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Abstract: Threshold models have been popular for modelling nonlinear phenomena

in diverse areas, in part due to their simple fitting and often clear model interpre-

tation. A commonly used approach to fit a threshold model is the (conditional)

least squares method, for which the standard grid search typically requires O(n)

operations for a sample of size n; this is substantial for large n, especially in the

context of panel time series. This paper proposes a novel method, the nested sub-

sample search algorithm, which reduces the number of least squares operations

drastically to O(logn) for large sample size. We demonstrate its speed and relia-

bility via Monte Carlo simulation studies with finite samples. Possible extension to

maximum likelihood estimation is indicated.

Key words and phrases: Least squares estimation, maximum likelihood estima-

tion, nested sub-sample search algorithm, standard grid search algorithm, threshold

model.

1. Introduction

Threshold models have attracted much attention and been widely used to

model nonlinear phenomena in such diverse areas as ecology, economics, finance,

and others. Their success is partly due to their simple fitting and often clear

interpretation. Threshold models are typically characterized by piecewise lin-

earization via partitioning a complex system into regimes by some threshold (or

covariate) variable, thereby providing a relatively easy-to-handle approximation

of a complex system. When the model within each regime is a linear regression,

we have the well-known two-phase regression of Quandt (1958). On the other

hand, when the model within each regime is a linear autoregression, we have

the well-known threshold autoregressive (TAR) model of Tong (1978), includ-

ing the self-exciting threshold autoregressive model and its smooth cousin, the

smooth threshold (or transition) autoregressive model, as special cases. See also

Tong and Lim (1980), Chan and Tong (1986), Tong (1990), and the references

therein. Recently Hansen (2011) has provided a fairly comprehensive review of

the impacts of TAR models on econometrics and economics by reference to 75

influential papers published in the literature. Chen, So, and Liu (2011) has

http://dx.doi.org/10.5705/ss.2013.394t
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provided a similar review of the impacts on finance. More recently, Chan,

Yau, and Zhang (2015) has adopted the LASSO method to estimate TAR mod-

els with multiple thresholds, with promising results. A concise overview of the

history and prospects of threshold models is given by Tong (2011).

As far as theoretical results are concerned, much progress has been in two-

phase regression since Quandt (1958), and in TAR models since Tong (1978).

For the former, see, e.g., Bacon and Watts (1971), Goldfeld and Quandt (1972),

Maddala (1977), Quandt (1983), and others. For the latter, see, e.g., Chan

(1993), who first showed that the least squares estimator (LSE) of the threshold

parameter is super-consistent and obtained its limiting distribution theoretically;

Hansen (1997, 2000), who presented an alternative approximation to the limiting

distribution of the estimated threshold when the threshold effect diminishes as

the sample size increases; Gonzalo and Pitarakis (2002), who developed a se-

quential estimation approach that makes the estimation of multiple threshold

models computationally feasible and formally discussed the large sample prop-

erties; Li and Ling (2012), who established the asymptotic theory of LSE in

multiple threshold models and proposed a resampling method for implementing

the limiting distribution of the estimated threshold directly when the thresh-

old effect is fixed. Other significant results related to threshold models include

Tsay (1989, 1998), Hansen (1996), Caner and Hansen (2001), Gonzalo and Wolf

(2005), Seo and Linton (2007), and Yu (2012), among others.

Despite the theoretical progress in threshold models, computational issues

are somewhat lacking behind, which hinders wider practical applications. A key

issue is computational cost.

A commonly used approach to fit a threshold model is the (conditional) least

squares method. When the threshold is known, the threshold model is piecewise

linear in the remaining parameters and thus linear estimation techniques can be

applied. However, when the threshold is unknown, the ordinary least squares

method for linear regression cannot be applied immediately since the threshold

parameter lies in an indicator function. This issue has been commonly tackled by

using the single grid search (SGS) algorithm over a feasible threshold space; see

Tong and Lim (1980), Chan (1993), Hansen (1997, 2000), Gonzalo and Pitarakis

(2002), Li and Ling (2012), Yu (2012), and others. The SGS algorithm requires

least squares operations of order O(n) for single threshold models, where n is

the sample size. If n is small, the SGS algorithm can be effectively used to

search for the estimate of the threshold over a set of threshold candidates by

enumeration. However, when n is large, this algorithm can be rather time-

consuming. The situation is worse when we wish to fit threshold models to a panel

of observations. Gonzalo and Wolf (2005) considered subsampling inference of

threshold models and massive computations are needed in the choice of the block
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size. Similarly, massive computations are also needed in bootstrap estimation

of single threshold models in Seijo and Sen (2011). In practice, a conventional

numerical approach for threshold modelling incurs inevitably high cost with large

samples. For example, about np3 least squares operations are needed when fitting

a threshold model with p covariates to data with sample size n. To illustrate, if

n is 1,000 and p is 10, then we need about one million least squares operations.

Thus, it is crucially important to find ways to reduce the computational cost

when fitting a threshold model for large n.

In the time series literature, Tong (1983, Appendix A10) proposed and later

Tsay (1989) re-discovered the SGS approach based on the rearranged technique,

that essentially turns threshold estimation into a change-point problem of the

associated order statistics obtained from the observations. See also Ertel and

Fowlkes (1976). This method is now available by calling the function tar in

the package TSA in R; see Chan and Ripley (2012). For threshold regression

models, the SGS algorithm is available by calling the program in R developed by

Hansen (2000) on the website: http://www.ssc.wisc.edu/~bhansen/progs/

ecnmt_00.html. Wu and Chang (2002) proposed a genetic algorithm for TAR

models. However, this algorithm has many limitations, as recognised by the above

authors, so it is not widely used. Coakley, Fuertes, and Pérez (2003) presented

an algorithm based on the QR decomposition of matrices for a particular class of

TAR models (called the band-type TAR model). For general threshold models,

it is fair to say that the SGS algorithm remains to-date the most commonly

adopted technique in practice due to its simplicity and reliability, although it is

time-consuming for large n.

In this paper, we propose the nested sub-sample search algorithm, or the

NeSS algorithm for brevity, to produce a much faster search that is reliable

in the context of threshold estimation. Compared with existing algorithms, the

NeSS algorithm reduces the computational cost drastically, from O(n) to O(log n)

least squares operations for large sample size. The idea is simple. We shrink the

nested feasible set step by step and finally maximize Jn(r) in (2.4) over a small

feasible set by enumeration so that it is expected to save computational costs.

The performance of our method is evaluated via Monte Carlo simulation studies

in finite samples.

The remainder of the paper is organized as follows. Section 2 addresses the

model and estimation issues. Section 3 presents our new algorithm. Section 4

evaluates the performance of our algorithm via Monte Carlo simulation studies

and Section 5 concludes the paper.

http://www.ssc.wisc.edu/~bhansen/progs/ecnmt_00.html
http://www.ssc.wisc.edu/~bhansen/progs/ecnmt_00.html
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2. Model and Least Squares Estimation

Consider the threshold stochastic regression model

yt = β′
1xtI(zt ≤ r) + β′

2xtI(zt > r) + εt, (2.1)

where xt = (1, xt1, . . . , xtp)
′, I(·) is the indicator function, zt is the threshold

variable that controls regime switching according to the value of the threshold r,

and β1 and β2 are the coefficients. The innovation εt is a real-value martingale

difference with respect to an increasing sequence of σ-fields Ft generated by

{(xj+1, zj+1, εj) : j ≤ t}. Let θ = (β′
1,β

′
2, r)

′ denote the parameter, with true

value θ0 = (β′
10,β

′
20, r0)

′. Throughout, r is assumed to lie in the bounded subset

[r, r̄] and β10 ̸= β20.

We introduce some notation. Let y = (y1, . . . , yn)
′, ε = (ε1, . . . , εn)

′, z =

(z1, . . . , zn)
′ and I(a < z ≤ b) = (aij)n×(p+1)

with aij = I(a < zi ≤ b). Write

X = (x1, . . . ,xn)
′, X1(r) ≡ X∗I(z ≤ r) (i.e., a = −∞) and X2(r) ≡ X∗I(z > r)

(i.e., b = ∞), where ‘∗’ denotes the Hadamard product operator of matrices.

Then, (2.1) can be reformulated in matrix form as

y = X1(r)β1 +X2(r)β2 + ε. (2.2)

Given the sample (y,X, z), our aim is to estimate θ. For each fixed r, (2.2)

is linear in βi’s and the application of the ordinary least squares principle yields

the sum of squared errors function

Sn(r)=y′y−y′X1(r)(X1(r)
′X1(r))

−1X1(r)
′y−y′X2(r)(X2(r)

′X2(r))
−1X2(r)

′y,

from which r can be estimated as

r̂ = arg min
r∈[r, r̄]

Sn(r). (2.3)

For convenience, we consider an alternative objective function

Jn(r) = Sn − Sn(r), (2.4)

where Sn=y′y−y′X(X′X)−1X′y. Note that X=X1(r)+X2(r) and Xi(r)
′Xj(r)

≡ 0 for i ̸= j ∈ {1, 2}. After simple calculations, it follows that

Jn(r) = (β̂2(r)− β̂1(r))
′X2(r)

′X2(r)(X
′X)−1X1(r)

′X1(r)(β̂2(r)− β̂1(r)),

where β̂j(r) = (Xj(r)
′Xj(r))

−1Xj(r)
′y for j = 1, 2. Now, (2.3) is equivalent to

r̂ = arg max
r∈[r, r̄]

Jn(r). (2.5)
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To quickly obtain r̂, we explore the shape of the limit of Jn(r), which provides

some useful information in seeking r̂. If Assumptions A.1−A.2 in the Appendix

hold, by Lemma 2.1 with m = 1 in Gonzalo and Pitarakis (2002), it follows that

sup
r∈[r, r̄]

∣∣∣Jn(r)
n

− J(r)
∣∣∣ p−→ 0, (2.6)

where J(r) is a non-stochastic continuous function over [r, r̄] defined by

J(r) =(β10 − β20)
′{Gr∧r0G

−1
r + (Gr∧r0 −Gr0)(G−Gr)

−1}(G−Gr)G
−1Gr

× {G−1
r Gr∧r0 + (G−Gr)

−1(Gr∧r0 −Gr0)}(β10 − β20),

with G and Gx defined in the Appendix. Furthermore, J(r) is unimodal, strictly

monotonically increasing in [r, r0] and strictly monotonically deceasing in [r0, r̄].

Thus, we conclude that Jn(r)/n is unimodal over [r, r̄] with probability tending

to one as n → ∞, which implies that Jn(r)/n may be unimodal over the set

{k△ : k ∈ Z} ∩ [r, r̄] for some suitable △ > 0. This provides useful information

for seeking the maximizer of Jn(r).

It is well known in numerical analysis that the Fibonacci algorithm is optimal

for optimizing deterministic unimodal functions. It is natural to expect that there

exists similar algorithms for optimizing Jn(r), at least for large sample size.

3. Nested Sub-sample Search Algorithm

Suppose the sample (y, X, z) is available. We have Jn(r) = Jn(z(i)) for

r ∈ [z(i), z(i+1)), where z(1) ≤ · · · ≤ z(n) is the order statistics of {z1, . . . , zn}.
We adopt the approach of Tong and Lim (1980) by considering the empirical

percentiles as candidates for the threshold values. The SGS algorithm maximizes

Jn(r) at (2.4) over the feasible set {z(1), . . . , z(n)} by enumeration. To get the

global maximizer of Jn(r), the required number of least squares operations is n.

Now, we propose a new algorithm and call it the nested sub-sample search

(NeSS) algorithm since the feasible set shrinks by a half after each iteration.

The idea is simple. We shrink the nested feasible set step-by-step and finally

maximize Jn(r) over a small feasible set by enumeration so that it is expected to

save computational costs. Specifically, suppose the initial feasible set is D0 ≡
{z(1), . . . , z(n)}. We first maximize Jn(r) over {z(k0), z(2k0), . . . , z(qk0)}, where

k0 = [#D0/(q + 1)] and [a] is the largest integral part of a. Then we get

the maximizer z(j0k0) for some j0 ∈ {1, . . . , q} and a new feasible set D1 ≡
(z((j0−1)k0), z((j0+1)k0))∩D0. Repeat the procedure above by updating the feasible

set. After m steps, we get a feasible set Dm = (z((jm−1−1)km−1), z((jm−1+1)km−1))∩
D0 that contains [2mn/(q+1)m] candidates out of {z(1), . . . , z(n)}, where km−1 =

[#Dm−1/(q + 1)] and all ji ∈ {1, . . . , q}. Figure 1 illustrates the procedure.
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Figure 1. An illustration of the NeSS algorithm.

Unlike deterministic unimodal functions, due to its randomness, Jn(r) may not

be unimodal over the set {z(km), z(2km), . . . , z(qkm)} ⊂ Dm if km = #Dm is small,

although J(r) is unimodal. Thus, we must use the enumeration method to max-

imize Jn(r) over Dm for some m. If, in the last step of maximizing Jn(r), the

required number of least squares operations is not larger than δ, which is a pre-

assigned positive integer, [2mn/(q + 1)m] ≤ δ, then the number m of iterations

satisfies

m ≥ log(n/(δ + 1))

log((q + 1)/2)
.

Thus, the total required number of least squares operations is about

mq +
[ 2mn

(q + 1)m

]
=

q

log((q + 1)/2)
log

( n

δ + 1

)
+ δ. (3.1)

Since the minimizer of q/ log((q + 1)/2) in (3.1) over the set of positive integers

is 3, we take q = 3. As for the choice of δ, if it is set small, then we may not

get the global maximizer of Jn(r) since the randomness of Jn(r) can obscure the

unimodality such that Dm+1 does not cover the global maximizer. Empirically,

we can set δ = 50 when the sample size n ≥ 200. If the sample size is less

than 200, we can directly use the SGS algorithm to get the estimate r̂ since the

computational cost is not high in this case. Figure 2 gives the total required
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Figure 2. The total required number of least squares operations in (3.1).

number of least squares operations in (3.1) after taking the ceiling function when

δ = 50 and the sample size varies from 100 to 10,000.

Summarizing the above discussion, we have the following algorithm.

NeSS algorithm

Given the initial feasible set D = {z(1), . . . , z(n)}
while (#D > δ){

calculate q=quantile(D, c(0.25, 0.5, 0.75)) and Jn(q[i]) for i = 1, 2, 3;
if (Jn(q[1]) ≥ max{Jn(q[2]), Jn(q[3])})
D ← D[D ≤ q[2]]

else if (Jn(q[2]) ≥ max{Jn(q[1]), Jn(q[3])})
D ← D[q[1] ≤ D ≤ q[3]]

else
D ← D[D ≥ q[2]]

}
Maximizing Jn(r) over D and then getting r̂.

Generally, #D obtained in the last iteration is less than δ so that it is possible

that there are not enough data for us to get the genuine global estimate r̂. For

example, suppose we set δ = 50 and D = {z(51), . . . , z(120)} in the penultimate

step. Clearly, #D = 70 > δ. Then we further shrink the feasible set according

to the above algorithm and get the final feasible set Do = {z(68), . . . , z(103)}
say, with #Do = 36. For this case, we had better extend Do both forward

and backward equally so that #Do = δ. For example, Do can be extended to

D∗ = {z(61), . . . , z(110)}.
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Table 1. Total elapsed time (in seconds) for 100 replications.

Model n 200 400 800 1,600 3,200
Model (4.1) tar 6.46 12.31 24.23 48.88 100.93

NeSS 1.34 2.05 3.48 6.52 15.13
Model (4.2) SGS 2.62 6.26 20.62 61.90 211.62

NeSS 0.83 1.11 2.28 3.00 5.52

Finally, we mention that the Fibonacci algorithm is not optimal for opti-

mizing Jn(r) due to the randomness of the latter. For the Fibonacci algorithm,

q = 2 is enough, two golden points for each iteration, while q = 3 is required in

our NeSS algorithm.

4. Simulation Studies

To assess the performance of our algorithm in finite samples, we conducted

simulation studies, using sample size n = 200, 400, 800, 1,600 and 3,200 for the

model

yt =

{
1− 0.3yt−1 + 0.5yt−2 + εt, if yt−2 ≤ 1,

−1 + 0.6yt−1 − 0.3yt−3 + εt, if yt−2 > 1,
(4.1)

and the model

yt =

{
0.5xt1 + 1.2xt2 + εt, if xt1 ≤ 1,

−0.5xt1 + 0.7xt2 + εt, if xt1 > 1,
(4.2)

where (xt1, xt2)
′ ∼i.i.d. N(0,Σ) with

Σ =

(
4 7

7 25

)
and independent of {εt}. In all simulations, the innovation εt ∼i.i.d. N(0, 1). The

program1 is written in R. For threshold regression models, we used the program

in R by Hansen (2000) mentioned before. For TAR models, the SGS algorithm

is available by calling the function tar in the package TSA in R; see Chan and

Ripley (2012).

Table 1 reports the total elapsed times in optimizing Jn(r) for model (4.1)

by tar and our algorithm with 100 replications, as well as those for model (4.2)

by the SGS. Here, we search for the estimate of r0 within the 90% inner sample

range and set δ = 50. From Table 1, we can see that the NeSS algorithm saves

substantial time when the sample size is large.

To examine whether the NeSS algorithm and the SGS algorithm can produce

an identical global maximizer of Jn(r) or not, we define the matching rate as the

1The program is run on a personal computer with a 3.30GHz Intelr Core(TM)i3-3220 CPU, 4GB
RAM and 64-bit Operating system.
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Table 2. Matching rate in 1,000 replications.

Model 200 400 800 1,600 3,200
Model (4.1) 0.999 1.000 1.000 1.000 1.000
Model (4.2) 1.000 1.000 1.000 1.000 1.000

ratio of the total numbers of times that the two algorithms produce the same

maximizer to one thousand in 1,000 replications. The matching rates are reported

in Table 2. From Table 2, we can see that the NeSS algorithm and the SGS have

identical matching rates when the sample size n ≥ 200. We also did simulations

for n = 100. For model (4.2), the matching rates are both still 1. However, for

model (4.1), the matching rate is 0.992 for NeSS. Of course, when n < 200, we

can use either the SGS algorithm or the tar directly since the computational

cost is not high. For this case, we do not recommend NeSS because it does not

have any advantage in reliability.

Finally, when the threshold is not identified or the threshold effect is very

small, the matching rate drops considerably. For example, it is only 0.451 for

n = 200 for the AR(2) model

yt = 1 + 0.3yt−1 − 0.5yt−2 + εt, {εt}
i.i.d.∼ N(0, 1).

This is not surprising because the limit of Jn(r)/n is zero in probability, which

cannot provide any useful information for our algorithm. In addition, when the

proportion of observations in one regime to the whole is less than 5%, the esti-

mator of threshold obtained by either the SGS algorithm or the NeSS algorithm

may not be reliable since the usual choice of 90% inner sample range may have

ruled out the genuine maximizer of Jn(r).

5. Concluding Remarks

This paper has developed a new algorithm that can search for an estimate of

the threshold parameter within the framework of threshold stochastic regression

models, at a substantially faster rate than all existing algorithms that we are

aware of and with demonstrable reliability.

In the literature, the maximum likelihood estimation (MLE) and the least

absolute deviations estimation (LADE) are also considered for threshold models.

Usually they are obtained by the SGS algorithm; see, e.g., Caner (2002), Samia

and Chan (2011), and Yu (2012). As a referee has pointed out, our NeSS al-

gorithm can be extended to the nonlinear optimization problem associated with

maximum likelihood estimation; our numerical experimentations have lent sup-

port to his/her observation. Moreover, the NeSS algorithm can be applied to

T-CHARM of Chan et al. (2014) and the multivariate threshold models studied

by Tsay (1998).
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For multi-threshold stochastic regression models (e.g., Ertel and Fowlkes

(1976), Liu, Wu, and Zidek (1997), Gonzalo and Pitarakis (2002), Li and Ling

(2012)), we can use the NeSS algorithm to obtain a sequential estimate of multiple

thresholds, one at a time, by the NeSS algorithm. However, it is known that the

limiting distribution of such a sequential estimate is different from that of a joint

estimate. If our particular interest is in getting a joint estimate of all thresholds,

then how to reduce the computational burden remains a challenge.
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Appendix

In this section, we give two assumptions for (2.6) holding.

Assumption A.1.

(i) The minimum eigenvalues of (1/n)X′
ηXη and (1/n)X̄′

ηX̄η are bounded away

from zero in probability as n → ∞ for any η > 0, where Xη = X ∗ I(r0− η <

z ≤ r0) and X̄η = X ∗ I(r0 < z ≤ r0 + η).

(ii) The threshold variable zt has a positive density on [r, r̄].

Assumption A.2. As n → ∞,

(i) sup
r∈R

∣∣ 1
nX1(r)

′X1(r0)−Gr∧r0
∣∣ p→ 0,

(ii) sup
r∈R

∣∣ 1
nX2(r)

′X2(r0)− {(G−Gr)− (Gr0 −Gr∧r0)}
∣∣ p→ 0,

(iii) sup
r∈R

(∣∣ 1
nX1(r)

′ε
∣∣+ ∣∣ 1

nX2(r)
′ε
∣∣) p→ 0,

where Gx is a symmetric and positive-definite matrix, which is absolutely con-

tinuous and strictly increasing in x, with G−∞ ≡ 0 and G∞ ≡ G, and r ∧ r0 =

min{r, r0}.

Assumption A.1 requires that there are enough observations in the neigh-

bourhood of the threshold r0 so that it is identifiable. Assumption A.2 is a

type of condition related to the uniform law of large numbers, which holds if
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{(xt, zt, εt)} is strictly stationary and ergodic with finite second moment and zt
has a continuous distribution. See, e.g., Lemma 1 in Hansen (1996). In partic-

ular, if (2.1) is specialized to a self-exciting TAR model, with {yt} strictly sta-

tionary and ergodic with a continuous and positive density on R and Ey2t < ∞,

then Assumptions A.1 and A.2 hold with Gx = E{yt−1y
′
t−1I(yt−d ≤ x)} and

yt−1 = (1, yt−1, . . . , yt−p)
′; see Chan (1990, 1993).

References

Bacon, B. W. and Watts, D. G. (1971). Estimating the transition between two intersecting

straight lines. Biometrika 58, 525-534.

Caner, M. (2002). A note on least absolute deviation estimation of a threshold model. Econom.

Theory 18, 800-814.

Caner, M. and Hansen, B. E. (2001). Threshold autoregression with a unit root. Econometrica

69, 1555-1596.

Chan, K. S. (1990). Testing for threshold autoregression. Ann. Statist. 18, 1886-1894.

Chan, K. S. (1993). Consistency and limiting distribution of the least squares estimator of a

threshold autoregressive model. Ann. Statist. 21, 520-533.

Chan, K. S., Li, D., Ling, S. and Tong, H. (2014). On conditionally heteroscedastic AR models

with thresholds. Statist. Sinica 24, 625-652.

Chan, K. S. and Ripley, B. (2012). TSA: Time Series Analysis. R package version 1.01, URL

http://cran.r-project.org/web/packages/TSA/.

Chan, K. S. and Tong, H. (1986). On estimating thresholds in autoregressive models. J. Time

Series Anal. 7, 179-190.

Chan, N. H., Yau, C. Y. and Zhang, R. M. (2015). LASSO estimation of threshold autoregressive

models. J. Econometrics 189, 285-296.

Chen, C. W. S., So, M. K. P. and Liu, F. C. (2011). A review of threshold time series models

in finance. Stat. and Its Interface 4, 167-182.
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