. We discard the public sector (12.12% of

expenditure) and focus on the remaining 34 private sectors. For those sectors, we obtain

expenditure shares, êj , by re-scaling total expenditure such that the shares sum up to one.

These observed expenditure shares are reported in Table 1.

The data for the UK have the same structure. We use the ‘Business Structure Database’

(bsd), which contains a small number of variables, including employment and sectoral af-

filiation, for almost all business organizations in the UK. The bsd is derived primarily from

the ‘Inter-Departmental Business Register’ (idbr), which is a live register of data collected

by ‘Her Majesty’s Revenue and Customs’ (hmrc) via VAT and ‘Pay As You Earn’ (paye)

records. We focus on the year 2005 for which there are 1,704,543 firms with positive employ-

ment records (excluding the firm owners). We can distinguish the exact same 34 sectors as

for France for the sectoral affiliation of those firms, for which we obtain expenditure shares

from the British input-output tables. These observed expenditure shares, êj , re-scaled again

to sum to one, are reported in Table 2.

4.2 Quantifying distortions: the cara subutility case

To quantify the ves model, we first match a theory-based moment of the sector-specific firm-

size distribution to its empirical counterpart. To this end, we derive an analytical expression

for the standard deviation of (log) firm-level employment in sector j, excluding the labor

input Fj that all firms have to bear as a sunk entry cost. The resulting expression depends

only on the shape parameter kj of the sector-specific Pareto productivity distribution (see

equation (C-1) in Appendix C.2). To construct its empirical counterpart, we compute for

each sector j the ratio of R&D expenditure (our proxy for sunk entry costs) to gross output

and then multiply the ratio by total employment in that sector. Dividing this by the number

of firms gives us a measure for Fj , which we then subtract from the total employment of

each firm in the respective sector (see Appendix C.1 for more details). Finally, we calculate

for each sector j the standard deviation of the resulting (log) number of employees. This

data moment and the number of firms in each sector are reported in Table 1 for France, and

in Table 2 for the UK.
17The dataset contains 3 employment variables. We use employment on December 31st from the French

Business Register (ocsane) source.
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With the standard deviation of the (log) number of employees at hand, we can then

uniquely back out k̂j for each sector and compute θ̂j and κ̂j , which depend solely on k̂j .

Using θ̂j and the observed expenditure shares êj , we obtain β̂j by solving ∑
J
ℓ=1 β̂ℓ = 1 and

êj = β̂j θ̂j/∑
J
ℓ=1 β̂ℓθ̂ℓ, which corresponds to (8) in the case of Cobb-Douglas upper-tier utility

and cara subutility functions. We can proceed in a similar way in the case of ces upper-tier

utility, and the details are provided in the supplementary Appendix F.

We summarize the structural parameters that we obtain for the two countries in Tables 1

and 2. Observe the substantial heterogeneity across French sectors: the shape parameters

k̂j of the sectoral Pareto distributions range from 2.0 to 24.3, with an (unweighted) average

of 5.7. In the UK, the differences are even larger, as the values of k̂j range from 1.5 to 41.3,

with an (unweighted) average of 7.4.

Cutoff distortions. Given the values of k̂j , θ̂j , κ̂j , and β̂j , we are now in a position to

quantify the distortions in France and in the UK. We first compare the equilibrium and

optimal cutoffs in each sector. Using the expressions in (27), we compute for each sector j

the following measure of cutoff distortions:

(md
j )

eqm − (md
j )

opt

(md
j )

opt × 100 =

{[
κj(kj + 1)2

]− 1
kj+1

− 1
}
× 100, (31)

which depends only on kj as κj is a function of kj only. Since there is too little selection

by Proposition 6, (md
j )

eqm > (md
j )

opt holds, so that expression (31) is always positive. The

gap between the equilibrium and optimal cutoffs is smaller the larger is the sectoral shape

parameter kj , i.e., a larger mass of the productivity distribution is concentrated on low-

productivity firms.

Tables 1 and 2 report the magnitudes of cutoff distortions for all sectors in France and

the UK, which we illustrate in Figures 1 and 2 for those two countries. We find substantial

distortions due to insufficient selection. For France, the simple average across sectors is

15.9%, but with huge sectoral variation from only 2.8% to almost 30%. In the UK, the

average is 16.7% and the range goes from 1.7% to 37.8%. The correlation of those distortions

between the two countries is 0.356, while the Spearman rank correlation is 0.328. Thus, the

model makes roughly similar predictions on which sectors in France and the UK exhibit

greater cutoff distortions. We discuss this point in more detail below.

Entry distortions. Turning to the gap between the equilibrium and optimal entry, or equiv-

alently the gap between the equilibrium and optimal labor allocations in our examples, we
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Table 1: Sectoral data, parameter values, and distortions for France in 2008.

CARA + Cobb-Douglas & Pareto CES + Cobb-Douglas & Pareto
Std. dev. Cutoff Entry Cutoff Entry

Sector Description Firms êj log emp k̂j θ̂j κ̂j β̂j distortions ρ̂j β̂j distortions
1 Agriculture 5551 0.0188 1.0038 2.8670 0.8721 0.0312 0.0188 21.8406 -0.1886 0.7421 0.0188 0 0.3470

2 Mining and quarrying 1132 0.0002 1.0523 3.5570 0.8911 0.0227 0.0002 17.9533 1.9848 0.7892 0.0002 0 6.7070
3 Food products, beverages, tobacco 38582 0.0697 0.9858 2.6642 0.8653 0.0346 0.0704 23.3225 -0.9765 0.7242 0.0697 0 -2.0711
4 Textiles, leather and footwear 4889 0.0205 1.0354 3.2891 0.8845 0.0255 0.0203 19.2867 1.2213 0.7730 0.0205 0 4.5251

5 Wood products 4607 0.0008 1.1811 8.4447 0.9471 0.0055 0.0007 7.9290 8.3958 0.9089 0.0008 0 22.8950
6 Pulp, paper, printing and publishing 12136 0.0086 1.1805 8.3928 0.9469 0.0055 0.0079 7.9764 8.3625 0.9083 0.0086 0 22.8198
7 Coke, refined petroleum, nuclear fuel 27 0.0168 1.1447 6.1501 0.9303 0.0094 0.0158 10.7480 6.4650 0.8756 0.0168 0 18.3985

8 Chemicals and chemical products 1194 0.0285 1.1688 7.5071 0.9413 0.0067 0.0264 8.8810 7.7318 0.8977 0.0285 0 21.3827
9 Rubber and plastics products 2760 0.0037 1.0332 3.2565 0.8836 0.0259 0.0037 19.4626 1.1220 0.7709 0.0037 0 4.2374

10 Other non-metallic mineral products 3426 0.0020 1.0428 3.4013 0.8873 0.0243 0.0019 18.7050 1.5521 0.7801 0.0020 0 5.4774
11 Basic metals 602 0.0001 1.2166 13.1203 0.9646 0.0025 0.0001 5.1666 10.3951 0.9410 0.0001 0 27.2453
12 Fabricated metal products 17249 0.0021 1.1442 6.1290 0.9301 0.0095 0.0020 10.7833 6.4415 0.8752 0.0021 0 18.3419

13 Machinery and equipment 8227 0.0053 1.1003 4.5835 0.9109 0.0153 0.0050 14.1902 4.2470 0.8345 0.0053 0 12.8416
14 Office, accounting, computing mach. 160 0.0033 1.0684 3.8519 0.8976 0.0201 0.0032 16.6828 2.7305 0.8045 0.0033 0 8.7831

15 Electrical machinery and apparatus 1656 0.0034 1.2466 24.2501 0.9802 0.0008 0.0030 2.8241 12.1791 0.9680 0.0034 0 30.8871
16 Radio, TV, communication equip. 786 0.0042 1.1439 6.1119 0.9299 0.0095 0.0040 10.8121 6.4223 0.8749 0.0042 0 18.2957
17 Medical, precision, optical instr. 3753 0.0050 1.0383 3.3327 0.8856 0.0250 0.0049 19.0565 1.3517 0.7758 0.0050 0 4.9020

18 Motor vehicles and (semi-)trailers 835 0.0326 1.1046 4.7020 0.9127 0.0147 0.0312 13.8546 4.4568 0.8386 0.0326 0 13.3862
19 Other transport equipment 452 0.0028 1.1128 4.9432 0.9162 0.0135 0.0026 13.2186 4.8581 0.8462 0.0028 0 14.4165
20 Manufacturing n.e.c; recycling 9802 0.0130 1.1760 8.0324 0.9447 0.0060 0.0120 8.3212 8.1207 0.9043 0.0130 0 22.2727

21 Electricity, gas and water supply 1279 0.0225 0.9745 2.5480 0.8610 0.0368 0.0228 24.2650 -1.4664 0.7129 0.0225 0 -3.6039
22 Construction 188513 0.0082 0.9992 2.8127 0.8704 0.0320 0.0083 22.2182 -0.3915 0.7376 0.0082 0 -0.2700

23 Wholesale and retail trade; repairs 274437 0.1377 1.0151 3.0067 0.8765 0.0291 0.1373 20.9236 0.3099 0.7532 0.1377 0 1.8463
24 Hotels and restaurants 113317 0.0489 0.9489 2.3083 0.8512 0.0420 0.0502 26.4702 -2.5803 0.6866 0.0489 0 -7.1669
25 Transport and storage 26847 0.0291 0.9962 2.7783 0.8692 0.0326 0.0292 22.4649 -0.5232 0.7346 0.0291 0 -0.6727

26 Post and telecommunications 1144 0.0191 1.0374 3.3186 0.8852 0.0252 0.0188 19.1303 1.3099 0.7749 0.0191 0 4.7813
27 Finance and insurance 12383 0.0376 0.9141 2.0264 0.8379 0.0498 0.0393 29.6331 -4.1024 0.6494 0.0376 0 -12.1881
28 Real estate activities 36902 0.1649 0.9517 2.3334 0.8523 0.0414 0.1691 26.2215 -2.4570 0.6895 0.1649 0 -6.7672

29 Renting of machinery and equipment 4815 0.0022 1.1101 4.8613 0.9151 0.0139 0.0021 13.4279 4.7255 0.8437 0.0022 0 14.0777
30 Computer and related activities 16355 0.0010 1.1944 9.7504 0.9535 0.0042 0.0010 6.8991 9.1285 0.9209 0.0010 0 24.5238

31 Research and development 1562 0.0074 1.2375 19.2934 0.9754 0.0012 0.0067 3.5386 11.6260 0.9598 0.0074 0 29.7810
32 Other Business Activities 132159 0.0073 1.0964 4.4803 0.9092 0.0159 0.0070 14.4958 4.0571 0.8309 0.0073 0 12.3453
33 Education 11401 0.0799 1.0726 3.9371 0.8994 0.0194 0.0776 16.3484 2.9297 0.8085 0.0799 0 9.3287

34 Health, social work, personal services 124202 0.1930 0.9659 2.4642 0.8577 0.0385 0.1966 24.9935 -1.8394 0.7042 0.1930 0 -4.7851

Notes: Column 1 reports the number of firms in each sector in the esane database for France in 2008, column 2 the observed (rescaled) expenditure shares from the
French input-output table, and column 3 the observed standard deviation of the log number of employees across firms, where data are constructed as described in
Appendix C.1. Column 4 reports the values of k̂j that we obtain by matching the numbers from column 3 to expression (C-1) in Appendix C.2. Columns 5 and 6

report the values of θ̂j and κ̂j which are transformations of k̂j . Column 7 reports the value β̂j obtained as described in Section 4.1. In columns 8 and 9 we report the
magnitudes of cutoff and entry distortions at the sectoral level obtained from (31) and (32), respectively. Column 10 reports the value of ρ̂j obtained by matching the
numbers from column 3 to expression (C-2) in Appendix C.2 while using k̂j from column 4. Column 11 reports the values β̂j which correspond to the expenditure
shares from column 2. Finally, column 12 reports only zeroes as the ces model does not exhibit cutoff distortions, and column 13 reports the magnitudes of entry
distortions as computed in (35).
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Table 2: Sectoral data, parameter values, and distortions for the United Kingdom in 2005.

CARA + Cobb-Douglas & Pareto CES + Cobb-Douglas & Pareto
Std. dev. Cutoff Entry Cutoff Entry

Sector Description Firms êj log emp k̂j θ̂j κ̂j β̂j distortions ρ̂j β̂j distortions
1 Agriculture 57969 0.0127 0.8424 1.5152 0.8069 0.0706 0.0138 37.7850 -8.1349 0.5607 0.0127 0 -24.3233

2 Mining and quarrying 1124 0.0008 1.2580 35.5036 0.9863 0.0004 0.0007 1.9363 12.2922 0.9781 0.0008 0 32.0111
3 Food products, beverages. tobacco 4606 0.0442 1.1260 5.3830 0.9220 0.0118 0.0421 12.1970 4.9662 0.8584 0.0442 0 15.8529
4 Textiles, leather and footwear 9041 0.0213 1.1829 8.6063 0.9480 0.0053 0.0198 7.7852 7.9348 0.9106 0.0213 0 22.8954

5 Wood products 7301 0.0014 1.1079 4.7949 0.9141 0.0142 0.0013 13.6024 4.0730 0.8416 0.0014 0 13.5846
6 Pulp, paper, printing and publishing 24882 0.0112 1.1142 4.9862 0.9168 0.0133 0.0108 13.1112 4.3825 0.8475 0.0112 0 14.3787
7 Coke, refined petroleum, nuclear fuel 122 0.0104 1.1442 6.1295 0.9301 0.0095 0.0098 10.7826 5.8902 0.8752 0.0104 0 18.1245

8 Chemicals and chemical products 1989 0.0088 1.2614 41.2898 0.9882 0.0003 0.0079 1.6669 12.5055 0.9812 0.0088 0 32.4242
9 Rubber and plastics products 5152 0.0035 1.1077 4.7899 0.9140 0.0142 0.0034 13.6159 4.0646 0.8414 0.0035 0 13.5630

10 Other non-metallic mineral products 3412 0.0017 1.0171 3.0332 0.8773 0.0287 0.0017 20.7588 -0.1201 0.7552 0.0017 0 1.9273
11 Basic metals 1203 0.0003 1.1800 8.3555 0.9466 0.0056 0.0002 8.0108 7.7767 0.9079 0.0003 0 22.5386
12 Fabricated metal products 24116 0.0019 1.2025 10.7654 0.9575 0.0035 0.0017 6.2663 9.0180 0.9283 0.0019 0 25.2887

13 Machinery and equipment 8719 0.0064 1.1206 5.1953 0.9196 0.0125 0.0061 12.6131 4.6993 0.8534 0.0064 0 15.1825
14 Office, accounting, computing mach. 898 0.0006 1.0715 3.9145 0.8989 0.0196 0.0006 16.4360 2.3441 0.8075 0.0006 0 8.9841

15 Electrical machinery and apparatus 2694 0.0015 1.0675 3.8347 0.8973 0.0202 0.0014 16.7521 2.1569 0.8037 0.0015 0 8.4690
16 Radio, TV, communication equip. 1004 0.0057 1.2070 11.4206 0.9598 0.0032 0.0052 5.9160 9.2724 0.9324 0.0057 0 25.8380
17 Medical, precision, optical instr. 2443 0.0016 1.0956 4.4595 0.9089 0.0160 0.0016 14.5590 3.4788 0.8301 0.0016 0 12.0353

18 Motor vehicles and (semi-)trailers 2059 0.0272 1.1459 6.2088 0.9308 0.0093 0.0256 10.6513 5.9773 0.8768 0.0272 0 18.3347
19 Other transport equipment 1012 0.0036 1.2551 31.7979 0.9848 0.0005 0.0032 2.1599 12.1161 0.9756 0.0036 0 31.6677
20 Manufacturing n.e.c; recycling 16028 0.0109 1.0735 3.9535 0.8997 0.0193 0.0107 16.2857 2.4335 0.8093 0.0109 0 9.2289

21 Electricity, gas and water supply 428 0.0261 1.1854 8.8336 0.9492 0.0050 0.0241 7.5915 8.0711 0.9128 0.0261 0 23.2015
22 Construction 156266 0.0085 0.9638 2.4443 0.8569 0.0389 0.0087 25.1733 -2.4391 0.7020 0.0085 0 -5.2515

23 Wholesale and retail trade; repairs 306437 0.1850 0.9788 2.5911 0.8626 0.0359 0.1884 23.9071 -1.7932 0.7172 0.1850 0 -3.2016
24 Hotels and restaurants 130213 0.0781 0.9975 2.7940 0.8697 0.0323 0.0789 22.3519 -0.9789 0.7359 0.0781 0 -0.6720
25 Transport and storage 31912 0.0392 0.9289 2.1417 0.8436 0.0464 0.0408 28.2533 -3.9495 0.6655 0.0392 0 -10.1799

26 Post and telecommunications 4654 0.0181 0.9526 2.3417 0.8527 0.0412 0.0186 26.1401 -2.9224 0.6905 0.0181 0 -6.8087
27 Finance and insurance 15890 0.0807 0.9190 2.0638 0.8398 0.0486 0.0844 29.1713 -4.3838 0.6548 0.0807 0 -11.6270
28 Real estate activities 80146 0.1104 0.8570 1.6199 0.8141 0.0654 0.1192 35.7739 -7.3083 0.5813 0.1104 0 -21.5440

29 Renting of machinery and equipment 13615 0.0061 1.0636 3.7599 0.8957 0.0209 0.0059 17.0596 1.9760 0.8000 0.0061 0 7.9678
30 Computer and related activities 102580 0.0010 0.8645 1.6720 0.8176 0.0630 0.0010 34.8511 -6.9194 0.5911 0.0010 0 -20.2240

31 Research and development 1603 0.0001 1.0575 3.6486 0.8932 0.0218 0.0001 17.5386 1.6963 0.7942 0.0001 0 7.1867
32 Other Business Activities 371014 0.0041 0.9100 1.9952 0.8363 0.0508 0.0043 30.0287 -4.7829 0.6448 0.0041 0 -12.9669
34 Education 23494 0.0625 1.1440 6.1179 0.9300 0.0095 0.0591 10.8019 5.8774 0.8750 0.0625 0 18.0934

35 Health, social work, personal services 215336 0.2044 1.0816 4.1275 0.9031 0.0180 0.1988 15.6477 2.8157 0.8170 0.2044 0 10.2671

Notes: Column 1 reports the number of firms in each sector in the bsd database for the UK in 2005, column 2 the observed (rescaled) expenditure shares from the
UK input-output table, and column 3 the observed standard deviation of the log number of employees across firms, where data are constructed as described in
Appendix C.1. Column 4 reports the values of k̂j that we obtain by matching the numbers from column 3 to expression (C-1) in Appendix C.2. Columns 5 and 6

report the values of θ̂j and κ̂j which are transformations of k̂j . Column 7 reports the value β̂j obtained as described in Section 4.1. In columns 8 and 9 we report the
magnitudes of cutoff and entry distortions at the sectoral level obtained from (31) and (32), respectively. Column 10 reports the value of ρ̂j obtained by matching the
numbers from column 3 to expression (C-2) in Appendix C.2 while using k̂j from column 4. Column 11 reports the values β̂j which correspond to the expenditure
shares from column 2. Finally, column 12 reports only zeroes as the ces model does not exhibit cutoff distortions, and column 13 reports the magnitudes of entry
distortions as computed in (35).
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use expressions (28) and Proposition 5, together with (29), to compute the following measure

of intersectoral distortions for each sector j:

(NE
j )eqm − (NE

j )opt

(NE
j )opt × 100 =

(Lj)eqm − (Lj)opt

(Lj)opt × 100 =

(
θj

∑
J
ℓ=1 βℓθℓ

− 1

)
× 100. (32)

Based on (32), our model predicts that 25 sectors in the French economy exhibit excess entry

by up to 12.2%. The remaining 9 sectors display insufficient entry by up to -4.1%. In the

UK, excess entry arises in 23 sectors, whereas insufficient entry occurs in 11 sectors, with a

range of entry distortions from -8.1% to 12.5%. See Tables 1 and 2 for the detailed numbers,

and Figures 1 and 2 for a graphical illustration of those distortions.

Digging deeper into these patterns, we find some similarities between France and the

UK. In both countries, excess entry typically (though not always) occurs in manufacturing.

See, for example, [11] ‘Basic metals’ and [15] ‘Electrical machinery and apparatus’ in France,

or [8] ‘Chemical products’ and [19] ‘Transport equipment’ in the UK, where it is particu-

larly strong. By contrast, insufficient entry is almost exclusively a phenomenon of service

sectors.18 See, for example, [24] ‘Hotels and restaurants’ and [27] ‘Finance and insurance’

in France, or [28] ‘Real estate’ and [32] ‘Other business services’ in the UK, where we find

strongly negative values. Overall, the correlation of entry distortions across sectors in the

two countries is 0.330 and the Spearman rank correlation is 0.328. Furthermore, the direction

or ‘sign’ of inefficient entry is the same in 26 out of 34 sectors, i.e., in more than three-quarter

of the sectors. Put differently, the model makes similar predictions as to which sectors in

the two countries tend to display excessive or insufficient entry.

Recall that in the cara model the larger the value of kj , the more excessive is the firm

entry (and the labor allocation) but the smaller is the magnitude of insufficient selection. In

other words, manufacturing sectors in both countries not only tend to exhibit excess entry,

but also display relatively smaller cutoff distortions, i.e., equilibrium firm selection relatively

closer to the optimum. By contrast, there are too few entrants in many service sectors, and

firm selection is far less severe than it should be from a social point of view. It is worth

emphasizing that those predictions are based on a full-fledged general equilibrium model

that recognizes all interdependencies across sectors in the economy. Thus, our analysis is in

contrast to the conventional approach in industrial organization that has typically studied

18The sector [1] ‘Agriculture’ also exhibits insufficient entry in both countries, and particularly so in the UK,
but hardly any manufacturing sector in either country has too few entrants. Notice that these findings do,
of course, not imply that the mass of entrants in manufacturing is larger than that in services in equilibrium,
since they refer to a sector-by-sector comparison of the equilibrium and the optimal entry.
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Figure 1: Cutoff and entry disortions, cara model for France in 2008.

[1] Agriculture 
[2] Mining and quarrying

[3] Food products, beverages, tobacco
[4] Textiles, leather and footwear

[5] Wood products 
[6] Pulp, paper, printing and publishing

[7] Coke, refined petroleum, nuclear fuel
[8] Chemicals and chemical products

[9] Rubber and plastics products
[10] Other non−metallic mineral products

[11] Basic metals
[12] Fabricated metal products
[13] Machinery and equipment

[14] Office, accounting, computing mach.
[15] Electrical machinery and apparatus

[16] Radio, TV, communication equip.
[17] Medical, precision, optical instr.

[18] Motor vehicles and (semi−)trailers
[19] Other transport equipment

[20] Manufacturing n.e.c; recycling
[21] Electricity, gas and water supply

[22] Construction 
[23] Wholesale and retail trade; repairs

[24] Hotels and restaurants
[25] Transport and storage 

[26] Post and telecommunications
[27] Finance and insurance

[28] Real estate activities
[29] Renting of machinery and equipment

[30] Computer and related activities
[31] Research and development

[32] Other business services
[33] Education 

[34] Health, social work, personal services

−10 0 10 20 30

Cutoff distortions Entry distortions

2
7



Figure 2: Cutoff and entry disortions, cara model for the United Kingdom in 2005.
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entry and selection for a single industry in partial equilibrium.

Aggregate welfare distortion. Having analyzed cutoff and entry distortions in each sector,

we now consider the aggregate welfare distortion in the economy. To this end, we use the

concept of the Allais surplus (Allais, 1943, 1977) since compensating and equivalent varia-

tions, which are used to analyze the welfare change between two equilibria, are not readily

applicable to measuring the welfare distortion, i.e., the welfare gap between the equilibrium

and optimum. Intuitively, we measure the amount of labor – which is taken as the numeraire –

that can be saved when the planner minimizes the resource cost of attaining the equilibrium

utility level.

Let LA(Ueqm) denote the minimum amount of labor that the social planner requires to

attain the equilibrium utility level. By construction, LA(Ueqm) is not greater than the amount

of labor L that the market economy requires to reach the equilibrium utility level because

the labor market clears in equilibrium and because their may be distortions. As shown in

Appendix D, we can define a measure of the aggregate welfare distortion based on the Allais

surplus as follows:

−
LA(Ueqm)− L

L
× 100 =





1 −
∏

J
j=1
[
(kj + 1)2κj

] βj
kj+1

∑
J
ℓ=1 βℓθℓ





× 100. (33)

Plugging the values of k̂j , θ̂j , κ̂j , and β̂j from Tables 1 and 2 into (33), we can compute the

magnitude of the aggregate welfare distortion in France and in the UK, respectively.

Table 3: Aggregate welfare distortions as measured by the Allais surplus.

France UK
ves ces ves ces

Aggregate distortion 5.93 0.34 5.85 0.99

(% of aggregate labor input saved)

Cutoff and quantity distortion 81.81 0 95.11 0

Entry and labor distortion 18.19 100 4.89 100

(as % of aggregate distortion)

Table 3 summarizes our results. For France, the aggregate welfare distortion is 5.93%,

and for the UK it is 5.85%. In words, to achieve the equilibrium utility level in each of

the two countries, the social planner requires almost 6% less aggregate labor input when
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compared to the case with utility maximizing consumers and profit maximizing firms.

Disentangling the relative contribution of the cutoff and the entry distortion is difficult,

since it is generally not possible to shut down one without affecting the other.19 To gauge

the potential importance of within and between sector distortions, we hence proceed as

follows. We pool our data across all sectors and proceed as if there were only a single sector.

Distortions in the labor allocation cannot arise in this single-sector case – since by definition

L
eqm
j = L

opt
j = L – and entry is efficient by (28). Therefore, the welfare gap between the

equilibrium and optimum depends only on cutoff and output distortions. We then estimate

the value of k for that single sector in the same way as before, by matching the standard

deviation of the (log) employment distribution across all firms. This yields k̂ = 3.5687 for

France and k̂ = 3.0598 for the UK. Plugging that common value into (33), we compute

the associated Allais surplus for the single-sector economy and compare it with the Allais

surplus in the multi-sector case. The results are summarized in the bottom part of Table 3.

As can be seen, the distortions in the single-sector case are 18.19% smaller for France, and

4.89% smaller for the UK. Put differently, disregarding entry and labor distortions would

lead to an underestimation of the aggregate welfare distortion by 5%–18% in our cara

example with a Cobb-Douglas upper-tier utility function.

Figure 3: Aggregate welfare distortions in the ces-cara model as a function of σ.

(a) France. (b) UK.
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Robustness check. We have also conducted a robustness check with respect to the choice

of the upper-tier utility function. In particular, we have replaced the Cobb-Douglas upper-

tier function with the ces function U = {∑
J
j=1 βj [Ũj(Uj)](σ−1)/σ}σ/(σ−1), and the Allais

19We know from the results in Corollary 2 that entry in the cara case is efficient if and only if all kj ’s are
the same. Hence, one could think of setting all kj ’s to same common value to shut down entry distortions.
However, the common value of k that is chosen has an effect on the magnitude of cutoff distortions.
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surplus for that case with ces upper-tier utility and cara subutility is given by (see the

supplementary Appendix F for details):

−
LA(Ueqm)− L

L
× 100 =


1 −

1

∑
J
ℓ=1 βℓθℓ

·

{
J

∑
j=1

βj

[
(kj + 1)2κj

] 1−σ
kj+1

} 1
1−σ


× 100. (34)

Notice that, once we choose a value of σ, this expression for the aggregate welfare distortion

can be computed using k̂j , θ̂j , κ̂j , and β̂j from Tables 1 and 2, respectively.

Figure 3 illustrates the magnitude of the aggregate welfare distortion given by (34) as a

function of σ for France (panel (a)) and the UK (panel (b)). We find that the higher is the

elasticity of substitution between sectors, the stronger is the aggregate welfare distortion in

both countries. It ranges between 6% and 7% in France, and between 6% and 8% in the

UK. Treating the economy as if it consisted of a single sector, as before, we re-quantify the

magnitude of entry and labor distortions. For σ ∈ (1, 10), it ranges between 18% and 27% in

France, and between 5% and 29% in the UK. Thus, the higher the elasticity of substitution

for the upper-tier utility function, the stronger the underestimation of the aggregate welfare

distortion due to inefficient entry and labor allocation, and it can reach almost 30% for

reasonable parameter values.

4.3 Quantifying distortions: the ces subutility case

Finally, we quantify the workhorse model with Cobb-Douglas upper-tier and ces subutility

functions. Recall that there are no cutoff distortions with ces subutility functions. However,

by Corollary 1, there are still labor and entry distortions due to heterogeneity in the real

revenue-to-utility ratio Rj/Uj and in the elasticity of upper-tier utility EU ,Uj
when the ρj

terms differ across sectors. How large are the welfare distortions for France and the UK

predicted by the ces model?

To quantify this model, we use the same sector-specific statistics as before: the standard

deviation of (log) firm-level employment, not including the labor input for R&D which we

use as a proxy for sunk entry and fixed costs. To match this observed data moment, we

also assume sector-specific Pareto distributions for productivity draws, and then derive the

corresponding theoretical expression for the ces case. As can be seen from equation (C-2)

in Appendix C.2, this expression now depends on two parameters: ρj and kj . Since the kj ’s

are technology parameters that do not depend on consumer preferences, we keep the same

values of k̂j from the ves model above. We can then uniquely back out the corresponding
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values for ρ̂j . Since by (22) the equilibrium expenditure share is βj for this case, the value

of β̂j for each sector can be obtained by setting β̂j = êj , where ∑
J
j=1 β̂j = ∑

J
j=1 êj = 1 by

definition of the observed expenditure share.

The parameter values thus obtained for France and the UK are reported in Tables 1 and 2.

Equipped with those numbers, we can quantify the magnitude of entry distortions for each

sector j as follows:

(NE
j )eqm − (NE

j )opt

(NE
j )opt × 100 =

L
eqm
j − L

opt
j

L
opt
j

× 100 =

(
ρj

J

∑
ℓ=1

βℓ

ρℓ
− 1

)
× 100. (35)

As can be seen from Tables 1 and 2, in both countries the ces and ves models make very

similar predictions as to which sectors display excess or insufficient entry. Yet, the ces model

implies larger magnitudes than the ves model. In France, the range of inefficient entry and

labor allocation goes from -12.2% to 30.9%, and in the UK from -24.3% to 32.4%.

To quantify the aggregate welfare distortion, we again rely on the Allais surplus and

compute the following expression (see Appendix D for details):

−
LA(Ueqm)− L

L
× 100 =


1 −

J

∏
j=1

(
ρj

J

∑
ℓ=1

βℓ

ρℓ

) βj/ρj
∑J
ℓ=1(βℓ/ρℓ)


× 100. (36)

The results are 0.34% for France, and 0.99% for the UK, as summarized in Table 3. In

other words, less than 1% of the aggregate labor input could be saved if the social planner

minimized the resource cost to attain the equilibrium utility level. Compared to the ves

model, where the corresponding number is roughly 6%, it appears that the aggregate welfare

distortion in the ces model is much smaller than that in the ves model. However, correcting

the inefficiencies between sectors would still lead to substantial changes in entry patterns

and sectoral employment shares.

5 Conclusions

We have developed a general equilibrium model of monopolistic competition with multiple

sectors and heterogeneous firms. Comparing the equilibrium and optimal allocations, we

have characterized the various distortions that operate in our economy. Concrete specifica-

tions of our general model allow for closed-form solutions that can be readily taken to the

data. Applying this approach to French data for 2008 and UK data for 2005, we have quan-
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tified the aggregate welfare distortions while uncovering substantial sectoral heterogeneity

and assessing contribution of each type of distortions to the overall welfare losses.

Our preferred specification implies substantial aggregate welfare distortions for France

and for the UK, each of which amounts to almost 6% of the respective economy’s aggre-

gate labor input. Our results suggest that inefficiencies within and between sectors both

matter in practice. Removing those distortions would presumably require rather different

interventions: industrial policy tools to address the latter problem, combined with policies

targeted at specific firms to address the former. A general lesson that one can deduce from

our analysis is that interdependencies are important for the design of such programs: the

optimal policy for one sector is not only influenced by conditions of that particular sector,

but it depends on the characteristics of all sectors in the economy. We leave it to future work

to explore the details of feasible policy schemes that alleviate misallocations. In this paper

we have taken a first step, and provided a novel approach to derive quantitative predictions

for the welfare distortion. More work is needed in the future to derive robust lessons for

policy.
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Appendix

A. Proofs of the propositions

This appendix provides all the proofs of the propositions. To alleviate notation, we suppress

indices for sectors and arguments wherever possible.

A.1. Proof of Proposition 1. This result can be established using a similar method as in

Zhelobodko et al. (2012). However, we provide an alternative proof that can be readily ap-

plied to the optimal cutoff and quantities (see Appendix A.3). Using the profit-maximizing

price (5) for the marginal variety, we can rewrite the zcp condition (6) as

ruj (q
d
j )

1 − ruj
(
qdj
)md

jq
d
j = ruj (q

d
j )

pdj

w
qdj =

fj

L
,

which, together with the first-order condition (2) for the marginal variety, u′j(q
d
j ) = λjp

d
j ,

yields

ruj (q
d
j )u

′
j(q

d
j )q

d
j = −(qdj )

2u′′j (q
d
j ) =

fj

L
λjw.

The left-hand side is increasing in qdj since

∂

∂qdj

(
−(qdj )

2u′′j (q
d
j )
)
= −qdju

′′
j (q

d
j )

[
2 −

(
−
qdju

′′′
j (qdj )

u′′j (q
d
j )

)]
= −qdju

′′
j (q

d
j )
[
2 − ru′j

(qdj )
]
> 0,

where we use the second-order condition ru′j
(qj(m)) < 2. Thus, we know that qdj is increas-

ing in the market aggregate λjw.

Furthermore, using the first-order condition (2) and the profit-maximizing price (5) for

the marginal variety, we have

[
1 − ruj (q

d
j )
]
u′j(q

d
j ) = (λjw)m

d
j . (A-1)

The left-hand side is decreasing in qdj since

∂

∂qdj

{[
1 − ruj (q

d
j )
]
u′j(q

d
j )
}
= u′′j (q

d
j )
[
2 − ru′j

(qdj )
]
< 0.

Hence, since we have shown above that ∂qdj /∂(λjw) > 0, the left-hand side in (A-1) decreases

as λjw on the right-hand side of (A-1) increases. It then follows that md
j is decreasing in λjw.
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Similarly, using the first-order conditions (2) and the profit-maximizing prices (5) for other

varieties, we have
[
1 − ruj (qj(m))

]
u′j(qj(m)) = (λjw)m.

Since the left-hand side is decreasing in qj(m), we know that qj(m) is decreasing in λjw.

Next, we rewrite the zep condition (7) as

L

∫ md
j

0

{[
1

1 − ruj (qj(m))
− 1
]
mqj(m)−

fj

L

}
dGj(m) = Fj . (A-2)

Given that md
j and qj(m) are decreasing in λjw, we differentiate the left-hand side of this

expression with respect to λjw as follows:

L

{[
1

1 − ruj (q
d
j )

− 1

]
md

j qj(m
d
j )−

fj

L

}
gj(m

d
j )

∂md
j

∂(λjw)

+L

∫ md
j

0

{
r′uj (qj(m))

[1 − ruj (qj(m))]2
qj(m) +

ruj (qj(m))

1 − ruj (qj(m))

}
m
∂qj(m)

∂(λjw)
dGj(m).

The first-term is zero by the zcp condition (6). Noting that

ruj (qj(m)) = −
qj(m)u′′j (qj(m))

u′j(qj(m))

r′uj (qj(m)) = −
[u′′j (qj(m)) + u′′′j (qj(m))qj(m)]u′j(qj(m))− qj(m)[u′′j (qj(m))]2

[u′j(qj(m))]2
,

the second term can be expressed as:

L

∫ md
j

0

{
[2 − ru′j

(qj(m))]ruj (qj(m))

[1 − ruj (qj(m))]2

}
m
∂qj(m)

∂(λjw)
dGj(m) < 0,

where we use the second-order condition ru′j
(qj(m)) < 2. Hence, the left-hand side of the

zep condition (A-2) is decreasing in λjw.

Assume that fixed costs, fj , and sunk costs, Fj , are not too large. The former ensures

that profits are non-negative (see the zcp condition in (6)). The latter ensures existence. The

left-hand side of the zep condition is strictly decreasing in λjw, whereas the right-hand side

is constant. Hence, if fixed costs, fj , and sunk costs, Fj , are not too large, then there exists a

unique solution for λjw. Using the unique λjw thus obtained, we can establish the existence

and uniqueness of md
j and qj(m) since both are decreasing in λjw. �
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A.2. Proof of Proposition 2. The first-order conditions (2) and (3), when combined with

equation (10), imply that

[
NE

j

∫ md
j

0 uj(qj(m))dGj(m)

]ξj

[
NE

ℓ

∫ md
ℓ

0 uℓ(qℓ(m))dGℓ(m)

]ξℓ =
pdj

pdℓ

γℓ

γj

u′ℓ(q
d
ℓ )

u′j(q
d
j )

. (A-3)

When fj and Fj are not too large, the market aggregate λjw is uniquely determined by the

zep condition and so are sector-specific cutoffs md
j and the associated prices pdj and quantities

qdj and qj(m) (see Appendix A.1). Since the zep condition does not include NE
j , those

variables are independent of NE
j . Thus, the integrals in (A-3) are independent of NE

j and

NE
ℓ . The right-hand side of equation (A-3) is strictly positive and finite. By monotonicity,

there clearly exists a unique NE
j (NE

ℓ ). This relationship satisfies (NE
j )′ > 0, NE

j (0) = 0 and

limNE
ℓ →∞ NE

j (NE
ℓ ) = ∞.

In each sector j, labor supply Lj equals labor demand NE
j

{∫ md
j

0 [Lmqj(m) + fj]dGj(m)+

Fj

}
, so that

Lj

NE
j

− L

∫ md
j

0
mqj(m)dGj(m) = fjGj(m

d
j ) + Fj . (A-4)

Plugging expression (A-4) into (7) yields

NE
j

∫ md
j

0

mqj(m)

1 − ruj
(
qj(m)

)dGj(m) =
Lj

L
. (A-5)

Summing over j and using the overall labor market clearing condition L = ∑
J
j=1 Lj , we then

have the following equilibrium condition:

J

∑
j=1

NE
j (NE

ℓ )
∫ md

j

0

mqj(m)

1 − ruj (qj(m))
dGj(m) = 1. (A-6)

Observe that all integral terms on the left-hand side of (A-6) are positive and independent

of the masses of entrants, whereas the right-hand side equals one. Since the limit of the left-

hand side is zero when NE
ℓ goes to zero, and infinity when NE

ℓ goes to infinity, the existence

and uniqueness of a solution for NE
ℓ follows directly by the properties of NE

j (·). Since the

terms in braces of the right-hand side of (9) are uniquely determined by Proposition 1, the

existence and uniqueness of NE
j implies those of ejL and thus those of Lj in (8), which

proves Proposition 2. �
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A.3. Proof of Proposition 3. Plugging the first-order condition for the marginal variety

md
j = u′j(q

d
j )/δj into (17), we have

uj(q
d
j )− u′j(q

d
j )q

d
j =

fj

L
δj . (A-7)

The left-hand side is increasing in qdj (since u′′j < 0), which establishes that qdj is increasing

in δj . Thus, u′(qdj ) is decreasing in δj . Then, from the first-order condition for the marginal

variety, we see that when δj increases, md
j must decrease because u′j(q

d
j )/δj decreases. Hence,

md
j is a decreasing function of δj . From the first-order conditions for the other varieties,

u′(qj(m)) = δjm, we know that qj(m) is decreasing in δj .

Next, we rewrite the zesp condition (16) as

L

∫ md
j

0

[(
1

Euj ,qj(m)
− 1

)
mqj(m)−

fj

L

]
gj(m)dm = Fj .

Given that md
j and qj(m) are decreasing in δj , we differentiate the left-hand side of this

expression with respect to δj as follows:

L

[(
1

Euj ,qdj

− 1

)
md

j q
d
j −

fj

L

]
gj(m

d
j )
∂md

j

∂δj

+L

∫ md
j

0

[
−

1
Euj ,qj(m)

∂Euj ,qj(m)

∂qj(m)

qj(m)

Euj ,qj(m)
+

1 − Euj ,qj(m)

Euj ,qj(m)

]
m
∂qj(m)

∂δj
gj(m)dm,

where the first term is zero by (17). Using

∂Euj ,qj(m)

∂qj(m)

qj(m)

Euj ,qj(m)
= 1 − ruj (qj(m))− Euj ,qj(m),

we finally have

L

∫ md
j

0

ruj (qj(m))

Euj ,qj(m)
m
∂qj(m)

∂δj
gj(m)dm < 0,

where the inequality comes from ∂qj(m)/∂δj < 0.

Assume that fixed costs, fj , and sunk costs, Fj , are not too large. The former ensures that

social profits are non-negative (see the zcsp condition (17)), and the latter ensures existence.

The left-hand side of the zesp condition is strictly decreasing in δj , whereas the right-hand

side is constant. Hence, if fixed costs, fj , and sunk costs, Fj , are not too large, then there

exists a unique solution for δj . Using the unique δj thus obtained, we can establish the
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existence and uniqueness of md
j and qj(m) since both are decreasing in δj . �

A.4. Proof of Proposition 4. The first-order conditions (12) and (15), when combined with

equation (10), imply that

[
NE

j

∫ md
j

0 uj(qj(m))dGj(m)

]ξj

[
NE

ℓ

∫ md
ℓ

0 uℓ(qℓ(m))dGℓ(m)

]ξℓ =
md

j

md
ℓ

γℓ

γj

u′ℓ(q
d
ℓ )

u′j(q
d
j )

. (A-8)

When fj and Fj are not too large, δj is uniquely determined by the zesp condition, and so

are the sector-specific cutoffs md
j and the associated quantities qdj and qj(m). Since the zesp

condition does not include NE
j , those variables are independent of NE

j . Thus, the integrals

in (A-8) are independent of NE
j and NE

ℓ . The right-hand side of equation (A-8) is strictly

positive and finite. By monotonicity, there clearly exists a unique NE
j (NE

ℓ ). This relationship

satisfies (NE
j )′ > 0, NE

j (0) = 0 and limNE
ℓ →∞ NE

j (NE
ℓ ) = ∞.

Plugging expression (A-4) for the optimal allocation into (16) yields

NE
j

∫ md
j

0

mqj(m)

Euj ,qj(m)
dGj(m) =

Lj

L
. (A-9)

Substituting NE
j (NE

ℓ ) obtained from (A-8) into (A-9), making use of Lj = ejL and summing

over j, we then have the following equilibrium condition:

J

∑
j=1

NE
j (NE

ℓ )
∫ md

j

0

mqj(m)

Euj ,qj(m)
dGj(m) = 1. (A-10)

Observe that all integral terms on the left-hand side of (A-10) are positive and independent

of the masses of entrants, whereas the right-hand side equals one. Since the limit of the left-

hand side is zero when NE
ℓ goes to zero, and infinity when NE

ℓ goes to infinity, the existence

and uniqueness of a solution for NE
ℓ follows directly by the properties of NE

j (·). Since the

terms in braces of the right-hand side of (19) are uniquely determined by Proposition 3, the

existence and uniqueness of NE
j implies those of ejL and thus those of Lj in (18), which

proves Proposition 4. �

A.5. Proof of Proposition 5. The former claim can readily be obtained from (8) and (18).

The latter claim can be shown as follows. Without loss of generality, we order sectors by
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non-decreasing private-to-social expenditure ratios:

e
eqm
1

e
opt
1

≤
e

eqm
2

e
opt
2

≤ . . . ≤
e

eqm
J

e
opt
J

.

Then, by definition of the expenditure shares, we must have

e
eqm
1

e
opt
1

≤
e

eqm
j

e
opt
j

, ∀j ⇒ e
eqm
1 = e

eqm
1

J

∑
j=1

e
opt
j ≤ e

opt
1

J

∑
j=1

e
eqm
j = e

opt
1 ,

which implies e
eqm
1 /eopt

1 ≤ 1. Conversely,

e
eqm
j

e
opt
j

≤
e

eqm
J

e
opt
J

, ∀j ⇒ e
opt
J = e

opt
J

J

∑
j=1

e
eqm
j ≤ e

eqm
J

J

∑
j=1

e
opt
j = e

eqm
J ,

which implies 1 ≤ e
eqm
J /eopt

J . Since e
eqm
j /eopt

j is non-decreasing in j, we have e
eqm
1 /eopt

1 <

e
eqm
J /eopt

J if there are at least two different eeqm
j /eopt

j ’s. In that case, there exists a threshold

j∗ ∈ {1, 2, . . . , J − 1} such that all sectors with j ≤ j∗ attract too little expenditure, whereas

all sectors with j > j∗ attract too much expenditure. Using (8) and (18) then yields the result

in terms of the intersectoral labor allocation.

To see that the intersectoral allocation is optimal if and only if all expenditure ratios are

constant, we proceed as follows. First, assume that e
eqm
j /eopt

j = c for all j, where c is a

constant. Then, ∑
J
j=1 e

eqm
j = c∑

J
j=1 e

opt
j = 1 must hold, which yields c = 1 and e

eqm
j = e

opt
j

for all j. Since L
eqm
j = e

eqm
j L and L

opt
j = e

opt
j L, this proves the if part. To see the only if part,

assume that Leqm
j = L

opt
j for all j. Clearly, this is only possible if eeqm

j /eopt
j = 1 for all j. This

completes the proof of Proposition 5. �

A.6. Proof of Proposition 6. Taking the ratio of (md
j )

opt and (md
j )

eqm from (27) yields

[
(md

j )
opt

(md
j )

eqm

]kj+1

= κj(kj + 1)2. (A-11)

Since κj(kj + 1)2 < 1 (see the discussion below (E-15) in Appendix E.1), this immediately

implies that (md
j )

opt/(md
j )

eqm < 1.

Next, taking the difference between the optimal quantity (E-22) and the equilibrium

quantity (E-2), evaluated at the equilibrium price (E-3), we have the following two cases.
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First, when 0 ≤ m ≤ (md
j )

opt, we obtain

q
opt
j (m)− q

eqm
j (m) =

1
αj

ln

[
(md

j )
opt

(md
j )

eqm

]
−

1
αj

lnW

(
e

m

(md
j )

eqm

)
. (A-12)

Recalling that W (0) = 0 by the property of the Lambert W function, we know that

limm→+0[q
opt
j (m) − q

eqm
j (m)] > 0. Second, when (md

j )
opt < m < (md

j )
eqm, we know that

q
opt
j (m) = 0, and that qeqm

j (m) > 0, so that

q
opt
j (m)− q

eqm
j (m) =

1
αj

ln

[
m

(md
j )

eqm

]
−

1
αj

lnW

(
e

m

(md
j )

eqm

)
< 0. (A-13)

Recalling that W (e) = 1 by the property of the Lambert W function, we know that

limm→(md
j )

eqm−0[q
opt
j (m) − q

eqm
j (m)] = 0. Noting that (A-13) is strictly increasing in m,20

and that (md
j )

opt < (md
j )

eqm, it is verified that limm→(md
j )

opt+0[q
opt
j (m)− q

eqm
j (m)] < 0.

Finally, since q
opt
j (m)− q

eqm
j (m) is continuous at (md

j )
opt by expressions (A-12) and (A-

13), limm→(md
j )

opt−0[q
opt
j (m) − q

eqm
j (m)] < 0 must hold in (A-12). Noting that expression

(A-12) is strictly decreasing in m, and that limm→+0[q
opt
j (m)− q

eqm
j (m)] > 0, we know that

there exists a unique m∗
j ∈ (0, (md

j )
opt) such that q

opt
j (m) > q

eqm
j (m) for m ∈ (0,m∗

j ) and

q
opt
j (m) < q

eqm
j (m) for m ∈ (m∗

j , (md
j )

opt]. This, together with the inequality in (A-13) for

m ∈ ((md
j )

opt, (md
j )

eqm) proves our claim. �

B. Proofs of the lemmas

B.1. Proof of Lemma 1. By definition, the consumer’s expenditure share for sector-j vari-

eties is given by

ej ≡
NE

j

w

∫ md
j

0
pj(m)qj(m)dGj(m). (B-1)

Combining (5) and (A-5) and using (B-1) yield Lj/L = ej . Let

Rj ≡ NE
j

∫ md
j

0
u′j
(
qj(m)

)
qj(m)dGj(m) = λjejw, (B-2)

be a measure of real revenue in sector j, where we have made use of the first-order condi-

tions (2) and of (B-1). Let further EU ,Uj
≡ (∂U/∂Uj)(Uj/U) be the elasticity of the upper-tier

utility function. The expenditure share can then be expressed as a function of Rj and EU ,Uj
.

20To derive this property, we use W ′(x) = W (x)/{x[1 +W (x)]}.
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To see this, we use (B-2) to get

ej

eℓ
=

Rjλℓ

Rℓλj
=

RjEU ,Uj

U
Uj

RℓEU ,Uℓ

U
Uℓ

⇒ ej

J

∑
ℓ=1

Rℓ

Uℓ
EU ,Uℓ

=
Rj

Uj
EU ,Uj

,

where we use (2) and the property that the expenditure shares sum to one. We thus have

ej =

Rj

Uj
EU ,Uj

∑
J
ℓ=1

Rℓ
Uℓ
EU ,Uℓ

, (B-3)

as stated in (8). Finally, turning to the mass of entrants, from (A-4) and (8) we obtain

NE
j =

ejL

fjGj(md
j ) + Fj + L

∫ md
j

0 mqj(m)dGj(m)
. (B-4)

Since mqj(m) = qj(m)pj(m)[1 − ruj (qj(m))]/w = qj(m)[1 − ruj (qj(m))]u′j(qj(m))/(λjw)

from profit maximization and the consumer’s first-order conditions, and using λjw = Rj/ej
from (B-2), we have mqj(m) = ejqj(m)[1 − ruj (qj(m))]u′j(qj(m))/Rj . Plugging this into

equation (B-4), and noticing that Rj depends on NE
j , we can solve the resulting equation for

NE
j , which yields (9). This completes the proof of Lemma 1. �

B.2. Proof of Lemma 2. The proof is similar to that for Lemma 1. Using the shadow price

m/Euj ,qj(m), the social expenditure share for sector-j varieties is defined as

ej ≡ NE
j

∫ md
j

0

mqj(m)

Euj ,qj(m)
dGj(m). (B-5)

Combining (B-5) and (A-9) yield Lj = ejL. The social expenditure share ej can be expressed

in terms of the elasticities of the upper-tier utility function. To see this, we use the definition

of Euj ,qj(m) and the first-order condition (12) to obtain

ej = NE
j

∫ md
j

0

muj(qj(m))

u′j(qj(m))
dGj(m) =

Uj

δj
. (B-6)

Taking the ratio of sectors j and ℓ yields

ej

eℓ
=

Ujδℓ

Uℓδj
=

EU ,Uj

EU ,Uℓ

⇒ ej

J

∑
ℓ=1

EU ,Uℓ
= EU ,Uj

,
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where we have made use of condition (12) and of the property that the expenditure shares

sum to one. We thus obtain

ej =
EU ,Uj

∑
J
ℓ=1 EU ,Uℓ

as in equation (18). Finally, turning to the mass of entrants, from (A-4) and (18) we obtain

(B-4). We know that mqj(m) = qj(m)u′j(qj(m))/δj = ejqj(m)u′j(qj(m))/Uj = ejEuj ,qj(m)

uj(qj(m))/Uj holds for the optimal allocation. Plugging this into (B-4), and noting that

Uj depends on NE
j , we can solve the resulting equation for NE

j , which yields (19). This

completes the proof of Lemma 2. �

B.3. Proof of Lemma 3. We derive the ratio Rj/Uj for the cara case with Pareto produc-

tivity distributions. By definition of the cara subutility,

Rj = NE
j

∫ md
j

0
qj(m)αje−αjqj(m)dGj(m) and Uj = NE

j

∫ md
j

0

[
1 − e−αjqj (m)

]
dGj(m). (B-7)

As shown in the supplementary Appendix E, the equilibrium quantities are given by qj(m) =

(1/αj)[1 −W (em/md
j )], where W is the Lambert W function defined as ϕ = W (ϕ)eW (ϕ).

To integrate the foregoing expressions, we use the change in variables suggested by Corless

et al. (1996, p.341). Let

z ≡ W

(
e
m

md
j

)
, so that e

m

md
j

= zez.

This change in variables then yields dm = (1 + z)ez−1md
jdz, with the new integration

bounds given by 0 and 1. Substituting the expressions for quantities into Rj in (B-7), using

the definition of W , and making the above change in variables, we have:

Rj = NE
j

∫ md
j

0
[1 −W (em/md

j )]e
W (em/md

j )−1gj(m)dm

= NE
j md

j

∫ 1

0
(1 − z)ez−1(1 + z)ez−1gj(zez−1md

j )dz.

Applying the same technique to the lower-tier utility Uj in (B-7) we obtain

Uj = NE
j

∫ md
j

0
[1 − eW (em/md

j )−1]gj(m)dm

= NE
j md

j

∫ 1

0
(1 − ez−1)(1 + z)ez−1gj(zez−1md

j )dz.
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Taking the ratio Rj/Uj then yields:

Rj

Uj
=

∫ 1
0 (1 − z)ez−1(1 + z)ez−1gj

(
zez−1md

j

)
dz

∫ 1
0 (1 − ez−1)(1 + z)ez−1gj

(
zez−1md

j

)
dz

, (B-8)

where (1 − z)ez−1 < 1 − ez−1 for all z ∈ [0, 1). With a Pareto distribution, we have

gj(zez−1md
j ) = kj(zez−1md

j )
kj−1(mmax

j )−kj , so that expression (B-8) can be written as (29). �

C. Additional details for the quantification procedure

This appendix provides details on the data that we use and derives additional expressions

required for the quantification procedure.

C.1. Data. Besides the firm-level esane dataset for France and the bsd dataset for the UK,

we build on industry-level information from the oecd stan database for both countries.

More specifically, we obtain sectoral expenditure shares and R&D expenditure data by isic

Rev. 3 from the French and UK input-output tables. These input-output tables contain

information on 35 sectors and dictate the level of aggregation in our analysis. We discard

the ‘Public Administration and Defense’ aggregate (12.12% of expenditure for France and

11.29% for the UK). Expenditure for each sector is computed as the sum of ‘Households

Final Consumption’ (code C39) and ‘General Government Final Consumption’ (code C41).

We use the ratio of R&D expenditure to gross output at basic prices to proxy for sunk entry

costs and fixed costs, and trim the data by getting rid of the top and bottom 1.5% of the

firm-level employment distribution across all sectors.21

C.2. Additional expressions. We derive the expressions needed to back out the structural

parameters of the model in our quantification procedure.

cara subutility. In the cara case, firm variable employment used for production in the

market equilibrium with Pareto productivity distribution is given by:

varempcaraj (m) =
m

αj
(1 −Wj) ,

21We first match the R&D expenditure data with our 34 sectors and compute, for each sector, the ratio of
R&D expenditure to gross output at basic prices (code R49) with the latter information coming from input-
output tables. We then multiply the ratio by total employment in that sector, divide it by the number of firms
to get a proxy measure of Fj and fj , and subtract it from the employment of each firm. We ignore those firms
ending up with a non-positive employment.
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where Wj ≡ W (em/md
j ) denotes the Lambert W function. Using z ≡ W (em/md

j ), em/md
j =

zez and dm = (1 + z)ez−1md
jdz, the conditional mean of ln[varempcara

j (m)] is given by:

meancara
j =

1
G(md

j )

∫ md
j

0
ln
[
m

αj
(1 −Wj)

]
dG(m) = Mj + lnmd

j − lnαj ,

where Mj ≡ −1/kj + kj
∫ 1

0 (zez−1)kj−1(1 + z)ez−1 ln(1 − z)dz is a function of kj only. In

turn, the conditonal variance of ln[varempcara
j (m)] becomes:

(
sdcara

j

)2
=

1
G(md

j )

∫ md
j

0

{
ln
[
m

αj
(1 −Wj)

]
− µcara

j

}2

dG(m)

=
2
k2
j

−M2
j + kj

∫ 1

0
ln
[
(zez−1)2(1 − z)

]
(zez−1)kj−1(1 + z)ez−1 ln(1 − z)dz,

which yields the following expression:

sdcara
j =

√
2
k2
j

−M2
j + kj

∫ 1

0
ln [(zez−1)2(1 − z)] (zez−1)kj−1(1 + z)ez−1 ln(1 − z)dz.

(C-1)

ces subutility. Turning to the ces case, firm variable employment used for production in

the market equilibrium with Pareto productivity distribution is given by:

varempces
j (m) =

fjρj

1 − ρj

(
md

j

m

) ρj
1−ρj

.

The conditional mean of ln[varempces
j (m)] is given by:

meances
j =

1
G(md

j )

∫ md
j

0
ln


 fjρj

1 − ρj

(
md

j

m

) ρj
1−ρj


dG(m) = ln

(
fjρj

1 − ρj

)
+

ρj

kj(1 − ρj)
.

Using the same approach than in the cara case, one can obtain the standard deviation of

ln[varempces
j (m)], which depends on kj and ρj , as follows:

sdces
j =

ρj

kj(1 − ρj)
. (C-2)
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D. Allais surplus

This appendix derives the Allais surplus (Allais, 1943, 1977), which is the welfare measure

we use when quantifying aggregate welfare distortions. In our context, the Allais surplus is

defined as the maximum amount of the numeraire that can be saved when the social planner

minimizes the resource cost of providing the agents with the equilibrium utility. We thus

consider the following optimization problem:

min
{NE

j ,md
j , qj (m)}

LA ≡
J

∑
j=1

NE
j

{∫ md
j

0
[Lmqj(m) + fj]dGj(m) + Fj

}
(D-1)

s.t. U
(
Ũ1(U1), Ũ2(U2), . . . , ŨJ(UJ )

)
≥ U ,

where U is a fixed target utility level that needs to be provided to each agent. The solution

to this problem yields the minimum resource cost, LA(U), required to achieve the target

utility level. Setting U = Ueqm, the Allais surplus is formally defined as:

A ≡ L− LA(Ueqm), (D-2)

where the first term L is the amount of labor needed for the market economy to attain the

equilibrium utility since the labor market clears in equilibrium. If there are distortions, the

planner requires, by definition, less labor to attain the equilibrium utility than the market

economy does. Thus, the minimum resource cost must satisfy LA(Ueqm) ≤ L, so that A ≥ 0.

Let µ denote the Lagrange multiplier associated with the utility constraint. From (D-1),

the first-order conditions with respect to qj(m), md
j , and NE

j are given by

u′j(qj(m)) =
L

µj
m, µj ≡ µ

∂U

∂Ũj

∂Ũj

∂Uj
(D-3)

µjuj(q
d
j ) = Lmd

jq
d
j + fj (D-4)

µj

∫ md
j

0
uj(qj(m))dGj(m) =

∫ md
j

0
[Lmqj(m) + fj ]dGj(m) + Fj (D-5)

as well as the constraint U = U
(
Ũ1(U1), Ũ2(U2), . . . , ŨJ(UJ )

)
≥ U . Comparing (D-3)–(D-5)

with (12)–(14) reveals that the first-order conditions are isomorphic. Thus, we can conclude

that the optimal cutoffs and quantities are the same in the Allais surplus problem and the

‘primal’ optimal problem in Section 2.2. In what follows, we focus on the optimal labor

allocation and entry.
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D.1. cara subutility. Assume that the subutility function is of the cara form uj(qj(m)) =

1 − e−αjqj (m), that the upper-tier utility function U is of the ces form as in (E-1), that

Ũj(Uj) = Uj , and that Gj follows a Pareto distribution. We also assume that fj = 0 in

the cara subutility case.

To derive the optimal masses of entrants, we use the multipliers µj ≡ µEU ,Uj

U
Uj

. Given

the ces upper-tier utility, the ratio of multipliers in sectors j and ℓ is

µj

µℓ
=

βj

βℓ

(
Uℓ

Uj

) 1
σ

=
αℓ

αj

md
j

md
ℓ

, (D-6)

where we have used (D-3) evaluated at m = md
j to get the last equality. It follows from (D-6)

that

Uℓ =

(
αℓβℓ

αjβj

md
j

md
ℓ

)σ

Uj ,

which, together with the utility constraint U = [∑J
ℓ=1 βℓU

(σ−1)/σ
ℓ ]σ/(σ−1), yields

U = Uj ·


β1−σ

j

(
md

j

αj

)σ−1
J

∑
ℓ=1

βσ
ℓ

(
md

ℓ

αℓ

)1−σ



σ
σ−1

. (D-7)

Since the optimal quantities and cutoffs are the same in the ‘primal’ and ‘dual’ problems, we

can plug (E-23) into (D-7) to eliminate Uj . We can then use Gj(md
j ) = αjFj(kj + 1)2/(Lmd

j )

from the expression of the optimal cutoff (E-28) to solve for NE
j as follows

NE
j =

ασ−1
j βσ

j [(m
d
j )

opt]1−σ

[
∑

J
ℓ=1 α

σ−1
ℓ βσ

ℓ [(m
d
ℓ )

opt]1−σ
] σ

σ−1

LU

Fj(kj + 1)
= (NE

j )opt U

Uopt , (D-8)

where Uopt = {∑
J
ℓ=1 α

σ−1
ℓ βσ

ℓ [(m
d
ℓ )

opt]1−σ}1/(σ−1) as given by (E-33) and where (NE
j )opt is

given by (E-30). As can be seen from (D-8), the mass of entrants in sector j needed to

achieve U is proportional to this target utility level.

Summing up, to achieve the target utility U in the resource minimization problem, the

planner imposes the socially optimal cutoffs (md
j )

opt and firm-specific quantities q
opt
j (m) =

(1/αj) ln(mopt
j /m), and chooses the mass of entrants (D-8) that is proportional to U . Thus,

to achieve a higher U the planner would allow more entrants, but always choose the same

level of selection. The associated resource cost LA(U) can be obtained by plugging this
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solution back into the objective function as follows

LA(U ) =
J

∑
j=1

(NE
j )opt U

Uopt

[∫ (md
j )

opt

0
Lmq

opt
j (m)dGj(m) + Fj

]
=

U

UoptL.

The last equality holds because the optimal allocation in Appendix E, by definition, clears

the labor market. Setting U = Ueqm yields

LA(Ueqm)

L
=

Ueqm

Uopt < 1, i.e.,
L− LA(Ueqm)

L
=

Uopt − Ueqm

Uopt , (D-9)

where the numerator of the left-hand side is the Allais surplus. This expression provides a

measure of the aggregate welfare distortion in the economy. Note that we may use the wel-

fare measure based on utility and the measure based on the Allais surplus interchangeably.

D.2. ces subutility. Assume that the subutility function is of the ces form uj(qj(m)) =

qj(m)ρj , that the upper-tier utility function U is of the ces form as in (E-1), that Ũj(Uj) =

U
1/ρj
j , and that Gj follows a Pareto distribution. We also assume that fj > 0.

To derive the optimal masses of entrants, we use the multipliers µj ≡ µ ∂U

∂Ũj

∂Ũj

∂Uj
. Given

the ces upper-tier utility, the ratio of multipliers in sectors j and ℓ is

µj

µℓ
=

βj/ρj
βℓ/ρℓ

U

1−σ(1−ρℓ)
σρℓ

ℓ

U

1−σ(1−ρj )

σρj

j

=
ρℓ(q

d
j )

1−ρjmd
j

ρj(qdℓ )
1−ρℓmd

ℓ

, (D-10)

where we have used (D-3) evaluated at m = md
j in the second equality. Since the optimal

cutoffs and quantities are as in Appendix E, using (E-35) allows us to rewrite expression

(D-10) as follows:

U

1−σ(1−ρj )

σρj

j

U

1−σ(1−ρℓ)
σρℓ

ℓ

=

(
βj

βℓ

) [
fjρj

L(1 − ρj)

]ρj−1 [
fℓρℓ

L(1 − ρℓ)

]1−ρℓ (md
j )

−ρj

(md
ℓ )

−ρℓ
. (D-11)

Since the right-hand side of (D-11) is the same as that of (E-40), we obtain

U

1−σ(1−ρj )

σρj

j

U

1−σ(1−ρℓ)
σρℓ

ℓ

=
(U

opt
j )

1−σ(1−ρj )

σρj

(U
opt
ℓ )

1−σ(1−ρℓ)
σρℓ

.
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As in Appendix E, we now consider that σ → 1 in order to derive closed-form solutions.

We then have Uj/Uℓ = U
opt
j /Uopt

ℓ and from the definition of U we obtain:

U =
J

∏
ℓ=1

U

βℓ
ρℓ
j

(
Uℓ

Uj

) βℓ
ρℓ

=
J

∏
ℓ=1

U

βℓ
ρℓ
j

(
U

opt
ℓ

U
opt
j

)βℓ
ρℓ

=
J

∏
ℓ=1

(U
opt
ℓ )

βℓ
ρℓ

J

∏
ℓ=1

(
Uj

U
opt
j

) βℓ
ρℓ

= Uopt ·

(
Uj

U
opt
j

)∑
J
ℓ=1

βℓ
ρℓ

. (D-12)

Using (E-38), and because md
j = (md

j )
opt, we know that Uj/Uopt

j = NE
j /(NE

j )opt. Plugging

this expression into (D-12), we obtain

NE
j = (NE

j )opt
(

U

Uopt

) 1

∑J
ℓ=1

βℓ
ρℓ .

Thus, we have

LA(U) =
J

∑
j=1

(NE
j )opt

(
U

Uopt

) 1

∑J
ℓ=1

βℓ
ρℓ

{∫ (md
j )

opt

0

[
Lmq

opt
j (m) + fj

]
dGj(m) + Fj

}

=

(
U

Uopt

) 1

∑J
ℓ=1

βℓ
ρℓ L,

where the last equality holds because the optimal allocation clears the labor market. Hence,

evaluating U at Ueqm, we obtain

L− LA(Ueqm)

L
= 1 −

(
Ueqm

Uopt

) 1

∑J
ℓ=1

βℓ
ρℓ . (D-13)

This expression provides a measure of the aggregate welfare distortion in the economy.

Note that we may not use the welfare measure based on utility and the measure based on

the Allais surplus interchangeably in this case, as we could in the cara case in Appendix

D.1. The reason is the presence of Ũj , which is a transformation of the lower-tier utility.

Without that transformation, which in the ces case would amount to setting all ρℓ’s that

appear in the power of (D-13) equal to one, the foregoing result that utility and the Allais

surplus can be used interchangeably would still hold.
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Supplementary Appendix – for online publication

In this supplementary Appendix, we first provide details on the derivations of the equi-

librium and optimal allocations for cara subutility functions. We then provide a brief

summary of the expressions for ces subutility functions. These expressions are required for

the quantitative analysis. Last, we provide details on how we quantify the case with cara

subutility functions and ces upper-tier utility.

E. Analytical expressions

We assume that the upper-tier utility is of the ces form:

U =

{
J

∑
j=1

βj

[
Ũj(Uj)

](σ−1)/σ
}σ/(σ−1)

, (E-1)

where σ > 1 is the intersectoral elasticity of substitution, and where the βj are strictly pos-

itive parameters that sum to one. The lower-tier utility is Uj ≡ NE
j

∫ md
j

0 uj
(
qj(m)

)
dGj(m).

In what follows, we focus on cases in which the ces form in (E-1) satisfies condition (24),

so that there exist unique intersectoral equilibrium and optimal allocations. As explained in

the main text, this is always the case for cara subutility functions and Ũj(Uj) = Uj , and it is

the case for homothetic lower-tier ces utility functions with Ũj(Uj) = U
1/ρj
j when the lower-

tier elasticity of substitution exceeds the upper-tier elasticity of substitution. Observe that

(E-1) includes the Cobb-Douglas form as a limit case. All results based on the Cobb-Douglas

specification, as given in the main text, can be retrieved from the following expressions by

letting σ → 1.

E.1. cara subutility. We provide detailed derivations of the equilibrium and optimal allo-

cations in the cara case.

Equilibrium allocation. We first derive the equilibrium cutoffs and quantities.22 Assume

that Ũj(Uj) = Uj , and that uj(qj(m)) = 1 − e−αjqj (m), so that u′j(qj(m)) = αje−αjqj(m),

u′′j (qj(m)) = −α2
je−αjqj(m), and ru(qj(m)) = αjqj(m). We assume in what follows that

there are no fixed costs for production, i.e., fj = 0 for all sectors j. We can do so since,

as in Melitz and Ottaviano (2008) but contrary to Melitz (2003), the marginal utility of each

22Additional information on the equilibrium cutoffs and quantities can be found in Behrens and Murata
(2007) and in Behrens et al. (2014).
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variety is bounded at zero consumption so that demand for a variety drops to zero when

its price exceeds some threshold. Since for the least productive firm, which is indifferent

between producing and not producing, we have qdj ≡ qj(md
j ) = 0, the first-order conditions

(2) evaluated for any m and at the cutoff md
j imply the following demand functions:

qj(m) =
1
αj

ln

[
pdj

pj(m)

]
for 0 ≤ m ≤ md

j , (E-2)

where pdj ≡ pj(md
j ). Making use of the profit maximizing prices (5), ru(qj(m)) = αjqj(m),

and qdj = 0, we have

qj(m) =
1
αj

ln

[
md

j

1 − ruj (q
d
j )

1 − ru(qj(m))

m

]
=

1
αj

ln

{
md

j

m
[1 − αjqj(m)]

}
.

This implicit equation can be solved for qj(m) = (1 −Wj)/αj , where Wj ≡ W (em/md
j )

denotes the Lambert W function, defined as ϕ = W (ϕ)eW (ϕ) (see Corless et al., 1996). We

suppress its argument to alleviate notation whenever there is no possible confusion. Since

ruj = 1 −Wj , we then also have the following profit maximizing prices, quantities, and

operating profits:

pj(m) =
mw

Wj
, qj(m) =

1
αj

(1 −Wj) , πj(m) =
Lmw

αj
(W−1

j +Wj − 2). (E-3)

By definition of the Lambert W function, we have W (ϕ) ≥ 0 for all ϕ ≥ 0. Taking logarithms

on both sides of ϕ = W (ϕ)eW (ϕ) and differentiating yields

W ′(ϕ) =
W (ϕ)

ϕ[W (ϕ) + 1]
> 0

for all ϕ > 0. Finally, we have: 0 = W (0)eW (0), which implies W (0) = 0; and e = W (e)eW (e),

which implies W (e) = 1. Hence, we have 0 ≤ Wj ≤ 1 if 0 ≤ m ≤ md
j . The expressions

in (E-3) show that a firm with a draw md
j charges a price equal to marginal cost, faces zero

demand, and earns zero operating profits. Furthermore, using the properties of W ′, we

readily obtain ∂pj(m)/∂m > 0, ∂qj(m)/∂m < 0, and ∂πj(m)/∂m < 0. In words, firms with

higher productivity 1/m charge lower prices, produce larger quantities, and earn higher

operating profits. Our specification with variable demand elasticity also features higher
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markups for more productive firms. Indeed, the markup

Λj(m) ≡
pj(m)

mw
=

1
Wj

(E-4)

is such that ∂Λj(m)/∂m < 0.

Using (E-3) and ruj = 1−Wj , and recalling that fj = 0, the zero expected profit condition

(7) can be expressed as

∫ md
j

0
m
(
W−1

j +Wj − 2
)

dGj(m) =
αjFj

L
. (E-5)

To derive closed-form solutions for various expressions with cara subutility functions, we

need to compute integrals involving the Lambert W function. This can be done by using the

change in variables suggested by Corless et al. (1996, p.341). Let

z ≡ W

(
e
m

md
j

)
, so that e

m

md
j

= zez.

The change in variables then yields dm = (1+ z)ez−1md
jdz, with the new integration bounds

given by 0 and 1. Using the change in variables, the LHS of (E-5) can be expressed as follows:

∫ md
j

0
m
(
W−1

j +Wj − 2
)

dGj(m) = (md
j )

2
∫ 1

0
z(1 + z)e2(z−1)(z−1 + z − 2)gj

(
zez−1md

j

)
dz

for an arbitrary distribution gj(·) of draws.

We consider the Pareto distribution Gj(m) = (m/mmax
j )kj with upper bound mmax

j > 0

and shape parameter kj ≥ 1. The associated density gj is ‘multiplicatively quasi-separable’

in the sense that gj(xy) ≡ gj(x)× hj(y) for some function hj (see Behrens and Murata, 2007,

Theorem 1, p.779). In that case, we have

∫ md
j

0
m
(
W−1

j +Wj − 2
)

dGj(m) = (md
j )

2hj(m
d
j )
∫ 1

0
z(1 + z)e2(z−1)(z−1 + z − 2)gj

(
zez−1)dz,

where the integral term is independent of the cutoff md
j . This property simplifies substan-

tially the analysis. Indeed, the integral reduces to

∫ md
j

0
m
(
W−1

j +Wj − 2
)

dGj(m) = κj
(
mmax

j

)−kj (md
j )

kj+1, (E-6)
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where κj ≡ kje−(kj+1)
∫ 1

0 (1 + z)
(
z−1 + z − 2

)
(zez)kj ezdz > 0 is a constant term which

solely depends on the shape parameter kj . Plugging (E-6) into (E-5), we obtain the equilib-

rium cutoffs

(md
j )

eqm =

[
αjFj(mmax

j )kj

κjL

] 1
kj+1

(E-7)

and quantities q
eqm
j (m) = [1 −Wj(em/(md

j )
eqm)]/αj . Note that (E-7) implies that

[
(md

j )
eqm

mmax
j

]kj
= Gj((m

d
j )

eqm) =
αjFj

κjL

1
(md

j )
eqm , (E-8)

a relationship that we will use in what follows.

We now turn to the equilibrium labor allocation and masses of entrants. Using (E-3),

labor market clearing in sector j can be written as

NE
j

[
L

∫ md
j

0
mqj(m)dGj(m) + Fj

]
= NE

j

[
L

αj

∫ md
j

0
m (1 −Wj)dGj(m) + Fj

]
= Lj . (E-9)

Making use of the same change in variables for integration as before, and imposing the

Pareto distribution, we have

∫ md
j

0
m (1 −Wj)dGj(m) = κ1j

(
mmax

j

)−kj (md
j )

kj+1, (E-10)

where κ1j ≡ kje−(kj+1)
∫ 1

0 (1 − z2) (zez)kj ezdz > 0 is a constant term which solely depends

on the shape parameter kj . It can be verified that κ1j/κj = kj , so that

κj(kj + 1) = κ1j + κj . (E-11)

Using (E-7)–(E-11), and ∑
J
j=1 Lj = L, the labor market clearing condition thus reduces to

J

∑
j=1

Lj =
J

∑
j=1

κ1j + κj

κj
NE

j Fj =
J

∑
j=1

(kj + 1)NE
j Fj = L. (E-12)

Computing ∂U/∂Uj from (E-1), inserting the definition of λj into (3), and recalling that
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qdj = 0 and pdj = md
jw for all j, we obtain

αj

αℓ
=

md
j

md
ℓ

λj

λℓ
⇒

Uj

Uℓ
=

(
αj

αℓ

)σ (
βj

βℓ

)σ
[
(md

j )
eqm

(md
ℓ )

eqm

]−σ

. (E-13)

To solve them for the masses of entrants, we first compute the expression for Uj in (E-13).

Using the demand functions (E-2) and the profit-maximizing prices in (E-3), the lower-tier

utility is given by

Uj = NE
j

[
Gj(m

d
j )−

1
md

j

∫ md
j

0
mW−1

j dGj(m)

]
, (E-14)

which can be integrated (using again the same change in variables as before) to obtain:

∫ md
j

0
mW−1

j dGj(m) = κ2j
(
mmax

j

)−kj (md
j )

kj+1,

where κ2j ≡ kje−(kj+1)
∫ 1

0 (z
−1 + 1) (zez)kj ezdz > 0 is a constant term which solely depends

on the shape parameter kj . One can verify that 1 − κ2j =
1

kj+1 − (κ1j + κj), so that we can

rewrite the κ2j term in terms of κ1j and κj only. Thus, the lower-tier utility (E-14) becomes

Uj =

[
1

kj + 1
− (κ1j + κj)

]
NE

j Gj(m
d
j ). (E-15)

Since Uj > 0 by construction of the lower-tier utility, we have (κ1j + κj)(kj + 1) < 1, which

is equivalent to κj(kj + 1)2 < 1 by (E-11).

We next insert (E-15) into (E-13) to obtain

NE
j

NE
ℓ

=

(
αj

αℓ

)σ (
βj

βℓ

)σ
[ 1

kℓ+1 − (κ1ℓ + κℓ)

1
kj+1 − (κ1j + κj)

] [
(md

j )
eqm

(md
ℓ )

eqm

]−σ [
Gℓ((m

d
ℓ )

eqm)

Gj((md
j )

eqm)

]
, (E-16)

which allows us to express the mass of entrants in sector j as a function of the mass of

entrants in sector ℓ. Inserting NE
j = NE

j (NE
ℓ ) into the labor market clearing condition

(E-12), and using (E-8), we can solve for the mass of entrants in sector j as follows:

(NE
j )eqm =

ασ−1
j βσ

j θj [(m
d
j )

eqm]1−σ

∑
J
ℓ=1 α

σ−1
ℓ βσ

ℓ θℓ[(m
d
ℓ )

eqm]1−σ

L

(kj + 1)Fj
, (E-17)

where θj ≡
κj (kj+1)

1/(kj+1)−(κ1j+κj)
is the ratio of real revenue-to-utility, which depends only on kj .
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Combining (E-17) and (E-12) yields the following equilibrium labor allocation to sector j:

L
eqm
j = (kj + 1)(NE

j )eqmFj =
ασ−1
j βσ

j θj [(m
d
j )

eqm]1−σ

∑
J
ℓ=1 α

σ−1
ℓ βσ

ℓ θℓ[(m
d
ℓ )

eqm]1−σ
L. (E-18)

As shown in Lemma 1, the sectoral labor allocation satisfies Lj = ejL, where ej is the

sectoral expenditure share given by ej ≡ NE
j

∫ md
j

0 pj(m)qj(m)dGj(m)/w. From (E-18), we

thus directly have

e
eqm
j =

ασ−1
j βσ

j θj [(m
d
j )

eqm]1−σ

∑
J
ℓ=1 α

σ−1
ℓ βσ

ℓ θℓ[(m
d
ℓ )

eqm]1−σ
. (E-19)

Finally, inserting (E-8) and (E-17) into (E-15), and noting (E-19) and the definition of θj ,

we can express the lower-tier utility from sector j in the market equilibrium in a compact

form as follows:

U
eqm
j =

αje
eqm
j

θj

1
(md

j )
eqm . (E-20)

Making use of the upper-tier utility (E-1) and of (E-20), the utility U across all sectors is then

Ueqm =





∑
J
j=1 α

σ−1
j βσ

j [(m
d
j )

eqm]1−σ

[
∑

J
ℓ=1 α

σ−1
ℓ βσ

ℓ θℓ[(m
d
ℓ )

eqm]1−σ
] σ−1

σ





σ
σ−1

=

{
∑

J
j=1 α

σ−1
j βσ

j [(m
d
j )

eqm]1−σ
} σ

σ−1

∑
J
ℓ=1 α

σ−1
ℓ βσ

ℓ θℓ[(m
d
ℓ )

eqm]1−σ
.

(E-21)

When the upper-tier utility function is of the Cobb-Douglas form, σ = 1, so that (E-19)

reduces to e
eqm
j = βjθj/ ∑

J
ℓ=1(βℓθℓ). Expression (E-20) can then be rewritten as U

eqm
j =

[αjβj/ ∑
J
ℓ=1(βℓθℓ)][1/(md

j )
eqm]. Hence, (E-21) reduces to

Ueqm =
J

∏
j=1

[
αjβj

∑
J
ℓ=1(βℓθℓ)

1
(md

j )
eqm

]βj
.

Optimal allocation. We next derive the expressions for the optimal cutoffs and quantities

in the cara case. From the first-order conditions (12), the optimal consumptions must satisfy

αje
−αjqj(m

d
j )

αje−αjqj (m)
=

md
j

m
and

αje
−αjqj(m

d
j )

αℓe−αℓqℓ(m
d
ℓ
)
=

δj

δℓ

md
j

md
ℓ

.
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The first conditions, together with qj(md
j ) = 0, can be solved to yield:

qj(m) =
1
αj

ln

(
md

j

m

)
for 0 ≤ m ≤ md

j . (E-22)

Plugging (E-22) into Uj and letting mj ≡ (1/Gj(md
j )]
∫ md

j

0 mdGj(m) denote the average

value of m, we obtain:

Uj =

(
1 −

mj

md
j

)
NE

j Gj(m
d
j ) =

NE
j Gj(md

j )

kj + 1
, (E-23)

where we have used the property of the Pareto distribution that mj = [kj/(kj + 1)]md
j to

obtain the second equality. Plugging (E-22) into (11) and integrating, the resource constraint

becomes
J

∑
j=1

NE
j

[
L

αj

kj

(kj + 1)2m
d
jGj(m

d
j ) + Fj

]
= L. (E-24)

Assuming that the upper-tier utility function is given by (E-1), the planner’s problem can

be redefined using (E-23) and (E-24) as follows:

max
{NE

j ,md
j}

V̂ ≡ L ·





J

∑
j=1

βj

[
NE

j Gj(md
j )

kj + 1

]σ−1
σ





σ
σ−1

(E-25)

s.t.
J

∑
j=1

NE
j

[
L

αj

kj

(kj + 1)2m
d
jGj(m

d
j ) + Fj

]
= L. (E-26)

Denoting by δ̂ the Lagrange multiplier of this redefined problem, the first-order conditions

with respect to NE
j and md

j are given by

βj V̂

NE
j

[
NE

j Gj(m
d
j )

kj+1

]σ−1
σ

∑
J
ℓ=1 βℓ

[
NE

ℓ
Gℓ(m

d
ℓ
)

kℓ+1

] σ−1
σ

= δ̂

[
L

αj

kj

(kj + 1)2m
d
jGj(m

d
j ) + Fj

]
(E-27)

βj V̂

NE
j

[
NE

j Gj(m
d
j )

kj+1

]σ−1
σ

∑
J
ℓ=1 βℓ

[
NE

ℓ Gℓ(m
d
ℓ )

kℓ+1

] σ−1
σ

= δ̂
L

αj

kj

(kj + 1)2

Gj(md
j )

G′
j(m

d
j )

[
Gj(m

d
j ) +md

jG
′
j(m

d
j )
]

.
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Because the left-hand side is common, we obtain the optimal cutoffs

(md
j )

opt =

[
αjFj(mmax

j )kj (kj + 1)2

L

] 1
kj+1

(E-28)

and quantities q
opt
j (m) = (1/αj) ln[(md

j )
opt/m]. Note that (E-28) implies that

[
(md

j )
opt

mmax
j

]kj
= Gj((m

d
j )

opt) =
αjFj(kj + 1)2

L

1
(md

j )
opt , (E-29)

a relationship that we will use repeatedly in what follows.

Using (E-29), the right-hand side of (E-27) becomes δ̂Fj(kj + 1). Moreover, taking the

ratio of (E-27) for sectors j and ℓ, we have

NE
j

NE
ℓ

=

(
βj

βℓ

)σ
[
Gj(md

j )

kj + 1

]σ−1 [
Gℓ(m

d
ℓ )

kℓ + 1

]1−σ [
(kj + 1)Fj

(kℓ + 1)Fℓ

]−σ

for all j = 1, 2, . . . , J . Plugging this relationship into the resource constraint (E-26), and

using (E-29), we readily obtain the optimal mass of entrants in sector j:

(NE
j )opt =

ασ−1
j βσ

j [(m
d
j )

opt]1−σ

∑
J
ℓ=1 α

σ−1
ℓ βσ

ℓ [(m
d
ℓ )

opt]1−σ

L

(kj + 1)Fj
, (E-30)

which implies the optimal labor allocation as follows:

L
opt
j = (kj + 1)(NE

j )optFj =
ασ−1
j βσ

j [(m
d
j )

opt]1−σ

∑
J
ℓ=1 α

σ−1
ℓ βσ

ℓ [(m
d
ℓ )

opt]1−σ
L.

Since the optimal labor allocation satisfies L
opt
j = e

opt
j L by Lemma 2, the social expenditure

share on good j is therefore given by

e
opt
j =

ασ−1
j βσ

j [(m
d
j )

opt]1−σ

∑
J
ℓ=1 α

σ−1
ℓ βσ

ℓ [(m
d
ℓ )

opt]1−σ
. (E-31)

Finally, plugging (E-29) and (E-30) into (E-23), the lower-tier utility from sector j at the
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optimal allocation can be expressed as

U
opt
j = αje

opt
j

1
(md

j )
opt , (E-32)

so that

Uopt =

{
J

∑
j=1

ασ−1
j βσ

j [(m
d
j )

opt]1−σ

} 1
σ−1

. (E-33)

When the upper-tier utility function is of the Cobb-Douglas form, σ = 1, so that (E-31)

reduces to e
opt
j = βj . Expression (E-32) can then be rewritten as U

opt
j = αjβj/(md

j )
opt.

Hence, (E-33) reduces to

Uopt =
J

∏
j=1

[
αjβj

(md
j )

opt

]βj
.

E.2. ces subutility. We briefly summarize the equilibrium and optimal allocations in the

case with ces subutility functions, uj
(
qj(m)

)
= qj(m)ρj , where 0 < ρj < 1, and Pareto

distribution functions, Gj(m) = (m/mmax
j )kj . As in the existing literature, we also assume

that Ũj(Uj) = U
1/ρj
j and that fj > 0.

First, with ces subutility functions, 1 − ruj (qj(m)) = Euj ,qj(m) = ρj holds for all m, and

qj(m) = (md
j/m)1/(1−ρj )qdj holds for both the equilibrium and optimal allocations. Thus, the

zep and zcp conditions, (7) and (6), are equivalent to the zesp and zcsp conditions, (16) and

(17). The resulting equilibrium and optimum cutoffs are therefore the same and given by

(md
j )

eqm = (md
j )

opt = mmax
j

[
Fj

fj

kj(1 − ρj)− ρj

ρj

] 1
kj

, (E-34)

which implies that the demand functions qj(m) are common between the equilibrium and

the optimum for all m ≤ md
j . In particular qdj can be obtained from (6) or (17) as follows:

qdj =
fj

L

ρj

1 − ρj

1
md

j

. (E-35)

Second, given the foregoing results, νj(qj(m)) = ζj(qj(m)) holds for all m ≤ md
j , so that

the expressions in the braces of (9) and those of (19) are the same. Thus, the equilibrium

and optimal masses of entrants satisfy

(NE
j )eqm = e

eqm
j

Lρj

kjFj
and (NE

j )opt = e
opt
j

Lρj

kjFj
. (E-36)
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Third, the conditions (3) for equilibrium intersectoral consumption can be rewritten as

U

1−σ(1−ρj )

σρj

j

U

1−σ(1−ρℓ)
σρℓ

ℓ

=

(
βjρj

βℓρℓ

) [
fjρj

L(1 − ρj)

]ρj−1 [
fℓρℓ

L(1 − ρℓ)

]1−ρℓ (md
j )

−ρj

(md
ℓ )

−ρℓ
.

To obtain closed-form solutions, we assume that σ = 1, so that the above expression reduces

to the Cobb-Douglas case:

Uj

Uℓ
=

(
βjρj

βℓρℓ

) [
fjρj

L(1 − ρj)

]ρj−1 [
fℓρℓ

L(1 − ρℓ)

]1−ρℓ (md
j )

−ρj

(md
ℓ )

−ρℓ
. (E-37)

Using (E-34) and (E-35), together with qj(m) = (md
j/m)1/(1−ρj )qdj and the Pareto distribu-

tion, the lower-tier utility is given by

Uj =
NE

j kjFj

L

[
fjρj

L(1 − ρj)

]ρj−1

(md
j )

−ρj . (E-38)

Plugging (E-38) into (E-37) and using (E-36), we then obtain

(NE
j )eqm

(NE
ℓ )eqm =

βjρj

βℓρℓ

kℓFℓ

kjFj
=

e
eqm
j

e
eqm
ℓ

ρj

ρℓ

kℓFℓ

kjFj
⇒ e

eqm
ℓ =

βℓ

βj
e

eqm
j .

Since ∑
J
ℓ=1 eℓ = 1, we finally obtain

e
eqm
j =

βj

∑
J
ℓ=1 βℓ

= βj . (E-39)

Using (E-36) and (E-39), expression (E-38) can be rewritten as

U
eqm
j = βjρj

[
fjρj

L(1 − ρj)

]ρj−1 [
(md

j )
eqm]−ρj ,

which yields

Ueqm =
J

∏
j=1

{
βjρj

[
fjρj

L(1 − ρj)

]ρj−1 [
(md

j )
eqm]−ρj

}βj
ρj

.

Turning to the optimal allocation, the conditions (15) for optimal intersectoral consump-
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tion can be rewritten as

U

1−σ(1−ρj )

σρj

j

U

1−σ(1−ρℓ)
σρℓ

ℓ

=

(
βj

βℓ

) [
fjρj

L(1 − ρj)

]ρj−1 [
fℓρℓ

L(1 − ρℓ)

]1−ρℓ (md
j )

−ρj

(md
ℓ )

−ρℓ
. (E-40)

Assume again that the upper-tier utility is Cobb-Douglas, i.e., σ → 1. In that case, we can

use the same procedure as above to obtain

(NE
j )opt

(NE
ℓ )opt =

βj

βℓ

kℓFℓ

kjFj
=

e
opt
j

e
opt
ℓ

ρj

ρℓ

kℓFℓ

kjFj
⇒ e

opt
ℓ =

βℓ/ρℓ
βj/ρj

e
opt
j

so that

e
opt
j =

βj/ρj
∑

J
ℓ=1(βℓ/ρℓ)

.

Using (E-36), expression (E-38) can be rewritten as

U
opt
j =

βj

∑
J
ℓ=1(βℓ/ρℓ)

[
fjρj

L(1 − ρj)

]ρj−1 [
(md

j )
opt]−ρj ,

which yields

Uopt =
J

∏
j=1

{
βj

∑
J
ℓ=1(βℓ/ρℓ)

[
fjρj

L(1 − ρj)

]ρj−1 [
(md

j )
opt]−ρj

}βj
ρj

.

F. Expressions for quantifying the ces-cara case.

Quantifying the Cobb-Douglas-cara case is relatively easy because when σ → 1 the equilib-

rium and optimal expenditure shares are independent of the αj parameters and the cutoffs

md
j (which subsume other parameters such as the sunk entry costs Fj). This no longer holds

in the ces-cara case, which makes the quantification more involved. However, we can

proceed as follows.

Let {êeqm
j }Jj=1 be the equilibrium expenditure shares from the data, and let {θ̂j}Jj=1 be

the revenue-to-utility ratios obtained from the standard deviation formula in Appendix C.2.

Recall that in the Cobb-Douglas case those two pieces of information allows us to back out

{β̂
eqm
j }Jj=1 by solving

ê
eqm
j =

β̂
eqm
j θ̂j

∑
J
ℓ=1 β̂

eqm
ℓ θ̂ℓ

, ∑
j

β̂
eqm
j = 1.
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In the ces case, using (E-19), the equilibrium expenditure share can be rewritten as

ê
eqm
j =

ασ−1
j βσ

j θ̂j [(m
d
j )

eqm]1−σ

∑
J
ℓ=1 α

σ−1
ℓ βσ

ℓ θ̂ℓ[(m
d
ℓ )

eqm]1−σ
=

[
αjβj

(md
j )

eqm

]σ−1

βj θ̂j

∑
J
ℓ=1

[
αℓβℓ

(md
ℓ
)eqm

]σ−1
βℓθ̂ℓ

=
β̃

eqm
j θ̂j

∑
J
ℓ=1 β̃

eqm
ℓ θ̂ℓ

,

where β̃
eqm
j ≡

[
(αjβj)/(md

j )
eqm
]σ−1

βj , and where ê
eqm
j and θ̂j come from the data. Clearly,

β̃
eqm
j = const. × β̂

eqm
j is a solution to the foregoing equation, i.e., the ces β parameters are

proportional to the Cobb-Douglas β parameters. The constant term is shown to disappear

in the end.

Using the same transformation for the β terms as above, the equilibrium utility (E-21)

can be rewritten as

Ueqm =

{
∑

J
j=1 α

σ−1
j βσ

j [(m
d
j )

eqm]1−σ
} σ

σ−1

∑
J
ℓ=1 α

σ−1
ℓ βσ

ℓ θ̂ℓ[(m
d
ℓ )

eqm]1−σ
=

(
∑

J
j=1 β̃

eqm
j

) σ
σ−1

∑
J
ℓ=1 β̃

eqm
ℓ θ̂ℓ

,

which, using β̃
eqm
j = const. × β̂

eqm
j , can be rewritten as

Ueqm = (const.)
σ

σ−1−1

(
∑

J
j=1 β̂

eqm
j

) σ
σ−1

∑
J
ℓ=1 β̂

eqm
ℓ θ̂ℓ

= (const.)
σ

σ−1−1 1

∑
J
ℓ=1 β̂

eqm
ℓ θ̂ℓ

.

Turning to the optimal expenditure share, we have

e
opt
j =

ασ−1
j βσ

j [(m
d
j )

opt]1−σ

∑
J
ℓ=1 α

σ−1
ℓ βσ

ℓ [(m
d
ℓ )

opt]1−σ
=

[
αjβj

(md
j )

opt

]σ−1

βj

∑
J
ℓ=1

[
αℓβℓ

(md
ℓ
)opt

]σ−1
βℓ

=
β̃

opt
j

∑
J
ℓ=1 β̃

opt
ℓ

,

where β̃
opt
j ≡

[
(αjβj)/(md

j )
opt]σ−1

βj . We know that

β̃
eqm
j

β̃
opt
j

=

[
(md

j )
opt

(md
j )

eqm

]σ−1

⇒ β̃
opt
j =

[
(md

j )
opt

(md
j )

eqm

]1−σ

β̃
eqm
j = const. ×

[
(md

j )
opt

(md
j )

eqm

]1−σ

β̂
eqm
j ,
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The optimal utility can be rewritten as

Uopt =

{
J

∑
j=1

ασ−1
j βσ

j [(m
d
j )

opt]1−σ

} 1
σ−1

=





J

∑
j=1

[
αjβj

(md
j )

opt

]σ−1

βj





1
σ−1

=

(
J

∑
j=1

β̃
opt
j

) 1
σ−1

.

which can be rewritten as

Uopt = (const.)
1

σ−1

(
J

∑
j=1

β̂
opt
j

) 1
σ−1

,

where β̂
opt
j =

[
(md

j )
opt/(md

j )
eqm]1−σ

β̂
eqm
j . Finally, taking the ratio of Ueqm and Uopt, we

obtain

Ueqm

Uopt =
(const.)

σ
σ−1−1 1

∑
J
ℓ=1 β̂

eqm
ℓ θ̂ℓ

(const.)
1

σ−1

(
∑

J
j=1 β̂

opt
j

) 1
σ−1

=

1
∑
J
ℓ=1 β̂

eqm
ℓ θ̂ℓ

{
∑

J
j=1

[
(md

j )
opt

(md
j )

eqm

]1−σ

β̂
eqm
j

} 1
σ−1

.

We already know β̂
eqm
j and θ̂j . Since the cutoff ratio is a function of kj only, the above

expression can be quantified for any given value of σ. Then, using (D-9), we can compute

the associated Allais surplus required to quantify the distortions.
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