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Abstract In this paper we study the pricing and hedging of structured products in
energy markets, such as swing and virtual gas storage, using the exponential util-
ity indifference pricing approach in a general incomplete multivariate market model
driven by finitely many stochastic factors. The buyer of such contracts is allowed to
trade in the forward market in order to hedge the risk of his position. We fully charac-
terize the buyer’s utility indifference price of a given product in terms of continuous
viscosity solutions of suitable nonlinear PDEs. This gives a way to identify reasonable
candidates for the optimal exercise strategy for the structured product as well as for
the corresponding hedging strategy. Moreover, in a model with two correlated assets,
one traded and one nontraded, we obtain a representation of the price as the value
function of an auxiliary simpler optimization problem under a risk neutral probabil-
ity, that can be viewed as a perturbation of the minimal entropy martingale measure.
Finally, numerical results are provided.
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1 Introduction

In the last 15years, since the start of the energy market deregulation and privatization
in Europe and in the US, the study of energy markets became a challenging topic from
both a practical and a theoretical perspective. Especially important is the problem
of pricing and hedging of energy contracts. This is far from being trivial because of
the peculiarity of the models and since these contracts typically have a very complex
structure, incorporating optionality features which can be exercised by the buyer at
multiple times. The twomain examples of products used in energymarkets for primary
supply are swing contracts and forward contracts. While the structure of the forward
contracts is rather simple, swing contracts are much more involved as they give the
buyer some degrees of freedomabout the quantity of energy to buy for each sub-period,
usually with daily or monthly scale, subject to a cumulated constraint over the contract
period. This flexibility ismuchwelcomed by the contract buyers, as energymarkets are
affected by many unexpected events such as peaks in consumption related to sudden
weather changes, breakdowns of power plants, financial turmoils and so on. Many
other kinds of contract are traded in the energy market, they are often negotiated over-
the-counter, and some of them, e.g. virtual storage contracts, also include optionality
components similar to the ones of swing contracts.

The pricing of these products has a consolidated tradition in discrete time models
(see, e.g. Edoli et al. 2013 or Henaff et al. 2013 and references therein), which is manly
based on dynamic programming. The article (Jaillet et al. 2004) use a multilevel lattice
method to study the pricing of a swing option on natural gas. The two papers (Pagès
et al. 2009, 2010) propose a different method based on optimal quantization theory.
In continuous time models, the first approaches were based on optimal switching
techniques (e.g., Carmona and Ludkovski 2010) or multiple stopping (e.g., Carmona
and Touzi 2008). In all these articles the optionality features of the structured product
can be exercised over a discrete set of stopping times, that can be chosen by the buyer.
A very detailed comparison of the literature on storage and swing evaluation can be
found in Aïd (2015), Table 4.1.

A different approach consists in approximating the contract payoff with its contin-
uous time counterpart. This idea has been proposed in Benth et al. (2012) (and further
exploited in Basei et al. (2014)) for swing contracts and in Chen and Forsyth (2007),
Felix (2012), Thompson et al. (2009) for virtual storage contracts. Other examples
of structured contracts can be treated with the same methodology, see e.g. Benth and
Eriksson (2013) for flexible load contracts and tolling agreements. The main advan-
tage of this approach is that it makes the pricing problem more tractable, since it
allows using the stochastic control theory in continuous time, based on PDE methods.
In those papers, the price of a structured contract is defined—in analogy with Amer-
ican options—as the supremum, over all the strategies available to the buyer, of the
expected payoff, where the expectation is taken under a given risk-neutral measure.
When the model for the underlying of the structured contract is Markovian, as it hap-
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pens in most of the models used in practice, the pricing problem reduces to solving the
corresponding Hamilton–Jacobi–Bellman (HJB) equation. Notice that the choice of
the risk-neutral measure is not at all obvious since energy market models are typically
incomplete, because of the presence of assets bearing non tradable risks. Moreover,
with the exception of Warin (2012) which focuses on gas storage contracts and uses a
delta-hedging approach, the problem of hedging the risk coming from a long position
in those structured products is not considered in those papers. Hedging such contracts
can be quite a delicate task in energy markets, since the underlying of the contracts
is often not tradable, hence the buyer has to trade in some other asset with a good
correlation with the underlying. For an extensive review of the existing literature with
descriptions of the most traded contracts and a detailed comparison between the main
articles we refer once more to the recent book (Aïd 2015, Chapter 4).

Our contribution to the literature consists in building on the idea of continuously
approximating the payoff as in Basei et al. (2014), Benth et al. (2012), in order to
provide a general framework,where both problemsof pricing andhedgingof structured
contracts can be solved in a consistent fashion. Themain novelty of this paper is that the
buyer of the given structured contract is allowed to (at least partially) hedge his position
by trading in forward contracts, written on the underlying of the structured contract
itself or on some asset correlated with the underlying.Wemodel the forward market as
a general incomplete multivariate market model with finitely many forward contracts
(with different maturities), evolving over time as diffusions whose coefficients depend
on a certain number of exogenous stochastic factors with Markovian dynamics. The
underlying of the structured contract is defined as a function of such factors. This
setting includes many models that have been previously proposed and studied in the
literature, e.g. Aïd et al. (2014), Carmona and Ludkovski (2006), Cartea andVillaplana
(2008), Schwartz and Smith (2000) to cite a few.

The market being incomplete, we adopt the utility indifference price (henceforth
UIP) approach, which is one of the most appealing ways of pricing in incomplete mar-
kets, since it naturally incorporates the buyer preferences in the price of the contract.
We assume that the preferences of the buyer can be encoded in an exponential utility
function with a risk aversion parameter γ > 0. The UIP approach has been extensively
used for pricing European and American options in a wide range of financial market
models. We refer to Henderson and Hobson (2009) for an excellent survey on this
approach. This approach was already used in Porchet et al. (2009), Ludkovski (2008)
for the evaluation of industrial assets (see Remark 2.10) and in Fiorenzani (2006) and
Benedetti and Campi (2016) for energy derivatives.

We apply thismethod for evaluating a rather general structured derivative. Its buying
UIP will be characterized as the difference between the two log-value functions of the
agent (with and without the contract), that can be obtained as the unique viscosity
solutions of a suitable HJB equation. Our results are consistent with the ones in Basei
et al. (2014), Benth et al. (2012), Chen and Forsyth (2007), Felix (2012), Thompson
et al. (2009), in the case of complete market models. Moreover, the shape of such
HJB equation gives reasonable candidates for the optimal withdrawal strategy of the
structured product, as well as for the related hedging strategy.

Finally, we push our general results further in two specific examples. One of them
is a class of models with two risky assets, one traded and one nontraded, and constant
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correlation. This includes models with a nontraded asset and basis risk, which have
been studied by many authors (see, e.g., the papers Davis 2006, Henderson 2002,
Monoyios 2004 to cite only a few). For these models, we obtain a representation of
the price as the value function of an auxiliary simpler optimization problem under a
risk-neutral probability, that can be viewed as a perturbation of the minimal entropy
martingalemeasure. Such a perturbation is due to the dependence of drift and volatility
of the traded asset on the nontraded one and depends on the value function without
the contract. It seems that such a measure change is new to the incomplete market
literature. The second example is based on a slight generalization of the two-factor
model developed in Cartea andVillaplana (2008) for energymarkets, where the factors
can be correlated.

The paper is organized as follows. In Sect. 2 we formulate the problem of pricing,
by introducing the general payoff of the structured contracts, the market model and the
(exponential) utility indifference price. In Sect. 3, we characterize the UIP in terms of
viscosity solutions of suitable HJB equations. In Sect. 4 we consider the two examples
described above while Sect. 5 presents some numerical applications of our results.
Finally, Sect. 6 concludes.

Notation In what follows, unless explicitly stated, vectors will be column vectors, the
symbol “*” will denote transposition and the trace of a squarematrix Awill be denoted
by tr(A). Furthermore, 〈a, b〉 := a∗b will stand for the Euclidean scalar product. We
choose as matricial norm |A| = √

tr(AA∗). On the set Sn of all symmetric squared
matrices of order n, we define the order A ≤ B if and only if B − A ∈ S+

n , the
subspace of nonnegative definite matrices in Sn . We will denote by In the identity
matrix of dimension n.

2 Formulation of the problem

Let T > 0 be a finite time horizon. All the processes introduced below will be defined
on the canonical probability space (�,F ,P), where � := C([0, T ];Rd) is the space
of all continuous functions from [0, T ] intoRd . For ω ∈ �, we setWt (ω) = ω(t) and
define (Ft )t∈[0,T ] as the smallest right-continuous filtration such that W is optional.
Moreover, F := FT . We let P be the Wiener measure on (�,FT ). We can assume
without loss of generality that such a filtration is complete.

2.1 Structured products

In this section we give a short description of the main structured products that are
traded in energy markets. The typical payoff is given by a family of random variables

Cu
T :=

∫ T

0
L(Ps, Z

u
s , us)ds + �(PT , Zu

T ), (2.1)

indexed by a control u, which typically represents the marginal quantity of commodity
purchased and it belongs to a suitable set of admissible controls U that we will specify
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later. In particular, the admissible controls take values in some bounded interval [0, ū]
for a given threshold ū > 0. The variable P in the Eq. (2.1) above denotes the spot
price of the commodity (e.g., gas) and Zu

t := z0 + ∫ t
0 usds for all t ∈ [0, T ], for some

initial value z0 ≥ 0. For technical reasons, that will become clear in the proofs of our
results, we will need the following assumption on the structured products.

Assumption 2.1 The functions L: R×[0, ūT ]×[0, ū] → R and�: R×[0, ūT ] → R

in (2.1) are continuous and bounded.

Themost common structured products in energymarkets are swing and virtual stor-
age contracts. More details are given just below. See also the subsequent Remark 2.4
explaining how one can safely modify these contracts in order to satisfy Assump-
tion 2.1.

Example 2.2 (Swing contract) For a swing contract one has (see, e.g., Basei et al.
2014; Benth et al. 2012)

L(p, z, u) = u(p − K ),

where K is the purchase price or strike price, and u is any admissible control. These
products usually include some additional features, such as inter-temporal constraints
on u or on the cumulated control Zu or some penalty function appearing in the payoff.
More precisely, constraints on u and Zu are typically of the form Zu

T ∈ [m, M],
with 0 ≤ m < M , with possibly further intermediate constraints on Zu

ti , ti < T ,
i = 1, . . . , k. In the absence of such additional constraints, a penalty is usually present
which can be expressed as a function � of the terminal spot price PT and cumulated
consumption Zu

T . A typical form of � is

�(p, z) = −C
(
(m − z)+ + (z − M)+

)
(2.2)

for constants C > 0 and 0 ≤ m < M (see Basei et al. 2014; Benth et al. 2012 and
references therein). We will focus on the latter case, i.e., a non-zero penalty function
�(PT , Zu

T ) without any other contraints on the admissible controls.

Example 2.3 (Virtual storage contract) These products replicate a physical gas storage
position, while being handled as pure trading contracts. In this case one has

L(p, z, u) = −p(u − a(z, u)), �(p, z) = −C(M − z),

with C, M > 0 suitable constants, a(z, u) := ā1u<0 and where the control u repre-
sents the gas injected into the reservoir and is such that

ut ∈ [uin (Zu
t

)
, uout

(
Zu
t

)]
, t ∈ [0, T ],

where uin, uout are suitable deterministic functions given by the physics of fluids: their
typical shapes are

uin(z) := −K1
√
z, uout(z) := K2

√
1

z + Zb
− K3
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with Zb, Ki > 0, i = 1, 2, 3, given constants (Chen and Forsyth 2007; Felix 2012;
Thompson et al. 2009).

Remark 2.4 The boundedness of L as in Assumption 2.1 is not verified in the two
Examples 2.2 and 2.3, where L is linear in p, which can in principle take any real
value. In practice, one can artificially bound L , for example by introducing

L̃(p, z, u) := max(−κ,min(L(p, z, u), κ)),

so that |L̃(p, z, u)| ≤ κ for all (p, z, u), for a suitably chosen and large enough
threshold κ > 0 such that the instantaneous profit should not be larger than κ in
absolute value with high probability. The same truncation argument can be applied to
the penalty function�(p, z). Alternatively, one could truncate the unbounded variable
p appearing in both payoffs L and �.

2.2 The market model

The spot price of the commodity, P , underlying the structured products, is modelled as
Pt := p(t, Xt ), where p : [0, T ]×R

m → R is ameasurable function and X represents
the factors driving the market. We assume that the process X hasMarkovian dynamics

dXt = b(t, Xt ) dt + �∗(t, Xt ) dWt , X0 = x ∈ R
m, (2.3)

with drift b : [0, T ] × R
m → R

m and volatility matrix � : [0, T ] × R
m → R

d×m .
We also assume that n ≤ d forward contracts on the commodity P are traded in the

market, with maturities T1 < · · · < Tn , with T1 ≥ T . Letting Fi to denote the price
of the forward contract with maturity Ti , i = 1, . . . , n, we assume that the dynamics
of F := (F1, . . . , Fn) is given by

dFt = diag(Ft )
(
μF (t, Xt )dt + σ ∗

F (t, Xt )dWt
)
, F0 = f0 ∈ R

n, (2.4)

for some functions μF : [0, T ] × R
m → R

n and σF : [0, T ] × R
m → R

d×n .
Assumptions on the coefficients of X and F are given below.Wewill always assume

throughout the paper that the interest rate is zero.
Notice that the forward contracts are not necessarily written on the commodity with

spot price P , as they could also bewritten on some correlated commodity. For instance,
P could be the spot price of gasoline, while the F’s are written on oil, as in Carmona
and Ludkovski (2006), Fiorenzani (2006). This can be also due to illiquidity or to
the fact that forward contracts relative to the commodity do not exist: for a detailed
discussion of this phenomenon, see Carmona and Ludkovski (2006), Sect. 2.3.

We will always work under the following standing assumptions on the coefficients
of the model:

Assumption 2.5 (i) The function p: [0, T ] × R
m → R is continuous.

123



Utility indifference pricing and hedging for structured…

(ii) The coefficients b: [0, T ] × R
m → R

m and � : [0, T ] × R
m → R

d×m of the
factor process X are continuous functions, Lipschitz in x uniformly in t and with
linear growth in x uniformly in t .

(iii) The drift μF : [0, T ] × R
m → R

n and the volatility σF : [0, T ] × R
m → R

d×n

are continuous functions, Lipschitz in x uniformly in t and with linear growth in
x uniformly in t .

Under such assumptions, the SDEs (2.3) and (2.4) are well-known to admit a unique
strong solution (X, F) such that X0 = x and F0 = f0 [see, e.g., Theorem 13.1 in
Rogers and Williams (2000), Chapter V].

2.3 Admissible strategies and utility indifference price

We consider an agent whose preferences are modelled by an exponential utility func-
tion U (x) = − 1

γ
e−γ x , x ∈ R, with risk aversion parameter γ > 0. We assume

that (s)he has a long position in q ≥ 0 units of a given structured product with payoff
CT = (Cu

T )u∈U withCu
T as in (2.1).Moreover, in order to hedge away the risk attached

to such a contract, (s)he trades in the financial market of forward contracts described
in the previous section. At any time s ∈ [0, T ], the agent invests the amount of wealth
π i
s in the forward contracts Fi with i = 1, . . . , n. Hence the evolution of the agent’s

portfolio is

〈
πs,

dFs
Fs

〉
=

n∑
i=1

π i
s
dFi

s

Fi
s

= 〈πs, μF (s, Xs)ds + σ ∗
F (s, Xs)dWs〉,

where we recall that 〈·, ·〉 denotes the Euclidean scalar product in R
n and we use the

notation

dFs
Fs

:=
(
dFi

s

Fi
s

)
i=1,...,n

= μF (s, Xs)ds + σ ∗
F (s, Xs)dWs, s ∈ [0, T ].

At this point, we need to specify the set A of admissible strategies.

Definition 2.6 Let ū > 0 be a given threshold. The set of admissible controls A is
the set of all couples (u, π), where u is any adapted process such that ut ∈ [0, ū] for
all t ∈ [0, T ], and π is any progressively measurable Rn-valued process such that

sup
t∈[0,T ]

E

[
exp

(
ε|πt |2

)]
< ∞, (2.5)

for some ε > 0. We will denote by U the set of all admissible controls u. Moreover,
At (resp. Ut ) will be the set of admissible controls (u, π) (resp. admissible controls
u) starting from t .

Now, we are ready to introduce the utility indifference (buying) price of q units of
the structured productCT .Wewill use the notationCu

t,T for the payoff of the structured
contract Cu

T starting at time t , i.e.,
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Cu
t,T =

∫ T

t
L(Ps, Z

u
s , us)ds + �(PT , Zu

T ), t ∈ [0, T ].

Moreover, we set Cu
T = Cu

0,T .

Definition 2.7 The utility indifference (buying) price at time t for a position q ≥ 0
in the structured product, when starting from the initial portfolio value yt , is defined
as the unique Ft -measurable random variable vt solution (whenever it exists) to

V (yt − vt , q) = V (yt , 0), (2.6)

where

V (yt , q) := sup
(u,π)∈At

Et

[
− 1

γ
exp

(
−γ

(
yt +

∫ T

t

〈
πs,

dFs
Fs

〉
+ qCu

t,T

))]
, (2.7)

and Et stands for the conditional expectation given Ft .

Clearly, V (y0, q) gives the maximal expected utility from terminal wealth, com-
puted at time 0, that an agent with an exponential utility can obtain starting from an
initial wealth y0 and having a position q ≥ 0 in the structured product. Therefore, the
(buying) UIP defined above represents the highest price the buyer is willing to pay for
q units of the structured contract.

The maximization problem (2.7) can be easily translated into a standardMarkovian
control problem by suitably redefining the set of state variables as follows. Let t ∈
[0, T ]. First, using Equation (2.1), we can rewrite the terminal wealth as follows

yt +
∫ T

t

〈
πs,

dFs
Fs

〉
+ qCu

t,T = yt +
∫ T

t

〈
πs,

dFs
Fs

〉

+ q
∫ T

t
L(Ps, Z

u
s , us)ds + q�(PT , Zu

T ).

Using the fact that Pt = p(t, Xt ) is a function of the factor process X , we obtain that
the value function in (2.7) equals

V (t, x, y, z; q) := sup
(u,π)∈At

Et,x,y,z
[
G
(
XT ,Yu,π

T , Zu
T ; q)] , (2.8)

where the reward function G is given by

G(x, y, z; q) := − 1

γ
e−γ (y+q�(p(T,x),z)), (2.9)
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and the state variables (X,Yu,π , Zu) evolve as

⎧⎪⎨
⎪⎩
dXs = b(s, Xs)ds + �∗(s, Xs)dWs,

dY u,π
s = (〈πs, μF (s, Xs)〉 + qL(p(s, Xs), Zu

s , us)
)
ds + 〈πs, σ

∗
F (s, Xs)dWs〉,

dZu
s = usds,

(2.10)
with initial conditions (Xt ,Y

u,π
t , Zu

t ) = (x, y, z). Notice that the linear growth prop-
erties set in Assumption 2.5 combined with the boundedness of L in Assumption 2.1
give the following estimate for the controlled state process (X,Yu,π , Zu):

Et,x,y,z

[
sup

t≤τ≤T

∣∣(Xτ ,Y
u,π
τ , Zu

τ

)∣∣p
]

≤ Cu,π (1 + |(x, y, z)|p), t ∈ [0, T ), p ≥ 1,

(2.11)
for some constant Cu,π > 0, which depends possibly on the control (π, u) and is
uniform in t .

Remark 2.8 Observe that the linear growth condition on b and � [cf. Assump-
tion 2.5(ii)] imply, through an application of Gronwall’s lemma, that

sup
t∈[0,T ]

E

[
eη|Xt |2

]
< ∞, (2.12)

for some η > 0.

Within this formulation, the UIP of q ≥ 0 units of the structured product is the
unique solution vt = v(t, x, y, z; q) (whenever it exists) to

V (t, x, y − vt , z; q) = V (t, x, y, z; 0).

Remark 2.9 In principle, the controls associated to the virtual storage contract
described in Example 2.3 do not satisfy Definition 2.6, where the control ut belongs to
[0, ū] with ū constant. However, this example can be reduced to our setting by simply
reparameterizing the control. In fact, one could define a new control c with values in
[0, 2] such that the old control u satisfies ut = f (ct , Zt ) for a suitable function f (c, z)
given by

f (c, z) :=
⎧⎨
⎩

(c − 1)K1
√
z, 0 ≤ c ≤ 1,

(c − 1)K2

√
1

z+Zb
− K3, 1 ≤ c ≤ 2,

Z solves

dZt = f (ct , Zt ) dt, Z0 = z0.

and L(p, z, c) = −p( f (c, z) − a(z, f (c, z))).
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Remark 2.10 Here, we briefly discuss two papers, Ludkovski (2008) and Porchet et al.
(2009), that do not fit (strictly speaking) the literature on structured products but that
are somewhat related. Indeed, they both deal with the pricing of a physical/industrial
asset using a UIP approach with an investment component. However, even though the
optimization problems in Ludkovski (2008), Porchet et al. (2009) are mathematically
similar to the one consideredhere, the controls affecting the asset are switching controls
with finitely many states. Hence their methods, that are based on optimal switching
and BSDEs, are different from ours. Finally, our model is more specific than theirs as
it is tailor-made for the pricing and hedging of structured contracts on energy.

3 Characterization of the UIP with viscosity solutions

In this section we characterize, under some further technical assumptions given below,
the UIP in terms of viscosity solutions of suitable Cauchy problems. More precisely,
we prove that the log-value functions for problem (2.8)with zero initial wealth, defined
as

J (t, x, z; q) := − 1

γ
log (−V (t, x, 0, z; q)) , q ≥ 0, (3.1)

canbe characterized as the unique continuous viscosity solutionswith quadratic growth
to a suitable Cauchy problem. TheUIP is obtained from there as the difference between
the two log-value functions, corresponding to the problems with and without the
structured products. This is done using some techniques developed in Pham (2002)
together with recent results on uniqueness for a class of second order Bellman-Isaacs
equations, established in Da Lio and Ley (2006).

3.1 Heuristics on the value function PDE

In this section we derive, in a heuristic way, the PDE that the value functions appearing
in the definition of UIP are expected to satisfy. It is a classical property in the presence
of an exponential utility function (see, e.g., the papers Becherer 2003, 2004; Becherer
and Schweizer 2005; Henderson and Hobson 2009; Valdez and Vargiolu 2013) that
one can factor out the initial wealth y so that

V (t, x, y, z; q) = e−γ yV (t, x, 0, z; q), y ∈ R.

Hence, by definition of UIP, we deduce

e−γ (y−v)V (t, x, 0, z; q) = V (t, x, y − v, z; q)

= V (t, x, y, z; 0) = e−γ yV (t, x, 0, z; 0)

so that the UIP v is given by

v = − 1

γ
log

V (t, x, 0, z; q)

V (t, x, 0, z; 0) = J (t, x, z; q) − J (t, x, z; 0), (3.2)
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where J denotes the log-value function defined in (3.1). From the general theory of
stochastic optimal control with Markovian state variables it is clear that the value
function V is expected to satisfy the following HJB equation

Vt (t, x, y, z; q) + sup
(u,π)∈[0,ū]×Rn

Lu,πV (t, x, y, z; q) = 0, (3.3)

with terminal condition V (T, x, y, z; q) = G(x, y, z; q) and where

Lu,πV = (〈π,μF 〉 + qL) Vy + 〈b, Vx 〉 + uVz + 1

2
|π∗σ ∗

F |2Vyy

+1

2
tr
(
�∗�Vxx

)+ π∗σ ∗
F�Vxy

is the generator of the state variable (X,Y, Z). Recalling that V (t, x, y, z; q) =
−e−γ y−γ J (t,x,z;q), we can easily deduce from (3.3) the following PDE for the log-
value function J := J (t, x, y, z; q):

Jt + sup
(u,π)∈[0,ū]×Rn

[〈π,μF 〉 + qL + 〈b, Jx 〉 + u Jz − 1

2
γ |π∗σ ∗

F |2

− 1
2γ |� Jx |2 + 1

2 tr (�
∗� Jxx ) − γπ∗σ ∗

F� Jx
] = 0.

(3.4)

The Hamiltonian therein is maximised by the control π̂q , given by

π̂q = (σ ∗
FσF )−1

(
μF

γ
− σ ∗

F� Jx

)
. (3.5)

Substituting π̂q into the Eq. (3.4) leads to

Jt + 1

2γ
〈(σ ∗

FσF )−1μF , μF 〉 + 〈b̄, Jx 〉 + sup
u∈[0,ū]

[
u Jz + qL

]

− 1
2γ J ∗

x B Jx + 1
2 tr (�

∗� Jxx ) = 0,
(3.6)

where
b̄ := b − �∗σF (σ ∗

FσF )−1μF (3.7)

and B is a m × m symmetric matrix given by

B := �∗� − (σ ∗
F�)∗(σ ∗

FσF )−1(σ ∗
F�) = �∗(Id − σF (σ ∗

FσF )−1σ ∗
F )�. (3.8)

The terminal condition for V translates into

J (T, x, z; q) = log γ

γ
+ q�(p(T, x), z), (x, z) ∈ R

m × [0, ūT ]. (3.9)

Remark 3.1 In order to compute the UIP as in Eq. (2.6), we first calculate J (t, x, z; 0),
which satisfies Eq. (3.6) with the terminal condition J (T, x, z; 0) = log γ

γ
. It is a
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classical and intuitive result that, in this situation, J (t, x, z; 0) does not depend on z.
Denoting J (t, x, z; 0) by J 0(t, x) for simplicity, we have that it fulfills

J 0t + 1

2γ
〈(σ ∗

FσF )−1μF , μF 〉 + 〈b̄, J 0x 〉 − 1

2
γ J 0,∗x B J 0x + 1

2
tr
(
�∗� J 0xx

)
= 0.

(3.10)
Thus, subtracting Eq. (3.10) from Eq. (3.6) and using the fact that

−1

2
γ J ∗

x B Jx + 1

2
γ J 0,∗x B J 0x = −1

2
γ v∗

x Bvx − γ J 0,∗x Bvx

we obtain the following PDE for the UIP v:

vt + 〈b̄, vx 〉 + sup
u∈[0,ū]

[
uvz + qL

]
+ 1

2
tr
(
�∗�vxx

)− 1

2
γ v∗

x Bvx − γ J 0,∗x Bvx = 0,

(3.11)
with the terminal condition

v(T, x, z; q) = q �(p(T, x), z). (3.12)

Notice that solving the HJB equation for the UIP v(t, x, z; q) above requires the
knowledge of J 0, which is the log-value function of the optimal investment problem
with no claim. This phenomenon is due to the presence of the non-tradable factors X
in the dynamics of the forward contracts F and it has been observed in a somewhat
different model in Becherer (2004), where the non-tradable factors follow a pure jump
dynamics.

3.2 Existence and uniqueness results

In this section we show that the log-value function J is the unique continuous viscosity
solution with quadratic growth of Eq. (3.6) with the terminal condition (3.9). From
there, the UIP v is easily found via the equality (3.2).Wewill work under the following
standing assumption. Recall that the matrix B has been defined in (3.8).

Assumption 3.2 The following properties hold:

(i) b is C1, B and �∗σF (σ ∗
FσF )−1μF are C1 and Lipschitz in x uniformly in t .

(ii) μF is bounded and 〈(σ ∗
FσF )−1μF , μF 〉 is C1 and Lipschitz in x uniformly in t .

(iii) σ ∗
FσF is bounded and uniformly elliptic, i.e., for some ε > 0,

(σ ∗
FσF )(t, x) ≥ ε In, for all (t, x) ∈ [0, T ] × R

m . (3.13)

(iv) The matrix B is positive semidefinite and there exists a constant δ > 0 (uniform
in t, x) such that

1

δ
|ξ |2 ≤ 〈ξ, Bξ 〉 ≤ δ|ξ |2 (3.14)

for all vectors ξ ∈ Im(B), the image of B.
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Some comments on these hypotheses are in order. All the assumptions above, with
the exception of C1-regularities and boundedness of μF (linear growth is actually
sufficient) have to be imposed in order to apply the method and the results established
in Da Lio and Ley (2006). In particular, condition (iv) on B is related to the coercivity
hypothesis in Assumption A1 in Da Lio and Ley (2006), which has a crucial role in the
proof of their comparison theorem. Such a property has to be verified on a case-by-case
basis. Some examples where this assumption is verified are provided in Sect. 4.

The additional C1-regularity assumptions as well as the boundedness of μF allow
us to adapt results from Pham (2002) to get the quadratic growth condition of the
log-value function J 0 of the investment problem with no claim. Furthermore, thanks
to Assumption 2.1 on the structured contract, the latter property will be inherited by
the log-value function, J , with the claim.

We are now ready to state the main result of the paper.

Theorem 3.3 Let Assumptions 2.1 and 2.5 hold. Under Assumption 3.2, the log-value
function J , defined in (3.1), is the unique continuous viscosity solution with quadratic
growth of the Cauchy problem (3.6) with terminal condition (3.9).

Before proving the theorem, we give a preliminary result showing that the value
function V is a (possibly discontinuous) viscosity solution of a Hamilton–Jacobi–
Bellman (HJB) equation in the interior of its domain. Its proof is postponed to the
“Appendix”.

Proposition 3.4 Let Assumptions 2.1 and 2.5 hold. Under Assumption 3.2, the value
function V in (2.8) is a (possibly discontinuous) viscosity solution of the HJB equation

Vt (t, x, y, z; q) + sup
(u,π)∈[0,ū]×Rn

Lu,πV (t, x, y, z; q) = 0,

(t, x, y, z) ∈ [0, T ) × R
m × R × R (3.15)

with terminal condition V (T, x, y, z; q) = G(x, y, z; q), where

Lu,πV = (〈π,μF 〉 + qL) Vy + 〈b, Vx 〉 + uVz

+1

2
|π∗σ ∗

F |2Vyy + 1

2
tr
(
�∗�Vxx

)+ π∗σ ∗
F�Vxy .

At this point we are in position to prove Theorem 3.3.

Proof of Theorem 3.3 We consider the existence first. This is an easy consequence of
Proposition 3.4 above, which gives that the value function V is a viscosity solution of
Eq. (3.15). It then suffices to use the definition of viscosity solution to check that the
log-value function J defined in (3.1) is a (possibly discontinuous) viscosity solution
of the PDE (3.6).

To complete the proof, it remains to show that J is unique in the class of all
continuous viscosity solutions with quadratic growth for the Cauchy problem (3.6)
and (3.9). The main idea for uniqueness is to use the comparison theorem in Da Lio
and Ley (2006), Th. 2.1. For reader’s convenience, we split the rest of the proof into
two steps.
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(i) Reduction to Da Lio and Ley (2006) setting. First, we use a Fenchel-Legendre
transform to express the quadratic term in our pricing PDE (3.6) into an infimum over
the image of B of a suitable function. More precisely, we apply a classical result in
convex analysis [e.g. (Rockafellar 1970, Ch.III, Sect. 12)] to get

F(w) := −1

2
〈w, Bw〉 = inf

α∈Im(B)
{−F̃(α) − 〈α,w〉} = inf

α∈Rm
{−F̃(α) − 〈α,w〉},

(3.16)
for all vectors w ∈ R

m , where F̃ is the conjugate of F , which is also given by

F̃(α) = −1

2
〈α, B−1α〉,

when α ∈ Im(B) and −∞ otherwise. Notice that the first infimum in (3.16) is com-
puted over the image of B since the matrix B is not necessarily invertible in our
framework. Using (3.16), we can rewrite Eq. (3.6) as

Jt + 1

2γ
〈(σ ∗

FσF )−1μF , μF 〉 + 〈b̄, Jx 〉
+ supu∈[0,ū]

[
u Jz + qL

]
+ γ F(Jx ) + 1

2 tr (�
∗� Jxx ) = 0,

(3.17)

with b̄ as in (3.7) and with terminal condition J (T, x, z; q) = log γ
γ

+q�(p(T, x), z).
Notice that, since the function F above can be written as an infimum as in (3.16), we
get a PDE with the same form as in Da Lio and Ley (2006), Eq. (1.1) provided we
apply the time reversal transformation Ĵ (t, x, z; q) := J (T − t, x, z; q). Hence the
PDE (3.17) turns into the following

− Ĵt + 1

2γ
〈(σ ∗

FσF )−1μF , μF 〉 + 〈b̄, Ĵx 〉

+ sup
u∈[0,ū]

[
u Ĵz + qL

]
+ γ F( Ĵx ) + 1

2
tr
(
�∗� Ĵxx

) = 0, (3.18)

with the initial condition

Ĵ (0, x, z; q) = log γ

γ
+ q�(p(T, x), z). (3.19)

Notice that this Cauchy problem is a particular case of the one studied in Da Lio and
Ley (2006) since our Assumptions 2.1, 2.5 and 3.2 imply Assumptions (A1), (A2),
(A3) in Da Lio and Ley (2006). In particular, Assumption 3.2 (iv) implies the same
property for B−1, giving (A1) (iii) in Da Lio and Ley (2006). Indeed on the image of
B, B1/2 as well its inverse B−1/2 are well-defined. Since B−1/2 : Im(B) → Im(B),
we have that, e.g., the LHS in (3.14) implies δ−1|B−1/2y|2 ≤ 〈B−1/2y, BB−1/2y〉 for
all y ∈ Im(B), leading to 〈y, B−1y〉 ≤ δ|y|2 for all y ∈ Im(B). The other inequality
is obtained in a similar way.
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(ii) Uniqueness. We proceed by contradiction. Assume that there exists another
continuous viscosity solution with quadratic growth J̃ of the Cauchy problem (3.18)
with terminal condition (3.19). Then, by calling J ∗ and J̃ ∗ their u.s.c. envelopes and
J∗ and J̃∗ their l.s.c. envelopes, we have, by definition of viscosity solution, that J ∗,
J̃ ∗ are u.s.c. viscosity subsolutions and J∗, J̃∗ are l.s.c. viscosity supersolutions of
equation (3.18), obviously with J̃∗ ≤ J̃ ∗. We also have J∗(T, x, z; q) ≤ log γ

γ
+

q�(p(T, x), z) ≤ J ∗(T, x, z; q), by definition of upper and lower envelopes. We
now want to prove that

J ∗(T, x, z; q) ≤ log γ

γ
+ q�(p(T, x), z) ≤ J∗(T, x, z; q), (3.20)

for all q ≥ 0, x ∈ R
m, z ∈ [0, ūT ]. To prove the inequalities (3.20) it suffices to apply

Theorem 4.3.2 and subsequent Remark 4.3.5 in Pham (2009).1

Moreover it can be proved that J (t, x, z; q) has quadratic growth in (x, z), uni-
formly in t , for all q ≥ 0 (ref. Lemma 8.1 in the “Appendix 2”). Then, by the
comparison theorem (Da Lio and Ley 2006, Theorem 2.1), we have that

J∗ ≤ J ∗ ≤ J̃∗ ≤ J̃ ∗ ≤ J∗

on [0, T ] × R
m × R. This implies that J∗ = J ∗ = J = J̃ , and that J is continuous.

The proof is therefore complete. ��
As a consequence of the result in Theorem 3.3, we have a good candidate for the

optimal hedging strategy, which is given by

ĥq := π̂q − π̂0 = −(σ ∗
FσF )−1σ ∗

F�vx , (3.21)

where vx is the gradient with respect to the factor variables, when it exists, of the
UIP (compare Becherer 2003, 2004). Concerning the optimal exercise policy û of the
structured contract, a candidate in feedback form is given by solving the maximization
problem

max
u∈[0,ū]

[
uvz(t, x, z; q) + qL(p, z, u)

]
.

For an explicit formula, consider the case L(p, z, u) = u�(p, z) with � bounded. In
this case, it is easy to see that

û(t, x, z; q) = ū1[vz(t,x,z;q)>−q�(p,z)]. (3.22)

Even though working with viscosity solutions does not allow to justify rigorously
the optimality of such controls, we observe that they are consistent with the optimal
policies that have been obtained in the past literature for more specific models (see
e.g. Basei et al. 2014; Benth et al. 2012).

1 Notice that in our case the function G appearing in the statement of Theorem 4.3.2 in Pham (2009) can
be chosen to be any positive number.
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Remark 3.5 Note that we have worked on the log-value function’s PDE (3.6) instead
of on the PDE for the price v [cf. Eq. (3.11)]. The reason for doing so is that the latter
is more delicate to handle due to the fact that it contains the first derivative J 0x of the
log-value function with no claim. Applying Da Lio and Ley’s results directly to Eq.
(3.11) would require a Lipschitz continuity for J 0x uniformly in t , which is difficult to
have in general. Nonetheless, when this condition is satisfied as in Cartea–Villaplana
(see Sect. 4.2) and in the linear dynamics model in Example 4.6, the same arguments
go through with fewer assumptions than in Theorem 3.3. Indeed, the boundedness of
the payoffs L and � implies that the UIP v is bounded and so it has quadratic growth.
Therefore, Lemma 8.1 is not needed anymore and neither are all the C1-regularities
and the boundedness of μF as in Assumption 3.2. Under the remaining assumptions
and whenμF has linear growth in x uniformly in t (replacing its boundedness) we can
prove that v is the unique continuous viscosity solution with quadratic growth to Eq.
(3.11) with terminal condition (3.12). The proof is analogous to that of Theorem 3.3,
it is therefore omitted.

Remark 3.6 (Complete market case) When the market is complete, i.e. d = n and
σF has full rank, we have B = 0 so that Assumption 3.2(iv) is trivially satisfied and
J 0x does not appear in the PDE for v anymore. In this case, we can work directly
with the PDE for v along the same lines as in the previous Remark 3.5. Therefore,
under Assumptions 2.1, 2.5 and 3.2 (i)–(ii)–(iii), one can show that v is the unique
continuous viscosity solution with quadratic growth of the HJB equation

vt + 〈b − �∗(σ ∗
F )−1μF , vx 〉 + 1

2
tr
(
�∗�vxx

)+ sup
u∈[0,ū]

[
uvz + qL

]
= 0, (3.23)

with terminal condition

v(T, x, z; q) = q�(p(T, x), z). (3.24)

Moreover, one can weaken the boundedness of μF and require only linear growth
in x uniformly in t . This result extends to our setting previous ones in Basei et al.
(2014), Benth et al. (2012), Chen and Forsyth (2007), Felix (2012), Thompson et al.
(2009), which were obtained for particular types of structured contracts, e.g., swings
and virtual storages, and without trading in forward contracts.

4 Examples

4.1 A class of models with two assets and constant correlation

In this section we focus on the following incomplete market model:

⎧⎪⎨
⎪⎩

dFt
Ft

= μF (t, Xt )dt + σ̄F (t, Xt )dW 1
t ,

dXt = b(t, Xt )dt + σ(t, Xt )
(
ρdW 1

t +√
1 − ρ2dW 2

t

)
,

(4.1)
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where W = (W 1,W 2) is a bidimensional Brownian motion and ρ ∈ (−1, 1).
This is clearly a particular case of the general model in the previous section with
σ ∗
F (t, x) = (σ̄F (t, x), 0), �∗(t, x) = σ(t, x)(ρ,

√
1 − ρ2) and Pt = p(t, Xt ) for

some continuous function p(t, x). This model is a generalization of the usual Black-
Scholes model with basis risk (see Davis 2006; Henderson 2002; Monoyios 2004
among many others), with the additional feature that the non traded asset or factor X
can appear in the coefficients of the traded asset F .

We suppose that Assumptions 2.1 and 2.5 are in force. Concerning Assumption 3.2,
we are going to specialize it to the present setting as follows. Observe first that the
quantity �∗σF (σ ∗

FσF )−1μF appearing in Assumption 3.2(i) reads as

�∗σF (σ ∗
FσF )−1μF (t, x) = ρμF (t, x)

σ (t, x)

σ̄F (t, x)

while the scalar product 〈(σ ∗
FσF )−1μF , μF 〉 in Assumption 3.2(ii) is

〈(σ ∗
FσF )−1μF , μF 〉(t, x) = μ2

F (t, x)

σ̄ 2
F (t, x)

.

and (σ ∗
FσF )(t, x) in Assumption 3.2 (iii) corresponds to (σ ∗

FσF )(t, x) = σ̄ 2
F (t, x).

Finally, we have B(t, x) = (1−ρ2)σ 2(t, x). Hence, Assumption 3.2 is guaranteed by
the conditions listed just below and the general results in Theorem 3.3 can be safely
applied.

Assumption 4.1 Let the following properties hold:

(i) b ∈ C1, σ ∈ C1;
(ii) μF is bounded;
(iii) σ and σ̄F are bounded and bounded away from zero;
(iv) μF

σ̄F
∈ C1 and it is Lipschitz in x uniformly in t .

In this more specific setting, we can obtain more information on the structure of the
value function of the buyer of q units of the structured product provided we have the
following

Assumption 4.2 Let the log-value function J 0x be Lipschitz in x uniformly in t .

Under this assumption, we do not need to suppose that μF is bounded as in 4.1(ii)
above. Indeed the considerations in Remark 3.5 apply, so that in particular μF can be
a linear function of x as in Example 4.6 below.

LetCu
T be the payoff of a given structured contract as in (2.1). Inspired by the results

in Oberman and Zariphopoulou (2003), which in turn extendKaroui and Rouge (2000)
toAmerican options,we obtain a representation of theUIPof the structured productCu

T
as the value function of an auxiliary optimization problem with respect to the control
u only, under a suitable equivalent martingale measure involving the derivative J 0x of
the log-value function of the problem with no claim, and where γ is replaced by a
modified risk aversion γ̃ = γ (1 − ρ2).
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Let us consider the measure Q0 defined as

dQ0

dP

∣∣∣Ft
:= D0

t := exp

(
−
∫ t

0
θ∗
u dWu − 1

2

∫ t

0
|θu |2du

)
, t ∈ [0, T ], (4.2)

where W = (W 1,W 2)∗ and θ is given by

θt = (θ1t , θ2t )∗ =
(

μF

σ̄F
, γ

√
1 − ρ2σ J 0x

)∗
(t, Xt ). (4.3)

Notice that the stochastic exponential is well defined, since X has continuous paths
and μF/σ̄F is continuous, so that the stochastic integral

∫ t
0 θ1u dW

1
u is well-defined for

every t . Moreover, the second integral
∫ t
0 θ2u dW

2
u is also well-defined thanks to the

continuity of σ(t, Xt ) and the linear growth of J 0x (cf. Lemma 8.1).
Finally, in order for the equation (4.2) to define a probability measure, we need to

impose that E[D0
T ] = 1. This equality holds true when, for instance, J 0x is bounded,

so that in particular Novikov’s criterion applies. More generally, one could use the
deterministic criteria proposed in Mijatović and Urusov (2012) (e.g. Theorem 2.1
therein).

Remark 4.3 In the case when the coefficients of F do not depend on the state variable
X , when, e.g. both follows geometric Brownian motions with constant correlation, we
have that J 0x ≡ 0, and Q

0 coincides with the minimal entropy martingale measure.
Therefore the measure Q

0 can be viewed as a perturbation of the minimal entropy
martingale measure (see Frittelli 2000) where the correction involves the log-value
function J 0 of the optimal pure investment problem.

Inwhat followswewill need the following preliminary lemma, stating the dynamics
of the spot price under the martingale measure Q

0. Its proof is based on a standard
application of Girsanov’s theorem, and it is therefore omitted.

Lemma 4.4 Assume E[D0
T ] = 1. Then the dynamics of X under Q0 is given by

dXt = b̃(t, Xt )dt + σ(t, Xt )dW
0
t , (4.4)

where

b̃(t, Xt ) :=
(
b − ρσ

μF

σ̄F
− γ̃ σ 2 J 0x

)
(t, Xt )

and

dW 0
t := ρdW 1

t +
√
1 − ρ2dW 2

t +
(

ρ
μF

σ̄F
+ γ̃ σ J 0x

)
(t, Xt )dt

defines a Q0-Brownian motion and γ̃ = γ (1 − ρ2).

123



Utility indifference pricing and hedging for structured…

The following proposition extends to our setting the characterisation in Oberman
and Zariphopoulou (Oberman and Zariphopoulou 2003 Prop. 10).

Proposition 4.5 Let the standing Assumptions 2.1, 2.5, 4.1 (i)–(iii)–(iv) and 4.2 hold.
Then the UIP v = v(t, x, z; q) satisfies

v(t, x, z; q) = sup
u∈Ut

(
− 1

γ̃
lnE0

t,x,z

[
e−γ̃ qCu

t,T

])
, (4.5)

where E0
t,x,z denotes the conditional expectation under Q0.

Proof We prove the result by showing that the candidate function

ṽ = ṽ(t, x, z; q) := sup
u∈Ut

(
− 1

γ̃
lnE0

t,x,z

[
e−γ̃ qCu

t,T

])

satisfies Eq. (3.11) with terminal condition (3.12) and we conclude using the compar-
ison theorem in Da Lio and Ley (2006), Th. 2.1. To this end, write ṽ as

ṽ(t, x, z; q) = − 1

γ̃
ln(−w(t, x, z; q)), (4.6)

with

w(t, x, z; q) := sup
u∈Ut

E
0
t,x,z

[
−e−γ̃ qCu

t,T

]
.

The value function w above solves the following Cauchy problem in a viscosity sense

{
wt (t, x, z; q) + sup

u∈[0,ū]
[Luw(t, x, z; q) − γ̃ qL(p(t, x), z, u)w(t, x, z; q)

] = 0

w(T, x, z; q) = − exp(−γ̃ q�(p(T, x), z))

with

Luw = b̃wx + uwz + 1

2
σ 2wxx .

The corresponding Cauchy problem for ṽ is immediately obtained:

⎧⎨
⎩

ṽt (t, x, z; q) + sup
u∈[0,ū]

[
L̃u ṽ(t, x, z; q) + qL(p(t, x), z, u)

]
= 0

ṽ(T, x, z; q) = q�(p(T, x), z),
(4.7)

with

L̃u ṽ = b̃ṽx + uṽz + 1

2
σ 2
[
ṽxx − γ̃ ṽ2x

]
,
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which is a particular case of Eq. (3.11) in this setting.
To identify ṽ with the UIP v and conclude, we need a uniqueness result for the

Cauchy problem (4.7). Since J 0x is assumed to be Lipschitz in x uniformly in t , we
can use Remark 3.5 to get the existence of a unique continuous viscosity solution
with quadratic growth to the Cauchy problem (4.7). Finally, the boundedness of the
payoff Cu

t,T (cf. Assumption 2.1) clearly implies that the value function ṽ(t, x, z) has
quadratic growth. Thus the proof is complete. ��

The previous proposition suggests the following approach to compute the UIP
and the corresponding (partial) hedging strategy of a given structured product in this
setting:

• first, solve the pure optimal investment problem V (t, x, y; 0) with no claim;
• second, compute the x-derivative of the log-value function J 0 giving the new
probability measure Q0 as well as the corresponding dynamics of X ;

• finally, solve the maximisation problem in (4.5), which is now computed with
respect to the control u only; its value function gives the UIP while its derivative
with respect to x gives the hedging strategy via (3.5).

Example 4.6 (Linear dynamics model) This example is a slight generalization of the
model studied in Carmona and Ludkovski (2006), Sect. 2.2 and Fiorenzani (2006):

dFt = Ft
(
(a − kXt )dt + σ̄FdW

1
t

)
, (4.8)

dXt = δ(θ − Xt )dt + σ
(
ρdW 1

t +
√
1 − ρ2dW 2

t

)
, (4.9)

where a, k, σ̄F , δ, θ, σ are real constants, the correlation ρ belongs to (−1, 1), and
(W 1,W 2) is a bidimensional Brownian motion as before. Here F represents the price
of a liquid forward contract with maturity T written on a commodity, while instead
X is the log-price of another, less liquid, commodity on which the structured product
is written (i.e. p(t, x) = ex in this case). In practical applications, one searches for a
liquidly traded forward F written on a commodity correlated with Pt = eXt , with a
correlation coefficient ρ as close to 1 as possible [for practical examples, see Carmona
and Ludkovski (2006), Sect. 2.3 and Fiorenzani (2006)]. When k = 1 we obtain
exactly the model in Carmona and Ludkovski (2006), Sect. 2.2, while for k = 0 we
obtain the model in Fiorenzani (2006).

Notice that if σ̄F > 0, σ > 0 and k = 0, then Assumption 4.1 holds true, while in
the general case when k �= 0 Assumptions 4.1 (ii) is not satisfied. Nevertheless, as we
are going to see, in this example J 0x is Lipschitz, so that Remark 3.5 applies. Hence
we can take μF linear in x as above.

To see that J 0x is Lipschitz, consider Eq. (3.10) which in this setting becomes

J 0t + 1

2γ

(a − kx)2

σ̄ 2
F

− ρσ

σ̄F
(a − kx)J 0x + δ(θ − x)J 0x

−1

2
γ σ 2(1 − ρ2)

(
J 0x
)2 + 1

2
σ 2 J 0xx = 0.
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Then, in analogy with Benth and Karlsen (2005), one guesses that the solution J 0 has
the general form

J 0(t, x) = α(t) + β(t)x + �(t)x2,

such that J 0(T, x) ≡ log γ
γ

. This ansatz gives the system of first order ODEs

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

α′ + a2

2γ σ̄ 2
F

+
(

δθ − ρ
σ

σ̄F
a

)
β − 1

2
γ σ 2(1 − ρ2)β2 + σ 2� = 0,

β ′ +
(

ρk
σ

σ̄F
− δ − 2γ σ 2(1 − ρ2)�

)
β − ak

γ σ̄ 2
F

+ 2

(
δθ − ρa

σ

σ̄F

)
� = 0,

�′ + k2

2γ σ̄ 2
F

+ 2

(
ρk

σ

σ̄F
− δ

)
� − 2γ σ 2(1 − ρ2)�2 = 0,

(4.10)
with final condition

α(T ) = log γ

γ
, β(T ) = 0, �(T ) = 0.

The system above is solvable in closed form, as the third equation is a Riccati equation
in�, the second one is a linear equation inβ, which can be solved once that� is known,
and, finally, the first one can be solved in α just by integration.

Notice that, if the parameter k appearing in the forward drift is zero then the dynam-
ics of the forward contract does not depend on X , so that J 0 does not depend on x ,
thus leading to β ≡ � ≡ 0.

Finally, Eq. (3.11) is given in this case by

vt +
(

δ(θ − x) − ρ
σ

σ̄F
(a − kx) − γ σ 2(1 − ρ2)(β + 2�x)

)
vx + 1

2
σ 2vxx

−1

2
γ σ 2(1 − ρ2)v2x + sup

u∈[0,ū]

[
uvz + qL

]
= 0,

(4.11)
with terminal condition

v(T, x, z; q) = q �(ex , z). (4.12)

4.2 The Cartea–Villaplana model with correlation

Here we consider a slight generalization of the two factor model for the electricity spot
price introduced by Cartea and Villaplana (2008). While the two factors are assumed
independent in the original paper (Cartea and Villaplana 2008), here we allow for
a possibly non zero (constant) correlation between them. We recall briefly the main
features of the model. The electricity spot log-price Pt at time t is decomposed into
the sum of two stochastic factors XC and XD , i.e.,
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Pt = exp
(
η(t) + αC X

C
t + αDX

D
t

)
,

with αC < 0 and αD > 0, where η represents a seasonal continuous deterministic
component. The factors Xi

t , i = C, D, are Ornstein-Uhlenbeck processes driving,
respectively, the capacity of power plants and the demandof electricity. Their dynamics
is given by

dXi
t = −ki Xi

t dt + σi (t) dW
i
t ,

where ki are constant coefficients, σi (t) are deterministic measurable functions of
time and each Wi , for i = C, D, is a unidimensional Brownian motion such that
d〈WC ,WD〉t = ρdt with a constant correlation ρ ∈ (−1, 1). Notice that the Cartea–
Villaplana model reduces to the Schwarz–Smith model (2000) when αC = αD = 1
and kC = 0 (or kD = 0). In this example we work under the following standing
assumptions:

Assumption 4.7 Let σC (t) and σD(t) be continuous, bounded and bounded away
from zero over [0, T ].

Since the interest rate is zero, the price at time t of a forward contract with maturity
T can be computed via the usual formula Ft = E

Q[PT |Ft ], t ∈ [0, T ], for a suitable
choice of risk-neutral measureQ preserving the Gaussian structure of the model as in
Cartea and Villaplana (2008), Sect. 5. Following the approach in Cartea and Villaplana
(2008) we can obtain the dynamics of the forward price under the risk-neutral measure
Q as

dFt
Ft

= αCe
−kC (T−t)σC (t) dWQ,C

t + αDe
−kD(T−t)σD(t) dWQ,D

t ,

where WQ,C and WQ,D are two Q-Brownian motions with correlation ρ. Choosing
suitably themarket prices of risk as in Cartea andVillaplana (2008) and usingAssump-
tion 4.7, we can obtain the following forward dynamics under the objective probability
P:

dFt
Ft

= μF (t)dt + αCe
−kC (T−t)σC (t) dWC

t + αDe
−kD(T−t)σD(t) dW D

t ,

where the drift μF (t) is a bounded function of time.
We deal separately with two different situations: the incomplete market case with

one forward contract (recall that we have two stochastic factors) and the complete one
with two forward contracts.

4.2.1 The case of one forward contract

In this case the agent is allowed to hedge the structured product by trading only in
one forward contract. The Cartea–Villaplana model fits the general setting of Sect. 2.3
with X = (XC , XD)∗, whose coefficients are
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b(t, xC , xD)=
(−kC xC

−kDxD

)
, �∗(t, xC , xD)=

(
σC (t) 0
0 σD(t)

)
·
(
1 0
ρ
√
1 − ρ2

)
.

Notice that � has full rank unless ρ = ±1, as

�∗� =
(

σ 2
C ρσCσD

ρσCσD σ 2
D

)
.

Let us consider a forward contract F with maturity T . Here σF (t, Xt ) depends only
on t , so that for simplicity we set σF (t) := σF (t, Xt ), and we have

σ ∗
F (t) =

(
αCe−kC (T−t)σC (t) αDe−kD(T−t)σD(t)

)
·
(
1 0
ρ
√
1 − ρ2

)

=
(
αCe

−kC (T−t)σC (t) + ραDe
−kD(T−t)σD(t),

√
1 − ρ2αDe

−kD(T−t)σD(t)
)

.

We note that, since the correlation between the spot and forward log-prices is not
constant, this model does not fit the setting in Sect. 4.1.

In this model the matrix B has rank equal to one. In fact, by definition [cf. Eq. (3.8)]
we have

B = �∗(I2 − σF (σ ∗
FσF )−1σ ∗

F )�,

with

(σ ∗
FσF )(t) = α2

Dσ 2
D(t)e−2kD(T−t) + α2

Cσ 2
C (t)e−2kC (T−t)

+ 2ραCαDσC (t)σD(t)e−(kC+kD)(T−t). (4.13)

Consider x = �−1σF . Then x �= 0 and we have

〈x, Bx〉 = σ ∗
F (I2 − σF (σ ∗

FσF )−1σ ∗
F )σF = σ ∗

FσF − σ ∗
FσF (σ ∗

FσF )−1σ ∗
FσF = 0.

Therefore, working on the image of B in Eq. (3.16) is fully justified here, as rank(B) =
1. Now, we show that Assumption 3.2(iv) is satisfied in this case. Indeed, a direct
computation shows that

B = κ(t) ×
(

α2
De

−2kD(T−t) −αCαDe−(kC+kD)(T−t)

−αCαDe−(kC+kD)(T−t) α2
Ce

−2kC (T−t)

)

where

κ(t) := (1 − ρ2)σ 2
C (t)σ 2

D(t)

α2Dσ 2
D(t)e−2kD (T−t) + α2Cσ 2

C (t)e−2kC (T−t) + 2ραCαDσC (t)σD(t)e−(kC+kD)(T−t)
.

Hence, the two eigenvalues of B are λ1(t) ≡ 0 and

λ2(t) = κ(t)
(
α2
De

−kD(T−t) + α2
Ce

−kC (T−t)
)

> 0.
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ByAssumption 4.7 we have that σC (t) and σD(t) are bounded and bounded away from
zero over [0, T ], yielding 1

δ
≤ λ2(t) ≤ δ for some δ > 0 independent of t ∈ [0, T ].

This implies Assumption 3.2 (iv).
Since in this example the two factors XC and XD do not enter in the coefficients

of the forward contract dynamics, we expect that the derivative J 0x of the log-value
function is zero. Indeed, this can be obtained from the PDE (3.10) satisfied by J 0.
Since μF and σF do not depend on X , such a PDE simplifies to

J 0t + 1

2γ

|μF |2
|σF |2 = 0,

which gives

J 0(t) = log γ

γ
+
∫ T

t

1

2γ

|μF (s)|2
|σF (s)|2 ds.

Therefore J 0x ≡ 0, and Eq. (3.11) for the UIP becomes

vt + 〈b − �∗σF (σ ∗
FσF )−1μF , vx 〉

+1

2
tr
(
�∗�vxx

)− 1

2
γ v∗

x Bvx + sup
u∈[0,ū]

[
uvz + qL

]
= 0.

Hence, under Assumption 4.7, the considerations in Remark 3.5 apply and give that
the UIP v is the unique viscosity solution with quadratic growth of the PDE above.

Finally, in this case the candidate optimal hedging strategy is given by ĥq = π̂q −
π̂0 = −(σ ∗

FσF )−1σ ∗
F�vx as in (3.21), where σ ∗

FσF is as in (4.13) and

(σ ∗
F�)∗(t) =

(
αCe−(T−t)kCσ 2

C (t) + ραDe−(T−t)kDσC (t)σD(t)

αDe−(T−t)kDσ 2
D(t) + ραCe−(T−t)kCσC (t)σD(t)

)
.

4.2.2 The case of two forward contracts

We look now at the much simpler situation where the agent can hedge the structured
product by trading in two forward contracts F1 and F2 with respective maturities T1
and T2, with T ≤ T1 < T2. Then we have

σ ∗
F (t) =

(
αCe−kC (T1−t)σC (t) αDe−kD(T1−t)σD(t)

αCe−kC (T2−t)σC (t) αDe−kD(T2−t)σD(t)

)
·
(
1 0
ρ
√
1 − ρ2

)
.

Of course, in this case B = 0, since σF is invertible. Hence, the market model is
complete and we are in the situation described in Remark 3.6. Analogously to the
previous case, it is possible to find an explicit expression for J 0, which is now given
by
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J 0(t) = log γ

γ
+
∫ T

t

1

2γ
〈μF , (σ ∗

FσF )−1μF 〉(s)ds.

Here again J 0x ≡ 0, so that Remark 3.5 applies and Eq. (3.11) for the UIP becomes

vt + 〈b̄, vx 〉 + 1

2
tr
(
�∗�vxx

)+ sup
u∈[0,ū]

[
uvz + qL

]
= 0.

Finally the candidate optimal hedging strategy is given by ĥq = −(σ ∗
FσF )−1σ ∗

F�vx
as before, where this time

(σ ∗
FσF )−1(σ ∗

F�)(t) =

⎛
⎜⎜⎜⎜⎜⎝

e−(T1−t)kC

αC
(
1 − e(T1−T2)(kC−kD)

) e−(T1−t)kD

αD
(
1 − e(T1−T2)(kD−kC )

)

e−(T2−t)kC

αC
(
1 − e(T1−T2)(kD−kC )

) e−(T2−t)kD

αD
(
1 − e(T1−T2)(kC−kD)

)

⎞
⎟⎟⎟⎟⎟⎠

.

5 Numerical results

In this section we present some numerical applications of our results to swing options
(see Example 2.2).2 We focus on this type of contract for essentially two reasons: first,
swing options are the main type of volumetric contracts in commodity markets and,
second, we want to compare our results to those in Benth et al. (2012).

More specifically, in Sect. 5.1 we consider the benchmark case with strike price
K = 0 andminimal cumulated quantitym = 0 in order to compare the prices obtained
following the UIP approach to those in Benth et al. (2012); in Sect. 5.2 we consider
more general swing options with K > 0 and m > 0. In both parts, we compute the
solution of the relevant PDEs using finite difference schemes, as suggested in Benth
et al. (2012).

5.1 Comparison with the results in Benth et al. (2012)

Here, we compare the UIP, obtained by solving the non-linear PDE (4.11), with the
classical linear pricing rule which is used in the energy market literature (e.g. Basei
et al. 2014; Benth et al. 2012; Chen and Forsyth 2007; Felix 2012; Thompson et al.
2009). The latter is given in terms of a PDE which is essentially linear, except for
the first derivative in z and which has the same form as Eq. (3.23), namely Eq. (4.11)
without the quadratic term in vx . In both cases, the optimal strategy û(t, x, z; q) is
given by Eq. (3.22) with �(p, z) = p − K .

2 All the numerical tests were performed in MATLAB R2015b.
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We consider, as in Benth et al. (2012), one swing option (i.e., we take q = 1) with
parameter values

K = 0, ū = 1, T = 1, m = 0, M = 0.5,

i.e., the control u belongs to [0, 1] and the holder faces the problem of picking the
most favorable price of the commodity, up to a certain total volume M . We set the
risk-free interest rate to zero. Moreover, in order be as close as possible to the setting
considered in Benth et al. (2012), where Zu is constrained to fulfil Zu

T ≤ M = 0.5,
we use the penalty function

�(p, z) = min(0,−C(z − 0.5)) (5.1)

with C = 1000. Indeed, the authors in Basei et al. (2014) prove that when C → ∞
the price of a contract with penalty � as in (5.1) converges to the price of a contract
with the constraint on Zu as above.

Moreover, with a view towards the comparison with Benth et al. (2012), we choose
a special case of the linear dynamics model of Example 4.6 with k = 0.01 and where

δ = 0.4, σ = 0.55, θ = 3.5, σF = 0.3, a = 0.03, ρ = 0.5. (5.2)

Finally, the risk-aversion parameter is set to be γ = 0.02.

Remark 5.1 Notice that the coefficients δ, θ and σ above correspond, respectively,
to κ, μ and σ in Benth et al. (2012), and they have the same numerical values as in
Benth et al. (2012). The remaining coefficients σF and a refer to the dynamics of the
forward contract F , which is not part of the model in Benth et al. (2012), and ρ is the
correlation between (the logarithms of) the spot price P and F .

We compute both kinds of price (the risk-neutral price and the UIP) for such a con-
tract, solving numerically the corresponding PDE via finite difference methodology
with a backward time stepping scheme. In all the numerical experiments we use an
approximating domain for the logarithm of the spot price which is wider than the one
in Benth et al. (2012) (where xmin = ln(21.6) and xmax = ln(73.9)) and the domain
for Z is obviously [0, ūT ] = [0, 1], thus leading to a global domain

D := [0, T ] × [xmin, xmax ] × [0, 1]

with xmin = ln(0.001) and xmax = ln(500). Notice that [xmin, xmax ] here is wider
with respect to the interval used in Benth et al. (2012), so that the probability that X
belongs to this interval is higher, thus leading to more stable numerical results. The
boundary conditions are the same as in Benth et al. (2012) as well as the numerical
approximations of vt and vz : denoting by vni, j the approximation of v(tn, xi , z j ; 1)
with n ∈ {0, . . . , N }, i ∈ {0, . . . , I } and j ∈ {0, . . . , J } we have

vt (tn, xi , z j )
∼= vn+1

i, j − vni, j

�t
, vz(tn, xi , z j )

∼= vn+1
i, j+1 − vn+1

i, j

�z
,
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(log) spot price
cumulated quantity
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0.15 4.240.1 3.83.60.05 3.43.20

"Classical" Price
Price with UIP

Fig. 1 “Classical” price (above) of a swing contract and UIP (below). Prices are computed at t = 0.5 with
γ = 0.02

with �t := T
N ,�z := 1

J , while we use a fully explicit scheme also for the derivatives
in x

vx (tn, xi , z j )
∼= vn+1

i+1, j − vn+1
i−1, j

2�x
, vxx (tn, xi , z j )

∼= vn+1
i+1, j − 2vn+1

i, j + vn+1
i−1, j

(�x)2

with �x := xmax−xmin
I . We set

N = 3500, I = 100, J = 225

in order to have convergence of our numerical solution to the UIP. The proof of the
convergence can be found in “Appendix 3”.

5.1.1 Numerical results

We plot in Fig. 1 the prices of the swing contract at time t = 0.5, obtained with the
two approaches (a similar picture can be provided at any other date). In order to stress
the difference between the two prices, we do not plot the surfaces for z ∈ [0.25, 0.5]
(remember that M = 0.5). As we can see, the two price surfaces have similar shapes,
even though the “classical” procedure slightly overprices the option with respect to
the UIP when the log spot price is high. The difference between the two prices is
clearly due to the risk aversion γ and, secondarily, to the correlation ρ between the
underlying and the forward market where the buyer can invest.

We conclude this part by illustrating in Tables 1 and 2 below the effect that those
two parameters separately have on the UIP. Concerning the dependence of the UIP
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Table 1 Different values of UIP
for a varying γ and
x = log 73.9 � 4.30, z = 0,
t = 0.5, for ρ fixed to 0.5

γ 0.005 0.01 0.015 0.02

UIP 38.0289 37.8576 37.6902 37.5266

Table 2 Different values of UIP
for a varying ρ and
x = log 73.9 � 4.30, z = 0,
t = 0.5, for γ fixed to 0.01

ρ 0.01 0.25 0.50 0.75 0.99

UIP 37.8699 37.8371 37.8576 37.9346 38.0639

on γ , which are summarized in Table 1, we choose x, z and t so that the difference
between the UIP for γ that varies and the UIP for γ = 0.01 is as large as possible (on
the domain of Fig. 1 with xmin = ln(21.6) and xmax = ln(73.9)). Similarly, Table 2
shows how the UIP varies with ρ. As we can see, the UIP is decreasing in γ , while
it is neither increasing, nor decreasing in ρ. The first effect is very natural, since a
higher risk aversion for the buyer is expected to induce a lower price. Concerning
ρ, one would expect a higher price as the correlation ρ with the forward market
increases (in absolute value), since this widens the hedging opportunities for the buyer.
Nevertheless, in this model also J0 (i.e., the log-value function without investing in
the structured product) depends on ρ and this seems to produce a more complicated,
non necessarily monotonic, dependence on ρ. The combined effect of γ and ρ is not
clear in general.

5.2 A more realistic example

We now focus on computing the UIP of a more realistic swing option contract, with
q = 1,

K = exp(2.5), ū = 1, T = 1, m = 0.1, M = 0.5.

Indeed, swing contracts usually have strictly positive strike price and a nonzero min-
imal cumulated quantity to be purchased. The penalty function we use is the one
in Equation (2.2) with C = 1000. We keep working under the linear dynamics
model in Example 4.6, with k = 0.01 and with parameters as in (5.2). We solve
the PDE for v using a backward time stepping finite difference method on the domain
D = [0, T ] × [xmin, xmax ] × [0, 1], where xmin = ln(0.001), xmax = ln(500).

The approximating schemes for vt , vz, vx and vxx are as in Sect. 5.1, as well as the
boundary conditions, except for x = xmin : in fact, if x = xmin the optimal operational
behavior still consists in waiting as long as possible before exercising (this is because
xmin is much smaller than the expectation of X in the long run and the price is thus
expected to increase), but now we have to take into account the constraint m = 0.1
[recall that m = 0 in Benth et al. (2012)]. Hence we set:

us =
⎧⎨
⎩
0, s ∈

(
t, T − (m−z)+

ū

]

ū, s ∈
(
T − (m−z)+

ū , T
)

.

123



Utility indifference pricing and hedging for structured…

00.10.20.30.40.53
3.5

4

20
15

35

5
04.5

10

30
25

(log) spot price cumulated quantity

00.10.20.30.40.53
3.5

4

0

20

15

10

5

4.5

(log) spot price
cumulated quantity

(a) (b)

Fig. 2 Price of one swing contract with minimal annual quantitym = 0.1 and maximal quantity M = 0.5,
a price at t = 0.5, b price at t = 0.75

With this choice of u, it is possible to explicitly compute the approximating price
(recall that in the linear dynamics model in Example 4.6 the spot price is Pt = eXt

and that ū = 1)

Et,xmin ,z

[∫ T

t
us(e

Xs − K )ds + �(eXT , Zu
T )

]

= Et,xmin ,z

[∫ T

T−(m−z)+
(eXs − K )ds + �(eXT , Zu

T )

]

as done in Benth et al. (2012), Appendix A.
In Fig. 2 we plot the price of the swing option at two different dates.
Notice that in both Fig. 2a, b we cut the domain in z in order to focus on positive

prices: for 0.5 = M < z < 1 the penalty function plays a crucial role and the price
becomes negative. We see that the UIP is decreasing in z [as in Benth et al. (2012)] and
increasing in x . Moreover, from Fig. 2b it is clear that for z > 0.25 the price is strictly
decreasing. This might be explained as follows: for a fixed value of the log spot x and
for t = 0.75, if z > 0.25 the value of the contract is lower than when z ≤ 0.25 and
it even becomes lower and lower as z increases, since the time to maturity is equal to
0.25 and so if z > 0.25 the buyer has less opportunities to exercise the option, hence
less possibilities to take advantage of (possibly) higher prices. This is analogous to
what happens with linear prices, see e.g. Basei et al. (2014).

Moreover, as an example, in Fig. 3 we show the optimal exercise strategy û at time
t = 0.75 as a function of the (log) spot price x and of the cumulated quantity z. In the
grey region û = ū, while in the white region û = 0.

FromFig. 3 it is clear that, unless the spot price is very low, if the cumulated quantity
z < m = 0.1, then it is always optimal to exercise the option, to avoid the penalty.
Furthermore, when x > 2.5, equivalently the spot price ex is bigger than the strike
price K = exp(2.5) and so the optimal policy consists in exercising the option (i.e.,
ū = 1) whenever z ∈ [0, 0.25]. On the other hand, if the spot price is higher than the
strike, x > 2.5, and if the cumulated quantity satisfies z > 0.25 then it is not optimal
to exercise the option: in the current state m < z < M , thus we are not incurring the
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Fig. 3 Optimal control û at time t = 0.75. In the grey region û = ū = 1, in the white region û = 0

-4
3

-3

1

-2

-1

0.8

0

3.5 0.6

1

0.44 0.2
4.5 0

(log) spot price cumulated quantity

Fig. 4 Candidate optimal hedging strategy ĥ1 at time t = 0.5

penalty and the more we have used of our control, the higher the spot price has to be
before we are willing to exercise.

We conclude this section by showing in Fig. 4 the candidate optimal hedging strat-
egy ĥ1 found in Eq. (3.21) as a function of the (log) spot price x and of the cumulated
quantity z, at time t = 0.5.
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We notice that, being the UIP increasing in x , vx is positive on our domain [recall
Eq. (3.21)], so that ĥ1 is always negative: in order to hedge a buyer position in a swing
option it is always “optimal” to sell the forward contract. Moreover, for a fixed z, as the
(log) spot price increases, the quantity of forward contracts to sell increases. On the
other hand, for a fixed x , π̂ is increasing as a function of z, for z ∈ [0, 0.5] (meaning
that as the cumulated quantity z increases towards M = 0.5, selling forward contracts
is less and less needed), while ĥ1 = 0 for z ≥ M = 0.5, as expected.

6 Conclusions

In this paper, we considered the problem of pricing and hedging of structured products
in energy markets from a buyer’s perspective using the (exponential) utility indiffer-
ence pricing approach. The main novelty with respect to the existing literature is that
buyer has the possibility to trade in the forward market in order to hedge the risk
coming from the structured contract.

We characterized the UIP in terms of continuous viscosity solutions of a suitable
nonlinear PDE. As a consequence, we were able to identify a candidate for the optimal
exercise strategy of the structured product as well as a portfolio strategy partially
hedging the financial position.

Moreover, in a more specific setting with two assets and constant correlation, we
showed that the UIP equals the value function of an auxiliary simpler optimization
problem under a risk neutral probability, that can be interpreted as a perturbation of
the minimal entropy martingale measure.

Finally, we provided some numerical applications in the case of swing options. In
particular, we computed the UIP price as well as the optimal exercise and hedging
strategies for a buyer of one swing option in the linear dynamics model, by solving
the corresponding nonlinear PDEs via finite difference schemes. We highlighted the
differences with respect to the classical price as in Benth et al. (2012) and discussed
some qualitative properties.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

7 Appendix 1: Proof of Proposition 3.4

Themaximisation problem (2.8) fits the setting of Section 5 in the paper Bouchard and
Touzi (2011) on weak dynamic programming principle. In particular, their Corollary
5.6 applies. More precisely, the essential ingredients in the proof of Corollary 5.6 are
the a-priori estimate (5.2) in Bouchard and Touzi (2011), the local boundedness of the
value function and the lower semi-continuity of the objective function in (t, x, y, z) for
all admissible controls. First, the a-priori estimate holds due to (2.11). Concerning the
local boundedness of the value function, it can be easily checked that in our setting the
value function is bounded since it is trivially nonpositive and, being (u, π) = (0, 0)
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an admissible strategy, we have

V (t, x, y, z; q) ≥ − 1

γ
exp

{
−γ

[
y + q inf

p∈R ((T−t)L(p, 0, 0)+�(p, 0))

]}
> −∞

since the functions L and � are bounded (cf. Assumption 2.1). Let (u, π) be an
admissible given control. Since the control is now fixed, we drop it from the notation
of the state variable at maturity and denote them as At,a

T := (Xt,x
T ,Y t,a

T , Zt,a
T ) with

a = (x, y, z), to stress the dependence on the initial data. Now consider the objective
function

[0, T ] × R
m × R × [0, ūT ] � (t, x, y, z) = (t, a) �→ E[G(At,a

T )],

where G is defined in (2.9). From the continuity of the function G and of the state
variables At,a

T with respect to the initial data (t, a), we get that G(At,a
T ) is also contin-

uous in (t, a). Moreover, notice that since L and � are bounded (ref. Assumption 2.1)
we have

|G(At,a
T )| ≤ C exp

(
−γ

(
y +

∫ T

t

〈
πs,

dFs
Fs

〉))
,

for some constantC > 0.Therefore, to prove the lower semi-continuity of the objective
function it suffices to show that the family of random variables

{
exp

(
−γ

∫ T

t

〈
πs,

dFs
Fs

〉)
: t ∈ [0, T ]

}

is uniformly integrable. We prove that they are bounded in L2 for all admissible
controls, i.e.

sup
t∈[0,T ]

E

[
exp

(
−2γ

∫ T

t

〈
πs,

dFs
Fs

〉)]
< ∞,

whichwill imply the uniform integrability. LetFt,T be the smallest filtration generated
by the Brownian increment after t and satisfying the usual conditions. Consider the
following change of measure on Ft,T :

dQt

dP
:= exp

(
−2γ

∫ T

t
π∗
s σ ∗

F (s, Xt,x
s )dWs − 2γ 2

∫ T

t
|π∗

s σ ∗
F (s, Xt,x

s )|2ds
)

,

(7.1)
which is well defined. Indeed, the boundedness of σ ∗

FσF (cf. Assumption 3.2 (iii)) and
the admissibility property (2.5) imply that supt≤s≤T E[exp(ε|π∗

s σ ∗
F (s, Xt,x

s )|2)] <

∞ for some ε > 0, hence the criterion in Liptser and Shiryaev (1977), Exam-
ple 3, Sect. 6.2.3 is fulfilled. Moreover, the change of measure (7.1) satisfies
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supt∈[0,T ] E[(dQt/dP)2] < ∞. This is a consequence of the admissibility of π as
in (2.5). Indeed,

dQt

dP
≤ exp

(
−2γ

∫ T

t
π∗
s σ ∗

F (s, Xt,x
s )dWs

)
,

giving that

E

[(
dQt

dP

)2]
≤ E

[
exp

(
−4γ

∫ T

t
π∗
s σ∗

F (s, Xt,x
s )dWs

)]

≤ E

[
exp

(
−8γ

∫ T

t
π∗
s σ∗

F (s, Xt,x
s )dWs − 2δ

∫ T

t
|π∗

s σ∗
F (s, Xt,x

s )|2ds
)]1/2

×E

[
e2δ

∫ T
t |π∗

s σ∗
F (s,Xt,x

s )|2ds
]1/2

= E

[
e2δ

∫ T
0 |π∗

s σ∗
F (s,Xt,x

s )|2ds
]1/2

,

with δ such that 2δ = (8γ )2/2, since the first exponential in the second
inequality above is a true martingale. Moreover, since π is admissible we have

E

[
e2δ

∫ T
0 |π∗

s σ ∗
F (s,Xt,x

s )|2ds
]

< ∞. As a consequence, we obtain that dQt/dP is square

integrable.
Therefore we have

E

[
exp

(
−2γ

∫ T

t

〈
πs ,

dFs
Fs

〉)]

= EQt

[
exp

(
−2γ

∫ T

t
π∗
s μF (s, Xt,x

s )ds + 2γ 2
∫ T

t
|π∗

s σ∗
F (s, Xt,x

s )|2ds
)]

≤ E

[(
dQt

dP

)2]
E

[
exp

(
−4γ

∫ T

t
π∗
s μF (s, Xt,x

s )ds + 4γ 2
∫ T

t
|π∗

s σ∗
F (s, Xt,x

s )|2ds
)]

.

Using the linear growth condition of μF and the boundedness of σ ∗
FσF [cf. Assump-

tion 3.2 (ii) and (iii)], we have

exp

(
−4γ

∫ T

t
π∗
s μF (s, Xt,x

s )ds + 4γ 2
∫ T

t
|π∗

s σ ∗
F (s, Xt,x

s )|2ds
)

≤ exp

(∫ T

0

(
c1|πs | + c2|πs |2 + c3|Xs |2

)
ds

)
,

for some positive constants c1, c2, c3. To conclude it suffices to prove that the RHS
above is integrable for P. This follows from the admissibility of π as in (2.5) and the
exponential uniform bound (2.12) for X .

Finally, even though the space of admissible controls in our setting is smaller than
the one in Bouchard and Touzi (2011), the value functions are the same since any
controls in their space U0 can be clearly approximated by admissible controls in A
through truncation. The result follows.
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8 Appendix 2: Regularity properties of the log-value function

In order to prove the next lemmawe follow closely the approach in Pham (2002),which
has also been used inMnif (2007) in a slightly differentmodelwith stochastic volatility
with jumps and for an agent with exponential utility. Since the proof mimicks closely
the arguments in Pham (2002), we only sketch them pointing out the main differences.

Lemma 8.1 Let q ≥ 0. Let Assumptions 2.1 and 2.5 hold. Under Assumption 3.2
the log-value function J (t, x, z; q) defined as in (3.1) has quadratic growth in (x, z)
uniformly in t .

Proof Since the claim Cu
t,T is bounded in (x, z) uniformly in the controls u (cf.

Assumption 2.1), it suffices to prove that J 0(t, x), the log-value function of the pure
investment problem, has quadratic growth in x uniformly in t .

First of all, repeating exactly the same arguments as in the proof of Theorem 3.1 in
Pham (2002), we get that if the PDE (3.10) with terminal condition J 0(T, x) = log γ

γ

admits a unique solution belonging to C1,2([0, T ) ×R
m) ∩ C0([0, T ] ×R

m), whose
x-derivative has linear growth, then such a solution coincides with J 0(t, x).

To conclude the proof, we need to show that the PDE (3.10) has a unique smooth
solution as above, whose x-derivative has linear growth. We adapt to our setting
the arguments in the proof of Pham (2002), Th. 4.1 under his Assumptions (H3a).
Indeed, notice that our Assumption 3.2(i), together with the Lipschitz continuity of b
postulated in Assumption 2.5 (ii), corresponds to (H3a)(i) in Pham (2002). Moreover
Assumption 3.2 (ii) implies (H3a)(i i), while Assumption 3.2 (iii) guarantees (H2)(b)
[see Remark 2.3 in Pham 2002].

Consider the PDE (3.17) in the case q = 0, with F(w) replaced by

Fk(w) := inf
α∈Bk

{
−F̃(α) − 〈α,w〉

}
, w ∈ R

m, (8.1)

where Bk is the centered ball in R
m with radius k ≥ 1. Recall that F̃ is the convex

conjugate of F and that is given by

F̃(α) = −1

2
〈α, B−1α〉, α ∈ Im(B),

while it equals−∞ otherwise. Proceeding as in the proof of Pham (2002), Th. 4.1, we
can apply Theorem 6.2 in Fleming and Rishel (1975), giving the existence of a unique
solution J 0,k ∈ C1,2([0, T ) ×R

m) ∩ C0([0, T ] ×R
m) with polynomial growth in x ,

for the parabolic PDE

J 0,kt + 1

2γ
〈(σ ∗

FσF )−1μF , μF 〉 + γ Fk(J
0,k
x ) + 1

2
tr
(
�∗� J 0,kxx

)
= 0, (8.2)

with terminal condition J 0,k(T, x) = log γ
γ

. Notice that the convex conjugate F̃ of F ,
appearing in the definition of Fk(w) in (8.1), can take the value −∞, which is not a
problem here since this value does not contribute to the infimum over α.
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The next step consists, as in Pham (2002), in using a stochastic control represen-
tation of the solution J 0,k to derive a uniform bound on the derivative, independently
of the approximation. Indeed, from standard verification arguments we get that

J 0,k(t, x) = inf
α∈Bk

E
Q
[∫ T

t
�(s, Xs, αs)ds | Xt = x

]
,

where

�(s, x, α) = 1

2γ
〈(σ ∗

FσF )−1μF , μF 〉(s, x) − γ F̃(α),

whereBk is the set ofRm-valued adapted processes α bounded by k, and the controlled
dynamics of X under Q is given by

dXs = (b̄(s, Xs) − γαs)ds + �∗(s, Xs)dW
Q
s ,

where WQ is a d-dimensional Brownian motion under Q and b̄ has been defined in
(3.7). Notice that, since� takes the value−∞ outside the image of B, then the optimal
Markov control evaluated along the optimal path α̂(s, X̂s) will lie on Im(B) a.s. for
every s ∈ [t, T ]. We can use Lemma 11.4 in Fleming and Soner (1993) and the same
estimates as in Pham (2002), Lemma 4.1 to obtain

|J 0,kx (t, x)| ≤ C(1 + |x |), ∀(t, x) ∈ [0, T ] × R
m,

for some positive constant C , which does not depend on k. Now we argue as in the
proof of Pham (2002), Th. 4.1, Case (H3a), to deduce that |α̂k(t, x)| ≤ C for all
t ∈ [0, T ] and |x | ≤ M for some positive constant C (independent of k) and an
arbitrarily large M > 0. Therefore, we get that, for k ≤ C , Fk(J

0,k
x ) = F(J 0,kx )

for all (t, x) ∈ [0, T ] × BM . Letting M tend to +∞, we finally get that J 0,k is a
smooth solution with linear growth on derivative to the PDE (3.17) (with q = 0). To
conclude, we have that J 0 = J 0,k for k sufficiently large, giving, in particular, that J 0

has quadratic growth in x uniformly in t . Therefore the proof is complete. ��

9 Appendix 3: Convergence of the numerical scheme

In this section we show that the value function obtained from the finite difference
scheme converges to v. We will follow an approach originally developed by Kushner
(1977) and based on stochastic control theory, which specifically requires that the
finite difference scheme has a Markov chain interpretation.

First of all we notice that Eq. (4.11) can be written in the form of a Bellman–Isaacs
equation, as done in the proof of Theorem 3.3 part (i):

vt + inf
α∈R sup

u∈[0,ū]

{
bα(t, x)vx + 1

2
σ 2vxx + uvz + qL + γα2

2σ 2(1 − ρ2)

}
= 0, (9.1)
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with

bα(t, x) := δ(θ − x) − ρ
σ

σ̄F
(a − kx) − γ σ 2(1 − ρ2) [β(t) + 2�(t)x] − γα,

where β(t) and �(t) can be computed explicitly as solutions of the system of ODEs
(4.10).

We now want to use the results in Barles and Souganidis (1991), or equivalently in
Fleming and Soner (1993), Ch. IX (in the spirit of Li and Song (2007)), which work
well when the min-max is taken on compact sets. To do this, we approximate infα∈R
by infα∈BR , where BR := [−R, R], R ≥ 1 (we will eventually let R go to +∞),
obtaining a finite-difference approximation of the form [see the analogous equation
(3.26) in Fleming and Soner (1993), Ch. IX]

vni, j = inf
α∈BR

sup
u∈[0,ū]

{
p1,n
α,u;i, jv

n+1
i+1, j + p2,n

α,u;i, jv
n+1
i, j + p3,n

α,u;i, jv
n+1
i−1, j

+ p4,n
α,u;i, jv

n+1
i, j+1 + �t Lα,u;i, j

}
(9.2)

where

p1,n
α,u;i, j := σ 2�t

2(�x)2
+ �t

2�x
bα(tn, xi ),

p2,n
α,u;i, j := 1 − σ 2�t

(�x)2
− u

�t

�z
,

p3,n
α,u;i, j := σ 2�t

2(�x)2
− �t

2�x
bα(tn, xi ),

p4,n
α,u;i, j := u

�t

�z
,

Lα,u;i, j := L(exi , z j , u).

Notice that above quantities can be interpreted as the one-step transition probabilities
of, respectively, going up, nowhere or down in x and up in z, when at time tn the
processes (X, Z) is in the state (xi , z j ): more explicitly, e.g.,

p1,n
α,u;i, j = P(Xtn+1 = xi+1, Ztn+1 = z j |Xtn+1 = xi , Ztn+1 = z j ),

and the other ones can be written analogously. Hence, we are dealing with a Markov
chain approximation of the state variable. Notice that the sum of the above four prob-
abilities is equal to one.

For thisMarkov chain approximation to be rigorous, wemust impose that pi,n
α,u;i, j ∈

[0, 1] for every i ∈ {1, 2, 3, 4} and for n ∈ {0, . . . , N − 1} and for all possible states
i, j and controls u, α.

Taking into account that the domain in (x, z) is bounded and α, u are also taken to
be valued in a compact domain, the two conditions p1,n

α,u;i, j ≤ 1 and p3,n
α,u;i, j ≤ 1 are
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satisfied as soon as �t is small enough, since they read, respectively:

σ 2

2(�x)2
+ bα(tn, xi )

2�x
≤ 1

�t
,

σ 2

2(�x)2
− bα(tn, xi )

2�x
≤ 1

�t
,

while imposing p1,n
α,u;i, j ≥ 0 and p3,n

α,u;i, j ≥ 0 yields

|bα(tn, xi )| ≤ σ 2

�x
,

which has to hold true for every control α, every n and every state xi , so that we find

�x ≤ σ 2

supα ‖bα‖∞
. (9.3)

Moreover p2,n
α,u;i, j is always smaller than 1, while asking its non-negativity gives as

necessary and sufficient condition

1

�t
≥ σ 2

(�x)2
+ u

�z
, (9.4)

which implies the well-known Courant-Friedrichs-Lewy condition u�t ≤ �z [also
present in Benth et al. (2012)] implying in turn p4,n

α,u;i, j ≤ 1. Finally, p4,n
α,u;i, j is always

positive. We are now ready to verify the conditions of monotonicity, stability and con-
sistency required by the framework inBarles and Souganidis (1991),which correspond
to assumptions (4.3)–(4.6) in Fleming and Soner (1993), Ch. IX. We proceed as done
in Fleming and Soner (1993), Ch. IX, Example 4.1. The monotonicity is automatically
given by the Markov chain interpretation in Eq. (9.2). The stability is implied by the
same equation (which also has a unique solution) and by the fact that L and � are
bounded on the bounded domain: in fact, one can easily prove by backward induction
on n that

|vni, j | ≤ sup
α∈BR

sup
u∈[0,ū]

(T − tn)‖Lα,u‖∞ + ‖�‖∞ ≤ sup
u∈[0,ū]

T ‖L(·, ·, u)‖∞ + ‖�‖∞,

(9.5)
where in the last inequality we have used the fact the Lα,u does not depend on α and
where the upper bound is uniform in i, j and in the discretization step �t . Finally,
the consistency property holds because the finite differences converge uniformly on
compact sets to the corresponding derivatives (see, e.g., Fleming and Soner 1993,
Theorem 4.2 and remember that we are working under the linear dynamics model and
in the case of swing contracts). So we now have the solution vR to Equation (9.1)
where infα∈R is replaced by infα∈BR . Because of the stochastic game interpretation
of this equation [as in Barles and Souganidis (1991)], letting R → +∞ gives that the
sequence (vR)R≥1 decreases pointwise and, by Eq. (9.5), it is bounded uniformly in α

(here Lα,u does not depend on α). Thus it admits a finite limit, v, which is the solution
to Eq. (9.1).
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