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ABSTRACT

Signals with irregular sampling structures arise naturally in many fields. In applications such as spectral
decomposition and nonparametric regression, classical methods often assume a regular sampling pattern,
thus cannot be applied without prior data processing. This work proposes new complex-valued analysis
techniques based on the wavelet lifting scheme that removes “one coefficient at a time.”Our proposed lifting
transform can be applied directly to irregularly sampled data and is able to adapt to the signal(s)’ character-
istics. As our new lifting scheme produces complex-valued wavelet coefficients, it provides an alternative to
the Fourier transform for irregular designs, allowing phase or directional information to be represented. We
discuss applications in bivariate time series analysis, where the complex-valued lifting construction allows
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for coherence and phase quantification. We also demonstrate the potential of this flexible methodology
over real-valued analysis in the nonparametric regression context. Supplementary materials for this article

are available online.

1. Introduction

Since the early nineties, wavelets have become a popular tool for
nonparametric regression, statistical image processing, and time
series analysis. In particular, due to their natural localization,
wavelets can provide sparse representations for certain functions
that cannot be represented efficiently using Fourier sinusoids.
Reviews of the use of wavelets in statistics include Nason (2008)
and Abramovich, Bailey, and Sapatinas (2000).

Until recently, the majority of work in the statistical literature
has been based on the discrete wavelet transform (DWT). How-
ever, classical wavelet methods suffer from some limitations; in
particular, usage is restricted to data sampled at regular time or
spatial locations, and a dyadic data dimension is often imposed.
Wavelet lifting (Sweldens 1996) can be used to overcome many
of the shortcomings of the standard DWT. Specifically, wavelet
functions obtained through the wavelet lifting scheme provide
an extension of classical wavelet methods to more general set-
tings, such as irregularly sampled data.

On the other hand, it is now well-established that complex-
valued data analysis tools can extract useful information that is
potentially missed when using traditional real-valued wavelet
techniques, even for real-valued data, see, for example, Lina and
Mayrand (1995); Fernandes et al. (2003); Selesnick, Baraniuk,
and Kingsbury (2005). In particular, using complex-valued
multiscale methods has been advantageous in a range of sta-
tistical applications such as nonparametric regression (Barber
and Nason 2004), image processing (Kingsbury 1999; Portilla

and Simoncelli 2000), and time series analysis (Magarey
and Kingsbury 1998; Kingsbury 2001).

Complex-valued multiscale techniques building upon the
lifting scheme as introduced by Sweldens (1996) have been
introduced in the literature by Abbas and Tran (2006), who
briefly investigated their proposed technique in the image
denoising context, and by Shui, Bao, and Tang (2003), who
focused on the design of complex filters with desired band-pass
properties.

This article introduces a new adaptive complex-valued
wavelet lifting scheme built upon the lifting “one coefficient at a
time” (LOCAAT) framework of Jansen, Nason, and Silverman
(2001, 2009). A nondecimated variant of the proposed trans-
form, which allows for an overcomplete representation of such
data is also introduced. The added benefits of our methodology
are: (i) flexibility—it can be applied to irregularly sampled grids
of (possibly) nondyadic length; (ii) information augmentation—
through the complex-valued wavelet coefficients, the scheme
exploits additional signal information not used by real-valued
transforms; and (iii) applicability—it allows for the analysis of
bivariate nonstationary signals with possibly different (irregu-
lar) sampling structures, previously not directly possible using
methods currently in the literature.

We demonstrate the benefits of our new technique for spec-
tral estimation of irregularly sampled time series, with a partic-
ular focus on coherence and phase quantification for irregularly
sampled bivariate time series. In this context, the methodology
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can be viewed as a wavelet lifting analog to the Fourier transform
and can be used for the same purposes. The good performance
of our method is also displayed in the nonparametric regression
setting.

The article is organized as follows. Section 2 introduces the
new complex-valued lifting algorithm, including its overcom-
plete variant. Section 3 details the application of the complex-
valued lifting algorithm to discover local frequency content of
irregularly sampled uni- and bivariate time series. Section 4
tackles nonparametric regression for (real-valued) signals.

2. The Complex-Valued Lifting Scheme

The lifting scheme (Sweldens 1996) was introduced as a flexible
way of providing wavelet-like transforms for irregular data. Lift-
ing bases are naturally compactly supported, and via the recur-
sive nature of the transform, one can build wavelets with desired
properties, such as vanishing moments. In addition, lifting algo-
rithms are known to be computationally faster than traditional
wavelet transforms since they require fewer computations com-
pared with classical transforms. For an overview of the lifting
scheme, see Schroder and Sweldens (1996) or Jansen and Oon-
incx (2005).

In this section, we introduce a complex-valued lifting scheme
for analyzing irregularly sampled signals. The proposed lifting
scheme can be thought of as a wavelet lifting analog to the
Fourier transform. An irregularly sampled signal is decomposed
into a set of complex-valued wavelet (or detail) coefficients, rep-
resenting the variation in the data as a function of location and
wavelet scale (comparable to Fourier frequency).

In a nutshell, the scheme can be conceptualized in two
branches: one branch of the transform provides the real-valued
part of the detail coefficient and the second branch represents
the imaginary component. Hence by using two different (real-
valued) lifting schemes, one obtains a complex-valued decom-
position, akin to the dual-tree complex wavelet transform of
Kingsbury (2001). However, our approach differs from that of
Kingsbury (2001) in that it employs two lifting schemes linked
through orthogonal prediction filters, rather than two separate
DWTs. The new scheme is therefore able to extract information
from signals via the two filters while also naturally coping with
the irregularity of the observations. Our approach also differs
fundamentally from the complex-valued lifting techniques cur-
rently in the literature (Shui, Bao, and Tang 2003; Abbas and
Tran 2006) through the particular filter construction we pro-
pose (Section 2.2) in conjunction with the lifting construction
that removes “one coefficient at a time” (Section 2.1). This allows
us to embed adaptivity in our complex-valued multiscale setup,
that is, construct wavelet functions whose smoothness adjusts to
the local properties of the signal.

In what follows we introduce the proposed scheme using an
abstract choice of real and imaginary filters, and the subject of
filter choice is deferred until Section 2.2, while an overcomplete
version of the complex-valued lifting transform is introduced in
Section 2.3.

2.1 The Algorithm

Suppose a function f(-) is observed at a set of n irregularly
spaced locations, x = (xi, ..., x,). The proposed lifting scheme
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aims to decompose the data collected over the irregularly sam-
pled grid, {(x;, fi = f(x;))},, into a set of R smooth coeffi-
cientsand (n — R) complex-valued detail coefficients, with R the
desired resolution level. The quantity R is akin to the primary
resolution level in classical wavelet transforms, see Hall and Patil
(1996) for more details.

We propose to construct a new complex-valued transform
that builds upon the LOCAAT paradigm of Jansen, Nason, and
Silverman (2001, 2009), shown to efficiently represent local sig-
nal features in the fields of nonparametric regression (Nunes,
Knight, and Nason 2006; Knight and Nason 2009) and spectral
estimation (Knight, Nunes, and Nason 2012). We shall there-
fore refer to our proposed algorithm under the acronym C-
LOCAAT.

Similar to the real-valued LOCAAT algorithm, C-LOCAAT
can be described by recursively applying three steps: split, pre-
dict, and update, which we detail below. At the first stage (1) of
the algorithm, the smooth coefficients are setas ¢, x = f, the set
of indices of smooth coefficients is S, = {1, ..., n} and the set of
indices of detail coeflicients is D,, = @. The (irregular) sampling
is described using the distance between neighboring observa-
tions, and at stage n we define the span of xi as s, j = =55
The sampling irregularity is intrinsically linked to the notion
of wavelet scale, which in this context becomes continuous, as
opposed to dyadic in the classical wavelet settings; this results in
each coefficient having an associated scale across a continuum.
This aspect will be discussed in detail following the introduction
of the C-LOCAAT algorithm.

In the split step, a point j, to be lifted is chosen. Typi-
cally, points from the densest sampled regions are removed
first, but other predefined removal choices are also possible (see
Section 2.3). We shall often refer to the removal order as a
trajectory.

In the predict step, the set of neighbors (J,) of the point
jn is identified and used to estimate the value of the function
at the selected point j,. In contrast to real-valued LOCAAT
algorithms, this is achieved using two prediction schemes, each
defined by its respective filters, L and M. The filter L corresponds
to estimation via regression over the neighborhood, as is usual
in LOCAAT. To extract further information from the signal, our
proposal is to construct the second filter (M) orthogonal on L,
to ensure that it exploits further local signal information to the
filter L. Section 2.2 discusses this in detail.

The prediction residuals from using the two filters are given
by

i, =g, — > Mens, (1)
i€y
I'Ljn = m;lncn’jn - ZWZ?Cn,i, (2)
i€y

where {I'}ic;,u(;,) and {m}ics,u(j,) are the prediction weights
associated with L and M.

The complex-valued detail (wavelet) coeflicient we propose
is obtained by combining the two prediction residuals

dj, = Aj, +ipj,. (3)
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In the update step, the smooth coeflicients {c, ;}ic;, and spans of
the neighbors {s, ;};c;, are updated according to filter L:

1
Cn—1,i = Cn,i + b,‘ )Lj,,,

Sn—1,i = Sn,i + llnsn,jy, Vi e ]nv (4)

where b are update weights. In practice, the update weights are
chosen such that the mean of the series is preserved through-
out the transform, thus preserving the characteristics of the
original series (Jansen, Nason, and Silverman 2009). One such
choice is to set b} = (s, j,54—1.)/ (X_;e;, Sa_1.))- The neighbors’
spans update accounts for the modification to the sampling grid
induced by removing one of the observations. Updating accord-
ing to the L filter only ensures that there is a unique coarsen-
ing of the signal for both the real and imaginary parts of the
transform.

The observation j, is then removed from the set of smooth
coeflicients, hence after the first algorithm iteration, the index
set of smooth and detail coefficients are S,_; = S,\{j.} and
D,_y = {ju}, respectively. The algorithm is then iterated until
the desired primary resolution level R has been achieved. In
practice, the choice of the primary level R in LOCAAT lifting
schemes is not crucial provided it is sufficiently low (Jansen,
Nason, and Silverman 2009), with R =2 recommended by
Nunes, Knight, and Nason (2006).

After observations j,, ju—1, ..., jrt1 have been removed,
the function can be represented as a set of R smooth coef-
ficients, {c,_1,i}ies,» and (n — R) detail coeflicients, {di}kep,
(Dr = {jn, - - -» jr+1})- As in classical wavelet decompositions,
the detail coefficients represent the high-frequency components
of f(-), while the smooth coeflicients capture the low-frequency
content in the data.

The lifting scheme can be easily inverted by recursively
“undoing” the update, predict, and split steps described above
for the first filter. Specifically, the update step is first inverted:
Cni = Cn—1,i — bYAj,, Vi€ J,, then the predict step is inverted
by

Aj, — Zie],, Icn,i

Cn,j, = — or (5)
Jn
Wi, — Zie]n mi'Cpi
Cn,jn = " . (6)

Jn

Undoing either predict (5) or (6) step is sufficient for inver-
sion. As for real-valued lifting, inversion can also be performed
via matrix calculations due to the transform linearity. However,
using (5) for inversion is generally computationally faster, espe-
cially for large n.

Wavelet lifting scales. The notion of wavelet scale in this
context becomes continuous and is intrinsically linked to the
data sampling structure and trajectory (removal order) choice.
Denote the lifting analog of the classical wavelet scale for a
detail coefficient d;, by o, = log, (s ;, ), with low a-values cor-
responding to fine scales. To give lifting scales a similar interpre-
tation to the classical notion of dyadic wavelet scale, we group
wavelet functions of similar a-scales into discrete artificial lev-
els {6,-}{;, as proposed by Jansen, Nason, and Silverman (2009),
for a chosen J*. The further use of artificial scales is discussed in
Sections 2.3 and 3 (under the spectral estimation context) and in
Appendix B (under the nonparametric regression context). Note

update
with L

predict
S 7. SR I VR
predict .
N jn_
with M e
predict
with L
Cn "-., )\jn
prediclc.""'....
with M Hin

Figure 1. The complex-valued lifting scheme (C-LOCAAT). Solid lines correspond

to the steps of the standard LOCAAT lifting scheme whereas dotted lines indicate

the extra prediction step required for the complex-valued scheme. After (n — R)

applications, the function can be represented as a set of R smooth coefficients

{¢,_1lics and (n — R) detail coefficients {Aj + i/l,- Jkep .+ €ach associated
’ n—R k k n—R

with a particular scale {ajk }"EDn_R'

that the usage of the same lifting trajectory for the two lifting
branches (coupled with the one filter update) ensures that our
proposed lifting transform generates a common scale for both
real and imaginary parts. In other words, at each stage of the
algorithm there is just one set of smooth coefficients associated
with a unique set of scales.

2.2 Filter Construction

The proposed complex-valued lifting transform is illustrated
schematically in Figure 1 in terms of two general prediction fil-
ters L and M. As already explained, we construct the second
filter (M) orthogonal on L, thus ensure different signal content
extraction.

For clarity of exposition, let us consider a LOCAAT scheme
with a prediction step based upon two neighbors in a symmet-
rical configuration. The regression over the neighborhood gen-
erates prediction weights for the two neighbors, let us denote
them by /; and /5 (see Equation (1)); this prediction step can also
be viewed as using a three-tap prediction filter (L) of the form
(li, 1, 1), which depends on the sampling of the observations
x = (x1, ..., %,) (Nunes, Knight, and Nason 2006). We deter-
mine the unique (up to proportionality) three-tap filter M that
is orthogonal on L and ensures at least one vanishing moment.
Hence, we can express the set of filter pairs as having the form

L:(ll,l,lg), ll,lg >0

M = (my, my, m3),

and Imy +my +bLm; =0 (e, L-M=0) and [, + 5 =1,
my + m3 = m, (i.e., ensure one vanishing moment). The
solution to these constraints can be parameterized as M =
(— }iﬁm, 111;1113 m, m). The proportionality constant can be
determined by bringing both filters L and M to the same scale




through ||L|| = ||[M]|, which yields m = ll% Hence, the solu-
tion can be succinctly written as M = (Am, (1 + A)m, m) with
A= l a 2and m = l‘}l This particular example of the lead fil-
ter L represents a prediction scheme using linear regression with
two neighbors in a symmetrical configuration. This is a choice
that has proved to be successful both for (real-valued) nonpara-
metric regression (Nunes, Knight, and Nason 2006; Knight and
Nason 2009) and for (real-valued) spectral estimation (Knight,
Nunes, and Nason 2012).

Since L can be viewed as a prediction filter for a real-valued
LOCAAT scheme, we can also employ the adaptive prediction
filter choice of Nunes, Knight, and Nason (2006) in our proposed
construction. The “best” local regression (order and neighbor-
hood) is chosen at each predict step, subject to yielding mini-
mizing the detail coefficients. Consequently, we obtain an adap-
tive complex-valued lifting transform, with the highly desirable
flexibility of being able to adapt to the local characteristics of
the data-see Appendix B in the supplementary material for an
illustration of this adaptiveness in the nonparametric regression
setting.

The orthogonality of the two filters M and L also mirrors
the attractive properties of Fourier sinusoids, hence this choice
results in an interpretable quantification of phase, which shall
turther be exploited according to the context—by phase alter-
ation when denoising real-valued signals, or by ensuring phase
preservation in the context of spectral estimation.

A further insight and justification of the proposed filter
choice is provided in Appendix C in the context of coherence
and phase estimation.

2.3 The Nondecimated Complex-Valued Lifting Transform

In the classical wavelet literature, the nondecimated wavelet
transform (NDWT) (Nason and Silverman 1995) has properties
that make it a better choice than the discrete wavelet transform
(DWT) for certain classes of problems, see, for example, Percival
and Walden (2006). The concept is akin to basis averaging, and
has delivered successful results in both nonparametric regres-
sion and spectral estimation problems, not only in the classi-
cal wavelet setting (NDWT) but also for irregularly spaced data
through the nondecimated lifting transform (NLT) (Knight and
Nason 2009; Knight, Nunes, and Nason 2012).

In this section, we also exploit the benefits of this nondecima-
tion paradigm for irregularly sampled data and to this end, we
shall introduce the complex-valued nondecimated lifting trans-
form (CNLT). However, note that our use of the term “non-
decimation” differs from the classical NDWT. Specifically, due
to the irregular sampling structure, nondecimation cannot be
performed via decomposing shifts of input data without data
interpolation.

Although similar in spirit to the NLT, our transform hinges
on the proposed complex-valued lifting scheme (Section 2.1)
and therefore yields an overcomplete complex-valued data rep-
resentation, extracting additional signal information. In partic-
ular, the CNLT algorithm results in a wavelet transform that
yields (complex-valued) wavelet coefficients at each grid point
(x) and at multiple scales (c).

Next we shall describe our proposed univariate and bivari-
ate CNLT techniques. We shall show that in the nonparametric
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regression setting, our univariate proposal significantly outper-
forms current wavelet and nonwavelet denoising techniques (see
Section 4 and Appendix B), while its bivariate extension allows
for estimation of the dependence between pairs of series (see
Section 3).

2.3.1 Univariate CNLT

So far, the proposed complex-valued lifting scheme decomposes
the original signal {(x;, f; = f(x;))}L, into a set of R smooth
coefficients and (n — R) complex detail (wavelet) coefficients,
with each detail coefficient d;, corresponding to exactly one scale
& jp-

We now aim to construct a new scheme that transforms the
original signal into a collection of smooth and detail coeffi-
cients, with each x-location associated with a collection of sev-
eral wavelet coefficients spread over all scales, rather than just
one. The key to our proposal is to note that if an observation is
removed early in the LOCAAT algorithm, its associated detail
coeflicient has a fine scale; conversely, if a point is removed later
in the algorithm, it is associated with a larger scale.

We therefore propose to repeatedly apply C-LOCAAT using
randomly drawn trajectories, T, for p =1, ..., P, where each
removal order T}, is generated by sampling (n — R) locations
without replacement from (xi, ..., x,); we refer to this algo-
rithm as CNLT.

Following this procedure, a set of P detail coefficients {d%, ?—1

is generated at each location x;, where d?. denotes the wavelet
coeficient at location x; obtained using C-LOCAAT with tra-
jectory T,. At any given location x, the set of P detail coeffi-
cients will be associated with different scales, {af:k}f;:l; note that
this differs from the classical NDW'T, which produces exactly
one detail coefficient at each location and dyadic scale.

Similar to the NLT, the number of trajectories P should be
“large enough” to ensure that an ample number of coefficients
is produced at as many scales and locations as possible, subject
to computational constraints (Knight and Nason 2009; Knight,
Nunes, and Nason 2012).

2.3.2 Bivariate CNLT
We now consider the extension of CNLT to the analysis of
bivariate series.

Same irregular grid. Let us first assume we have observations
{(xi, f1, fH)}L, on two functions f! and f?, measured on the
same x-grid. Apply the univariate CNLT (Section 2.3.1) to each
signal, using the same set of trajectories {TP}§=1 for both series.

The identical sampling grids result in an exact correspon-
dence between the coefficients of each series, that is, for each
coeflicient of the first series there is a coefficient of the second
series at exactly the same location and scale (see Figure 2(a)).
In other words, after application of the CNLT to both series, for
each time po1nt Xk, we obtain two sets of complex-valued detail
coefficients {dx } and {d2 PP

Dzﬁerent zrregular grzds Let us now assume we have the data
{(x}, x2, f1, fH)}, on two functions f! and f?, measured on
the different x-grids.

As the scale associated with each detail coefficient is deter-
mined by the trajectory choice, we partition the x-grid into a
set of artificial x-intervals {x(”}T 1» where T* is chosen to pro-
vide the desired resolution level on the x-axis. As illustrated in
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a) b) c)
X d' ¢ ® 2
L]
A X 0 @ ® = .
- X ¢ 0 N i BN N ]
8 X % @ 0 0 a ® ® a
X 0 ® = ® e ¢
X X 0 0 ® ®
XiXo X3Xg X5 Xg X: Xo X3 Xz X5 Xg
time time time time

Figure 2. Construction of bivariate CNLT transform for time series observed on the same sampling grid (x refers to time here): (a) univariate CNLT is applied using the same

set of trajectories for both series and yields two sets of detail coefficients {dl-”}p cand {d%P}
b

X p,k;

(b) the CNLT transform consists of combinations of coefficients from each

series; (c) the detail coefficients are averaged within each scale.

Figure 3, the result can be visualized in terms of forming a grid
over the area of the resulting detail coefficients.
Formally, for each artificial x-interval {x!/ )}JT; and artificial

scale {Ki}{;l, the set of detail coefficients for each grid square
(using trajectories {Tp}§=1) is given by

D, (¢) = G, (diip |“i;’p el xp e x) 7)
D2, (£ = G, (djg’ |a2p € ', x} e x\), (8)

where d;ip = )‘iip ~|—iui‘ip and dikgp = Ai’ip +iuig’ are
the complex-valued wavelet coefficients from f' and
f2, and G,, is a random sampling procedure selecting
m; j = min(#(d"), #(d*)) coefficients. Recall that oziip and

2,p . .
o, represent the scales (log, of span) associated with the

coeficients d}lc{p and di;p . Thus, for each artificial x-interval

and scale, we obtain the same number of detail coefficients
(although the exact coordinates of the coeflicients may differ).
We term these constructions as the bivariate complex nondec-
imated lifting transform (bivariate CNLT) on the same/different
grid(s), as appropriate. Section 3 will discuss applications where
the proposed bivariate CNLT construction provides a frame-
work for estimation of the dependence between pairs of series.

3. Complex Lifting Analysis of Irregularly Sampled
Time Series

Spectral analysis is an important tool in describing content in
time series data, complementary to time domain analysis. In
particular, the Fourier spectrum allows a decomposition in
terms of sinusoidal components at different frequencies, giving
a description of the strength of periodic behavior within the
series. Such traditional methods are based on the assumption
of second-order stationarity, although extensions to deal with
nonstationarity exist, such as the short-time Fourier trans-
form (STFT, Allen 1977; Jacobsen and Lyons 2003) or more
sophisticated time-frequency analysis methods (e.g., locally
stationary time series, Nason, von Sachs, and Kroisandt 2000;
SLEX, Ombao et al. 2002). Similarly, cross-spectral analysis of
multivariate time series can be used to describe and study the
interrelationships between many variables of interest observed
simultaneously over time, see Reinsel (2003) or Liitkepohl
(2005) for comprehensive introductions to the area, or Park,
Eckley, and Ombao (2014) for a multivariate locally stationary
wavelet approach.

This work aims to deal with a further additional challenge,
that of irregular sampling. Irregularly sampled time series arise
in many scientific applications, for example, finance (Engle 2000;
Gengay et al. 2001), astronomy (Bos, de Waele, and Broersen
2002; Broerson 2008), and environmental science (Witt and
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Figure 3. Construction of bivariate CNLT transform for time series observed on different sampling grids (x refers to time here): (a) each series is lifted individually as
described in Section 2.3; (b) the sets of coefficients in each grid square. The coefficients are sampled so that there is the same number in the grid square of each series; (c)
the coefficients of each series are combined to form the appropriate bivariate quantities, producing one coefficient to represent each grid square.



Schumann 2005; Wolff 2005) to name just a few. Many appli-
cations deal with the sampling irregularity either by means of a
time-frequency Lomb-Scargle approach under the assumption
of time series stationarity (Vani¢ek 1971; Lomb 1976; Scargle
1982), or process the data prior to analysis, restoring it to a reg-
ular grid then suitable for analysis by standard methods, see, for
example, Erdogan et al. (2004) or Broerson (2008). Although it
is convenient to work within a regularly spaced time series set-
ting, a typical result will amount to signal smoothing, leading to
information loss at high frequencies and estimation bias (Frick,
Grossman, and Tchamitchian 1998; Rehfeld et al. 2011).

Many time series observed in practice will exhibit (second-
order) nonstationary behavior as well as being irregularly sam-
pled. Although the literature does currently offer (albeit few)
options for the analysis of irregularly sampled nonstationary
series (see, e.g., Foster 1996; Frick, Grossman, and Tchamitchian
1998; Knight, Nunes, and Nason 2012), there is no well-
established method for estimating the dependence between
pairs of such signals. In the next section, we propose to describe
the local frequency content of irregularly sampled time series
by making use of the proposed complex-valued lifting scheme
and introducing a complex-valued cross-periodogram and asso-
ciated measures.

3.1 The Complex Lifting Periodogram

Recall that the CNLT provides a set of detail coefficients and
associated scales {df , af §=1> where the scale associated with
each detail coefficient o, is a continuous quantity. In a spirit
similar to that of Knight, Nunes, and Nason (2012), this infor-
mation will allow a time-scale decomposition (typically termed
the (wavelet) periodogram) of the variability in the data, with
the crucial difference that the wavelets coefficients are now
complex-valued and therefore contain more information. In
constructmg the periodogram, we use a set of discrete artificial
scales, {¢' }_1, which partitions the range of the continuous
lifting scales {af } for all p and k, with J* chosen to provide
a desired periodogram “granularity” Each scale of will fall
into one unique level ¢ for each p and observation x;; let
Pir={p: afk € '} denote the set of trajectories such that x
is associated with a scale in the set £, and n;; = |P,| denote
the size of the set. For each time point xx, k=1,...,n and
artificial scale ¢, i = 1, ..., J*, we introduce the complex lifting
periodogram (also referred to in text as CNLT periodogram)

L (t) = — Z b | = Z(x Z(Wz

Mik PEPk k pep, k peby

where | - | denotes the complex modulus.

3.2 The Complex Lifting Cross-Periodogram

Similar to other complex wavelet transforms (Portilla and
Simoncelli 2000; Selesnick, Baraniuk, and Kingsbury 2005), the
complex-valued nature of the bivariate CNLT coefficients (see
Section 2.3.2) provides both local phase and spectral infor-
mation. To estimate the dependence between pairs of time
series, we first define the complex lifting cross-periodogram, the
cross-spectral analog of the periodogram. As in Section 2.3.2,
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our discussion will be split based on whether the data have been
sampled over the same or different grids.

Bivariate time series observed on the same grid. For each time
pointxy, k =1, ..., nand artificial scale ¢i=1,...,J* define
the complex lifting cross-periodogram (also referred to as CNLT
cross-periodogram) for series observed on the same grid as

Z dirdz?, 9)

PEP i

(1,2) (pi
110 =

where d,illp = )L,IC,LP + iu}f and df,;‘u = A,ZC,’(P + i/JL,zq’(P are the detail
coefficients from f! and f2. The CNLT cross-periodogram
consists of combinations of coefficients from each series and
provides information about the relationship between the sig-
nals. Note that unlike the CNLT periodogram, the cross-
periodogram is complex-valued.

Similar to classical Fourier cross-spectrum methodology
(see, e.g., Priestley 1983), the CNLT cross-periodogram can be
separated into its real and imaginary parts to define the CNLT
co-periodogram and the CNLT quadrature periodogram, respec-
tively, resulting in

o (£) = — Z abaz?

Nik

Lp 2.p
Zﬂxk I’ka s

PED; i peP, k
; 1 Lp,2 Lp 2.
g (£") = n_ Z Mxkp)‘xkp Z Ax, P p‘
ik PEPk PEsz

These quantities, together with the individual lifting spectra of
each process, can be used to calculate the measures of phase and
coherence between the two series f! and f*:

i _ -1 _qu(zi)
¢Xk (Z ) = tan (W), (10)
)2 )2
oo (€ = Ver ()2 + gy (€) . )

I (eH I (eh

The CNLT cross-periodogram provides a measure of the
dependence between series, but its magnitude is affected by
the individual CNLT periodograms of the signals. Hence as
in the regularly sampled setting, it is preferable to normalize
this quantity, providing a coherence measure that satisfies
0 < py, (£)) <1 (as in (11)). This is similar to the coherence
measure for regularly sampled signals introduced by Sanderson,
Fryzlewicz, and Jones (2010). The CNLT phase as defined in
(10) provides an indication of any time lag between the signals.
Several examples examining the coherence and phase between
signal pairs are given in Section 3.3.

Bivariate time series observed on different grids. Closer to real
data scenarios, we now consider time series that were sampled
over different irregular grids, with one such real data example
being discussed in Section 3.3.3. To obtain the cross-spectral
quantities, we combine the appropriate sets of detail coefficients
for each grid, corresponding to f' and f?, that is, D, (¢) and
D2, (¢") introduced in Equations (7) and (8). For each artifi-
cial time period, x), j =1, ..., T* and artificial scale ¢', i =
1,...,J* we define the complex lifting cross-periodogram for
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series observed on different irregular grids as

ﬂ,J

Zorder{ L, (€1)); order(D? , (€1)};,

Z]sl

157 (0 = (12)
where n; ; is the number of pairs in the grid square defined
at time x'/ and scale £/, and order{D}; indicates the sth time-
ordered detail.

If the sampling schemes coincide for the two series ({x; }x =
{x}x) and the same trajectories are used to generate the details
{dik’p }pk> TESpectively, {d,zc,lp }pk> then Equations (9) and (12)
coincide, except for the quantities being also averaged over the
defined artificial time period. The co- and quadrature peri-
odograms may be obtained in the same fashion as above, and
subsequently used to yield the lifting phase and coherence in this
setting.

Figures 2 and 3 provide a visual representation for the com-
plex lifting cross-periodogram construction under the assump-
tion of the same, respectively, different sampling grids.

We now make some remarks about the proposed peri-
odogram constructions.

Scale interpretation. The relationship between artificial scale
(€) and classical Fourier frequency can be described in
terms of the scale, which maximizes the coherence for a
Fourier wave of period T. Defining p (¢') = % Y P (21, the
design of the filters outlined in Section 2.2 is such that ¢' =
argmax; ;g p(Ef) =T/3.

We emphasue that this relationship is dictated by the choice
of filter pairs: the CNLT periodogram and co-periodogram
(as defined above) are composed of the sum of the wavelet
coefficients from the two schemes, while the quadrature
periodogram contains products of the coefficients. Hence,
to ensure that the resulting estimates are interpretable, the
two filters are specified so that combinations of coefficients
(either through multiplication or summation) provide the same
scale-frequency relationship (see Sanderson 2010, sec. 5.3 and
6.2.1). The provided mapping between wavelet lifting scale and
Fourier frequency can be used to compare our results to those
of classical Fourier-based methods (see Section 3.3 next).

Periodogram smoothing over time. As is customary, the
CNLT periodogram will be smoothed over time using sim-
ple moving average smoothing, that is, we compute I, (£') =
#(_I\I/I,’;) ZjeM;; L, (€"), where M = {j : xp — M' < xj < x, + M'}
and M’ denotes the width of the averaging window, permitted to
take different values for each scale, I'.

3.3 Examples

We now illustrate the proposed methodology by application to
both simulated and real irregular time series. The results were
produced in the R statistical computing environment (R Core
Team 2013), using modifications to the code from the adlift
package (Nunes and Knight 2012) and the nlt package (Knight
and Nunes 2012).

3.3.1 Simulated Data
Signals sampled on the same irregular sampling grid. In this
example, the methods of Section 3.2 are applied to bivariate

series observed on the same sampling grid: {(xx, £, 2}

where
27T X 27T X
(—30 ) + sin (—70 ) + g“kl,

fi = sin (%) + sin

sz = sin <—2n(x;0 ﬂ) + Ckz,
where T = 0 for x; < 200 and 7 = 6 for x; > 200, and the
quantities ¢! and ¢7 are independent, identically distributed
Gaussian variables with mean zero and variance 0.22. The
observations are irregularly sampled such that (xg1; — xx) €
{n/10: n =10, 11, ..., 30} and "D Y l(xk+1 —xp) = 2.

Estimates for coherence and phase are computed using the
complex-valued lifting scheme using a sample of P = 1500 ran-
domly sampled trajectories, discretizing using J* = 20 artifi-
cial scales and smoothing over time using a window of width
M’ = 60, V i. The coherence estimate (Figure 4, right) provides
a clear visualization of the dependence between the two series,
with a peak occurring at scale log,(30/3) = 3.3 (equivalent to
a Fourier period of 30). The time lag that is introduced halfway
through the second signal is also clearly captured by the phase
estimate (Figure 5, left), which is approximately zero for the first
half of the series, then shows a marked increase for the second
half.

For comparison, the estimated coherence using a real-valued
bivariate scheme (Sanderson 2010) is also reported (Figure 4,
left). It is interesting to note that although this method also
clearly estimates a dependence for the first half of the series, it
does not continue to detect it following the time delay. This again
emphasizes the advantage of using a second filter, present in the
complex-valued lifting transform.

Signals sampled on different irregular sampling grids. The
methods described in Section 3.2 are now demonstrated by
revisiting the same simulated data example, but with the two
series observed on different irregularly spaced sampling grids:
(G, x7, fil FORY,. Aside from the sampling, the series satisfy
the same properties as previously described.

The estimates were obtained using a discretization of J* =
15 artificial scales and T* = 60 artificial time points, while a
smoothing window of width M’ = 60 was applied at all scales
as in the previous example. The resulting estimated coherence
and phase are shown in Figure 6, respectively, Figure 5, right.
It is interesting to note that while estimates broadly agree with
those corresponding to sampling using the same (irregular)
grid (Figure 4 and Figure 5, left), the price to pay for the dif-
ferent sampling schemes is the reduced clarity of the estima-
tor. This is point is further reinforced by the phase estimate
corresponding to a regular sampling situation, see Figure 5,
bottom.

Coherence and phase analysis comparison with Fourier-based
methods. For comparison with established Fourier-based tech-
niques, we also performed coherence analysis of stationary, reg-
ularly sampled vector autoregressive (VAR) processes, as well
as phase analysis of the signals described above. For regularly
sampled stationary processes, we compared our estimates to the
well-behaved Fourier estimates, while in the presence of sam-
pling irregularity/nonstationarity, we compared our method to
the short-time Fourier transform (STFT) and the Lomb-Scargle
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Figure 4. Coherence estimation for data observed on the same irregular sampling grid:

scheme (right). Scale gets coarser from bottom upward.

method. For brevity, we do not include the coherence and phase
comparison plots here, but they can be found in Appendix A of
the supplementary material.

Specifically, in the supplementary material we illustrate the
coherence estimates obtained through both a classical Fourier-
based approach and our lifting-based method on two bivari-
ate VAR processes. The resulting estimates agree very well, with
the lifting-based estimate displaying a slight depreciation when
compared to the well-behaved Fourier estimates, suited for reg-
ular sampling and stationary process behavior. However, in
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using the real-valued bivariate lifting scheme (left); using the complex-valued lifting

general if the data are believed to be amenable to be analyzed
with standard methodology, Fourier-based estimation should be
preferred to the proposed method that was specifically designed
to offer a solution for the challenging situations that include
irregular sampling.

As already highlighted, traditional methods do not read-
ily handle data that feature both potential nonstationarities
and irregular sampling, thus STFT required further interven-
tion while the Lomb-Scargle method failed to account for
nonstationarity. Thus to obtain the desired phase analysis, we
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Figure5. Phase estimation using the complex-valued lifting scheme: data observed on the same irregular sampling grid (left); data observed on different irregular sampling
grids (right); data observed on the same regular grid (bottom). Scale gets coarser from bottom upward.



56 J.HAMILTON ET AL.

= 1.0
[aY)
® :
~ 0.8
© &
~ 0.6
<
g < 2
w =
0.4
© Y
N N 0.2
100 200 300 400 0.0
time

Figure 6. Coherence estimation for data observed on different irregular sampling
grids. Scale gets coarser from bottom upward.

mapped the irregular data to a regular grid (by, e.g., inter-
polation) and then used STFT to capture the nonstationary
time-frequency content of the data. The Lomb-Scargle analy-
sis naturally dealt with the sampling irregularity, but assumed
stationarity and therefore it did not provide time-localization
information. The phase estimation plots of the STFT method
exhibit little resolution in time or frequency, possibly due
to the spectral blurring induced by the overlapping windows
in the STFT as noted by Shumway and Stoffer (2013). Fur-
thermore, for signals sampled over different irregular grids,
the method creates additional blurring in the phase plot. By
contrast, the Lomb-Scargle method is able to deal naturally
with the irregular sampling structure of the signals, but it
does not contain any time-phase information. In addition,
there is no marked distinction in frequency where the phase
is large, unlike for that of our complex lifting method (see
Figure 5). These features yet again highlight the appeal of our
technique.

3.3.2 Simulated Data With Varying Time Delay
The next example explores the effect of increasing the time delay
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where  (xk+1 — x¢) € {n/10: n=10,11,...,30} and (n—1)

ZZ;II (Xk41 — Xx) = 2, ¢} and ¢ are independent, identically
distributed Gaussian variables with mean zero, variance 0.2%.

Just as in the classical (Fourier) analysis, it is interesting to
inspect the coherence and phase across frequencies (here, scales)
to relate the common behavior of the two series and possible
time delays, respectively. The estimated coherence and phase
corresponding to the increasing r =1, ..., 15 are shown in
Figure 7. To give an overall sense of the coherence and phase
magnitude over time, the estimates are averaged over the full
time range to give p(¢') = 35 S P (£)). We used P = 750
randomly sampled trajectories and discretized using J* = 20
artificial scales.

When 7 = 0, the coherence is 1 and the phase is 0. For T # 0
the coherence is greatest at a scale of log, (30/3), corresponding
to the period of variation (T = 30) in the data. The coherence
intensity and response over scale are affected by the magnitude
of the time delay. The coherence is lowest at time delays around
7.5 (T /4), and at these shifts the peak at scale log, (30/3) is also
more pronounced. At 7 = 15 (T /2), the signals are sign reversed
versions of each other and, again, the observed coherence is 1
at all scales. The phase is also greatest at scale log,(30/3). The
phase response varies as a function of time delay and alternates
between positive and negative values, with |¢ (¢)| maximized at
0" = T/4. This is displayed in Figure 8, which shows the esti-
mated phase at scale log, (30/3) as a function of time delay.

For completeness, we also provide a direct comparison with
classical Fourier coherence and phase estimation when the sig-
nals are regularly sampled (see Figure 9). While the overall
behavior is similar for both the classical and CNLT meth-
ods, the Fourier method displays less variability across coher-
ence estimates with the changing time delay (Figure 9, left), as
well as more localized phase-frequency information (Figure 9,
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Figure 7. (a) Coherence and (b) phase between f' and f2 (Section 3.3.2) as a function of scale and = € 0, 15. For # 0 the coherence and (absolute) phase are greatest at

scale log, (30/3).
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right). However, in general, note that if the data are believed to
be amenable to be analyzed with standard methodology, this
should be preferred to the proposed CNLT method that was
specifically designed to offer a solution for the challenging sit-
uations that include irregular sampling.

3.3.3 Financial Time Series
In this section, we demonstrate the use of the proposed complex-
valued lifting transform through an application to financial data
consisting of prices of all trades on 1 March 2011 (in normal
trading hours) for two IT companies, Baidu and Google, both
traded on the NASDAQ stock exchange. Comparison of the two
companies is of interest as the main product of both is a search
engine, but they are based in different geographical regions.
Often several trades per second occur and in this case the last
quoted value for each second is selected. Thus, the finest sam-
pling interval is one second, but as there are seconds with no
trades, the time series are not equally spaced. For the analysis,
we consider the returns of each series—for Google, the series
contains 7984 observations with an average sampling distance
of 2.93 sec and range 1 to 48; for Baidu, the series contains 6535
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observations with an average sampling gap of 3.58 sec and range
1 to 52.

The data were analyzed using the methodology described in
Section 3.2 using J* = 15 artificial scales and T* = 390 artifi-
cial time intervals (each time interval has a width of 60 sec).
The estimates were smoothed over time using a window width
of M' = 60 min at the finest scale and increasing by a factor
of 1.05, to provide a larger smoothing window for each subse-
quent scale. The coherence estimate is shown in Figure 10(a) for
scales up to 10. The main feature of the resulting coherence esti-
mate is an increased coherence around scale 6, corresponding to
a Fourier frequency of T &~ 3 min. The magnitude of the coher-
ence at this scale is seen to be more pronounced toward the end
of the day. There is also a period of higher coherence observed
in the middle of the day, at low wavelet scales (corresponding to
high-frequency information).

One usual treatment of such irregular data would be to
consider it in terms of the 1 min average returns. The
estimated coherence using the aggregated data is shown in
Figure 10(b), where J* = 10 artificial scales and T* = 78 arti-
ficial time intervals (each representing a range of 5 min)
were used. Notice that finer behavior details are erased,
reflecting the coarser sampling rate of the averaged data,
and that spurious coherence is unsurprisingly induced by
aggregation.

4. Real Nonparametric Regression Using Complex
Lifting

As with the traditional wavelet and lifting transforms, our pro-
posed complex nondecimated lifting transform can be used
for nonparametric regression problems, including those with
nonequispaced sampling design. In a nutshell, the proposed
smoothing procedure can be described as (i) perform the com-
plex lifting transform of the original data, (ii) combine the real
and imaginary coefficients into a statistic to undergo thresh-
olding/shrinkage, and (iii) take the inverse lifting transform to
obtain the estimated unknown signal. A detailed description
and estimator properties are provided in Appendix B (supple-
mentary material).
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Figure 9. (a) Coherence and (b) phase between f! and f2 (Section 3.3.2) as a function of frequency and t € 0, 15 using classical Fourier methods.
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We briefly illustrate the application of this technique to the
ethanol data example from Brinkman (1981) that has been ana-
lyzed extensively, see for instance Kovac and Silverman (2000)
and Cleveland, Grosse, and Shyu (1992). The data consist of
88 measurements of NOx exhaust emissions from an automo-
bile test engine, together with corresponding engine equivalence
ratios, a measure of the richness of the air/ethanol mix (Loader
1999; Kovac and Silverman 2000). Because of the nature of the
experiment, the observations are not available at equally spaced
design points, and the variability is larger for low equivalence
ratios.

We estimate the ratio-dependent (heteroscedastic) variance
using a wavelet domain local estimation procedure similar to
that of Kovac and Silverman (2000) and Nunes, Knight, and
Nason (2006).

Figure 11 shows estimated exhaust emission profiles for
our complex lifting procedure, together with two competitors,
namely smoothing spline estimation and the real-valued lifting
procedure of Nunes et al (2006). Note that our complex adap-
tive lifting estimate is very similar to the smoothing spline, and
both identify changes in slope around 0.7 and 0.9. However, the
magnitude and duration of these effects appear to be different
between the two estimates. The real-valued adaptive lifting esti-
mate has an overall similar appearance albeit being less smooth
and featuring more abrupt changes that are unlikely to be true
features of the process. In this example, the true shape of the
ethanol curve is of course unknown, however we believe that it
is more likely to be smooth. Hence, it is pleasing to see that even
visually our estimator does a good job in this case.

Supplementary Materials

The supplementary materials contain additional results and comparisons
with other methods. The R packages CNLTreg and CNLTt sa implement-
ing the regression and time series techniques introduced in this article will
be released via CRAN in due course.
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