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Abstract

We study managerial incentive provision under moral hazard in an environment where
growth opportunities arrive stochastically over time and taking them requires a change of
management. The firm faces a tradeoff between the benefit of always having a manager
able to seize new opportunities and the cost of incentive provision. The optimal dynamic
contract may grant partial job protection whereby the firm insulates its managers from the
risk of growth-induced dismissal and foregoes attractive opportunities when they come after
periods of good performance. Moreover, the prospect of growth-induced turnover limits the
firm’s ability to rely on deferred pay—resulting in more front-loaded compensation. The
empirical evidence for the U.S. is broadly supportive of the model’s predictions. Firms
with better growth prospects experience higher CEO turnover and use more front-loaded
compensation.
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Introduction

When ownership and control are separated, firm performance depends crucially on having
the right managers at the helm and incentivizing them properly. Over time, changes in
business conditions may call for a change of top management to seize new opportunities
or overcome challenges faced by the firm. This, however, may complicate the task of
incentivizing incumbent managers. For instance, if managers anticipate that their tenure
at the firm will be short, they will be reluctant to accept any form of deferred compensation,
a standard feature of incentive contracts. Thus the firm may face a dilemma: by changing
management to adapt to evolving business conditions, it may increase the costs of incentive
provision.

To analyze this tension, this paper introduces the idea of growth-induced turnover into
a dynamic moral hazard framework. Growth-induced turnover refers to the replacement
of top management that is motivated by the need to have managers who possess the ap-
propriate skill set and experience to lead the firm in its current circumstances. This may
involve for instance adopting new production techniques, making acquisitions, launching a
new product or expanding into new markets. If the incumbent lacks the vision or skills
necessary to implement such transformations, the appointment of new management is the
only way for the firm to successfully pursue its course.1 At the same time, proper dynamic
incentive provision requires a combination of deferred compensation and a threat of dis-
missal following poor performance, both of which constitute agency costs. By introducing
the possibility of managerial turnover for the sake of growth as well as for discipline, we
show how these costs are affected. The main insight of the paper is that the prospect of
growth-induced dismissal effectively increases managers’ impatience, thus increasing agency
costs and creating a general tendency to front-load compensation. In fact, the firm may
actually be better off ex ante by committing to pass up otherwise attractive growth oppor-
tunities in some circumstances. More generally, our analysis delivers empirical predictions
on the effects of a firm’s growth prospects on managerial turnover and compensation which
we show are broadly supported in the data.

Although our analysis is set up in a continuous-time stationary environment, we first
develop the theory in the context of a two-period model. The simplicity of the framework
enables us to distill most of the economics of the paper in the most transparent way. In
particular, the tradeoff faced by the firm between the benefit of having a manager able
to seize new opportunities and the cost of incentive provision appears very starkly in this
setting. Moreover, the key empirical implications of the theory are derived analytically.

In the continuous-time model, a long-lived firm is run by a sequence of risk-neutral
managers protected by limited liability. A moral hazard problem arises because while they
are in charge, managers can divert cashflows for their own private benefit. The firm can fire

1In some circumstances, a change of management may be required to avoid decay, rather than to actually
grow—e.g., when by sticking with the status quo, the firm would fail to face up to a disruptive competitive threat.
For instance, in his narrative of the battle waged in Canada around 1820 between the long-established Hudson
Bay Company (HB) and its upstart rival North West Company (NW), Roberts (2004) recounts: “HB did respond
to the threat, essentially by copying NW’s new approach. It did so, however, only after the leaders of the firm
had been replaced by new ones who understood the nature of the threat and were not tied to the old ways that had
worked so well for so long.” (our emphasis)
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the incumbent manager at any time and replace him at a cost. Fleeting growth opportunities
arrive stochastically over time, and a change of management is needed to seize them. If
the firm decides to take up an opportunity, it pays the costs associated with replacing the
manager, and its size (or profitability) increases. A long-term incentive contract is signed
between the firm and its successive managers at the time they are hired.

As in previous dynamic contracting studies, we show that optimal compensation and
turnover policies in this environment can be described in terms of a state variable that
coincides with the agent’s expected discounted compensation, referred to as his contractual
‘promise’. The manager receives cash compensation only when his promise rises to reach
an endogenous ‘bonus threshold’. When the manager’s promise lies below this threshold,
cash compensation is deferred, and the promise is increased at a contractually specified
rate plus a positive or negative adjustment based on the firm’s current performance. If the
firm suffers a sustained period of poor performance, the manager’s promise can be lowered
sufficiently to reach zero, the ‘firing threshold’, at which point the incumbent is replaced
by a new manager who receives an initial promise which is no less than his exogenous
reservation value.

In contrast with other studies, the manager’s contract in our framework is also contin-
gent on the presence or not of a growth opportunity. If no growth opportunity becomes
available, the manager continues his tenure so long as his promise stays above the firing
threshold, and he is compensated with bonuses and performance-related changes in his
promise as just described. If a growth opportunity arises and the firm takes it, the manager
is replaced. However, not all growth opportunities are seized by all firms—even though
they would be under first best. Specifically, we show that, depending on the characteristics
of the firm and its environment, the optimal growth policy can be one of two types. For
some firms, it is optimal to take all growth opportunities as they come. For other firms, it is
optimal to forego opportunities that arise after periods of good performance, i.e., when the
incumbent manager’s promise is above a certain ‘growth threshold’. We refer to these two
different types of firms as high-growth and low-growth firms, respectively. In effect, optimal
incentive provision in low-growth firms calls for some degree of job protection against the
risk of growth-induced termination. Intuitively, the reason why job protection is granted
after a spell of good cashflows is that losses due to agency problems are diminished after
good performance, thus increasing the value of continuing with the incumbent manager
net of the foregone benefit of growth. In high-growth firms, the benefit of growth always
dominates.

Under the optimal contract, managerial compensation is affected by the possibility of
growth-induced turnover through the drift of the manager’s promise during his tenure. In
the absence of growth opportunities, this drift would simply be equal to the manager’s
discount rate. The key novelty in our setup is that, whenever the firm stands ready to
take an opportunity that might become available, the drift rate needs to be augmented
to compensate the manager for the risk of growth-induced termination, with the drift
modification depending on the arrival intensity of growth opportunities. This upwards
adjustment of the drift when the firm stands ready to take a growth opportunity explains
why firms with better growth prospects tend to have more front-loaded compensation. It
also sheds light on why low-growth firms grant job protection when past performance has
been good but not if it has been bad. A higher drift is indeed less costly to the firm after
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poor performance, i.e., when the manager’s promise is close to the firing threshold, as it
reduces the likelihood of a subsequent inefficient, disciplinary turnover.

Our analysis explicitly allows for the possibility of lump-sum payments, and we show
that severance pay is suboptimal in our setting even in the case of growth-induced turnover.
Indeed, it is always better for the firm to increase the incumbent’s future promise conditional
on him being retained, thereby making inefficient termination less likely in the future, than
to give cash to a departing manager. However, we establish that an incoming manager may
be given a ‘signing bonus’ when his reservation value is sufficiently high.

To derive these results on the second-best incentive contract, our approach roughly
follows the same logic as in previous continuous-time analyses of dynamic moral hazard.
First, we establish a state-space representation of long-term incentive contracts, where the
state process coincides with the manager’s promise as described above. Similar to other
studies, no stealing is incentive compatible under a dynamic contract if the sensitivity of
the manager’s promise to reported cashflows is large enough. We then formulate the firm’s
contracting problem recursively in order to characterize the optimal incentive-compatible
dynamic contract in the presence of stochastic growth opportunities. We show that the
firm’s size-adjusted value function can be characterized as the solution to a Hamilton-Jacobi-
Bellman (HJB) equation that incorporates the possibility of growth-induced turnover in an
intuitive way. This crucial step in the analysis is established through a verification theorem
from which follow the main properties of optimal compensation and turnover policies. Based
on the HJB, we also provide a characterization of the determinants of a firm’s growth type.
In particular, we show that low-growth firms tend to be those plagued with more severe
agency problems. This finding suggests that better governance can work as an effective tool
to promote economic growth.

Having characterized the optimal contract, we take full advantage of the dynamic nature
of our model and provide a suggestive analysis of its quantitative implications for the
distribution of tenure length and for the timing of managerial compensation over tenure. In
the model, these are partly determined by the firm’s type and the compensation and growth
thresholds, all of which are endogenous. We discuss the impact of a firm’s growth prospects
on turnover and compensation under the optimal contract through a numerical example.
The simulation outcome illustrates the fact that firms with better growth prospects, in
particular those with more attractive opportunities (i.e., holding their arrival intensity
fixed), tend to have shorter tenure length and more front-loaded compensation.

Finally, we examine the data in light of the theory. Merging data from CRSP, Compu-
stat and ExecuComp for U.S. public companies over the period 1992-2014, we investigate
empirically the links between firms’ growth prospects, CEO turnover, and CEO compensa-
tion. Following an extensive literature in empirical corporate finance, we use average Q to
capture firms’ growth prospects. Namely, we proxy the ex ante growth prospects of a firm
at the time a new CEO is appointed by the value of the firm’s Q in the year before the
CEO’s appointment. We first sort CEO episodes along this proxy and compare the distri-
butions of tenure length and compensation duration across the highest and lowest quantiles
of growth prospects. In line with the model predictions, we find that the CEOs of firms
with better prospects tend to have shorter tenure and more front-loaded compensation. We
confirm these findings by regression analysis. In a probit model, our proxy for firms’ growth
prospects is positively related to the likelihood of turnover, controlling for past performance.
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An increase in initial Q by one standard deviation leads to an increase in the probability
of turnover by 85 basis points. Since the unconditional frequency of CEO turnover in our
sample is 8.4%, the effect is economically significant. We also find that the arrival of an
opportunity, proxied by an increase in the firm’s average Q since the beginning of a CEO’s
tenure, increases the probability of a turnover event, consistent with the notion of growth-
induced turnover. Furthermore, the likelihood of turnover is less sensitive to the arrival of
an opportunity when ex ante growth prospects were poor, in line with the prediction that
firms with more modest growth prospects are more likely to insulate their managers from
the risk of growth-induced turnover. Finally, we find that managerial pay tends to be lower
in firms with worse growth prospects, and that the slope of the compensation profile over
tenure years tends to be higher in such firms, which can be viewed as a manifestation of
their greater reliance on compensation back-loading.

The idea that the pursuit of valuable growth opportunities by a firm may rely on a
change of management is found in early contributions to the management literature, going
back to Penrose (1959). More recently, Roberts (2004) studies a number of business cases
where managerial limitations to firm growth play a prominent role and where a change of
management is instrumental in unlocking the growth potential of a firm.2 Bertrand and
Schoar (2003) provide compelling evidence that managers indeed matter for firm perfor-
mance and that they differ in their management styles. Bennedsen et al. (2012) further
report that CEO effects are particularly important in rapidly growing environments. Build-
ing on the idea that firm productivity is determined by the quality of the match between
the skill set of the manager and the current circumstances of the firm, Eisfeldt and Kuhnen
(2013) analyze a competitive assignment model of CEO turnover where the skills demanded
by the firm are subject to random shocks. In a similar vein, Jenter and Lewellen (2014)
extend the standard Bayesian learning model of CEO turnover (e.g., Harris and Holm-
ström (1982)) by allowing the quality of the firm-CEO match to vary over time. In contrast
with our work, these papers abstract from agency issues and incentive considerations which
occupy centre stage in our analysis.

Our paper relates to a large body of work that applies the tools of dynamic contracting
to the study of the firm in the presence of agency conflicts.3 In particular, Quadrini (2004),
Clementi and Hopenhayn (2006), DeMarzo and Fishman (2007a), He (2008), Biais et al.
(2010, 2013), Philippon and Sannikov (2011), and DeMarzo et al. (2012) investigate the
link between moral hazard and firm growth when the firm can grow with the incumbent.
Our main theoretical contribution is to focus instead on growth-induced turnover and its

2See in particular his discussion of the British Petroleum and General Motors cases. Both firms achieved
major increases in value by undertaking discrete changes in organizational structure implemented by new CEOs
with a different vision (John Browne at BP and “Jack” Smith at GM) and only after a sustained period of poor
performance. This can be viewed as evidence of the type of behaviour that characterizes low-growth firms in our
analysis. Cheng and Hambrick (2012) document the fact that, in turnaround situations, companies substantially
improve performance when they replace incumbent CEOs who are poorly suited to the conditions at hand with
new ones who are well matched to those conditions.

3For seminal contributions to the literature on dynamic moral hazard, see Rogerson (1985) and Spear and
Srivastava (1987) in discrete time, as well as Holmström and Milgrom (1987) and Sannikov (2008) in continuous
time. Recent applications to the study of CEO turnover and compensation include among others, Spear and
Wang (2005), Hoffman and Pfeil (2010), He (2012), Edmans et al. (2012), and Garret and Pavan (2012, 2015).
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interactions with incentive provision. To the extent that the optimal contract in our setting
is contingent on the realization of observable shocks, our work also bears some similarity
with Piskorski and Tchistyi (2010) and Li (2015). More specifically, our continuous-time
framework builds on the cash diversion model of DeMarzo and Sannikov (2006),4 which
we extend to incorporate the stochastic arrival of growth opportunities. From a technical
point of view, our contributions are as follows. First, we introduce an additional source
of uncertainty beyond the Brownian cashflow shocks. Hence, in order to derive the state-
space representation of the contract and develop the proof of the verification theorem,
our analysis borrows techniques from the credit risk literature. Second, we consider a
stationary environment where the firm’s continuation value at the time of firing a manager
is fully endogenous. Third, we endogenize the initial promise that the firm offers to each
manager. In particular, we derive a necessary and sufficient condition for the managers’
participation constraint to be binding in high-growth firms. Fourth, we explicitly allow for
jumps in the cumulative compensation process, which enables us to assess the optimality
of severance pay. Finally, our extensive analysis of the HJB equation and associated free-
boundary problems allows us to derive explicit existence and uniqueness results, as well as
comparative statics that are new to our setting.

The implications of our model and the evidence we provide are connected to a vast em-
pirical literature on the determinants of turnover and compensation for top management.5

The literature on CEO turnover has mostly focused on the link between turnover and per-
formance, as recently exemplified by Jenter and Lewellen (2014) and Jenter and Kanaan
(2015).6 We find that, controlling for performance, firms’ growth prospects also contribute
to explain the likelihood of CEO turnover. In terms of managerial compensation, the model
predictions are in line with Murphy (1999) who points out that pay packages often include
a bonus system based on the firm’s reported earnings in excess of a performance target.
They also echoe Kaplan and Minton (2012) who discuss the coincidence of shorter CEO
tenures and higher CEO pay in the time series. The degree of reliance on deferred com-
pensation has received relatively little attention in the literature so far. An exception is
the analysis by Clementi and Cooley (2010) who exploit information on CEOs’ holdings of
stocks and stock options to construct a measure of deferred compensation. Gopalan et al.
(2014) focus on the duration of a CEO’s total compensation award in a given year based
on information about the vesting periods of separate components in the package. Instead,
we measure the duration of compensation received over the entire tenure of a CEO and we
document that this measure varies negatively with the firm’s growth prospects at the time
the CEO is hired. More broadly, we add to existing empirical studies on CEO compensation
by investigating how the profile of CEO pay over tenure relates to firms’ growth prospects.

The rest of the paper proceeds as follows. Section 1 develops the theory in a simple two-
period framework and analytically derives its empirical implications for managerial turnover
and compensation. Section 2 describes the continuous-time modelling setup and derives

4See DeMarzo and Fishman (2007b) for a discrete-time version, and Biais et al. (2007) for an analysis of
convergence from discrete to continuous time.

5For surveys of the literature on CEO compensation and on managerial incentive packages more generally, see
for instance Murphy (1999, 2013).

6Early studies include, among others, Coughlan and Schmidt (1985), Warner et al. (1988), Weisbach (1988),
Kim (1996), and Denis et al. (1997).
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the state-space representation of long-term incentive contracts. Section 3 characterizes the
optimal dynamic contract for high-growth and low-growth firms, as well as the determinants
of firm type, and illustrates the model’s implications through simulations. Section 4 presents
the empirical evidence. Section 5 concludes.

1 A Two-Period Model

We consider a firm that hires a manager at time t = 0 to run its operations for at most
two periods. The firm and its manager(s) are risk-neutral and have discount rates r and ̺,
respectively, with ̺ > r.7 The random cashflows generated by the firm’s operations at
t = 1 and t = 2 are independently distributed. The first-period cashflow Y1 is equal to
either y > 0 with probability p ∈ (0, 1), or zero with probability 1 − p. At the end of
the first period, a growth opportunity may arrive with probability q ∈ (0, 1), independently
of Y1. The arrival of a growth opportunity is publicly observable. Crucially, we assume that,
in order to take an available opportunity, the firm must dismiss the incumbent manager
and appoint a new one. If a growth opportunity arises and the firm hires a new manager
to take it, the second-period cashflow Y2 is either (1+ γ)y with probability p, where γ > 0,
or zero with probability 1 − p. If no growth opportunity arises or if the firm foregoes an
available opportunity, the firm may either continue with the incumbent manager or dismiss
him and hire a new one, in which cases the distribution of Y2 is the same as that of Y1.

The assumption that the firm cannot grow without a change of management occupies
center stage in our analysis. This assumption captures circumstances where value creation
requires specific managerial skills to carry out radical transformations of the firm and the
incumbent does not have the ability to realize the firm’s growth potential. We let κ > 0
denote the exogenous cost of managerial replacement at t = 1, which may include search
fees as well as indirect costs such as disruption of on-going business, and we assume that
the net present value of taking a growth opportunity is positive, i.e.,

pγy

1 + r
− κ > 0. (1)

Our analysis focuses on a second-best environment in which cashflows are not observable
by the firm. In case of high cashflow realization, the manager can under-report, steal the
entire cashflow and get private benefit λ per unit of stealing, where 0 < λ ≤ 1 captures
the severity of the moral hazard problem. We let Ŷt ≤ Yt denote the level of reported
cashflow in period t, where Ŷt has the same support as the actual cashflow Yt. Managers
are protected by limited liability and have zero reservation value.8 Thus, if the firm hires
a new manager at t = 1, it offers him a one-period incentive contract with compensation
λŶ2 at t = 2.9

7The assumption that the agent is more impatient than the principal is standard in the dynamic contracting
literature and allows us to derive sharper predictions on managerial compensation. All the results on managerial
turnover derived in the two-period framework go through in the case where ̺ = r.

8With zero reservation value, limited liability ensures that the manager’s participation constraint is satisfied.
We allow for a positive reservation value in the continuous-time model that we study in Sections 2 and 3.

9This is the optimal one-period contract that supports no stealing. We provide a proof of this standard result
in Appendix A (see Lemma A-1).

6



At t = 0, the firm offers a two-period incentive contract to the initial manager. Such
a contract specifies the firm’s dismissal policy along with a compensation policy, and both
parties fully commit to the terms of the contract. Specifically, we let G(Ŷ1) ∈ [0, 1] denote
the probability of taking a growth opportunity if one arises, thereby replacing management,
conditional on first-period reported cashflow. We let F (Ŷ1) ∈ [0, 1] denote the probability of
the manager being dismissed at the end of the first period if no growth opportunity arises,
conditional on first-period reported cashflow. Hence, G and F determine the occurrence
of growth-induced and disciplinary dismissal, respectively. Furthermore, we let C1(Ŷ1) and
C2(Ŷ1, Ŷ2) denote the compensation received by the manager in the first and second period,
respectively, contingent on reported cashflows, and we denote by Cg(Ŷ1) the amount of
severance pay upon growth-induced turnover.10 Limited liability requires

C1(Ŷ1) ≥ 0, Cg(Ŷ1) ≥ 0, and C2(Ŷ1, Ŷ2) ≥ 0. (2)

After the adoption of a two-period contract at t = 0, the timing is as follows:

– At t = 1, the first-period cashflow realizes. The manager reports Ŷ1 and receives C1(Ŷ1).
The uncertainty about the availability of a growth opportunity is resolved. The man-
ager is dismissed or retained, as determined by G(Ŷ1) or F (Ŷ1) depending on whether
a growth opportunity is available or not.11 In case of growth-induced dismissal, the
departing manager receives Cg(Ŷ1) upon leaving office.

– At t = 2, the second-period cashflow realizes and the initial or newly hired manager
reports Ŷ2. If the initial manager is still in office, he receives C2(Ŷ1, Ŷ2). Otherwise,
the newly hired manager receives λŶ2.

1.1 The Optimal Two-Period Contract

We look for a two-period contract that maximizes the firm’s expected discounted profit while
inducing truthful reporting by the manager.12 Under such a contract, reported cashflows Ŷt
coincide with actual cashflows Yt, and we therefore dispense with the notational distinction.

In the second period, when the realized cashflow is high (Y2 = y), the manager has the
choice between either truthfully reporting good performance or reporting poor performance
and steal the cashflow. The incentive compatibility (IC) condition requires that the manager
should prefer to report truthfully. This will be the case provided that the difference in
compensation upon good and bad reported performance, C2(Y1, y)−C2(Y1, 0), is sufficiently
large, namely,

C2(Y1, y) ≥ λy + C2(Y1, 0). (3)

Likewise, in the first period, the manager needs to be incentivized to report truthfully when
the realized cashflow is high (Y1 = y). At this early stage, incentives are determined by
the total expected discounted payoff that the manager receives upon reports of either good

10It is immediate to show that granting severance pay upon disciplinary dismissal is suboptimal.
11The contracting environment that we consider allows for randomization of the dismissal outcome. However,

our analysis shows that the optimal contract does not involve randomization.
12See Appendix A.1 for the expression of the firm’s expected discounted profit.
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or bad performance. For a given report Y1, his intertemporal payoff includes first-period
compensation, C1(Y1)+ qG(Y1)Cg(Y1), as well as expected second-period pay.13 The latter
depends on the expected pay received at t = 2 conditional on being retained, pC2(Y1, y) +
(1− p)C2(Y1, 0), and on the probability of being retained, 1− [qG(Y1)+ (1− q)F (Y1)]. The
first-period IC constraint thus requires that

C1(y) + qG(y)Cg(y) +
(

1− [qG(y) + (1− q)F (y)]
)pC2(y, y) + (1− p)C2(y, 0)

1 + ̺

≥ λy + C1(0) + qG(0)Cg(0) +
(

1− [qG(0) + (1− q)F (0)]
)pC2(0, y) + (1− p)C2(0, 0)

1 + ̺
, (4)

i.e., the difference in the manager’s intertemporal payoffs upon good and bad performance
needs to be sufficiently large. Importantly, (4) captures the fact that first-period incen-
tives are shaped both by the compensation scheme and by the firm’s dismissal policy. In
particular, proper incentive provision requires that good reported performance at t = 1 be
associated with either higher contemporaneous levels of pay, or higher future levels of pay,
or a lower likelihood of dismissal. Our analysis elucidates the tradeoffs among these three
levers.

Our first lemma characterizes the optimal compensation scheme. The proof of this result,
along with the proofs of all results derived in this section, can be found in Appendix A.

Lemma 1. The compensation policy that maximizes the firm’s expected discounted profit
while respecting the limited liability constraint (2) and the IC constraints (3) and (4) is
such that

C1(0) = Cg(0) = C2(0, 0) = C2(y, 0) = 0, (5)

C2(0, y) = C2(y, y) = λy, (6)

C1(y) + qG(y)Cg(y) = λy −
(

[qG(0) + (1− q)F (0)] − [qG(y) + (1− q)F (y)]
) pλy

1 + ̺
. (7)

Equation (5) shows that, under the optimal contract, the manager receives zero compensa-
tion in any given period upon report of poor performance in that period. Limited liability
precludes a tougher penalty, i.e., negative compensation. Equation (6) establishes that
second-period compensation conditional on good reported cashflow at t = 2 is equal to
the agency rent λy, independently of first-period performance.14 Indeed, it is optimal to
set C2(0, y) to the minimum level that satisfies the second-period IC constraint (3) after
poor performance, so as to relax the first-period IC constraint (4). On the other hand, the
second-period IC constraint after good performance is also binding because, when ̺ > r, de-
ferring compensation is costly for the firm. Hence, the optimal two-period contract involves
the minimum amount of deferred compensation that is compatible with proper incentive
provision.

Equation (7), which directly follows from the binding first-period IC constraint (4), de-
termines the level of first-period compensation upon good performance, C1(y)+qG(y)Cg(y),

13For simplicity, our analysis assumes that the continuation value of a dismissed manager is zero.
14Note that (5) and (6) imply that C2(Y1, Y2) = λY2, i.e., the compensation scheme in the second period does

not depend on whether the firm is run by the initial manager or by a new one.
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and establishes a crucial link between the compensation and dismissal policies. While the
first term on the right-hand side of the equation, λy, is the rent that the manager would get
to report performance truthfully at t = 1 under a one-period contract, the second term is a
distinct feature of the two-period contract. To interpret this term, recall that, if continued
into the second period, the manager receives an agency rent λy at t = 2 conditional on
good second-period performance, independently of his report in the first period. That is,
a manager who is retained at t = 1 contemplates an expected discounted payoff equal to
pλy/(1 + ̺), whether reported performance in the first period was good or not. Hence, a
key determinant of first-period incentives is the wedge between dismissal probabilities after
poor performance, qG(0) + (1− q)F (0), and after good performance, qG(y) + (1− q)F (y).
As revealed by (7), a larger wedge serves to incentivize the manager not to steal and reduces
the need to use first-period compensation upon good performance to do so—especially when
the expected discounted value of second-period compensation is large.

It is worthwhile to note that zero severance pay upon growth-induced turnover, namely,
Cg(y) = Cg(0) = 0, is weakly optimal in this setup. In particular, the firm is indifferent
between granting positive severance pay Cg(y) upon growth-induced dismissal after good
performance or instead increasing regular compensation C1(y) by the amount qG(y)Cg(y),
taking into account the effective probability qG(y) of growth-induced turnover conditional
on good first-period performance.15

Our next result characterizes the optimal turnover and growth policies. These are
captured by F (Y1) and G(Y1), which determine the conditional probabilities of disciplinary
and growth-induced dismissal, respectively.

Lemma 2. The optimal contract is such that F (y) = 0. Furthermore, the following state-
ments hold true:

i. Setting F (0) = 1 is optimal if and only if

κ ≤
p

1− p

pλy

1 + ̺
=: κ̂F (0). (8)

ii. Setting G(0) = 1 is optimal if and only if

κ ≤
p(1− λ)γy

1 + r
+

p

1− p

pλy

1 + ̺
=: κ̂G(0). (9)

iii. Setting G(y) = 1 is optimal if and only if

κ ≤
p(1− λ)γy

1 + r
−

pλy

1 + ̺
=: κ̂G(y). (10)

If any of the inequalities in (8), (9) or (10) is violated, it is optimal to set the corresponding
dismissal probability equal to zero.

15In Section 3, we show that zero severance pay is strictly optimal in the continuous-time version of our model
(Property 3). The reason why only a weak version of this ‘no-severance’ result holds in the two-period setup
considered in this section is that the firm’s continuation value at the end of the first period is linear in the
manager’s continuation payoff.
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The first part of Lemma 2 characterizes the firm’s optimal dismissal policy in the absence
of a growth opportunity, F (Y1). When no growth opportunity is available, resorting to
dismissal after good performance (i.e., F (y) > 0) is clearly suboptimal. Indeed, this would
bring no benefit and would be costly for two reasons: because of the replacement cost
κ > 0 and through a deterioration of incentives in the first period, which would have to
be compensated by an increase in first-period compensation upon good performance—as
per (7). By contrast, the optimal choice of F (0) involves a tradeoff between incurring the
replacement cost κ and improving first-period incentives by increasing the wedge in dismissal
probabilities. Equation (8) shows that disciplinary dismissal after poor performance is
optimal when κ is low enough or when the impact of the wedge on the firm’s net profit is
sufficiently large (i.e., high λ, high p or low ̺).16

Statements (ii) and (iii) in Lemma 2 characterize the firm’s optimal growth policy, G(Y1).
The direct gain from taking an available growth opportunity is to improve the distribution of
the second-period cashflow. The benefit for the firm, captured by the term p(1−λ)γy/(1+r)
in (9) and (10), is increasing in p and γ, and decreasing in λ and r. Furthermore, the
firm’s growth policy also affects profit via its impact on the dismissal wedge and first-
period incentives. On the one hand, systematically taking growth opportunities after poor
performance (i.e., G(0) = 1) facilitates incentive provision. Thus, as revealed by (9),
only very high values of the replacement cost κ would make it optimal for the firm to
forego an available growth opportunity after poor performance.17 On the other hand,
replacing management to take a growth opportunity after good performance is detrimental
to incentive provision and is therefore less attractive, namely, κ̂G(y) < κ̂G(0).

18

In the remainder of Section 1, we assume that

p

1− p
≥

1 + ̺

1 + r
γ. (11)

Combined with (1), this restriction implies that κ < κ̂G(0) and therefore ensures that the
firm systematically takes growth opportunities after poor performance.19 However, it may
or may not be optimal for the firm to also take an available growth opportunity after good
performance, as our next result shows. In what follows, we distinguish between two types of
configurations. Namely, we refer to the case where G(y) = 1 as the high-growth regime, and
we refer to the case where G(y) = 0 as the low-growth regime. In the former configuration,
the firm undertakes any growth opportunity that arises, while in the latter, it undertakes
an available growth opportunity only upon poor performance.

Lemma 3. The high-growth and low-growth regimes can both arise.

16Furthermore, a higher probability of first-period success makes it less likely that the replacement cost κ will
have to be paid while increasing the expected gain that the firm obtains from a reduction in C1(y)+ qG(y)Cg(y),
which explains why the ratio p/(1− p) appears in the expression for the cutoff value κ̂F (0).

17Note that κ̂G(0) > κ̂F (0), so that if the firm stands ready to fire the manager after poor performance absent
a growth opportunity, then a fortiori it will fire him after poor performance for the sake of growth.

18If growing the firm involved a specific cost χ > 0, then κ̂G(y) and κ̂G(0) would both be translated to the left
by χ, making it less likely that growth opportunities are undertaken, but none of our results would be affected.

19This assumption, which effectively rules out the possibility that the firm never grows (see Remark A-4 in
Appendix A), only serves to simplify the exposition and shorten some of the proofs. In particular, all the empirical
implications stated in Propositions 1 and 2 remain true if Condition (11) is relaxed.
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The main insight delivered by Lemma 3 is that some firms—namely, low-growth firms—
may find it preferable to forego a growth opportunity following good performance even
though they would undertake any such opportunity under first best, as implied by (1).
Indeed, under second best, it can be optimal for a firm to commit ex ante to forego growth
opportunities after good performance in order to save on the cost of incentive provision.

The following lemma characterizes the determinants of a firm’s growth regime, thus
shedding light on the circumstances in which it is optimal for the firm to grant partial job
protection to the initial manager.

Lemma 4. An increase in γ, y, ̺ or p, or a drop in λ, r or κ can induce a switch from
a low-growth to a high-growth regime. A change in q has no impact on the optimal growth
policy.

In particular, Lemma 4 establishes that firms with better opportunities (i.e., high γ) tend
to fully expose their managers to the risk of growth-induced turnover. Firms with smaller
discount rates (i.e., low r) tend to do the same as they give more weight to the future
benefit from growth relative to the compensating increase in first-period compensation.
By contrast, firms facing larger turnover costs (i.e., high κ) have a natural tendency to
grant partial job protection to their managers, thus foregoing growth opportunities after
good performance. Low-growth firms also tend to be plagued by severe agency issues
(i.e., high λ). Indeed, as reflected in the expression for the threshold κ̂G(y) in (10), a high
dismissal probability G(y) is less appealing when moral hazard is more severe, both because
the fraction of enhanced second-period cashflows accruing to the firm (1− λ) is small and
because the second-period agency rent is large—implying that any increase in the risk of
growth-induced dismissal needs to be matched by a larger increase in C1(y) + qG(y)Cg(y)
to keep the agent incentivized.

1.2 Empirical Implications

In this section, we derive some of the empirical implications that arise in this simple two-
period framework combining growth-induced turnover and moral hazard. The following two
propositions summarize the theoretical predictions for managerial turnover and managerial
compensation, respectively.

Proposition 1. The following statements hold true:

i. The likelihood of turnover is decreasing in performance, namely,

qG(y) + (1− q)F (y) ≤ qG(0) + (1− q)F (0).

ii. The likelihood of turnover, qG(Y1) + (1− q)F (Y1), is increasing in the quality of growth
opportunities, γ, and in their arrival probability, q.

iii. The probability of turnover is higher when a growth opportunity arises, namely,

G(Y1) ≥ F (Y1).

Moreover, the impact of the arrival of a growth opportunity on the probability of turnover
is stronger in firms with better opportunities, namely, G(Y1)− F (Y1) is increasing in γ.
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The results derived in Proposition 1 follow almost immediately from Lemmas 2 and 4.
Statement (i) establishes a negative relationship between firm performance and turnover.
This is a standard prediction of dynamic moral hazard models.20 In particular, the result
would equally hold true under second best in the absence of growth-induced turnover (i.e.,
in the limit as q goes to zero), when dismissal upon poor performance is used purely as an
incentive device. The prediction carries over to our setup because growth-induced dismissal
is also less likely to occur after good performance, i.e., G(y) ≤ G(0). Statements (ii)
and (iii) characterize the impact of ex ante growth prospects and the effect of a growth
opportunity realization on the likelihood of turnover, respectively. These predictions are
primarily driven by the possibility of growth-induced dismissal introduced in our setup.21

The second set of empirical implications emphasizes some important features of the
compensation scheme under the optimal two-period contract. In particular, when thinking
about taking the model predictions to the data, it is useful to consider the average com-
pensation profile (C̄1, C̄2), where C̄t denotes the expected level of compensation that the
initial manager receives at time t conditional on running operations in period t, namely,

C̄1 = p[C1(y) + qG(y)Cg(y)] and C̄2 = pλy.

Proposition 2. The following statements hold true:

i. Compensation is increasing in performance, namely,

C1(y) + qG(y)Cg(y) > C1(0) + qG(0)Cg(0) and C2(Y1, y) > C2(Y1, 0).

ii. The average compensation profile is increasing over tenure, i.e., C̄1 ≤ C̄2.

iii. The average first-period compensation C̄1 is increasing in the quality of growth oppor-
tunities, γ. Hence, the slope of the compensation profile, C̄2 − C̄1, is decreasing in γ.

The first statement in Proposition 2 establishes a positive relationship between firm per-
formance and managerial compensation, which immediately follows from Lemma 1.22 The
other two results in the proposition characterize the shape of the average compensation
profile (C̄1, C̄2). While statement (ii) shows that the compensation profile is back-loaded,
statement (iii) emphasizes the fact that the extent of compensation back-loading depends
on the firm’s ex ante growth prospects.23 Specifically, the model predicts that firms with
better growth prospects tend to have more front-loaded pay. Indeed, as shown in Lemma 4,
an improvement in the quality of growth opportunities makes it more likely that the firm
finds it optimal to fully expose the initial manager to the risk of growth-induced turnover,
setting G(y) = 1. In turn, the associated drop in the dismissal wedge needs to be com-
pensated by an increase in C1(y)+ qG(y)Cg(y) to satisfy the first-period IC constraint (see

20Under first best, turnover is independent of performance, namely, F (Y1) = 0 and G(Y1) = 1.
21It is worthwhile to note, however, that under the assumption that growth is efficient (i.e., Condition (1)), the

comparative statics with respect to γ in statements (ii) and (iii) would not hold true under first best.
22Note that compensation increases with recent performance, not with the entire history of performance. Indeed,

C2(Y1, Y2) is independent of Y1, i.e., second-period pay does not depend on first-period performance.
23The inequality in statement (ii), like the one in Proposition 1.(i), is strict unless F (0) = 0 and G(y) = 1.

Necessary and sufficient conditions for this case to arise are provided in the proof of Proposition 2.
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Equation (7)), which translates into an increase in the average first-period compensation
level C̄1. It is worthwhile to note that, whereas statements (i) and (ii) are driven by moral
hazard and would also hold true under second best in the absence of growth-induced dis-
missal, the last prediction is specific to our setup and is driven by the interaction between
moral hazard and the possibility of growth-induced turnover.

2 The Continuous-Time Model

Having previewed the basic economics of growth-induced managerial turnover and its in-
teraction with moral hazard, we now turn to the main focus of our analysis and consider
the continuous-time stationary version of the environment introduced in Section 1. In par-
ticular, this modelling setup is better adapted to fully capturing the dynamic nature of the
agency relationship between a firm and any of its successive managers.

We consider a firm run by a sequence of managers protected by limited liability. The
firm and its managers are risk-neutral, with discount rates r and ̺, respectively. The firm’s
operations generate a stream of instantaneous cashflows Φt dYt, where Φt denotes the size
of the firm at time t, and the cumulative size-adjusted cashflow process Y = {Yt} follows

dYt = µdt+ σ dZt, µ, σ > 0,

where Z = {Zt} denotes a standard one-dimensional Brownian motion. The firm starts
with unit size (Φ0 = 1) and can later expand. At any point in time, two conditions
must be met for the firm to expand: (i) it must have a growth opportunity, and (ii)
it must hire a new manager to take up the opportunity. Growth opportunities arrive
sequentially, independently of cashflow shocks, and the waiting time for the arrival of the
next opportunity is exponentially distributed with parameter q. If not taken immediately,
an opportunity is lost and no further growth is possible until a new one arrives.

As in the context of the two-period framework studied in the previous section, the
assumption that value creation entails a change of management is central to our analysis.
For convenience, we model value enhancement as a discrete change in firm size that scales
up the distribution of cashflows. Namely, we assume that when it expands, the size of the
firm increases by a factor 1+γ > 1. Firm growth, when it occurs, is the result of bringing in
a new manager able to take advantage of newly available opportunities—thereby achieving
a permanent increase in expected cashflows.24

The second main feature of the model is a standard agency problem arising from the
fact that, while running the firm’s operations, managers can divert cashflows. The residual
cashflow received by the firm is Φt (dYt − dAt), where A = {At} denotes the cumulative
size-adjusted amount of ‘stealing’.25 Managers enjoy a private benefit λ ∈ (0, 1] for each
unit of diverted cashflow, so that λ measures the severity of moral hazard.

The firm has deep pockets and can cover negative cashflows, as well as the costs as-
sociated with managerial compensation and turnover. Thus the firm’s decisions are not

24This may or may not involve an increase in the fixed assets of the firm. If it does, future scaled cashflows
should be thought of as net of the financing cost of capital investments.

25The stealing strategy A chosen by the manager is adapted to the Brownian filtration and has continuous
sample paths. Given that Y is continuous, any jump in A would be immediately detected by the firm.
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driven by financing constraints. A manager hired to run the firm at size Φt has reservation
value w̄Φt, and the cost of replacing him is κΦt, where w̄, κ > 0 are given constants. While
it is natural to assume that the manager’s reservation value (which can be interpreted as
a non-pecuniary cost of running the firm) and the cost of managerial replacement (which
may include disruption costs) are increasing in firm size, the stronger assumption of propor-
tionality is made to ensure size homogeneity and preserve tractability.26 The continuation
value of a departing manager is equal to zero.27

We further assume that

̺ > r, (12)

r > qγ, (13)
γµ

r
> κ+ (1 + γ)w̄, (14)

and we refer to parameter values that satisfy these conditions, along with the ones previously
imposed in this section, as permissible. Condition (12) requires that managers are more
impatient than the firm.28 Condition (13) imposes that the average growth rate when the
firm takes all growth opportunities is smaller than the firm’s discount rate, which ensures
finite valuation. Finally, together with (13), Condition (14) implies that in the absence of
moral hazard, it would be optimal for the firm to take all growth opportunities—as we next
establish.

2.1 First-Best Policy

The first-best policy can be characterized as follows. First, the optimal compensation policy
involves giving to a manager a size-adjusted transfer w̄ at the outset of his tenure. Indeed,
since managers are more impatient than the firm, deferring compensation would affect
firm value negatively. Second, in order to save on replacement and hiring costs, managerial
turnover never occurs if not for the sake of taking a growth opportunity. Third, the optimal
growth policy involves either taking all growth opportunities or never taking any. If the
firm takes all opportunities, its expected discounted profit V ∗ satisfies

V ∗ = −w̄ + E

[
∫ τ

0
e−rtdYt + e−rτ

[

(1 + γ)V ∗ − κ
]

]

,

26Empirically, executive pay is positively correlated with firm size both over time and across firms, as docu-
mented by Kostiuk (1990), Murphy (1999), and Gabaix and Landier (2008). On the other hand, estimates of the
various costs associated with CEO transitions for mid-cap companies are roughly twice as large as those borne
by small-cap companies, and less than half the costs borne by large-cap companies (Chief Executive Magazine,
Nov/Dec 2008). Biais et al. (2010) and DeMarzo et al. (2012) make proportionality assumptions similar to ours.

27Allowing for a non-zero continuation value would alter the details of our analysis to the extent that this would
affect the dynamics of the manager’s promise (20) as well as the HJB equation (28).

28This assumption is standard in the dynamic contracting literature (e.g., DeMarzo and Sannikov (2006), Biais
et al. (2007, 2010), and DeMarzo et al. (2012)). The wedge in discount rates rules out indefinitely postponing
payments to managers.
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where τ is the random arrival time of the first growth opportunity. Solving for V ∗ under
the assumption that τ is exponentially distributed with parameter q yields

V ∗ =
µ− qκ

r − qγ
−

r + q

r − qγ
w̄.

If instead the firm foregoes all opportunities, its expected discounted profit is given by

−w̄ + E

[
∫ ∞

0
e−rtdYt

]

= −w̄ +
µ

r
.

It is straightforward to see that Conditions (13) and (14) are sufficient for the inequality

V ∗ > max
{

−w̄ +
µ

r
, 0
}

to hold true. Therefore, as in the two-period framework under Condition (1), our assump-
tions ensure that it would be optimal for the firm to take all growth opportunities under
first best.

2.2 Long-Term Incentive Contract

We now turn to the case where managers can divert cashflows and stealing is not observable
by the firm. The firm enters into a long-term contract with each manager at the time of
his hiring, and both parties fully commit to the terms of the contract. A contract specifies
circumstances upon which the manager will be dismissed, including those when the firm
will take a growth opportunity, as well as the manager’s pay over the course of his tenure
based on the information that will become available to the firm over time. In particular, the
arrival of a growth opportunity is assumed to be perfectly observable and contractible. To
fix ideas and simplify the exposition, we initially restrict our attention to the contract with
the first manager. Readers interested in the technical aspects of the sequential contracting
environment are referred to Appendix B.

First, we discuss how dismissal and compensation are determined for a given stealing
strategy A chosen by the manager. The information accruing to the firm over time comes
from observing the cumulative reported cashflows Ŷ = Y − A, as well as the arrival of
growth opportunities. We denote by Ft the information gathered by the firm up to time t,
which includes information about the occurrence of growth opportunities. We denote by
F̂ t ⊆ Ft the information coming only from the history of reported cashflows up to time t.

Dismissal of the manager can occur for two distinct reasons in our setting. First, the
manager can be sacked after a history of poor reported cashflows. Indeed, committing ex
ante to fire the incumbent after poor reported performance can be used by the firm as a
device to incentivize him not to steal. Second, the manager can be replaced in order to take
a growth opportunity that becomes available. Hence, turnover is partly governed by the
firm’s growth policy, which determines the firm’s response to the potential arrival of a growth
opportunity. This policy is modeled by an (F̂t)-progressively measurable process G = {Gt}
taking values in {0, 1}, with Gt = 1 indicating that the firm stands ready to take a growth
opportunity at time t, and Gt = 0 indicating that it does not.29 By controlling G, the

29Note that Gt is set by the firm without knowledge of whether an opportunity arises or not at time t. In
Appendix D, we show that randomization of the growth decision, i.e., Gt ∈ (0, 1), is suboptimal.
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firm effectively determines the instantaneous intensity of growth-induced dismissal, which
is equal to qGt at time t. In view of these observations, the random time τ at which the
manager is fired can thus be represented as30

τ = τd ∧ τg,

where τd denotes an (F̂t)-stopping time and the random time τg satisfies31

P

(

τg > t
∣

∣ F̂t
)

= exp

(

−

∫ t

0
qGs ds

)

. (15)

In the event that τ = τd, the manager is replaced for the sake of incentive provision, which
we refer to as disciplinary turnover. When instead τ = τg, the manager is dismissed for the
sake of growth, which we refer to as growth-induced turnover.

Compensation to the manager over the course of his tenure is captured by an (F̂t)-
adapted cumulative compensation process C = {Ct}. Limited liability implies that C is
increasing. A positive jump ∆Ct represents a lump-sum payment at time t.32 In particular,
∆C0 and ∆Cτd denote a signing bonus and severance pay upon disciplinary dismissal,
respectively. To capture severance pay upon growth-induced turnover, we introduce a
separate (F̂t)-progressively measurable process S = {St}. The amount of severance received
by a manager dismissed for the sake of growth is given by Sτg .

Now considering the set A of all possible stealing strategies, a contract can thus be
viewed as a function mapping each stealing strategy A ∈ A to a collection

C = C(A), S = S(A), G = G(A), and τd = τd(A),

as just described. Such mapping should be consistent across stealing strategies in the sense
that any given history of reported cashflows should result in the same compensation and
termination outcomes, independently of the underlying combination of true cashflows and
stealing that gave rise to that observed history. The contract space G identifies with the set
of all functionals Γ : A 7→

(

C(A), S(A), G(A), τd(A)
)

on A that satisfy this requirement.

2.3 The Firm’s Problem

Given a contract Γ and a stealing strategy A, the manager’s expected discounted payoff at
the time of his hiring is given by

M(Γ, A) = E

[∫

[0,τ [
e−̺t

(

dCt + λdAt
)

+ e−̺τ
(

∆Cτd1{τ=τd} + Sτg1{τ=τg}

)

]

.

30We use the notation x ∧ y (resp., x ∨ y) to denote the minimum (resp., maximum) of x and y.
31The left-hand side of (15) denotes the probability that the manager has not been dismissed for the sake of

growth by time t, conditional on the history of reported cashflows up to time t. The right-hand side captures
the fact that the instantaneous intensity of growth-induced dismissal at time s ≤ t is qGs. When the firm stands
ready to take all growth opportunities, setting G ≡ 1, the probability that the manager survives the threat of
growth-induced termination up to time t is given by exp(−qt), reflecting the fact that the arrival of opportunities
is exponentially distributed with parameter q.

32We assume that C is right continuous with left limits and C0− = 0, therefore ∆Ct = Ct−Ct− and ∆C0 = C0.
Further technical details on the modelling of long-term incentive contracts are given in Appendix B.1.
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For a given contract Γ, a stealing strategy A is said to be incentive compatible if it maximizes
the manager’s payoff. We refer to a contract as admissible if it is such that (i) no stealing is
incentive compatible, and (ii) the manager’s expected discounted payoff under no stealing
is greater than or equal to his reservation value w̄. Formally, the subset Ga of admissible
contracts includes all contracts Γ ∈ G such that

M(Γ, 0) = sup
A∈A

M(Γ, A) and M(Γ, 0) ≥ w̄.

Given an admissible contract Γ, the firm’s expected discounted profit at t = 0 is

F (Γ) = E

[ ∫

[0,τ [
e−rt (µdt− dCt)

+ e−rτ
(

[Vd −∆Cτd − κ]1{τ=τd} + [Vg − Sτg − κ]1{τ=τg}

)

]

, (16)

where Vd and Vg denote the firm’s continuation values after dismissal of the first manager
(for disciplinary reasons or upon growth, respectively), which we endogenize later in Sec-
tion 3.33 The firm’s problem is to find an admissible contract that maximises its expected
discounted profit. Formally, the firm’s objective is to find Γ∗ such that

F (Γ∗) = sup
Γ∈Ga

F (Γ).

2.4 Admissible Dynamic Contracts

As observed in previous work on dynamic moral hazard, the challenge of analyzing this type
of environment comes from the complexity of the contract space and from the difficulty
of evaluating the agents’ incentives in a tractable way. In this section, we build on the
approach of DeMarzo and Sannikov (2006), Sannikov (2008), and Biais et al. (2007, 2010),
and consider a state-space representation of incentive contracts. Under no stealing, the
state variable in this representation should coincide with the manager’s expected payoff.
As a preliminary step, we therefore characterize the process followed by

Mt = E

[
∫

]t,τ [
e−̺(s−t)dCs + e−̺(τ−t)

(

∆Cτd1{τ=τd} + Sτg1{τ=τg}

) ∣

∣

∣Ft

]

, t < τ,

which corresponds to the manager’s expected future payoff at time t < τ when he refrains
from stealing.

Lemma 5. For any given contract Γ ∈ G, there exists a process β = {βt} such that

dMt =
[

̺Mt + qGt(Mt − St)
]

dt− dCt + σβt dZt, for t < τ. (17)

33In Appendix B.2, we provide an expression for the firm’s value at t = 0 for a given sequence of admissible
contracts. In particular, when the same admissible contract Γ is offered to all managers, we show that the firm’s
size-adjusted expected discounted profit F (Γ) satisfies (16) with Vd = F (Γ) and Vg = (1 + γ)F (Γ). We restrict
our attention to contracts that implement no stealing, which is standard in the literature when moral hazard is
modelled as a cash diversion problem (e.g., see DeMarzo and Sannikov (2006)).
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Proof. See Appendix C.1.34

The presence of the diffusion term in the dynamics of the agent’s expected payoff is very
natural. Since compensation and dismissal policies are contingent on the history of re-
ported cashflows, the evolution of the manager’s expected future payoff under a long-term
incentive contract is sensitive to currently reported cashflows. The process β can precisely
be interpreted as the sensitivity induced by a long-term contract. Since reported cashflows
coincide with true cashflows when the manager refrains from stealing, the stochastic evo-
lution of the manager’s expected payoff under no stealing Mt is directly driven by the true
cashflow shocks dZt.

In light of Lemma 5, we consider dynamic contracts whose implementation is driven by
a state process W = {Wt} that evolves as

dWt =
[

̺Wt + qGt(Wt − St)
]

dt− dCt + βt (dŶt − µdt). (18)

Along with compensation and growth policies, a dynamic contract specifies the sensitivity
β of the state variable W to the reported cashflows. Importantly, since the dynamics of the
state variable are driven by processes that are either observed or controlled by the firm, its
evolution over time can be tracked by the firm. While growth-induced turnover is jointly
determined by the growth policy and the random arrival of opportunities, disciplinary
dismissal occurs when the state process W hits zero, namely,

τd = inf{t ≥ 0 : Wt = 0}. (19)

Noting that dŶt−µdt = −dAt+σ dZt, it is straightforward to see that, when the manager
refrains from stealing, the dynamics of the state process become

dWt =
[

̺Wt + qGt(Wt − St)
]

dt− dCt + σβt dZt (20)

and therefore mirror (17). Indeed, when the manager refrains from stealing, the value taken
by the state variable at any time during his tenure does coincide with his expected future
compensation under the contract, as stated in the following lemma.

Lemma 6. Consider a dynamic contract with termination occurring at time τ = τg ∧ τd,
where τg satisfies (15) and τd is defined by (19) where W follows (18) for some initial
condition W0− = winit > 0. Then the manager’s expected future payoff at time t < τ if he
refrains from stealing is equal to Wt, namely,

Wt = E

[∫

]t,τ [
e−̺(s−t)dCs + e−̺(τ−t)

(

∆Cτd1{τ=τd} + Sτg1{τ=τg}

) ∣

∣

∣Ft

]

(21)

on the event {t < τ}. Moreover, if β ≥ λ, it is optimal for the manager not to steal.

34It is worthwhile to note that, in our model, uncertainty is not only driven by the Brownian cashflow shock
but also by the stochastic arrival of growth opportunities. As a result, the derivation of (17) does not simply rely
on the martingale representation theorem, as in the standard martingale approach developed by Sannikov (2008),
but also on a “change of filtration” formula and other techniques borrowed from the credit risk literature.

18



Proof. See Appendix C.3.

Equation (21) confirms that the state process W under a dynamic contract can be inter-
preted as the manager’s expected future payoff if he refrains from stealing, which we shall
refer to as the manager’s promise. Lemma 6 also establishes an incentive compatibility
condition.35 The condition is intuitive: since he enjoys a private benefit λ per unit of di-
verted cash, incentivizing the manager not to steal requires that his promise increases by
at least λ for each extra unit of reported cashflow, namely, β ≥ λ. A dynamic contract is
admissible if it satisfies this condition as well as the initial promise condition W0− ≥ w̄.
Since β ≥ λ > 0 under an admissible dynamic contract, (18) and (19) imply that inefficient
disciplinary turnover occurs as the result of poor reported cashlows.

Before proceeding further, it is important to observe that, relative to the environment
considered in DeMarzo and Sannikov (2006), the introduction of growth-induced turnover
affects the dynamics of the agent’s promise in a substantial way. The key difference lies
in the drift of the promise, which in our setup is equal to ̺Wt + qGt(Wt − St) instead of
simply ̺Wt. The reason for this difference is that, whenever the manager is put at risk of
being fired for the sake of growth (i.e., whenever Gt = 1), he needs to be ‘compensated’
for the loss that he would incur in case a growth opportunity arises. The potential loss
corresponds to the difference (Wt − St) between the manager’s current promise and the
amount of severance pay that he would receive if replaced for the sake of growth,36 while
the chances of incurring such loss are determined by the instantaneous intensity of growth-
induced dismissal qGt. Compensation for the risk of growth-induced termination comes in
the form of an augmented drift, which translates into a faster increase of the manager’s
promise in states of the world where no growth opportunity materializes. In other words,
the law of motion for the agent’s promise is modified in our setup in such a way that the
promise keeping condition remains satisfied.

3 Optimal Dynamic Contract

Having characterized the set of admissible dynamic contracts, we reformulate the firm’s
optimization problem as a stochastic control problem. We denote by V (φ,w) the firm’s
value function, which gives the firm’s expected discounted profit at a given current size φ
and for a given size-adjusted promise w to the incumbent manager. The firm’s value function
satisfies the recursive dynamic programming equation

V (φ,w) = sup
C,S,G,β

E

[

φ

∫

[0,τ [
e−rt(µdt− dCt)− φe−rτ

(

∆Cτd1{τ=τd} + Sτg1{τ=τg}

)

+ e−rτ
(

−κφ+ Vd1{τ=τd} + Vg1{τ=τg}

)

]

, (22)

35This result extends the incentive compatibility condition derived in DeMarzo and Sannikov (2006) to our
environment with growth-induced turnover.

36We later show that, under the optimal dynamic contract, a manager receives no severance when dismissed
for the sake of growth. The potential loss upon growth-induced termination is therefore equal to Wt under the
optimal contract.
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in which expression

τ = τd ∧ τg, Vd = V (φ,wφh) and Vg = V
(

(1 + γ)φ,w
(1+γ)φ
h

)

, (23)

subject to the incentive compatibility constraint β ≥ λ, and subject to (15), (19) and (20)
with initial condition W0− = w. In this formulation, C and S denote the manager’s size-
adjusted cumulative compensation and size-adjusted severance upon growth, respectively,
while

wφh = w̄ ∨ argmax
w>0

V (φ,w) and w
(1+γ)φ
h = w̄ ∨ argmax

w>0
V
(

(1 + γ)φ,w
)

. (24)

In particular, (24) captures the possibility that a new manager’s participation constraint
may not be binding, as it may be optimal for the firm to give him a rent in excess of his
reservation value. Since cashflows, turnover costs and reservation values are all proportional
to firm size, it follows that firm value itself is homogenous in size, namely,

V (φ,w) = φV (1, w) =: φv(w). (25)

In particular, stationarity and size homogeneity imply that the firm offers the same dynamic
contract to all successive managers. Using (22)–(25), the size-adjusted value function v(w)
is determined along with the optimal contract by

v(w) = sup
C,S,G,β

E

[ ∫

[0,τ [
e−rt(µdt− dCt)− e−rτ

(

∆Cτd1{τ=τd} + Sτg1{τ=τg}

)

+ e−rτ
(

−κ+ v(wh)1{τ=τd} + (1 + γ)v(wh)1{τ=τg}

)

]

(26)

subject to the same constraints as above, where the size-adjusted hiring promise wh satisfies

wh = w̄ ∨ argmax
w>0

v(w). (27)

The following proposition is central to our characterization of the optimal dynamic contract.

Proposition 3. Let u : R+ → R be a concave C2 function that satisfies the Hamilton-
Jacobi-Bellman (HJB) equation

max

{

σ2λ2

2
u′′(w) + ̺wu′(w)− ru(w) + µ

+ q
[

(1 + γ)u(wh)− κ+ wu′(w)− u(w)
]+
, −u′(w)− 1

}

= 0, (28)

with boundary condition

u(0) = u(wh)− κ, (29)

where wh = w̄ ∨ argmaxw>0 u(w). Also, suppose that limw↓0 |u
′(w)| < ∞ and u′(w) = −1

for some w < ∞. Then the function u identifies with the value function v defined by (26),
namely, v(w) = u(w) for all w ≥ 0. Moreover, the optimal dynamic contract satisfies
Properties 1-5 listed below.
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Proof. See Appendix D.

We rely on Proposition 3 to construct the firm’s value function and solve for the optimal
dynamic contract. As observed in previous work on dynamic moral hazard, the concavity
of the value function is related to the fact that a change in w affects firm value not only
directly by increasing the amount of compensation owed to the manager, but also via its
impact on the likelihood of disciplinary turnover. Indeed, by reducing the prospect of a
costly disciplinary turnover, an increase in the agent’s promise by one dollar effectively costs
less than one dollar to the firm. Moreover, since the probability of disciplinary turnover is
higher after poor performance, the reduction in agency costs induced by a marginal increase
in the agent’s promise is larger for low values of w. This is what gives rise to concavity.

3.1 Optimality Properties

We now turn to the properties satisfied by the optimal dynamic contract, as implied by
Proposition 3. These impose restrictions on the cashflow sensitivity, on the compensation
policy, and on the growth policy. The first two properties are standard. In particular,
they also hold in the absence of growth opportunities, and are derived in that context by
DeMarzo and Sannikov (2006), and Biais et al. (2007).37

Property 1. The optimal contract has sensitivity to reported cashflows β = λ.

The fact that the incentive compatibility constraint should hold as an equality (β = λ)
is related to the concavity of the value function. Intuitively, reducing the volatility of the
manager’s promise as much as possible while satisfying incentive compatibility is optimal
for the firm because it lowers the probability that the promise hits zero, which would result
in ex post inefficient disciplinary turnover.

Property 2. The optimal compensation policy is such that the manager receives transfers
only if his current promise w is at least wc. The compensation threshold wc satisfies

v′(wc) = −1.

This property can be explained heuristically by observing that, at any instant, the firm has
the option to make an immediate transfer to the manager and continue optimally. Hence,
the inequality v(w) ≥ −ε + v(w − ε) holds for any transfer ε, which implies v′(w) ≥ −1.
When the manager’s current promise w is such that v′(w) > −1, deferring compensation
is optimal. By concavity of the value function, this happens when w is below the point wc

that satisfies v′(wc) = −1. In this case, the manager receives no compensation until his
promise reaches the compensation threshold. If w̄ > wc, the manager receives a signing
bonus ∆C0 = w̄−wc when appointed, and his promise later remains in the interval [0, wc].

38

37From a broader perspective, the ‘smooth pasting’ condition in Property 2 is a standard feature of the solution
to singular stochastic control problems such as the one given by (26); see Beneš et al. (1980) and Karatzas (1983)
for early references.

38Technically, the agent’s promise W is reflected at wc by the cumulative compensation process. A rigorous
construction of this process is provided in Appendix D (see Theorem D-2). One way in which the introduction
of stochastic growth opportunities and growth-induced turnover modifies the firm’s pay policy is by affecting the
value of the optimal threshold wc, as shown in Section 3.3 for the high-growth case.
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Property 3. The optimal compensation policy involves no severance payment, namely,
∆Cτd = 0 and S = 0.

Property 3 establishes that severance pay is strictly suboptimal in the continuous-time
setting, even in the case of growth-induced termination. The reason is that, rather than
give cash to a departing manager, the firm is always better off increasing the promise of
the incumbent conditional on him being retained, which has the benefit of reducing the
likelihood of inefficient turnover later on.39 This result is in contrast with the indifference
result that holds in the two-period model where disciplinary dismissal can only occur at
the end of the first period (see the discussion following Lemma 1 and Footnote 15). It is
also worthwhile to note that the no-severance result upon growth-induced dismissal relies
crucially on the assumption that the arrival of a growth opportunity is contractible.40

Property 4. It is optimal for the firm to stand ready to take a growth opportunity if and
only if the manager’s current promise w is such that

(1 + γ)v(wh)− κ+ wv′(w) ≥ v(w). (30)

Condition (30), which we shall refer to as the growth optimality condition, determines
the circumstances under which growth-induced turnover can occur. The inequality reveals
that the optimal growth policy does not just rely on a comparison between the status quo
continuation value v(w) and the continuation value upon growth (1 + γ)v(wh) − κ. The
extra term wv′(w) accounts for the fact that putting the manager at risk of being fired if a
growth opportunity arrives requires to compensate him in the form of an augmented drift,
as discussed in Section 2.4. When the firm’s value function is decreasing at the current value
of the agent’s promise (i.e., v′(w) < 0), this higher drift constitutes a cost. If this cost is high
relative to the potential gains from growth, so that (1+γ)v(wh)−κ+wv

′(w)−v(w) < 0, it is
optimal for the firm to insulate the incumbent manager from the risk of being replaced, and
thus forego growth opportunities when they become available. We refer to this possibility
as contractual job protection.

Property 5. If partial job protection arises as part of the optimal contract, the firm foregoes
growth opportunities if the manager’s promise w is above wg, where the growth threshold
wg satisfies

wg = sup
{

w ≥ 0 : (1 + γ)v(wh)− κ+ wv′(w)− v(w) ≥ 0
}

< wc.

This property indicates that, if some degree of job protection arises as part of the opti-
mal incentive contract, managers are shielded from the risk of growth-induced turnover

39By the same logic, severance pay would be suboptimal in a simpler setting with exogenous random exit of
the manager. We are grateful to an anonymous referee for making this observation.

40In an earlier version of this paper, we analyzed the case in which the availability of a growth opportunity
is privately observed by the incumbent manager and showed that, in that case, severance upon growth-induced
dismissal arises as part of the optimal contract (See Anderson et al. (2012), Section 6). This result is reminiscent
of Eisfeldt and Rampini (2008) and Inderst and Mueller (2010), although in our model severance is used to
incentivize the incubent to reveal good news. Malenko (2013) also considers an environment with privately
observed investment opportunities. Severance pay upon disciplinary dismissal arises in the setup analyzed by He
(2012) with risk-averse agent and private savings.
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after good performance. Intuitively, the benefit of retaining the incumbent, net of the fore-
gone gains from growth, is increasing in w because losses due to moral hazard under the
incumbent are dimished after good performance.41

3.2 Two Types of Firms

In light of our discussion of Properties 4 and 5, two configurations can arise—echoing the
two ‘growth regimes’ encountered in the analysis of the two-period model. In the first
one, the growth optimality condition (30) holds for all values of the manager’s promise
w ∈ [0, wc]. We refer to firms falling into this configuration as high-growth firms. In such
firms, managers are fully exposed to the risk of being fired for the sake of growth, and the
instantaneous rate of growth-induced turnover is always equal to q. Over the course of the
manager’s tenure, the firm keeps track of the evolution of

dWt = (̺+ q)Wt dt− dCt + λ (dŶt − µdt), W0− = wh,

where transfers dC reflect the manager’s promise W at the endogenous compensation
threshold wc. Transfers to the manager can be interpreted as bonuses indexed on reported
performance.42 The manager is dismissed when a growth opportunity arises or when W
hits zero, whichever comes first.

By contrast, in the second possible configuration, the growth optimality condition does
not hold everywhere on the interval [0, wc], and some degree of job protection is part of
the optimal contract. We refer to firms falling into the latter configuration as low-growth
firms. The contract offered by a low-growth firm specifies, along with a compensation
threshold wc, a growth threshold wg < wc. Over the course of the manager’s tenure, the
firm keeps track of

dWt =
[

̺+ q1[0,wg](Wt)
]

Wt dt− dCt + λ (dŶt − µdt), W0− = wh,

where transfers dC reflect W at wc. The manager is dismissed if a growth opportunity
arises at a time when Wt ≤ wg, or when W hits zero, whichever comes first. Consistent
with our discussion of Property 5, the optimal contract in low-growth firms commands that,
whenever the manager’s promise is above the growth threshold wg, the firm foregoes any
growth opportunity that becomes available.43

41In other words, the net benefit of exposing a manager to the risk of growth-induced termination is decreasing
in the manager’s promise, which can be seen from the fact that (1 + γ)v(wh)− κ+ wv′(w) − v(w) is decreasing
in w, by concavity of v. This is in line with the observation that κ̂G(y) < κ̂G(0) in the two-period model (see our
discussion of the optimal growth policy following Lemma 2).

42In both types of firms, transfers to the manager are increasing in reported cashflows net of the expected level
of cashflows. This feature of the contract is qualitatively in line with the use of bonus systems based on reported
earnings in excess of a performance target, as documented in Murphy (1999).

43The manager being partially shielded from the risk of growth-induced turnover might be described as an
endogenous form of ‘entrenchment’. We do not use this word because it more commonly connotes actions taken
by a manager to make his replacement costly. A number of recent papers explore frameworks very different from
ours where they establish conditions under which managers are protected from termination. See, e.g., Atkeson
and Cole (2008), Casamatta and Guembel (2010), and Garrett and Pavan (2012).
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The insights gathered through our analysis of the two-period model in Section 1 are
useful to understand why the low-growth configuration may sometimes be optimal even
though Condition (14) guarantees that foregoing growth opportunities is inefficient under
first best. We saw in that context that exposing managers to early termination risk can
make it more expensive to incentivize them. In the continuous-time model, this is mani-
fested by the fact that putting a manager at risk of being replaced for the sake of growth
effectively makes him more impatient, as revealed by the augmentation of the drift of the
contractual promise (which reflects the manager’s ‘effective’ discount rate) from ̺ to ̺+ q.
In the presence of moral hazard, a firm thus faces this ex ante tradeoff: a policy of always
standing ready to pursue growth by appointing a new, more suitable manager has the ad-
vantage of producing higher expected cashflows, but it entails increased early termination
risk for incumbent managers and a higher cost of incentive provision during their tenure.
In low-growth firms, the resolution of the tradeoff between efficient turnover and the cost of
incentive provision gives rise to an ‘interior’ solution, whereby the optimal contract allows
for job protection after good performance.44

3.3 High-Growth Firms

In this section, we further characterize the optimal contract offered by a high-growth firm.
To this end, we consider the free-boundary problem that consists in finding a free-boundary
point wc and a function u that satisfies the ODE

σ2λ2

2
u′′(w) + (̺+ q)wu′(w) − (r + q)u(w) + µ+ q

[

(1 + γ)u(wh)− κ
]

= 0 (31)

in the interval (0, wc), is given by

u(w) = u(wc)− (w − wc), if w > wc, (32)

and satisfies the boundary conditions

u(0) = u(wh)− κ, u′(wc) = −1 and u′′(wc) = 0, (33)

where

wh = w̄ ∨ argmax
w>0

u(w). (34)

Proposition 4. Given any permissible values of (r, ̺, µ, σ, q, γ, λ, κ, w̄) in R9, there exists
a unique solution (u,wc) to the free-boundary problem defined by (31)–(34). The function
u is C2 and concave, and satisfies the HJB equation

max

{

σ2λ2

2
u′′(w) + (̺+ q)wu′(w)− (r + q)u(w)

+µ+ q
[

(1 + γ)u(wh)− κ
]

, −u′(w) − 1

}

= 0.

44A third possible configuration involves fully isolating the managers from the risk of growth-induced termina-
tion, which corresponds to (30) being violated for all values of w ∈ [0, wc]. However, we show in Appendix F.5
that this ‘no-growth’ policy can only be optimal if v(wh) < 0, so that the firm would rather not operate. We do
not expand further on this case in the remainder of our analysis.
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Furthermore, the following statements hold true:

i. The set of permissible parameter values for which u satisfies (30) for all w ∈ [0, wc], and
therefore the HJB equation (28), has non-empty interior in R9.

ii. There exists a unique point w̄† = w̄†

(

̺+q
σ2λ2

, r+q
σ2λ2

, κ
)

such that

w◦ := argmax
w>0

u(w) ≥ w̄ ⇔ w̄ ≤ w̄† and w◦ = w̄ ⇔ w̄ = w̄†.

iii. There exists a unique point w̄‡ = w̄‡

(

̺+q
σ2λ2

, r+q
σ2λ2

, κ
)

> w̄† such that

wc ≥ wh ⇔ w̄ ≤ w̄‡ and wc = wh = w̄ ⇔ w̄ = w̄‡.

iv. If w̄ = w̄‡, u satisfies (30) for all w ∈ [0, wc] and the HJB equation (28) if and only if

γµ ≥ rκ+ (r + γ̺)w̄. (35)

Proof. See Appendix F.2.

In view of Proposition 3 and the general properties of the solution to the free-boundary
problem established in Proposition 4, statement (i) implies that, for a large set of permissible
parameter values, the firm is of the high-growth type. For such parameter values, the firm’s
size-adjusted value function and the optimal compensation threshold are given, along with
the hiring promise, by the solution to the free-boundary problem (31)–(34). Figure 1
illustrates the firm’s value function and the optimal compensation threshold in the high-
growth configuration for particular parameter values.

[FIGURE 1 HERE]

Statement (ii) determines conditions under which it is optimal for a high-growth firm
to grant to a new manager a compensation rent in excess of his reservation value. The
hiring promise wh is optimally set above the manager’s reservation promise w̄ when the
latter is sufficiently low, namely, w̄ ≤ w̄†. In this case, the initial promise wh is equal to
the level w◦ ≥ w̄ that maximizes the firm’s value. Otherwise, the manager’s participation
constraint is binding so that the hiring promise coincides with his reservation value (i.e.,
wh = w̄ > w◦).

Statement (iii) sheds light on how the optimal compensation policy plays out at the
start of a manager’s tenure. Depending on the value of the reservation promise w̄, three
scenarios can arise. When the reservation value is relatively low, in the sense that w̄ < w̄‡,
the compensation threshold is optimally set above the hiring promise (wc > wh). In this
scenario, a newly hired manager does not receive any pay for some time until the effect of
the positive drift ̺+ q, possibly combined with good cashflow realizations, finally takes his
promise up to the compensation threshold wc. In contrast, if the reservation promise is high
enough (w̄ > w̄‡), a manager receives a signing bonus ∆C0 = w̄ − wc > 0 when appointed.
In the particular case where w̄ = w̄‡, the hiring promise and compensation threshold are
such that wc = wh = w̄, and the manager starts receiving compensation immediately after
taking office.

Statement (iv) provides an explicit condition on exogenous parameter values for the
firm to be a high-growth type. Condition (35) suggests that high-growth firms tend to be
the ones that are more productive (high µ) or have better opportunities (high γ). Our next
proposition gives further insight on the characteristics of high-growth firms.
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Proposition 5. Consider any permissible values of (r, ̺, µ, σ, q, γ, λ, κ, w̄) in R9 such that
w̄ = w̄‡ and condition (35) holds with equality. A marginal increase in λ, σ or κ, or a
marginal decrease in γ, q or µ, leads condition (35) to fail.

Proof. See Appendix F.3.

In view of statement (iv), the proposition suggests that high-growth firms also tend to
be characterized by not-too-severe moral hazard and low turnover costs (low λ and κ).
These results confirm the insights derived in the two-period framework (see Lemma 4).45

Proposition 5 further suggests that frequent growth opportunities (high q) and not-too-
volatile cashflows (low σ) are other attributes of high-growth firms. In particular, because
of the cumulative nature of growth in our stationary environment, having more frequent
growth opportunities makes it more valuable to undertake any such opportunity.

Finally, we characterize the determinants of the compensation threshold in high-growth
firms with the following proposition. At this point, it is worthwile to note that, holding the
dynamics of the manager’s promise constant, a lower (resp., higher) compensation threshold
results in more front-loaded (resp., back-loaded) compensation.

Proposition 6. Consider (r, ̺, µ, σ, q, γ, λ, κ, w̄) in the interior of the set of permissible
parameter values for which the firm is a high-growth type.

i. The optimal compensation threshold wc is increasing in κ, and independent of µ and γ.

ii. If the parameter values are initially such that w̄ = w̄‡, then a marginal increase in λ
or σ leads to an increase in wc, whereas a marginal increase in q leads to a reduction in wc.

Proof. See Appendix F.4.

As the severity of moral hazard, the volatility of cashflows or the cost of managerial replace-
ment increases, the compensation threshold is raised to reduce the likelihood of inefficient
turnover. On the other hand, an increase in the arrival rate of growth opportunities, by
increasing the manager’s effective discount rate, results in a lower compensation threshold.
Furthermore, the quality of growth opportunities, γ, has no impact on the optimal com-
pensation scheme conditional on the firm being of the high-growth type, although it may
affect the shape of the compensation profile to the extent that it alters the firm’s growth
regime (as in the two-period model).46 Section 3.5 further illustrates the implications of
our model for the timing of compensation.

3.4 Low-Growth Firms

We now turn to the low-growth configuration. In light of Proposition 3 and Property 5, we
consider the free-boundary problem that consists in finding two free-boundary points wc

and wg < wc and a function u that satisfies the ODE

σ2λ2

2
u′′(w) + (̺+ q)wu′(w) − (r + q)u(w) + µ+ q

[

(1 + γ)u(wh)− κ
]

= 0 (36)

45The assumption w̄ = w̄‡, under which Propositions 5 and 6.(ii) are derived, implies the identities wc = wh = w̄,
which facilitate the proofs of our results. Establishing such results globally is beyond the scope of this paper.

46The result that the threshold wc is unaffected by the mean size-adjusted cashflow µ differs from the one
derived in DeMarzo and Sannikov (2006), where wc is increasing in µ. This is because the firm’s continuation
value upon termination is exogenously given in their setup, whereas it is endogenously determined in ours.

26



in the interval (0, wg), satisfies the ODE

σ2λ2

2
u′′(w) + ̺wu′(w) − ru(w) + µ = 0 (37)

in the interval (wg, wc), is given by

u(w) = u(wc)− (w − wc), if w > wc, (38)

satisfies the boundary conditions given by (33), and satisfies the requirement that

u(wg)− wgu
′(wg) = (1 + γ)u(wh)− κ, (39)

where wh is defined as in (34). The analysis of this problem allows us to establish that,
despite the assumption that foregoing growth opportunities is suboptimal under first best,
the low-growth configuration can arise, as stated in the following proposition.

Proposition 7. The set of permissible parameter values for which the solution u to the
free-boundary problem defined by (33)–(34) and (36)–(39) is C2 and concave, and satisfies
the HJB equation (28), has non-empty interior in R9. For such parameter values, the firm
is a low-growth type.

Proof. See Appendix G.3.

In low-growth firms, the optimal contract is as described in Section 3.2, with growth
and compensation thresholds given by the free-boundary points wg, wc of the free-boundary
problem defined above and with the hiring promise wh endogenously determined as part of
the problem.47 Figure 2 depicts the firm value function along with the optimal thresholds
in the low-growth configuration for particular parameter values. The figure also represents
what the value of the firm would be if it were constrained to systematically take all growth
opportunities as they come. The distance between the two curves on the figure illustrates the
benefit that a low-growth firm derives from offering partial job protection to its managers,
which can ultimately be traced back to a reduction in agency costs.

[FIGURE 2 HERE]

It is worthwhile to note that our finding that, in some firms, growth may only occur
after poor performance is in contrast with the result obtained in setups where the firm can
grow through investment with the incumbent (see, e.g., DeMarzo and Fishman (2007a)).
In such settings, growth is positively related to past performance because the return on
investment is higher after good cashflows, due to a reduction in agency costs. The opposite
prediction arises in our setup because the net benefit of exposing a manager to the risk
of growth-induced termination is lower after good performance, also due to a reduction in
agency costs. In practice, the relevance of each of these two mechanisms should depend on
the extent to which growth is of a ‘transformative’ nature or not, i.e., on whether taking a
growth opportunity requires a change of management or not.48

47In Appendix G.1, we derive five possible systems of highly non-linear equations that should be solved to
determine the points wg, wc and wh; see in particular Problem G-0. Given the complexity of this problem,
providing a complete characterization of its solution with a view to deriving a suitable solution to the HJB
equation (28) with boundary condition (29) is beyond the scope of this paper.

48The investment-cashflow sensitivity literature points to a positive relationship between investment and past
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3.5 A Numerical Example

We now use numerical simulations to illustrate how a firm’s growth prospects may affect
managerial turnover and pay in our setup. The numerical example also provides a sense of
the quantitative properties of the continuous-time model.

Frequency of Managerial Turnover. In our setting, the probability of an incumbent man-
ager being dismissed depends on the past performance of the firm under his tenure, but
also on the availability of a growth opportunity and on the ex ante characteristics of the
firm that affect the turnover policy. First, the likelihood of dismissal increases with poor
performance—both because a string of bad cashflows can result in disciplinary turnover
and because, in some firms, growth-induced turnover only occurs after poor performance.
Second, holding performance and firm characteristics constant, the probability of dismissal
also increases (at least weakly) upon arrival of a growth opportunity. Finally, the probabil-
ity of turnover depends on firm characteristics, to the extent that these affect the contract
specification and the degree of protection granted to the manager. In particular, firms with
better growth prospects should show a higher turnover rate.

To see this last point, we consider two firms that are identical in every dimension except
for the size (γ) of the growth opportunities they might receive. For the sake of illustration,
we take as common parameter values across the two firms r = 7%, ̺ = 16%, µ = 1,
σ = 1, q = 0.2, λ = 0.4, κ = 0.3, w̄ = 1. In the firm with better growth prospects, we
set γ = 0.25, while we set γ = 0.10 in the other firm.49 The difference in the quality of
growth opportunities faced by the two firms makes the former a high-growth type (i.e., a
manager in this firm is never immune to the risk of growth-induced termination), and the
latter a low-growth type (i.e., managers are protected from growth-induced turnover after
good performance). The average annualized turnover rate in these two firms are 21.4% and
5.5%, respectively. Changes in growth prospects driven by the arrival rate (q) of growth
opportunities have similar effects. To see this, we consider variations in q around the high-
growth and low-growth baselines. For the high-growth firm, an increase in the frequency of
growth opportunities from q = 0.20 to q = 0.22 causes the average turnover rate to rise to
23.2%, while setting q = 0.18 causes the turnover rate to drop to 19.4%. For the low-growth
firm, the same variations in q cause the average turnover rate to rise to 5.7% or drop to
5.3%, respectively.

Figure 3 depicts the cumulative distribution of tenure length in the two baseline ex-
amples. The probability distribution of tenure length for the low-growth firm first-order

performance. However, these studies do not really shed light on the empirical validity of the mechanism at play in
our model because they do not account for the fact that firms may grow both by ‘marginal’ changes or by radical
transformations requiring a change in top management, nor for the possibility that an increase in the firm’s value
may be obtained without capital investment.

49These parameter values are permissible (see Conditions (12)–(14)). In particular, the firms’ growth prospects
are sufficiently attractive as to make taking all growth opportunities optimal in the absence of moral hazard.
Discount rates r and ̺, and the intensity rate q, are expressed on an annual basis. Given the normalization µ = 1,
parameters σ, κ, and w̄ are effectively expressed in terms of annual mean cashflow. For given parameter values, we
first determine the firm’s type and the optimal contractual threshold(s) by solving numerically the free-boundary
problems associated with the HJB equation (28)–(29), as described in Sections 3.3 and 3.4. The average turnover
rate is then obtained from simulating the dynamics of the promise W under the optimal contract until dismissal
for a very large number of managers.
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stochastically dominates the one for the high-growth firm, i.e., the probability of a manager
reaching any given number of tenure years is higher in the low-growth firm. The median
tenure length of a manager is 3.3 years in the firm with better growth prospects (γ = 0.25),
whereas it is 12.6 years in the firm with poorer growth prospects (γ = 0.10). Changes
in the quality of growth prospects driven by the arrival rate of growth opportunities q af-
fect tenure length in a similar way: increasing the frequency of growth opportunities from
q = 0.20 to q = 0.22 causes the median time in office to drop to 3.0 years and 12.1 years,
respectively; whereas switching to q = 0.18 causes that time to rise to 3.6 years and 13.1
years, respectively.

[FIGURE 3 HERE]

Extent of Compensation Back-Loading. Deferred compensation constitutes an essential
feature of the optimal dynamic contract under moral hazard.50 It is well-understood that
the degree of compensation back-loading should depend on the severity of moral hazard (λ),
the cashflow volatility (σ), and the wedge between the manager’s and the firm’s discount
rates (̺ − r). In our setup, the extent of back-loading also depends on the prospect of
growth-induced turnover. Indeed, as revealed by our analysis, firms’ growth prospects may
affect the timing of pay both through the drift of the manager’s promise and the level of
the compensation threshold.

By way of illustrating this aspect of our model, we simulate managerial pay under the
optimal contract and characterize the degree of compensation back-loading using the notion
of compensation duration. Namely, for a given sequence of bonuses received by a manager
over his entire tenure, we compute the weighted average of the points in time when compen-
sation is received—with weights equal to the fraction of the total discounted pay (using the
agent’s discount rate ̺) received at each point in time.51 Figure 4 depicts the cumulative
distribution of realized compensation duration in the two baseline configurations introduced
in the previous subsection. The relative position of the two distributions reflects the fact
that, holding the level of expected discounted pay w̄ constant across firms, compensation
is more front-loaded in firms with better growth prospects. On average, compensation
duration is 2.2 years in the high-growth firm, versus 4.8 years in the low-growth firm.52

[FIGURE 4 HERE]

4 Empirical Evidence

In this section, we present evidence that is consistent with the notion of growth-induced
turnover and the empirical implications derived in the context of the two-period framework

50Compensation under the optimal contract comes in the form of bonuses that the manager receives whenever
his promise reaches the endogenous compensation threshold wc (see Property 2 for a precise characterization).

51Compensation duration is formally defined as
(∫ τ

0
e−̺t dCt

)−1 ∫ τ

0
te−̺t dCt, in line with the notion of bond

duration used in interest rate risk management. In simulations, we use the discretized version of this expression.
52The high-growth and low-growth baselines only differ in terms of the size of growth opportunities (γ). An

increase in the arrival rate of growth opporunities (q) also results in lower compensation duration.
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in Section 1.2 and illustrated for the continuous-time model in Section 3.5. We first in-
vestigate the empirical determinants of CEO turnover in the light of the theory. We then
explore the relation between the timing of CEO compensation and firms’ growth prospects.

4.1 Data

Our empirical analysis relies on information on CEO tenure episodes in US public firms as
reported in the Standard & Poor’s ExecuComp database for the period 1992-2014.53 Once
we merge the ExecuComp sample with accounting information from Compustat and stock
return data from CRSP, our sample comprises 4,514 CEO episodes. Out of these, 2,510
episodes cover the full tenure of the CEO from the year the CEO is appointed until the
year of leaving post. The total number of CEO-year observations in our sample is 27,992.54

The minimum number of firms covered in a given year is 760 in 1992, and the maximum is
1,416 in 2005.

Using information from ExecuComp, we identify the beginning and end years of each
completed CEO episode. The variable TotTenure is defined as the total number of years in
which the CEO is running the firm. Within an episode, the variable Turnover is a dummy
variable which equals 1 in the last year of the CEO’s tenure and zero otherwise. We also use
Execucomp to construct the variable TotPay defined as the total compensation awarded to
a CEO in a given year. Table 1 reports the summary statistics of our sample. In particular,
the average and median CEO tenure lengths are 6.5 years and 5 years, respectively, while
the average annual turnover rate is 8.4%.

Our analysis centers on CEO turnover and the timing of CEO compensation in relation
to the quality of a firm’s growth prospects. Our empirical proxy for the growth prospects
of a firm during a given CEO episode is based on the ‘average Q’ of each firm. The use
of average Q as a proxy for a firm’s growth opportunities is standard in the empirical
corporate finance literature.55 We construct the average Q for each firm-year in our sample
and we denote it simply by Q. As a proxy for the quality of growth prospects during a
given episode, we use the value of Q in the year before the CEO is appointed, which we
denote by QInit. We interpret a higher value of QInit as capturing better ex ante growth
prospects at the time a new CEO is hired.

Managerial turnover in our setup is also affected by the availability of growth oppor-
tunities. Capturing the arrival of a growth opportunity in any given year during a CEO
episode is challenging empirically. As a proxy, we construct the variable RatioQ defined as
the ratio of the lagged value of a firm’s Q in any given year to QInit. A higher value of

53The ExecuComp database covers all firms included in the S&P 500, MidCap, and SmallCap indexes. It would
be interesting to extend the analysis to smaller public firms and private firms. Kaplan, Sensoy, and Stromberg
(2008) document high turnover in the management teams of VC-backed private companies before going public.

54All CEO-year observations are from 1992 onwards. While the ExecuComp dataset starts in 1992, it covers
episodes in which the CEO was appointed earlier. Our sample includes observations pertaining to such episodes
when the required information (e.g., the firm’s average Q at the time the CEO was appointed) is available.

55The handbook by Eckbo et al (2001) surveys multiple studies in which average Q is used as a proxy for
growth opportunities. This practice stems from Hayashi (1982), who derives sufficient conditions such that a
firm’s average Q coincides with its marginal product of capital. See Caballero (1997) and Bond and Van Reenen
(2007) for surveys of the empirical literature assessing the links between average Q, marginal q, and investment.
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RatioQ is more likely to be observed when the firm has new growth opportunities available.
To control for past performance in any given year within a CEO episode, we use the

cumulative abnormal return of the firm measured over the previous two years, denoted by
CAR.56 We also consider the lagged return on assets (ROA) as an additional control for
performance. Finally, we use the logarithm of the lagged value of total assets (LnAssets)
to control for firm size.

[TABLE 1 HERE]

4.2 Determinants of CEO Turnover

We first examine the relation between turnover and the quality of growth prospects. As a
first pass, Figure 5 depicts the cumulative distribution of CEO tenure length conditional on
ex ante growth prospects proxied by QInit. The solid line plots the kernel estimate of the
distribution for the upper twenty percent of CEO episodes ranked by QInit, whereas the
dashed line corresponds to the bottom twenty percent. The cumulative distribution for the
upper QInit sub-sample lies significantly above the one for the bottom QInit sub-sample.57

That is, the likelihood that a CEO will not ‘survive’ beyond any number of years is higher
for CEOs entering firms with good growth prospects than for CEOs entering firms with
poor growth prospects, consistent with the notion of growth-induced turnover. Figure 5
constitutes the empirical counterpart to the simulation results depicted in Figure 3.

[FIGURE 5 HERE]

We further assess the implications of our model for managerial turnover by running a
probit regression where the dependent variable is the Turnover indicator variable. The
probit specification is as follows:

Prob(Turnoverj,t = 1) = Φ[ψ0 + ψ1QInitj + ψ2RatioQj,t−1 + ψ3CARj,t−1 +α
′
Xj,t−1],

where Φ is the standard normal cumulative distribution function, j denotes a CEO episode,
t is calendar year, and X denotes a vector of control variables. We control for the return
on assets and the size of the firm, both lagged by one year. Calendar year fixed effects
are also included. We do not include firm or industry fixed effects in the probit to avoid
the incidental parameters problem that arises in the context of non-linear panel models.58

In view of the comparative static results derived in Proposition 1, we hypothesize that the
coefficients on QInit and RatioQ should be positive, while the coefficient on CAR and ROA
should be negative.

56Our qualitative results are unaffected when one-year or three-year cumulative abnormal returns are used as
a measure of past performance, or when the initial years of a CEO’s tenure are removed from the sample. Our
results are also robust to the use of industry-level measures of Q in the construction of QInit and RatioQ.

57The two-sample Wilcoxon-Mann-Whitney test shows that the two distributions are significantly different from
each other, with a p-value of zero. Similarly, the Kolmogorov-Smirnov test rejects the hypothesis that the two
samples are drawn from the same distribution.

58See Woolridge (2002) for a textbook treatment. Earlier studies of CEO turnover by Kaplan and Minton
(2012) and Jenter and Lewellen (2014) employ probit specifications similar to ours. In practice, when controlling
for firm- or industry-level fixed effects, our qualitative conclusions are left unaffected.
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Table 2 summarizes the results of the probit regression. Column A reports the estimated
coefficients of the probit model and their standard errors. All explanatory variables have the
expected signs and are highly statistically significant. The coefficient on QInit is positive,
in line with our model’s prediction that turnover is more frequent in firms with better ex
ante growth prospects. The coefficient on RatioQ is also positive, in accord with the idea
that turnover is sometimes triggered by the arrival of growth opportunities. Finally, the
coefficients on CAR and on ROA are negative, in line with the theoretical prediction that
turnover is more likely after poor performance.

Column B reports the implied marginal effects, which give the impact on the probability
of turnover of a unit increase in an explanatory variable, when all variables are evaluated
at the sample means. In Column C, the marginal effects are multiplied by the sample
standard deviation of the corresponding explanatory variables. A one standard deviation
increase in QInit is associated with an increase in the probability of turnover by 85 basis
points. Similarly, a one standard deviation increase in RatioQ leads to a 59 basis point
increase in the probability of turnover. Since the unconditional frequency of CEO turnover
in our sample is 8.4%, these results support the view that the growth-related drivers of
managerial turnover emphasized in this paper are economically significant. Of course, this
is in addition to the disciplinary role of turnover, which we also find to be important. In
our sample, a one standard error increase in past abnormal returns is associated with a
drop in the probability of turnover by 2.2 percentage points.

[TABLE 2 HERE]

An additional implication of our model is a tendency for firms with relatively poor ex
ante growth prospects to grant partial job protection to their CEOs. That is, our theory
predicts that in such firms, a CEO is less likely to be dismissed for the sake of growth
when an opportunity arises calling for his replacement. We explore the empirical validity
of this prediction by evaluating the marginal effect of RatioQ on the probability of CEO
turnover at different levels of QInit. According to Proposition 1.(iii), the impact of RatioQ
on turnover should be greater for firms with relatively better ex ante growth prospects, i.e.,
for higher values of QInit. Table 3 reports these differential marginal effects. The marginal
effect of RatioQ is strictly positive at all levels of QInit and is indeed increasing in QInit.

[TABLE 3 HERE]

4.3 Growth Prospects and CEO Compensation

A key insight from our theory is that the managers of firms with better and more frequent
growth opportunities should have more front-loaded compensation. In this subsection, we
provide evidence on the empirical relation between CEO compensation and firms’ growth
prospects. We explore the data in two ways.

As a first pass, we compute a measure of realized compensation duration for each CEO
episode and investigate how it varies across episodes that differ in terms of the firm’s growth
prospects at the time the CEO was appointed. For a given CEO episode j lasting for Nj
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years, our measure of compensation duration, labelled PayDuration, is obtained as:

PayDurationj =

Nj
∑

n=1

DiscPayj,n
∑Nj

k=1DiscPayj,k
× n, (40)

where DiscPayj,n = TotPayj,n/(1+̺)
n corresponds to the present value of the compensation

received by the CEO in his n-th tenure year.59 Setting the discount rate ̺ at 10%, we find
that, in the sub-sample of episodes over which this measure is computed, average CEO
compensation duration is 3.7 years, while the median is 3.2 years.60

Figure 6 provides an empirical counterpart to Figure 4, depicting kernel estimates of the
cumulative distribution of PayDuration conditional on ex ante growth prospects proxied
by QInit. The solid line pertains to the upper twenty percent of QInit in our sample, while
the dashed line pertains to the bottom twenty percent. The cumulative distribution for the
upper QInit sub-sample lies everywhere above the one for the bottom QInit sub-sample,
which is consistent with our model’s insight that firms with better growth prospects should
have more front-loaded compensation.61

[FIGURE 6 HERE]

To further investigate how profiles of CEO pay over tenure vary with firms’ growth
prospects, we consider the regression equation

Ln(TotPayj,t) = ψ0+ψ1 TenureY earj,t + ψ2QInitj+

+ ψ3QInitj × TenureY earj,t +α
′Xj,t−1 + ǫj,t,

where j denotes a CEO episode, t is calendar year, TenureY earj,t (resp., TotPayj,t) denotes
the number of years in tenure of CEO j in year t (resp., the total compensation received
by the CEO in that year), and X is a vector of control variables. We control for past
performance and firm size, as well as for calendar year fixed effects and industry or firm
fixed effects. Our theory predicts (see Proposition 2.(iii), in particular) that firms with
better ex ante growth prospects are characterized by a higher initial level of pay per period
(i.e., ψ2 positive), and slower growth in compensation over tenure years (i.e., ψ3 negative).
Table 4 summarizes our empirical findings for two alternative specifications, controlling for
industry and firm fixed effects, respectively. The coefficients of interest are significant with
the expected signs, and the results are very similar across both specifications. We also note
that the coefficient on past abnormal returns is positive and significant, in line with the
theoretical prediction that CEO pay is positively related to past performance.

[TABLE 4 HERE]

59This empirical measure of pay duration is analogous to the one introduced in Section 3.5 to illustrate the
implications of our model for managerial compensation.

60The measure of compensation duration is not very sensitive to the value of the discount rate. Our conclusions
are robust to alternative values of ̺.

61The results from the two-sample Wilcoxon-Mann-Whitney test and from the Kolmogorov-Smirnov test both
confirm that the difference between the two empirical distributions is statistically significant. Furthermore, con-
trolling for year fixed effects, PayDuration and QInit are significantly negatively correlated across CEO episodes.
When controlling for firm fixed effects, the correlation remains negative but becomes insignificant due to the small
number of observations.

33



5 Conclusion

This paper introduces growth-induced turnover in a dynamic moral hazard framework and
analyzes the interaction between this type of turnover and managerial incentive provision.
In our model, growth opportunities arrive stochastically over time and the firmmust appoint
a new management to be able to seize them. Our analysis highlights the tradeoff that a
firm faces between the benefit of always having at the helm a manager who is the right
man for the job at hand and the cost of incentive provision. The key new insight is that
exposing incumbent managers to the risk of growth-induced dismissal effectively increases
their discount rate, thus increasing the cost of incentive provision. As a result, some firms
find it optimal to provide some degree of job protection to their managers, at the cost
of foregoing growth opportunities. Across firms, a higher likelihood of growth-induced
turnover translates into a greater tendency to front-load compensation. Our empirical
findings are consistent with these predictions of the model.

An essential feature of our model is that non-disciplinary managerial turnover can be
triggered by the firm contingent on the arrival of exogenous contractible shocks. In our
setup, shocks correspond to the arrival of growth opportunities, and it is first-best efficient
for the firm to replace the incumbent manager upon arrival of an opportunity. Our analysis
could be applied to alternative forms of exogenous contractible shocks. First, transformative
managerial change may also be important for firms in decline. For instance, a change of
management may be required for a firm to respond to increased product market competition
or to the threat of a disruptive new technology. Second, the firm may face opportunities to
transform—through a change of management—that would bring gains that are too modest
to outweigh the cost of implementing them, so that they would not be taken up under first
best. Yet, in a second-best world, it may be optimal to take these inefficient opportunities
when the agency costs associated with the current manager are high. We believe that a
number of theoretical insights of the paper would carry through in these alternative settings,
although the empirical implications would be quite different.

The existing empirical literature on managerial turnover and compensation has been
mostly informed by two paradigms from the contracting literature—the moral hazard model
in which pay and dismissal are used to incentivize the agent, and the learning model in
which the principal learns over time about the unknown quality of the agent. In our
view, transformative change can be another powerful driver of managerial turnover and
compensation. We document the fact that firms with better growth prospects experience
higher CEO turnover and rely on more front-loaded compensation schemes. These findings
are consistent with the assumption of growth-induced turnover and the predictions of our
model. Nonetheless, other theories may be consistent with these findings. Identifying
the specific channel through which firms’ growth prospects relate to CEO turnover and
compensation deserves further empirical work.
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Figure 1: Value Function, High-Growth Firm
Notes : The figure depicts the firm’s value function and the optimal compensation threshold wc for parameter
values r = 7%, ̺ = 16%, µ = 1, σ = 1, q = 0.2, γ = 0.25, λ = 0.4, κ = 0.3, w̄ = 1. The firm’s value function and
the compensation threshold are determined by solving the free-boundary problem defined in Section 3.3. The
growth-optimality condition (30) holds for all values of the manager’s promise.
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Figure 2: Value Function, Low-Growth Firm
Notes : The figure depicts the firm’s value function (solid blue line), along with the optimal growth and compensa-
tion thresholds (wg, wc), for parameter values r = 7%, ̺ = 16%, µ = 1, σ = 1, q = 0.2, γ = 0.1, λ = 0.4, κ = 0.3,
w̄ = 1. The firm’s value function and the thresholds are determined by solving the free-boundary problem defined
in Section 3.4. The growth-optimality condition (30) holds on [0, wg] but is violated for w > wg. The figure also
represents (dashed orange line) what firm value would be if the firm were constrained to take all growth oppor-
tunities, with the compensation threshold optimally determined by the solution to the free-boundary problem
defined in Section 3.3.
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Figure 3: Distribution of Tenure Length: High-Growth vs. Low-Growth
Notes : The figure depicts model-implied cumulative distribution functions obtained from simulations for param-
eter values r = 7%, ̺ = 16%, µ = 1, σ = 1, q = 0.2, γ = 0.25 (high-growth) or γ = 0.10 (low-growth), λ = 0.4,
κ = 0.3, w̄ = 1. Optimal contractual thresholds are wc = 1.24 in the high-growth case, and wg = 0.92 and
wc = 1.36 in the low-growth case. In both cases, the hiring promise wh coincides with the reservation promise w̄.
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Figure 4: Distribution of Realized Compensation Duration: High-Growth vs. Low-Growth
Notes : The figure depicts model-implied cumulative distribution functions obtained from simulations for param-
eter values r = 7%, ̺ = 16%, µ = 1, σ = 1, q = 0.2, γ = 0.25 (high-growth) or γ = 0.10 (low-growth), λ = 0.4,
κ = 0.3, w̄ = 1. Optimal contractual thresholds are wc = 1.24 in the high-growth case, and wg = 0.92 and
wc = 1.36 in the low-growth case. In both cases, the hiring promise wh coincides with the reservation promise w̄.
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Figure 5: Distribution of CEO Tenure Length Conditional on Initial Growth Prospects
Notes : The figure depicts kernel estimates of the empirical cumulative distribution of CEO tenure length (Tot-
Tenure) for two sub-samples. The first sub-sample (‘Low QInit’) consists of the bottom quintile of CEO episodes
sorted by initial Q; the corresponding distribution is plotted as a dashed line. The second sub-sample (‘High
QInit’) consists of the top quintile of episodes sorted by initial Q; the corresponding distribution is plotted as a
solid line. Details on variable definitions are provided in the main text and in Appendix H.
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Figure 6: Distribution of CEO Pay Duration Conditional on Initial Growth Prospects
Notes : The figure depicts kernel estimates of the empirical cumulative distribution of realized compensation
duration (PayDuration) for the bottom and top quintiles of CEO episodes sorted by initial Q (QInit), denoted
by ‘Low QInit’ and ‘High QInit’, respectively. Details on variable definitions are provided in the main text and
in Appendix H.
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Table 1: Summary Statistics

Variable Mean Sd p25 p50 p75 N

TotTenure 6.492 5.001 3.000 5.000 9.000 2,510
Turnover 0.084 0.278 0.000 0.000 0.000 27,992
LnTotPay 7.915 1.053 7.172 7.927 8.663 27,958

QInit 1.788 1.212 1.099 1.371 1.981 27,992
RatioQ 1.069 0.420 0.876 1.000 1.164 27,992
CAR -0.001 0.244 -0.147 -0.005 0.129 27,992
ROA 0.038 0.078 0.013 0.040 0.075 27,992

LnAssets 7.700 1.699 6.452 7.602 8.887 27,992

Notes : The table reports summary sample statistics for the merged ExecuComp/Compustat/CRSP data set,
which covers CEO episodes reported in ExecuComp over the period 1992-2014. TotTenure is the total number
of tenure years for CEO episodes that are completed within the sample period. Turnover is a dummy variable
which equals 1 in the last year of a CEO’s tenure and zero otherwise. LnTotPay is the logarithm of total CEO
compensation awarded in a given calendar year. QInit is the average Q of the firm in the year before the CEO
was appointed; the same value is repeated throughout each CEO episode. RatioQ is the ratio of the lagged
average Q of a firm in a given year divided by QInit. CAR is the two-year cumulative abnormal return of the
firm (annualized). ROA is return on assets. LnAssets is the logarithm of the book value of total assets. Further
details on variable definitions are provided in the main text and in Appendix H.
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Table 2: Determinants of CEO Turnover
(A) (B) (C)

Coefficients Marginal Effects Coefficients of Variation
b/se b/se (in percentage points)

QInit 0.047*** 0.007*** 0.848
(0.009) (0.001)

RatioQ 0.089*** 0.014*** 0.588
(0.030) (0.005)

CAR -0.595*** -0.090*** -2.196
(0.053) (0.008)

ROA -0.806*** -0.122*** -0.952
(0.131) (0.020)

LnAssets 0.040*** 0.006*** 1.019
(0.006) (0.001)

N 27,992 27,992 27,992
Year fixed effects Yes Yes Yes

Notes : The table summarizes the evidence on the probability of CEO turnover from the probit regression estimated
over the merged ExecuComp/Compustat/CRSP data set from 1992 to 2014. The dependent variable is the
Turnover indicator variable. QInit is the average Q of the firm in the year before the CEO was appointed; the
same value is repeated throughout each CEO episode. RatioQ is the ratio of the lagged average Q of the firm
in a given year divided by QInit. CAR is the two-year cumulative abnormal return of the firm (annualized) over
the previous two years. ROA is return on assets, lagged by one year. LnAssets is the logarithm of the lagged
book value of total assets. Calendar year fixed effects are included in the regression. Robust standard errors are
clustered at the firm level.
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Table 3: Initial Growth Prospects and Growth-Induced Turnover

Marginal Effect of RatioQ
b/se

Low QInit 0.0124***
(0.0040)

Median QInit 0.0126***
(0.0041)

High QInit 0.0133***
(0.0044)

N 27,992

Notes : The table reports the marginal effect of RatioQ on the likelihood of turnover for different levels of initial
average Q, as implied by the probit model estimated over the merged ExecuComp/Compustat/CRSP data set
from 1992 to 2014. QInit is the average Q of the firm in the year before the CEO was appointed. RatioQ is
the ratio of lagged Q in a given year divided by QInit. The marginal effect of RatioQ is evaluated at different
quantiles of the distribution of QInit. ‘Low’, ‘Median’, and ‘High’ quantiles correspond to the 20-th, 50-th, and
80-th percentiles of the distribution of QInit, respectively.
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Table 4: Determinants of CEO Compensation

(A) (B)
LnTotPay LnTotPay

TenureYear 0.017*** 0.008*
(0.004) (0.003)

QInit 0.073*** 0.054***
(0.011) (0.014)

QInit × TenureYear -0.008*** -0.005**
(0.002) (0.002)

CAR 0.556*** 0.435***
(0.026) (0.026)

LnAssets 0.430*** 0.199***
(0.007) (0.019)

Firm Fixed Effects No Yes
Industry Fixed Effects Yes No
Year Fixed Effects Yes Yes
R-squared 0.532 0.663
N 27,615 27,615

Notes : This table summarizes the evidence on the profile of CEO compensation over tenure. LnTotPay is the
logarithm of total CEO pay awarded in a given year as reported in ExecuComp. TenureYear is the number of
years in tenure of the CEO in a given calendar year. QInit is the average Q of the firm in the year before the
CEO was appointed. CAR is the two-year cumulative abnormal return of the firm (annualized) over the previous
two years. ROA is return on assets, lagged by one year. LnAssets is the logarithm of the lagged book value of
total assets. The regression is estimated over all episode-year observations in our sample, some of which pertain
to CEO episodes that have not finished by the end of the sample period. Robust standard errors are clustered at
the firm level.
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A The Two-Period Model

This appendix proves the results pertaining to the two-period model that we consider in
Section 1 of the paper. In this context, the set of permissible parameter values is

P =

{

(r, ̺, y, p, q, γ, λ, κ) ∈ R8 | ̺ > r ≥ 0, γ, y > 0, p ∈ ]0, 1[, q ∈ ]0, 1[,

λ ∈ ]0, 1] and 0 < κ <
pγy

1 + r

}

. (A.1)

The inequality κ < pγy/(1+ r), referred to as Condition (1) in the main text, ensures that
growth is efficient under first best.

As a preliminary step, we consider the one-period contracting problem faced by the firm
at t = 1 if it hires a new manager to run its operations for the second period. The following
standard result holds true in our setting.

Lemma A-1. If managers are protected by limited liability and have zero reservation value,
then the optimal one-period contract that induces truthful reporting offers compensation λŶ2,
where Ŷ2 denotes the reported cashflow at t = 2.

Proof. It suffices to consider the case where a new manager is hired at t = 1 after
disciplinary dismissal, so that the actual cashflow at t = 2 is either y with probability p or
zero with probability 1−p. In this case, the contracting problem boils down to determining
a compensation policy C : {0, y} → R+ that specifies the agent’s payoff at t = 2 as a
function of reported output. The incentive compatibility constraint is

C(y) ≥ λy + C(0),

while the firm’s expected profit under no stealing is py −
(

pC(y) + (1 − p)C(0)
)

. Further-

more, the limited liability constraint C(Ŷ2) ≥ 0 ensures that the manager’s participation
constraint is satisfied. It is immediate to see that the solution to the firm’s constrained
maximization problem yields C(0) = 0 and C(y) = λy, namely, C(Ŷ2) = λŶ2.

A.1 The Firm’s Problem

We now turn to the firm’s contracting problem at t = 0 when it hires the initial manager.

Definition A-1. A two-period contract is a quintuple (C1, Cg, C2, F,G), where

C1 : {0, y} → R+, Cg : {0, y} → R+, C2 : {0, y}
2 → R+,

F : {0, y} → [0, 1] and G : {0, y} → [0, 1]

have the interpretation given at the beginning of Section 1.
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The firm’s problem is to choose a two-period contract (C1, Cg, C2, F,G) that maximizes
its expected discounted profit

V = p

(

y − C1(y) + qG(y)[Vg − Cg(y)] + (1− q)F (y)Vd

+
(

1− [qG(y) + (1− q)F (y)]
)p[y − C2(y, y)]− (1− p)C2(y, 0)

1 + r

)

+(1− p)

(

−C1(0) + qG(0)[Vg − Cg(0)] + (1− q)F (0)Vd

+
(

1− [qG(0) + (1− q)F (0)]
)p[y − C2(0, y)] − (1− p)C2(0, 0)

1 + r

)

, (A.2)

in which expression

Vd =
p(1− λ)y

1 + r
− κ and Vg =

p(1− λ)(1 + γ)y

1 + r
− κ, (A.3)

subject to the first-period incentive compatibility (IC) constraint

C1(y) + qG(y)Cg(y) +
(

1− [qG(y) + (1− q)F (y)]
)pC2(y, y) + (1− p)C2(y, 0)

1 + ̺

≥ λy + C1(0) + qG(0)Cg(0) +
(

1− [qG(0) + (1− q)F (0)]
)pC2(0, y) + (1− p)C2(0, 0)

1 + ̺
(A.4)

and subject to the second-period IC constraints

C2(y, y) ≥ λy + C2(y, 0), (A.5)

and C2(0, y) ≥ λy + C2(0, 0). (A.6)

Note that the expressions in (A.3) for the firm’s continuation values upon disciplinary
and growth-induced dismissal follow immediately from the form of the optimal one-period
contract derived in Lemma A-1. Also, note that, in order to simplify the expression for the
firm’s objective, the firm’s net cashflows in (A.2) are discounted as of t = 1.

A.2 Proofs

Proof of Lemma 1. In view of the the firm’s optimization problem formulated in Sec-
tion A.1, we can see that lowering C1(0), Cg(0) and C2(0, 0) relaxes the IC constraints (A.4)
and (A.6) and improves the firm’s profit (A.2), while leaving (A.5) unaffected. Hence, it is
optimal to set

C1(0) = Cg(0) = C2(0, 0) = 0.

Lowering C2(y, 0) while raising C2(y, y) to leave pC2(y, y)+ (1−p)C2(y, 0) constant relaxes
(A.5) while leaving (A.4) unaffected. Hence, it is optimal to set

C2(y, 0) = 0.
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Since an increase in C2(0, y) tightens the first-period IC constraint (A.4), the second-period
IC constraint after poor performance (A.6) is binding. Taking into account the fact that
C2(0, 0) = 0, we can see that

C2(0, y) = λy

is optimal. The firm’s problem thus simplifies to choosing C1(y), Cg(y), C2(y, y), as well as
F (0), F (y) and G(0), G(y) to maximize

V = p

(

y − C1(y) + qG(y)[Vg − Cg(y)] + (1− q)F (y)Vd

+
(

1− [qG(y) + (1− q)F (y)]
)

p
y − C2(y, y)

1 + r

)

(A.7)

+ (1− p)

(

qG(0)Vg +
(

1− [qG(0) + (1− q)F (0)]
)

p
(1− λ)y

1 + r
+ (1− q)F (0)Vd

)

,

subject to first-period IC constraint

C1(y)+qG(y)Cg(y) +
(

1− [qG(y) + (1− q)F (y)]
)pC2(y, y)

1 + ̺

≥ λy +
(

1− [qG(0) + (1− q)F (0)]
) pλy

1 + ̺
, (A.8)

and second-period IC constraint after good performance

C2(y, y) ≥ λy. (A.9)

Since lowering C1(y), Cg(y) or C2(y, y) increases the firm’s profit, the constraint (A.8)
should be binding. Substituting the expression for C1(y) + qG(y)Cg(y) implied by the
resulting equality into (A.7) and maximizing with respect to C2(y, y) subject to (A.9), we
can see that

C2(y, y) = λy

is optimal, and the expression for first-period compensation conditional on good perfor-
mance given by (7) follows immediately.

Remark A-1. For future reference, we note that (7) implies that

• If the optimal contract sets F (0) = 1 and G(y) = 1, then

C1(y) + qCg(y) = λy − (1− q)
pλy

1 + ̺
. (A.10)

• If the optimal contract sets F (0) = 1 and G(y) = 0, then

C1(y) = λy −
pλy

1 + ̺
. (A.11)
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• If the optimal contract sets F (0) = 0 and G(y) = 1, then

C1(y) + qCg(y) = λy. (A.12)

• If the optimal contract sets F (0) = 0 and G(y) = 0, then

C1(y) = λy − q
pλy

1 + ̺
. (A.13)

Proof of Lemma 2. Substituting C2(y, y) = λy as well as the expression for C1(y) +
qG(y)Cg(y) given by (7) into (A.7), we obtain

V = p

(

(1− λ)y +
(

[qG(0) + (1− q)F (0)] − [qG(y) + (1− q)F (y)]
)

p
λy

1 + ̺

+ qG(y)Vg + (1− q)F (y)Vd +
(

1− [qG(y) + (1− q)F (y)]
)

p
(1− λ)y

1 + r

)

(A.14)

+ (1− p)

(

qG(0)Vg + (1− q)F (0)Vd +
(

1− [qG(0) + (1− q)F (0)]
)

p
(1− λ)y

1 + r

)

,

where Vd and Vg are given by (A.3). All the statements in the lemma follow immediately
from maximizing this expression with respect to each of F (y), F (0), G(0), and G(y), subject
to the constraints F (Y1), G(Y1) ∈ [0, 1].

Remark A-2. It is worth noting that, when maximizing (A.14) with respect to F (y),
the linearity of the firm’s objective gives rise to the unique corner solution F (y) = 1 for
any permissible parameter values. On the other hand, when maximizing with respect to
F (0), G(0) or G(y), the linearity of the firm’s objective gives rise to either a unique corner
solution or to a continuum of solutions, depending on the parameter values. For instance,
if κ = κ̂F (0), where κ̂F (0) ≡ κ̂F (0)(̺, y, p, λ) is defined as in (8), then any value of F (0)
in [0, 1] is optimal. We adopt the convention that when the optimal dismissal probability
F (0), G(0) or G(y) is not uniquely determined, which happens when κ coincides with κ̂F (0),
κ̂G(0) or κ̂G(y), the firm sets the dismissal probability equal to one.

Remark A-3. For future reference, we observe that, for given values of r, ̺, p and γ, the
relative location of the two thresholds κ̂F (0) and κ̂G(y) defined in Lemma 2 depends on the
value of λ. Indeed,

κ̂G(y) < κ̂F (0) ⇔ λ > λ† and κ̂G(y) = κ̂F (0) ⇔ λ = λ†, (A.15)

where the cutoff value λ† ≡ λ†(r, ̺, p, γ) < 1 is such that

λ†
1− λ†

=
1 + ̺

1 + r
(1− p)γ. (A.16)
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In the rest of this appendix, we restrict attention to permissible parameter values such
that Condition (11) also holds true, namely, we consider parameter values in the set

P̃ =
{

(r, ̺, y, p, q, γ, λ, κ) ∈ P | p ≥ p̂(r, ̺, γ)
}

,

where p̂ ≡ p̂(r, ̺, γ) < 1 satisfies

p̂

1− p̂
=

1 + ̺

1 + r
γ. (A.17)

It is immediate to see that the threshold κ̂G(0) defined in (9) satisfies κ̂G(0) ≥ pγy/(1+ r) if
and only if Condition (11) holds true. In view of Lemma 2.(ii), it follows that Conditions
(1) and (11) together imply that it is strictly optimal to set G(0) = 1, as claimed in the
main text.

Remark A-4. The thresholds κ̂F (0), κ̂G(0) and κ̂G(y) defined in Lemma 2 are such that

max{κ̂F (0), κ̂G(y)} < κ̂G(0).

Therefore, if Condition (11) were violated and the parameter values were such that κ >
κ̂G(0), then the optimal contract would set G(y) = G(0) = 0 and F (0) = F (y) = 0, i.e., the
firm would never grow and the manager would never be dismissed.

Proof of Lemma 3. In view of the definition of the high-growth (resp., low-growth)
regime given in the text above the statement of the lemma, we need to show that the set of
parameter values in P̃ such that the inequality κ ≤ κ̂G(y) ≡ κ̂G(y)(r, ̺, y, p, γ, λ) is satisfied
(resp., violated) has non-empty interior in R8 (see also Lemma 2.(iii) and Remark A-2).
Recall that permissibility requires in particular that 0 < κ < pγy/(1 + r).

The high-growth regime arises whenever κ ≤ κ̂G(y). This can happen if and only if
κ̂G(y) > 0, which is equivalent to λ < λ‡ where λ‡ ≡ λ‡(r, ̺, γ) ∈ ]λ†, 1[ is such that

λ‡
1− λ‡

=
1 + ̺

1 + r
γ. (A.18)

The inequality λ‡ > λ† follows from a straightforward comparison of (A.16) and (A.18).
The low-growth regime arises whenever κ > κ̂G(y). This can happen for any values of the

parameters r, ̺, y, p, q, γ, λ in the relevant projection of P̃ because κ̂G(y) < pγy/(1+ r).

Proof of Lemma 4. The threshold κ̂G(y) defined in Lemma 2.(iii) is increasing in γ and ̺,
and decreasing in λ and r. Furthermore, as long as κ̂G(y) > 0, which is equivalent to λ < λ‡,
where λ‡ is defined by (A.18), this threshold is also increasing in p and y. Combining these
observations with statement (iii) in Lemma 2, we can see that a change in parameter values
(within the permissible set P̃) induces a switch from the low-growth to the high-growth
regime in the following situation. We start with any values of r, ̺, y, p, q, γ, λ in the
relevant projection of P̃, with λ < λ‡. For such parameter values, 0 < κ̂G(y) < pγy/(1+ r).
If κ is initially in the right neighbourhood of κ̂G(y), any change in r, ̺, y, p, γ or λ that
causes an increase in κ̂G(y) induces a switch from the low-growth to the high-growth regime.
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A drop in κ has the same effect. Furthermore, a change in q has no impact on G(y) because
κ̂G(y) is independent of q.

Proof of Proposition 1. In view of Lemma 2, statement (i) holds true because

F (0) ≥ F (y) = 0 and G(0) = 1 ≥ G(y),

where the first inequality is strict when κ ≤ κ̂F (0), in which case F (0) = 1, while the second
inequality is strict when κ ≥ κ̂G(y), in which case G(y) = 0.

The first part of statement (ii) follows from the fact that an increase in γ that induces
a change of regime from low-growth to high-growth, as described in the proof of Lemma 4,
causes an increase in G(y) from 0 to 1, while F (y), F (0) and G(0) are left unaffected.

The second part of (ii) and the first part of (iii) follow from the fact that

G(y) ≥ F (y) = 0 and G(0) = 1 ≥ F (0),

where the first inequality is strict if κ ≤ κ̂G(y), in which case G(y) = 1, while the second
inequality is strict when κ ≥ κ̂F (0), in which case F (0) = 0. In particular, the likelihood of
dismissal, qG(Y1) + (1− q)F (Y1) = F (Y1) + q[G(Y1)− F (Y1)], is increasing in q.

To prove the second part of the last statement, we first note that G(0)−F (0) = 1−F (0)
is not affected by γ. We also note that G(y)−F (y) = G(y) is equal to one if κ ≤ κ̂G(y) and
zero otherwise. Therefore, an increase in γ that induces a change from the low-growth to
the high-growth regime, as described in the proof of Lemma 4, increases the impact that
the arrival of a growth opportunity has on the likelihood of dismissal.

Proof of Proposition 2. Statement (i) follows from Lemma 1, which implies that

C1(y) + qCg(y) > 0 = C1(0) = Cg(0),

and λy = C2(Y1, y) > C2(Y1, 0) = 0.

To prove statement (ii), we note that (A.10)–(A.13) imply that C1(y) + qG(y)Cg(y) ≤ λy,
and therefore C̄1 ≤ C̄2, where C̄1, C̄2 are defined above the statement of the proposition.
The inequality is strict unless F (0) = 0, G(y) = 1, which is optimal if and only if λ < λ†
and κ ∈ ]κ̂F (0), κ̂G(y)] (see also Remark A-3).

Finally, consider an increase in γ that causes a switch from the low-growth to the high-
growth regime, as described in the proof of Lemma 4. If λ ∈ ]λ†, λ‡[, where λ† and λ‡
are defined as per (A.16) and (A.18) given the initial value of γ, respectively, the change
of regime is accompanied by a change in first-period compensation conditional on good
performance from (A.11) to (A.10) (see also Remark A-3 and Lemma 2.(i)). On the other
hand, if λ ≤ λ†, first-period compensation conditional on good performance goes from
(A.13) to (A.12). In both cases, the compensation profile (C̄1, C̄2) starts higher and has a
lower slope as a result, which proves statement (iii).
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B The Continuous-Time Setting

In this appendix, we provide a complete description of the environment that we consider
in Sections 2 and 3, in which an infinitely-lived firm is run by a sequence of managers who
can divert cashflows for their own benefit. We build the model that we study on a complete
probability space (Ω,F ,P) supporting a sequence of independent standard one-dimensional
Brownian motions Z1, Z2, . . . , Zn, . . . as well as an independent sequence of independent
and identically distributed random variables U1, U2, . . . , Un, . . ., each having the uniform
distribution on [0, 1]. We denote by (FZn

t ) the natural filtration of Zn. We assume that
these filtrations as well as any other one we consider in this and the following appendices
have been regularised to satisfy the “usual conditions”, namely, to be right-continuous and
augmented by the P-negligible sets in F .

B.1 The nnn-th Manager’s Contract

In this section, we describe the contract of the n-th manager. To simplify the notation,
we let t = 0 refer to the time at which the n-th manager takes office. We model the n-th
manager’s size-adjusted cumulative stealing strategy by an increasing continuous (FZn

t )-
adapted process An such that An0 = 0. We denote by An the family of all such processes.
Given a stealing strategy An ∈ An, we denote by (F̂n

t ) =
(

F̂n
t (A)

)

the information flow
generated by the size-adjusted reported cashflows during the tenure of the n-th manager,
which is the natural filtration of the process Ŷ n defined by

Ŷ n
t = µt−Ant + σZnt .

It is worth noting that F̂n
t ⊆ FZn

t for all t ≥ 0, with equality holding if An = 0.
We assume that the firm’s growth policy is based on the history of reported cashflows

during the tenure of each manager. Accordingly, we model the firm’s growth policy during
the tenure of the n-th manager by a càdlàg (F̂n

t )-progressively measurable process process
Gn with values in the interval [0, 1]. We define the time τng that elapses between the
appointment of the n-th manager and his growth-induced dismissal (if he is not fired for
disciplinary reasons before) by

τng = inf

{

t ≥ 0
∣

∣

∣ exp

(

−q

∫ t

0
Gns ds

)

≤ Un
}

, (B.1)

with the usual convention that inf ∅ = ∞. In view of the independence of (F̂n
t ) and U

n, we
can see that

P

(

τng > t
∣

∣ F̂n
t

)

= P

(

Un < exp

(

−q

∫ t

0
Gns ds

)

∣

∣

∣
F̂n
t

)

= exp

(

−q

∫ t

0
Gns ds

)

.

We assume that disciplinary dismissal is also based on the history of each manager’s re-
ported cashflows. Accordingly, the time τnd that elapses between the appointment of the
n-th manager and his disciplinary firing (if he is not replaced for the sake of taking a
growth opportunity before) is an (F̂n

t )-stopping time. Furthermore, we assume that the
manager’s compensation is also determined based on the history of reported cashflows. Ac-
cordingly, the manager’s size-adjusted cumulative compensation is given by an increasing
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càdlàg (F̂n
t )-adapted process Cn such that C0− = 0, while the manager’s size-adjusted

severance upon growth-induced dismissal is Snτng , where S
n is a positive (F̂n

t )-progressively
measurable process.

Remark B-1. If the firm stands ready to take all growth opportunities, setting Gn ≡ 1 for
all n, then the times τng are independent and exponentially distributed with parameter q.
Indeed, the choice Gn ≡ 1 gives rise to the identities

P

(

τng > t
∣

∣ F̂n
t

)

= e−qt = P(τng > t).

In other words, the random times between the arrival of two consecutive growth opportuni-
ties are independent random variables that are exponentially distributed with parameter q.

For technical reasons, we assume that the family An is restricted to include only pro-
cesses satisfying the integrability condition

E

[

∫

[0,∞[
e−̺t dAnt

]

<∞. (B.2)

Given any such stealing strategy An ∈ An, we use the following notation:

Pn
C(A

n) is the family of all increasing càdlàg (F̂n
t )-adapted processes Cn

such that Cn0− = 0;

Pn
S (A

n) is the family of all positive càdlàg (F̂n
t )-adapted processes Sn;

Pn
G(A

n) is the family of all (F̂n
t )-progressively measurable processes Gn

with values in [0, 1];

Pn
τd
(An) is the set of all (F̂n

t )-stopping times.

These families depend on the choice of An ∈ An through the dependence on An of the
natural filtration (F̂n

t ) of the reported cashflows process Ŷ n. In particular, it is worth
noting that

Pn
C(A

n) ⊆ Pn
C(0), Pn

S (A
n) ⊆ Pn

S (0),

Pn
G(A

n) ⊆ Pn
G(0) and Pn

τd
(An) ⊆ Pn

τd
(0) for all An ∈ An (B.3)

because F̂n
t ⊆ FZn

t for all t ≥ 0, with equality if An = 0. Furthermore, we assume that
the families Pn

C(A
n) and Pn

S (A
n) are restricted to include only processes satisfying the

integrability condition

E

[

∫

[0,∞[
e−̺t dCnt + sup

t≥0

(

e−̺tSnt
)

]

<∞. (B.4)
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We can now introduce the formal definition of the n-th manager’s contract.

Definition B-1. A long-term incentive contract , or just incentive contract , for the n-th
manager is a function

Γn = (ΓnC ,Γ
n
S ,Γ

n
G,Γ

n
τd
) : An → Pn

C(0)× Pn
S (0) × Pn

G(0)× Pn
τd
(0)

such that

ΓnC(A
n) ∈ Pn

C(A
n), ΓnS(A

n) ∈ Pn
S (A

n),

ΓnG(A
n) ∈ Pn

G(A
n) and Γτd(A

n) ∈ Pn
τd
(An) for all An ∈ An.

We denote by Gn the family of all such contracts.

Remark B-2. It would be natural to include additional requirements as part of the defi-
nition of a long-term incentive contract. For instance, for any two stealing strategies that
coincide up to a certain stopping time, the evaluation of a contract at these two strategies
should result in the same compensation and termination outcomes up to that stopping time.
We have opted for not spelling out explicitly such constraints in Definition B-1 because they
do not affect the remainder of our analysis.

B.2 The Managers’ and the Firm’s Payoffs

We define

τ1h = 0, τn+1
h =

n
∑

j=1

τ jd ∧ τ jg , Φ1 = 1 and Φn+1 = (1 + γ)
1
{τ1g≤τ1

d
}
+···+1{τng ≤τn

d
}
, (B.5)

for n ≥ 1, and we note that τnh is the time at which the n-th manager is hired, while Φn is
the size of the firm during the n-th manager’s tenure. Accordingly, ΦnAn, ΦnCn and ΦnSn

model the n-th manager’s actual stealing strategy, cumulative compensation and severance
upon dismissal, respectively. We also consider the σ-algebras

I1 = {∅,Ω} and In+1 = σ

(

Ŷ j

t∧τ j
d
∧τ jg

, τ jd, τ
j
g , j = 1, . . . , n, t ≥ 0

)

, (B.6)

for n ≥ 1, and we note that In is the information that is available to the firm at the hiring
time τnh of the n-th manager. In view of the independence of (Z1, U1), . . . , (Zn, Un), . . .
and the structure of each manager’s contract that we considered in the previous section,
we can see that

τnd , τ
n
g , Φ

n+1 are In+1-measurable, (B.7)

while

Aj , Sj, Cj, τ jd, τ
j
g ,

Φj+1

Φn
, for j ≥ n, are independent of In. (B.8)
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Given an incentive contract Γn ∈ Gn (see Definition B-1), the n-th manager’s total
expected discounted payoff as of the time τnh of his hiring is given by

M̃n(Γn, An | In) = E

[∫

[0,τn
d
∧τng [

e−̺tΦn dCnt + e−̺τ
n
d Φn∆Cnτn

d
1{τn

d
<τng }

+ e−̺τ
n
g ΦnSnτng 1{τng ≤τn

d
}∩{τng <∞} + λ

∫ τn
d
∧τng

0
e−̺tΦn dAnt

∣

∣

∣
In
]

.

Here,

we write Cn, Sn and τnd in place of ΓnC(A
n), ΓnS(A

n) and Γnτd(A
n),

respectively, and we note that

τng is defined as in (B.1) for Gn = ΓnG(A
n).

In view of (B.7)–(B.8), we can see that this expression is equivalent to

M̃n(Γn, An | In) = Φn E

[
∫

[0,τn
d
∧τng [

e−̺t dCnt + e−̺τ
n
d ∆Cnτn

d
1{τn

d
<τng }

+ e−̺τ
n
g Snτng 1{τng ≤τn

d
}∩{τng <∞} + λ

∫ τn
d
∧τng

0
e−̺t dAnt

]

=: ΦnM(Γn, An), (B.9)

where M(Γn, An) is the n-th manager’s size-adjusted total expected discounted payoff as
of time τnh .

From this point onward, we restrict our attention to admissible contracts. These con-
tracts are such that they make no stealing optimal for the manager, i.e., no stealing is
“incentive compatible”. Additionally, these contracts are such that the manager’s size-
adjusted expected discounted compensation under no stealing is greater than or equal to
the size-adjusted reservation value w̄.

Definition B-2. An admissible long-term incentive contract , or just admissible contract ,
for the n-th manager is any incentive contract Γn ∈ Gn (see Definition B-1) satisfying the
admissibility constraints

M(Γn, 0) = sup
An∈An

M(Γn, An) and M(Γn, 0) ≥ w̄. (B.10)

We denote by Gna ⊆ Gn the family of all such contracts.

Remark B-3. The inequality M(Γn, 0) ≥ w̄ reflects the fact that the firm must offer to
each manager a total discounted payoff that is at least equal to the manager’s reservation
value. Note that the firm may be willing to offer a manager a total discounted payoff that is
strictly greater than his reservation value as long as this enhances the firm’s own expected
discounted profit.
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We henceforth assume that the firm offers admissible contracts to all managers. Fur-
thermore, we make the usual assumption that, if no stealing is incentive compatible, then
managers refrain from stealing, namely, An = 0 for all n ≥ 1. The expected discounted
profit as of time τnh that the firm receives during the tenure of the n-th manager is

Π̃n(Γn | In) = Φn E

[ ∫ τn
d
∧τng

0
e−rtµdt−

∫

[0,τn
d
∧τng [

e−rt dCnt

− e−rτ
n
d ∆Cnτn

d
1{τn

d
<τng } − e−rτ

n
g Snτng 1{τng ≤τn

d
}∩{τng <∞}

]

=: ΦnΠ(Γn), (B.11)

where Π(Γn) is the size-adjusted expected discounted profit as of time τnh that the firm
receives during the tenure of the n-th manager. Here, as well as in what follows,

we write Cn, Sn and τnd in place of ΓnC(0), ΓnS(0) and Γnτd(0),

respectively, and we note that

τng is defined as in (B.1) for Gn = ΓnG(0).

In view of (B.7)–(B.8), we can see that the expected discounted profit of the firm at the
start of the n-th manager’s tenure is

F̃n
(

(Γj)j≥n | In
)

= E



ΦnΠ
(

Γn) +
∞
∑

j=n+1

e−r(τ
j

h
−τn

h
)
(

ΦjΠ(Γj)− Φj−1κ
)

∣

∣

∣

∣

In





= Φn



Π(Γn) + E





∞
∑

j=n+1

e−r(τ
j

h
−τn

h
)

(

Φj

Φn
Π(Γj)−

Φj−1

Φn
κ

)









=: ΦnFn
(

(Γj)j≥n
)

,

where Fn
(

(Γj)j≥n
)

is the size-adjusted expected discounted profit of the firm at the start
of the n-th manager’s tenure. Note that this expression incorporates the turnover costs
associated with the n-th manager and his successors. In view of the identities

τ jh − τnh = τnd ∧ τng + · · ·+ τ j−1
d ∧ τ j−1

g

= τnd ∧ τng + τ jh − τn+1
h for all j ≥ n+ 1,
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which follow from (B.5), we can see that

E

[

∞
∑

j=n+1

e−r(τ
j

h
−τn

h
)

(

Φj

Φn
Π(Γj)−

Φj−1

Φn
κ

)

]

= E

[

e−r(τ
n
d
∧τng )

{

Φn+1

Φn
Π(Γn+1) +

∞
∑

j=n+2

e−r(τ
j

h
−τn+1

h
)

(

Φj

Φn
Π(Γj)−

Φj−1

Φn
κ

)

− κ

}]

= E

[

e−r(τ
n
d
∧τng ) 1

Φn

{

E

[

Φn+1Π(Γn+1)

+

∞
∑

j=n+2

e−r(τ
j

h
−τn+1

h
)
(

ΦjΠ(Γj)− Φj−1κ
) ∣

∣

∣ In+1

]

− Φnκ

}]

= E

[

e−r(τ
n
d
∧τng )Φ

n+1

Φn
Fn+1

(

(Γj)j≥n+1

)

− e−r(τ
n
d
∧τng )κ

]

.

We thus obtain the recursive expression

Fn
(

(Γj)j≥n
)

= Π(Γn) + E

[

e−r(τ
n
d
∧τng )Φ

n+1

Φn
Fn+1

(

(Γj)j≥n+1

)

− e−r(τ
n
d
∧τng )κ

]

.

Combining this result with the calculation

E

[

e−r(τ
n
d
∧τng )Φ

n+1

Φn

]

= E

[

e−r(τ
n
d
∧τng )(1 + γ)

1{τng ≤τn
d
}

]

= E

[

e−rτ
n
d 1{τn

d
<τng } + (1 + γ)e−rτ

n
g 1{τng ≤τn

d
}

]

and (B.11), we can see that the size-adjusted expected discounted profit of the firm at the
hiring time τnh of the n-th manager satisfies the recursive equation

Fn
(

(Γj)j≥n
)

= E

[
∫ τn

d
∧τng

0
e−rtµdt−

∫

[0,τn
d
∧τng [

e−rt dCnt

+ e−rτ
n
d

[

Fn+1
(

(Γj)j≥n+1

)

−∆Cnτn
d
− κ
]

1{τn
d
<τng }

+ e−rτ
n
g

[

(1 + γ)Fn+1
(

(Γj)j≥n+1

)

− Snτng − κ
]

1{τng ≤τn
d
}∩{τng <∞}

]

. (B.12)

B.3 The Firm’s Problem: Take One

The uncertainty under the n-th manager’s tenure is driven by (Zn, Un), which is an inde-
pendent copy of (Z1, U1). In particular, (An) is a sequence of independent copies of A1.
As a result, if a contract is admissible (in the sense of Definition B-2) for the first manager,
then the same contract is admissible for all managers. In view of this observation and a
simple induction argument along the lines that lead to the recursive equation (B.12), we
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can see that it is optimal for the firm seeking to implement no stealing to give the same
admissible contract to all managers.

If all successive managers are offered the same contract Γ ∈ Ga, then the firm’s size-
adjusted expected discounted profit at the start of any manager’s tenure is

F 1
(

(Γ, . . . ,Γ, . . .)
)

= Fn
(

(Γ, . . . ,Γ, . . .)
)

=: F (Γ) for all n ≥ 1.

In particular, (B.12) implies that

F (Γ) = E

[ ∫ τd∧τg

0
e−rtµdt−

∫

[0,τd∧τg[
e−rt dCt + e−rτd

[

F (Γ)−∆Cτd − κ
]

1{τd<τg}

+ e−rτg
[

(1 + γ)F (Γ)− Sτg − κ
]

1{τg≤τd}∩{τg<∞}

]

, (B.13)

where C, S, and τd stand for ΓC(0), ΓS(0) and Γτd(0), respectively, and τg is defined as in
(B.1) for G = ΓG(0).

We conclude with the statement of the contracting problem that the firm faces.

Problem B-1. Determine an admissible contract Γ⋆ ∈ Ga (see Definition B-2) such that

F (Γ⋆) = sup
Γ∈Ga

F (Γ).
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C Admissible Dynamic Contracts

In light of the analysis in Appendix B, we now focus on the first manager’s contract. To
simplify the notation, we write Z, (FZ

t ), A, (F̂t) =
(

F̂t(A)
)

, etc, instead of Z1, (FZ1

t ), An,

(F̂n
t ) =

(

F̂n
t (A)

)

, etc, in what follows. In particular, given a stealing strategy A ∈ A,

PC(A) is the family of all increasing càdlàg (F̂t)-adapted process C

such that C0− = 0; (C.1)

PS(A) is the family of all positive càdlàg (F̂t)-adapted processes S; (C.2)

PG(A) is the family of all (F̂t)-progressively measurable processes G

with values in [0, 1]; (C.3)

Pτd(A) is the set of all (F̂t)-stopping times (C.4)

(recall that the families PC(A) and PS(A) are restricted to include only processes satisfying

the integrability condition (B.4)). We will also need the filtration (F
Z,τg
t ) that is larger than

(FZ
t ) and incorporates the information on the occurrence of growth-induced termination,

which is defined by

F
Z,τg
t = FZ

t ∨ σ
(

{τg ≤ s} , s ≤ t
)

(see also the discussion on filtrations at the very beginning of Appendix B). Notice that if
the manager refrains from stealing (A = 0), then F̂t = FZ

t for all t ≥ 0, in which case the

sigma-algebra Ft introduced in Section 2.2 coincides with F
Z,τg
t .

C.1 Proof of Lemma 5

Lemma 5 is a direct consequence of the following result (see Remark C-1 below).

Lemma C-1. Consider any processes C ∈ PC(0), S ∈ PS(0), G ∈ PG(0) together with any
stopping time τd ∈ Pτd(0), and let τg be the random time that is defined as in (B.1). Also,
consider the processes M , M̃ defined by

Mt = 1{t<τd∧τg} E

[
∫

]t,τd∧τg[
e−̺(s−t) dCs

+ e−̺(τd−t)∆Cτd1{τd<τg} + e−̺(τg−t)Sτg1{τg≤τd}∩{τg<∞}

∣

∣

∣
F
Z,τg
t

]

,

M̃t = 1{t<τd}d
−1
t E

[

∫

]t,τd]∩R+

ds dCs + q

∫ τd

t

dsGsSs ds
∣

∣

∣ FZ
t

]

,

where

dt = exp

(

−̺t−

∫ t

0
qGs ds

)

, (C.5)
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and let T 0
M̃

be the first hitting time of 0 by M̃ , namely,

T 0
M̃

= inf{t ≥ 0 | M̃t = 0}.

The following statements hold true:

(I) Mt = 1{t<τg}M̃t for all t ≥ 0.

(II) There exists an (FZ
t )-progressively measurable process β such that

∫ T

0 d
2
tβ

2
t dt < ∞ for

all T > 0, and

dMt =
[

̺Mt + qGt(Mt − St)
]

dt− dCt + σβt dZt (C.6)

on the event {t < τd ∧ τg}.

(III) T 0
M̃

≤ τd, and the processes (C −CT 0

M̃

)1]T 0

M̃
,τd]

, GS1]T 0

M̃
,τd]

and β1]T 0

M̃
,τd]

are indistin-

guishable from 0.

Proof. Claim (I) follows from standard credit risk theory (e.g., see Bielecki and Rutkowski
(2002), Section 5.1.1). To establish the rest of the claims, we first observe that

E

[∫

[0,τd]∩R+

ds dCs + q

∫ τd

0
dsGsSs ds

∣

∣

∣
FZ
t

]

=

∫

[0,t∧τd]
ds dCs + q

∫ t∧τd

0
dsGsSs ds

+ 1{t<τd}E

[

∫

]t,τd]∩R+

ds dCs + q

∫ τd

t

dsGsSs ds
∣

∣

∣ FZ
t

]

=

∫

[0,t∧τd]
ds dCs + q

∫ t∧τd

0
dsGsSs ds+ dtM̃t.

In view of the martingale representation theorem, there exists an (FZ
t )-progressively mea-

surable process β such that
∫ T

0 d
2
sβ

2
s ds <∞ for all T > 0, and

E

[

∫

[0,τd]∩R+

ds dCs + q

∫ τd

0
dsGsSs ds

∣

∣

∣
FZ
t

]

= M̃0− +

∫ t

0
dsβs dZs,

where

M̃0− = E

[

∫

[0,τd]∩R+

ds dCs + q

∫ τd

0
dsGsSs ds

]

= ∆C0 + M̃0.

Rearranging terms, we obtain

dtM̃t = M̃0− −

∫

[0,t∧τd]
ds dCs − q

∫ t∧τd

0
dsGsSs ds +

∫ t

0
dsβs dZs. (C.7)

Using the definition of d in (C.5), (C.7), and the integration by parts formula, we can
see that M̃ satisfies

dM̃t =
[

̺M̃t + qGt(M̃t − St)
]

dt− dCt + σβt dZt
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on the event {t < τd}, which, combined with part (I) of the lemma, implies the claim in (II).
Furthermore, the definitions of M̃ and T 0

M̃
, along with (C.7), imply all the properties listed

in (III).

Remark C-1. It is straightforward to see that Lemma 5 follows immediately from Lemma C-
1. Indeed, consider a long-term incentive contract Γ ∈ G and suppose the manager refrains
from stealing, so that F

Z,τg
t represents all the information accumulated by the firm up to

time t. Also, let C = ΓC(0), S = ΓS(0) and τd = Γτd(0), and let τg be the random time
that is defined as in (B.1) for G = ΓG(0). In view of Definition B-1, C ∈ PC(0), S ∈ PS(0),
G ∈ PG(0) and τd ∈ Pτd(0). Therefore, the results of Lemma C-1 apply, and Lemma 5
follows from Claim (II).

C.2 Dynamic Contracts

Under no stealing, the dynamics given by (C.6) identify with

dMt =
[

̺Mt + qGt(Mt − St)
]

dt− dCt + βt (dŶt − µdt)

because, in this case, σ dZt = dŶt − µdt. This observation motivates us to restrict our
attention to “dynamic” contracts that track the state processW whose stochastic dynamics
are modelled by

dWt =
[

̺Wt + qGt(Wt − St)
]

dt− dCt + βt (dŶt − µdt)

=
[

̺Wt + qGt(Wt − St)
]

dt− dCt − βt dAt + σβt dZt, (C.8)

the second equality following from the fact that, in general, dŶt − µdt = −dAt + σdZt.
In view of these considerations, we adopt the following definition of dynamic contracts,

where, in line with (C.1)–(C.4),

Pβ(A) is the family of all positive (F̂t)-progressively measurable processes β

such that E

[
∫ ∞

0
e−2rtβ2t dt

]

<∞, (C.9)

where r < ̺ is the firm’s discount rate. Note that, for the purposes of our analysis below,
we impose technical conditions on the process β that are stronger than the ones appearing
in Lemma C-1.(II).

Definition C-1. A dynamic contract is a function

D = (DC ,DS ,DG,Dτd ,Dβ) : A → PC(0)× PS(0)× PG(0)× Pτd(0) × Pβ(0)

together with a constant winit > 0 such that

(I) (DC ,DS ,DG,Dτd) is a contract in the sense of Definition B-1;

(II) Dβ(A) ∈ Pβ(A) for all A ∈ A;

(III) given any A ∈ A, the solution W to the SDE (C.8) for

C = DC(A), S = DS(A), G = DG(A), β = Dβ(A) and W0− = winit,
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is such that

(a) ∆Ct ≤Wt− for all t ≤ τd := Dτd(A), and

(b) if T 0
W = inf{t ≥ 0 | Wt = 0}, then T 0

W ≤ τd and the processes (C − CT 0
W
)1]T 0

W
,τd]

,
GS1]T 0

W
,τd]

and β1]T 0
W
,τd]

are indistinguishable from 0.

We denote by D
winit the family of all dynamic contracts that are associated with the initial

condition W0− = winit.

Remark C-2. From a mathematical point of view, the raison d’être of the extra component
that differentiates dynamic contracts from contracts in the sense of Definition B-1, namely,
the process β = Dβ(A), is to give sense to the constraints in (III) that involve the solution
W to the SDE (C.8). The constraints in (III).(b) are imposed in the definition of a dynamic
contract to mimic the properties stated in Lemma C-1.(III).

Remark C-3. The general definition of a dynamic contract that we have adopted here is
slightly different from the one given in Section 2.4, in the sense that Definition C-1 allows for
any random disciplinary dismissal time τd ≥ T 0

W , whereas the exposition in the main text
assumes that this random time identifies with the first hitting time of zero by W , namely,
τd = T 0

W . The advantage of adopting a more general definition, as we do here, is that it
allows us to derive the identity τd = T 0

W as an incentive-compatibility requirement (see
Lemma C-2). However, note that the notion of admissible dynamic contract that we define
in the next section (see Definition C-3) coincides with the one introduced in Section 2.4.

We can now introduce a general notion of admissibility for dynamic contracts, in line
with Definition B-2. Before doing so, we note that, given a dynamic contract D and a
stealing strategy A, the same credit risk theory results as the ones we used in the proof of
Lemma C-1.(I) imply that the manager’s total expected discounted payoff at the time of
his hiring, which is defined by (B.9), admits the expression

M(D, A) = E

[

∫

[0,τd]∩R+

dt (dCt + λdAt + qGtSt dt)

]

, (C.10)

where (C,S,G, τd) =
(

DC(A),DS(A),DG(A),Dτd(A)
)

and d is defined by (C.5).

Definition C-2. A dynamic contract D = (DC ,DS ,DG,Dτd ,Dβ) ∈ D
winit is generally

admissible if

M(D, 0) = max
A∈A

M(D, A) and M(D, 0) ≥ w̄, (C.11)

where the manager’s total expected discounted payoff M is defined by (C.10).

We denote by D
winit

ga ⊆ D
winit the family of all generally admissible dynamic contracts with

initial condition W0− = winit.
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C.3 Proof of Lemma 6

The following result establishes sufficient conditions for a dynamic contract to be generally
admissible.

Lemma C-2. Consider a dynamic contract D ∈ D
winit in the sense of Definition C-1. If

Dβ(A) ≥ λ and Dτd(A) = T 0
W for all A ∈ A, (C.12)

and the associated solution to (C.8) for A = 0 satisfies the transversality condition

lim
T→∞

e−rTE
[

WT1{T≤τd}
]

= 0, (C.13)

where r is the firm’s discount rate, then

winit =M(D, 0) = max
A∈A

M(D, A).

If (C.12)–(C.13) hold true and winit ≥ w̄, then D is generally admissible in the sense of
Definition C-2.

Proof. Consider any dynamic contract D = (DC ,DS ,DG,Dτd ,Dβ) ∈ D
winit and let C, S,

G, τd, β be the evaluations of the contract at any given A ∈ A. Using (C.5), (C.8), and the
integration by parts formula, we calculate

dT∧τdWT∧τd = winit −

∫

[0,T∧τd]
dt (dCt + βt dAt + qGtSt dt) + σNT∧τd , (C.14)

where N is the stochastic integral defined by

NT =

∫ T

0
dtβt dZt.

In view of (C.14) and the positivity of the stopped process W τd , which follows from the
properties of a dynamic contract, we can see that

0 ≤ dT∧τdWT∧τd ≤ winit + σNT∧τd . (C.15)

On the other hand, Doob’s L2-inequality, Itô’s isometry, (C.5) and (C.9) imply that

E





(

sup
T≥0

|NT |

)2


 ≤ 4 sup
T≥0

E
[

N2
T

]

= 4 sup
T≥0

E

[
∫ T

0
d
2
tβ

2
t dt

]

≤ 4E

[
∫ ∞

0
e−2rtβ2t dt

]

<∞, (C.16)

therefore, N is a martingale in H2.
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Taking expectations in (C.14) and using the monotone convergence theorem, we derive
the expression

winit = E

[

∫

[0,τd]∩R+

dt (dCt + βt dAt + qGtSt dt)

]

+ lim
T→∞

E [dT∧τdWT∧τd ]

=M(D, A
)

+ E

[∫ τd

0
dt (βt − λ) dAt

]

+ lim
T→∞

E [dT∧τdWT∧τd ] ,

where M is the manager’s total expected discounted payoff, which is defined by (C.10). In
light of this calculation and the positivity of the stopped process W τd , we can see that,
if βt ≥ λ for all t ≤ τd, which can be true only if τd = T 0

W (see requirement (b) in
Definition C-1.(III)), and the transversality condition (C.13) holds true, then

M(D, A) ≤ winit for all A ∈ A

and

M(D, 0
)

= winit − lim
T→∞

E [dT∧τdWT∧τd ] = winit,

the second equality following from (C.13) and the fact that dT < e−rT for all T > 0. We
conclude that (C.12), (C.13) and the inequality winit ≥ w̄ are sufficient conditions for a
dynamic contract to be generally admissible.

In light of Lemma C-2, we henceforth focus on dynamic contracts that satisfy the re-
quirements in (C.12) and (C.13), and refer to those as admissible dynamic contracts.

Definition C-3. An admissible dynamic contract is a function

D = (DC ,DS ,DG,Dβ) : A → PC(0)× PS(0) × PG(0)× Pβ(0)

together with a constant winit ≥ w̄ such that

(I) (DC ,DS ,DG,Dτd ,Dβ) ∈ D
winit (see Definition C-1) where

Dτd(A) = inf{t ≥ 0 | Wt = 0} ∈ Pτd(A) ⊆ Pτd(0), for A ∈ A,

in which expression W is the solution to the SDE (C.8) for

C = DC(A), S = DS(A), G = DG(A), β = Dβ(A) and W0− = winit;

(II) Dβ(A) ≥ λ for all A ∈ A;

(III) the solution to the SDE (C.8) for (C,S,G, β) =
(

DC(0),DS(0),DG(0),Dβ(0)
)

and
A = 0 satisfies the transversality condition (C.13) for τd = Dτd(0).

We denote by Dwinit the family of all admissible dynamic contracts with initial condition
winit ≥ w̄.
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C.4 The Firm’s Problem: Take Two

We now turn our attention to the firm’s optimisation problem, which amounts to finding an
initial condition winit ≥ w̄ and a contract D⋆ ∈ Dwinit that maximises the firm’s expected
discounted profit. In view of (B.13) and the same results from credit risk theory that we
used to establish Lemma C-1.(I), we can see that, given any contract D ∈ Dwinit, the firm’s
size-adjusted expected discounted profit at the start of any manager’s tenure F (D) should
satisfy

F (D) = E

[
∫ τd

0
Dt

(

µ+ qGt
[

(1 + γ)F (D)− κ− St
]

)

dt

−

∫

[0,τd]∩R+

Dt dCt +Dτd

[

F (D)− κ
]

]

, (C.17)

where C = DC(0), S = DS(0), G = DG(0), τd = Dτd(0), for Dτd as in Definition C-3.(I),
and

Dt = exp

(

−rt−

∫ t

0
qGs ds

)

. (C.18)

To identify the optimal contract D⋆, we first consider the following stochastic control
problem.

Problem C-1. Solve the singular stochastic control problem whose value function v is
defined by

v(w) = sup
(C,S,G,β)∈S

E

[
∫ τd

0
Dt

(

µ+ qGt
[

(1 + γ)v(wh)− κ− St
]

)

dt

−

∫

[0,τd]∩R+

Dt dCt +Dτd

[

v(wh)− κ
]

]

, for w ≥ 0, (C.19)

where D is defined by (C.18), S is the family of all control strategies (C,S,G, β) such that

C ∈ PC(0), S ∈ PS(0), G ∈ PG(0), β ∈ Pβ(0) with β ≥ λ,

the associated solution to the SDE

dWt =
[

̺Wt + qGt(Wt − St)
]

dt− dCt + σβt dZt, W0− = w ≥ 0, (C.20)

satisfies the transversality condition (C.13), τd is the first hitting time of zero by W , and

wh := w̄ ∨ w◦ := w̄ ∨ argmax
w>0

v(w). (C.21)

The choice of wh as in (C.21) reflects the idea that the firm is prepared to offer each manager
a size-adjusted total discounted payoff wh that may be strictly greater than the managers’
reservation value w̄ as long as this enhances the firm’s total expected discounted profit (see
Remark B-3).
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Given the solution to this problem, the firm’s optimisation problem reduces to solving
the following one.

Problem C-2. Given the solution to Problem C-1, namely, the value of wh and an optimal
control strategy (C⋆, S⋆, G⋆, β⋆) ∈ S, determine an admissible dynamic contract D⋆ ∈ Dwh

such that

D⋆
C(0) = C⋆, D⋆

S(0) = S⋆, D⋆
G(0) = G⋆ and D⋆

β(0) = β⋆.

We call such an admissible dynamic contract optimal .

The firm’s expected discounted profit at time 0 under an optimal contract D⋆ is

F (D⋆) = sup
D∈Dwh

F (D) = v(wh).
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D Verification Theorem and Optimal Contract

In Appendix C, the firm’s contracting problem was ultimately connected to a singular
stochastic control problem (Problem C-1). The next theorem expresses the solution to this
problem in terms of the solution to an appropriate HJB equation. Using this result, we
characterise the solution to Problem C-2, namely, we derive the optimal admissible dynamic
contract (see Theorem D-2 below). The optimality properties 1–5 stated in Section 3.1
follow immediately from these results.

Theorem D-1. Let u : R+ → R be a concave C2 function that satisfies the HJB equation

max

{

1

2
σ2λ2u′′(w) + ̺wu′(w) − ru(w)

+ µ+ q
[

wu′(w)− u(w) + (1 + γ)u(wh)− κ
]+
, −u′(w)− 1

}

= 0 (D.1)

with the Wentzel-type boundary condition

u(0) = u(wh)− κ, (D.2)

where wh := w̄ ∨ w◦ := w̄ ∨ argmaxw>0 u(w). Define

wg = sup
{

w ≥ 0 | wu′(w) − u(w) + (1 + γ)u(wh)− κ ≥ 0
}

∨ 0 (D.3)

and

wc = inf
{

w ≥ 0 | u′(w) = −1
}

, (D.4)

with the usual conventions that sup ∅ = −∞ and inf ∅ = ∞, and assume that wc < ∞.
Furthermore, suppose that there exists a constant K > 0 such that

∣

∣u′(w)
∣

∣ ≤ K for all w > 0. (D.5)

The following statements hold true:

(I) If wg <∞, then wg < wc.

(II) The function u identifies with the value function v defined by (C.19), namely,

u(w) = v(w) for all w ≥ 0. (D.6)

(III) The solution (C⋆, S⋆, G⋆, β⋆) to Problem C-1 is such that the identities

S⋆t = 0, G⋆t = 1[0,wg∧wc](W
⋆
t ), β⋆t = λ, (D.7)

W ⋆
t ∈ [0, wc] and C⋆t =

∫

[0,t]
1[wc,∞[(W

⋆
s ) dC

⋆
s (D.8)

hold true for all t ∈ [0, τ⋆d ], where C⋆, W ⋆ are rigorously constructed as in the proof of
Theorem D-2.
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Proof. To show (I), we argue by contradiction and we assume that wc ≤ wg < ∞.
Combining the concavity of u with (D.1) and the definition (D.4) of wc, we can see that
u′(w) = −1 and u(w) = u(wc)− (w − wc) for all w ≥ wc. These observations imply that

u(w) −wu′(w) = u(w) + w = u(wc) + wc for all w ≥ wc.

In view of these identities, the assumption that wg ≥ wc, and the definition (D.3) of wg,
we obtain

u(w) − wu′(w) = u(wg) + wg = (1 + γ)u(wh)− κ for all w ≥ wg,

which contradicts (D.3).
To show (II), we fix any initial condition w > 0 and any admissible control strategy

(C,S,G, β) ∈ S, where S is defined in the statement of Problem C-1. Using (C.20), the
dynamics

dDt = −(r + qGt)Dt dt

(see (C.18)), Itô’s formula and the integration by parts formula, we can see that, given any
time T > 0,

DT∧τdu(WT∧τd)

= u(w) −

∫

[0,T∧τd]
Dtu

′(Wt−) dCt +
∑

0≤t≤T∧τd

Dt

[

u(Wt)− u(Wt−)− u′(Wt−)∆Wt

]

+

∫ T∧τd

0
Dt

(

1

2
σ2β2t u

′′(Wt) +
[

̺Wt + qGt(Wt − St)
]

u′(Wt)−
(

r + qGt
)

u(Wt)

)

dt

+

∫ T∧τd

0
Dtσβtu

′(Wt) dZt.

In view of the fact that ∆Wt ≡Wt −Wt− = −∆Ct, we can see that

−

∫

[0,T∧τd]
Dtu

′(Wt−) dCt +
∑

0≤t≤T∧τd

Dt

[

u(Wt)− u(Wt−)− u′(Wt−)∆Wt

]

= −

∫ T∧τd

0
Dtu

′(Wt) dC
c
t +

∑

0≤t≤T∧τd

Dt

[

u(Wt− −∆Ct)− u(Wt−)
]

= −

∫ T∧τd

0
Dtu

′(Wt) dC
c
t −

∑

0≤t≤T∧τd

Dt

∫ ∆Ct

0
u′(Wt− −∆Ct + x) dx,

where Cc is the continuous part of the process C. Combining these identities with the
observation that

u(WT∧τd) = u(0)1{τd≤T} + u(WT )1{T<τd} =
[

u(wh)− κ
]

1{τd≤T} + u(WT )1{T<τd},
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which follows from (D.2), we obtain

∫ T∧τd

0
Dt

(

µ+ qGt
[

(1 + γ)u(wh)− κ− St
]

)

dt−

∫

[0,T∧τd]
Dt dCt +Dτd

[

u(wh)− κ
]

1{τd≤T}

= u(w)−DTu(WT )1{T<τd}

−

∫ T∧τd

0
Dt

[

u′(Wt) + 1
]

dCc
t −

∑

0≤t≤T∧τd

Dt

∫ ∆Ct

0

[

u′(Wt− −∆Ct + x) + 1
]

dx

+

∫ T∧τd

0
Dt

(

1

2
σ2β2t u

′′(Wt) + ̺Wtu
′(Wt)− ru(Wt) + µ

+ qGt

[

Wtu
′(Wt)− u(Wt) + (1 + γ)u(wh)− κ− St

(

u′(Wt) + 1
)

]

)

dt

+

∫ T∧τd

0
Dtσβtu

′(Wt) dZt.

The concavity of u and the fact that it satisfies the gradient constraint u′ + 1 ≥ 0 imply
that

sup
b≥λ

[

b
2u′′(w)

]

= λ2u′′(w) and sup
s∈[0,w]

[

−s
(

u′(w) + 1
)]

= 0.

Therefore, since u satisfies the HJB equation (D.1),

∫ T∧τd

0
Dt

(

µ+ qGt
[

(1 + γ)u(wh)− κ− St
]

)

dt−

∫

[0,T∧τd]
Dt dCt +Dτd

[

u(wh)− κ
]

1{τd≤T}

≤ u(w)−DTu(WT )1{T<τd} +

∫ T∧τd

0
Dtσβtu

′(Wt) dZt. (D.9)

In view of (D.5), we can see that
∣

∣u(w)
∣

∣ ≤
∣

∣u(0)
∣

∣ +Kw for all w ≥ 0, which, combined
with the transversality condition (C.13), implies that

lim
T→∞

E

[

DT

∣

∣u(WT )
∣

∣1{T<τd}

]

= 0.

On the other hand, we can use Itô’s isometry, (C.9) and (D.5), to calculate

E

[

(
∫ T∧τd

0
Dtσβtu

′(Wt) dZt

)2
]

= E

[
∫ T∧τd

0

[

Dtσβtu
′(Wt)

]2
dt

]

≤ σ2K2 E

[∫ T∧τd

0
e−2rtβ2t dt

]

<∞,

which implies that the stochastic integral in (D.9) is a square-integrable martingale. In
view of these results, we can take expectations in (D.9) and use the monotone convergence
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theorem to obtain

E

[
∫ τd

0
Dt

(

µ+ qGt
[

(1 + γ)u(wh)− κ− St
]

)

dt−

∫

[0,τd]
Dt dCt +Dτd

[

u(wh)− κ
]

]

= lim
T→∞

E

[
∫ T∧τd

0
Dt

(

µ+ qGt
[

(1 + γ)u(wh)− κ− St
]

)

dt

−

∫

[0,T∧τd]
Dt dCt +Dτd

[

u(wh)− κ
]

1{τd≤T}

]

≤ u(w). (D.10)

Since (C,S,G, β) ∈ S has been chosen arbitrarily, it follows that

u(w) ≥ sup
(C,S,G,β)∈S

E

[
∫ τd

0
Dt

(

µ+ qGt
[

(1 + γ)u(wh)− κ− St
]

)

dt

−

∫

[0,τd]
Dt dCt +Dτd

[

u(wh)− κ
]

]

. (D.11)

The concavity of u and the fact that this function satisfies the HJB equation (D.1) imply
that

u′(w) = −1 for all w ≥ wc

and

wu′(w)− u(w) + (1 + γ)u(wh)− κ

{

≥ 0, for all w ∈ [0, wg]

< 0, for all w ∈ ]wg,∞[ ∩ [0, wc]

}

.

In view of these observations, we can check that, if (C⋆, S⋆, G⋆, β⋆) is such that (D.7)–
(D.8) hold true, then (D.9) holds with equality. We also note that this control strategy
is such that the transversality condition (C.13) is satisfied because W ⋆ takes values in the
bounded interval [0, wc]. Following the same steps as above, we can see that (D.10) holds
with equality for this control strategy, which combined with (D.11), implies that

u(w) = E

[∫ τ⋆
d

0
D
⋆
t

(

µ+ qG⋆t
[

(1 + γ)u(wh)− κ
]

)

dt−

∫

[0,τ⋆
d
]
D
⋆
t dC

⋆
t +D

⋆
τ⋆
d

[

u(wh)− κ
]

]

= sup
(C,S,G,β)∈S

E

[
∫ τd

0
Dt

(

µ+ qGt
[

(1 + γ)u(wh)− κ− St
]

)

dt

−

∫

[0,τd]
Dt dCt +Dτd

[

u(wh)− κ
]

]

.

It follows that (D.6) holds true and (C⋆, S⋆, G⋆, β⋆) ∈ S is optimal.
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The next result provides the solution to the dynamic contracting Problem C-2. The
filtration (F̂t) =

(

F̂t(A)
)

and the families PC(A), PS(A), PG(A), Pβ(A) involved in the
statement of the theorem are as at the beginning of Appendix C (see (C.1)–(C.4) and (C.9)
in particular).

Theorem D-2. Suppose that the HJB equation (D.1)–(D.2) has a concave C2 solution u
such that the assumptions of Theorem D-1 are all satisfied. The following statements hold
true:

(I) For all A ∈ A, there exists a process C = C(A) ∈ PC(A) such that, apart from a jump
of size ∆C0 = (wh − wc)

+ at time 0, C is continuous,

Wt ∈ [0, wc] and Ct =

∫

[0,t]
1[wc,∞[(Ws) dCs for all t ≥ 0, (D.12)

where the (F̂t)-adapted process W is the strong solution to the SDE

dWt =
[

̺+ q1[0,wg∧wc](Wt)
]

Wt dt− dCt + λ (dŶt − µdt)

=
[

̺+ q1[0,wg∧wc](Wt)
]

Wt dt− dCt − λdAt + σλ dZt, W0− = wh. (D.13)

(II) The function D⋆ = (D⋆
C ,D

⋆
S ,D

⋆
G,D

⋆
β) : A → PC(0) × PS(0) × PG(0) × Pβ(0) that is

defined by

D⋆
S = 0, D⋆

G = 1[0,wg∧wc](W ), D⋆
β = λ,

and by identifying D⋆
C(A) with C(A) in (I) above, where W is given by (D.13), provides the

solution to Problem C-2, namely, it is an optimal admissible dynamic contract.

Proof. In view of Theorem D-1 and the results asserted in (I), it is straightforward to verify
that (II) is indeed true. To prove (I), we fix any A ∈ A and we recall that Ŷt = µt−At+σZt.
First, we assume that wg = 0, and we note that the construction corresponding to the case
wg = ∞ (see also part (I) of the previous theorem) is identical if we replace ̺ by ̺+ q. In
this case, we rewrite the SDE (D.13) in the form

e−̺tWt = wh − Ĉt + λ

∫ t

0
e−̺s (dŶs − µds), (D.14)

where

Ĉt =

∫

[0,t]
e−̺s dCs.

Noting that

Wt ≤ wc ⇔ −wh − λ

∫ t

0
e−̺s (dŶs − µds) + e−̺twc + Ĉt ≥ 0,

the analysis of Skorokhod’s equation (see Lemma 6.14 in Karatzas and Shreve (1988),
Chapter 3) implies that the process Ĉ defined by

Ĉt = sup
s≤t

(

wh + λ

∫

s

0
e−̺s (dŶs − µds)− e−̺swc

)+
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is such that

Wt ∈ [0, wc] and Ĉt =

∫

[0,t]
1[wc,∞[(Ws) dĈs for all t ≥ 0,

where W is the corresponding process in (D.14). If we define

Ct =

∫

[0,t]
e̺s dĈs,

then we can see that

Ct =

∫

[0,t]
e̺s dĈs =

∫

[0,t]
e̺s1[wc,∞[(Ws) dĈs =

∫

[0,t]
1[wc,∞[(Ws) dCs.

By construction, C is (F̂t)-adapted. Using Jensen’s inequality, Doob’s L2-inequality and
Itô’s isometry, we calculate

(

E

[

sup
T≥0

∣

∣

∣

∣

∫ T

0
e−̺t dZt

∣

∣

∣

∣

])2

≤ E





(

sup
T≥0

∣

∣

∣

∣

∫ T

0
e−̺t dZt

∣

∣

∣

∣

)2




≤ 4 sup
T≥0

E

[

(∫ T

0
e−̺t dZt

)2
]

= 4

∫ ∞

0
e−2̺t dt =

2

̺
. (D.15)

In view of this estimate, we can see that

E

[

∫

[0,∞[
e−̺t dCt

]

= E

[

lim
T→∞

ĈT

]

≤ E

[

sup
T≥0

(

wh + σλ

∫ T

0
e−̺t dZt

)+
]

≤ wh + σλE

[

sup
T≥0

∣

∣

∣

∣

∫ T

0
e−̺t dZt

∣

∣

∣

∣

]

≤ wh + σλ

√

2

̺
.

It follows that C ∈ PC(A), and C is the required process.
Before addressing the proof of (I) if wg ∈ ]0, wc[, we first consider the existence and

uniqueness of a strong solution to the SDE

dWt =
[

̺+ q1[0,wg](Wt)
]

Wt dt− dCt − λdAt + σλ dZt, W0 = wh ∈ ]0, wc[, (D.16)

where wg ∈ ]0, wc[, and C ∈ PC(A) is continuous with C0 = 0. To this end, we consider
the strictly positive function

pd(w) = exp

(

−

∫ w

0

2
[

̺+ q1[0,wg](ℓ)
]

ℓ

σ2λ2
dℓ

)

=















exp
(

− ̺
σ2λ2

w2
)

, if w < 0

exp
(

− ̺+q
σ2λ2

w2
)

, if w ∈ [0, wg]

exp
(

− ̺
σ2λ2

w2 −
qw2

g

σ2λ2

)

, if w > wg














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and the strictly increasing function p : R → ]p, p[ defined by

p(w) =

∫ w

0
pd(ℓ) dℓ,

where

p = lim
w→−∞

p(w) = −
σλ

2

√

π

̺
and p = lim

w→∞
p(w) ∈ ]0,∞[.

Using Itô’s formula, we can see that, if we define U = p(W ), then

dUt = pd ◦ p
−1(Ut) dΓt, U0 = p(wh),

where

Γt = −Ct − λAt + σλZt ≡ −Ct − λµt+ λŶt.

This SDE has a unique (F̂t)-adapted strong solution up to the exit time of U from any
interval [u, u] such that U0 = p(wh) ∈ ]u, u[ and [u, u] ⊆ ]p, p[ because Γ is a continuous (F̂t)-
semimartingale and pd ◦ p

−1 : ]p, p[ → ]0, 1] is a locally Lipschitz function (see Theorem 6

in Protter (1992), Chapter V). It follows that the SDE (D.16) has a unique (F̂t)-adapted
strong solution up to the exit time of W from any bounded interval containing W0 = wh.
Furthermore, the expression

Wt = Kt

(

wh −

∫ t

0
K−1
s (dCs + λdAs − σλ dZs)

)

,

where

Kt = exp

(∫ t

0

[

̺+ q1[0,wg](Ws)
]

ds

)

∈
[

e̺t, e(̺+q)t
]

,

implies that the solution to the SDE (D.16) does not explode in finite time, namely,

P

(

supt∈[0,T ] |Wt| <∞
)

= 1 for all T ≥ 0.

We return to the proof of (I), now considering the case when wg ∈ ]0, wc[. We first
assume that wh < wc. To construct the required C, we determine a sequence of processes
(Ci, i ≥ 0) and an increasing sequence of (F̂t)-stopping times (νi, i ≥ 0) such that, for all
i ≥ 0,

Ci ∈ PC(A) and Ci is continuous with Ci0 = 0, (D.17)

W i
t ∈ [0, wc] and Cit =

∫

[0,t]
1[wc,∞[(W

i
s) dC

i
s for all t ∈ [0, νi], (D.18)

W i
νi1{νi<∞} =

{

wc1{νi<∞}, if i is even

wg1{νi<∞}, if i is odd

}

, (D.19)

and Cit1{νi<∞} = Ciνi1{νi<∞} for all t ≥ νi, (D.20)
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where W i is the solution to the SDE

dW i
t =

[

̺+ q1[0,wg](W
i
t )
]

W i
t dt− dCit + λ (dŶt − µdt), W i

0 = wh. (D.21)

To start with, we define

C0 = 0 and ν0 = inf
{

t ≥ 0 | W 0
t ≥ wc

}

,

and we note that (D.17)–(D.20) hold true trivially for these choices of C0, ν0 and for W 0

being the solution to (D.21).
Given i ≥ 0 even and Ci, νi such that (D.17)–(D.20) hold true, we consider the processes

Ĉi+1
t = 1{νi≤t}∩{νi<∞} sup

s∈[νi,t]

(

wc + λ

∫

s

νi
e−̺(s−ν

i) (dŶs − µds)− e−̺(s−ν
i)wc

)+

,

W̃ i+1
t = e̺(t−ν

i)

(

wc − Ĉi+1
t + λ

∫ t

νi
e−̺(s−ν

i) (dŶs − µds)

)

1{νi≤t}∩{νi<∞},

and we note that Ĉi+1 is a continuous increasing process such that Ĉi+1
t 1{t≤νi} = 0. We

then define

νi+1 = inf
{

t ≥ νi | W̃ i+1
t ≤ wg

}

and Ci+1
t = Cit +

∫ t∧νi+1

0
e̺(s−ν

i) dĈi+1
s .

In view of the analysis in the first paragraph of this proof, we can see that (D.18)–(D.20)
hold true for i + 1 in place of i. In particular, the corresponding solution W i+1 to (D.21)
is such that W i+1

t = W̃ i+1
t ∈ ]wg, wc] for all t ∈ [νi, νi+1[. We shall verify that (D.17) also

holds true in the penultimate paragraph of the proof.
Given i ≥ 1 odd and Ci, νi such that (D.17)–(D.20) hold true, we define Ci+1 = Ci and

νi+1 = inf{t ≥ νi | W i
t ≥ wc}.

It is immediate to verify that (D.17)–(D.20) hold true for i+ 1 in place of i.
In view of the observations that

Ci+1
t 1{t≤νi} = Cit1{t≤νi} for all t ≥ 0 and i ≥ 0,

and limi→∞ νi = ∞, we can see that the required process C is given by

Ct =

∞
∑

i=1

Cit1{νi−1≤t<νi}.

To see the limit invoked here, we consider the SDE

dW
2i
t =

[

̺+ q1[0,wg]

(

W
2i
t

)

]

W
2i
t dt− dC2i

t − λdAν
2i−1

t + σλ dZt, W
2i
0 = wh,

for any i ≥ 1, where Aν
2i−1

t = At∧ν2i−1 , and we define

ν2i = inf
{

t ≥ ν2i−1 | W
2i
t ≥ wc

}

.
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In view of the observations that

W
2i
ν2i−11{ν2i−1<∞} =W 2i

ν2i−11{ν2i−1<∞} = wg1{ν2i−1<∞},

which follows from the fact that

W
2i
t 1{t≤ν2i−1} =W 2i

t 1{t≤ν2i−1},

and

W
2i
t 1{t≥ν2i−1} =

(

wg +

∫ t

ν2i−1

[

̺+ q1[0,wg]

(

W
2i
s

)

]

W
2i
s ds+ σλ(Zt − Zν2i−1)

)

1{t≥ν2i−1}

≥W 2i
t 1{t≥ν2i−1},

we can see that ν2i ≤ ν2i and that the strictly positive random variables ν2i− ν2i−1, i ≥ 1,
are independent and identically distributed. Combining these facts with the law of large
numbers, we obtain

lim
i→∞

ν2i

i
> lim

i→∞

1

i

i
∑

k=1

(ν2k − ν2k−1) ≥ lim
i→∞

1

i

i
∑

k=1

(ν2k − ν2k−1) = E
[

ν2 − ν1
]

> 0,

which implies that limi→∞ νi = ∞, as claimed. Furthermore, given any i ≥ 1,

E

[

e−̺ν
2i
]

≤ E

[

i
∏

k=1

e−̺(ν
2k−ν2k−1)

]

=
(

E

[

e−̺(ν
2−ν1)

])i

. (D.22)

By construction, the processes Ci, i ≥ 0, and C are all continuous, increasing and
(F̂t)-adapted. To show that these processes satisfy the integrability condition (B.4) and
thus conclude that they belong to PC(A) as well as that (D.17) holds true, we consider the
probability spaces (Ω,F , (F i

t ),Q
i), where (F i

t ) are the filtrations defined by F i
t = FZ

ν2i+t

and Qi are the conditional probability measures P(· | ν2i < ∞) that have Radon-Nikodym
derivatives with respect to P given by

dQi

dP
=

1

P(ν2i <∞)
1{ν2i<∞}.

In this context, the processes Zi defined by Zit = (Zν2i+t − Zν2i)1{ν2i<∞} are standard

(F i
t )-Brownian motions that are independent of F i

0 = FZ
ν2i

(see Exercise 3.21 in Revuz and
Yor (1999), Chapter IV). Furthermore,

E

[

1{ν2i<∞}e
−̺ν2i sup

T≥ν2i

∣

∣

∣

∣

∫ T

ν2i
e−̺(t−ν

2i) dZt

∣

∣

∣

∣

]

= P(ν2i <∞)EQi
[

e−̺ν
2i
]

EQi

[

sup
T≥ν2i

∣

∣

∣

∣

∫ T

ν2i
e−̺(t−ν

2i) dZt

∣

∣

∣

∣

]

= E

[

e−̺ν
2i
]

EQi

[

sup
T≥0

∣

∣

∣

∣

∫ T

0
e−̺t dZit

∣

∣

∣

∣

]

≤ K E

[

e−̺ν
2i
]

,
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where EQi

denotes expectation with respect to Qi and the constant K can be determined
as in (D.15). Combining such an estimate with (D.22), we calculate

E

[∫ ∞

0
e−̺t dCt

]

= E

[

∞
∑

i=0

1{ν2i<∞}

∫ ν2i+1

ν2i
e−̺t dCt

]

=
∞
∑

i=0

E

[

1{ν2i<∞}e
−̺ν2i lim

T→∞
Ĉ2i+1
T∧ν2i+1

]

≤
∞
∑

i=0

(

wc E

[

e−̺ν
2i
]

+ σλE

[

1{ν2i<∞}e
−̺ν2i sup

T≥ν2i

∣

∣

∣

∣

∫ T

ν2i
e−̺(t−ν

2i) dZt

∣

∣

∣

∣

])

≤ (wc + σλK)
∞
∑

i=0

(

E

[

e−̺(ν
2−ν1)

])i

<∞.

We conclude that the processes Ci, i ≥ 0, and C all satisfy the integrability condition (B.4)
and they belong to PC(A), in particular, C is the required process.

Finally, if wg ∈ ]0, wc[ and wh ≡ w̄ ≥ wc, then we can make the required construction
by setting ∆C0 = w̄ − wc and then following exactly the same arguments as above simply
swapping the order of considerations associated with even and odd indices.
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E Preliminary Results

In this appendix, we review a range of results regarding the solvability of a second-order
linear ODE on which part of our analysis of the HJB equation (D.1)–(D.2) is based, and
we prove certain results that will be used repeatedly in Appendices F and G.

E.1 The General Solution to a Homogeneous ODE

The claims here follow from standard theory of linear one-dimensional diffusions (e.g., see
Borodin and Salminen (2002), Chapter II). To fix ideas, we consider the process

dW̄t = ζW̄t dt+ σλ dZt, W̄0 > 0, (E.1)

with absorption at 0, where ζ > 0 is a given constant. Given any constant δ > 0, there
exists a pair of C∞ functions ϕ,ψ : R+ → R+ such that

ϕ(w2) = ϕ(w1)Ew2

[

e−δTw1

]

for all w1 < w2, (E.2)

and

ψ(w1) = ψ(w2)Ew1

[

e−δTw2

]

≡ ψ(w2)Ew1

[

e−δTw21{Tw2
<T0}

]

for all w1 < w2, (E.3)

where Ewj
denotes expectation with respect to the probability measure Pwj

under which
the solution to (E.1) is such that Pwj

(W̄0 = wj) = 1, for j = 1, 2, and Tw denotes the first
hitting time of {w}, which is defined by

Tw = inf{t ≥ 0 | W̄t = w}, for w ≥ 0.

Note that, Pw(T0 < ∞) > 0 and Pw(T∞ < ∞) = 0 for all w ∈ ]0,∞[. These functions are
unique, modulo multiplicative constants, and are such that

0 < ϕ(w) and ϕ′(w) < 0 for all w > 0, (E.4)

0 < ψ(w) and ψ′(w) > 0 for all w > 0, (E.5)

ϕ(0) = lim
w↓0

ϕ(w) <∞, ϕ′(0) = lim
w↓0

ϕ′(w) > −∞, (E.6)

ψ(0) = lim
w↓0

ψ(w) = 0, ψ′(0) = lim
w↓0

ψ′(w) <∞, (E.7)

lim
w→∞

ϕ(w) = 0 and lim
w→∞

ψ(w) = ∞. (E.8)

It is worth noting that (E.6)–(E.8) follow from the fact that 0 (resp., ∞) is an absorbing
(resp., natural) boundary point. Furthermore, every solution to the second-order linear
homogenous ODE

1

2
σ2λ2f ′′(w) + ζwf ′(w)− δf(w) = 0 (E.9)

in ]0,∞[ is given by

f(w) = Aϕ(w) +Bψ(w), (E.10)
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for some constants A,B ∈ R. For future reference, we note that the fact that ϕ, ψ satisfy
the ODE (E.9) implies that

ϕ = ϕ

(

· ;
ζ

σ2λ2
,

δ

σ2λ2

)

and ψ = ψ

(

· ;
ζ

σ2λ2
,

δ

σ2λ2

)

,

namely, the two functions are parametrised by the values of ζ
σ2λ2

and δ
σ2λ2

only.
In the rest of our analysis, we assume that ϕ, ψ have been normalised through multi-

plication by appropriate constants so that

ϕ(0) = 1 and ψ′(0) = 1. (E.11)

Accordingly, their Wronskian admits the expression

ϕ(w)ψ′(w)− ϕ′(w)ψ(w) = exp

(

−

∫ w

0

2ζx

σ2λ2
dx

)

= exp

(

−
ζ

σ2λ2
w2

)

. (E.12)

E.2 Additional Results

The following results will be used repeatedly in Appendices F and G.

Lemma E-1. The following statements hold true.

(I) The function ϕ satisfies

ϕ′′(0) ≡ lim
w↓0

ϕ′′(w) =
2δ

σ2λ2
, (E.13)

lim
w↓0

[

ϕ(w) − wϕ′(w)
]

= 1, lim
w→∞

[

ϕ(w) − wϕ′(w)
]

= 0, (E.14)

and
d

dw

[

ϕ(w) − wϕ′(w)
]

≡ −wϕ′′(w) < 0 for all w > 0. (E.15)

(II) If ζ > δ, then

ψ′′(0) ≡ lim
w↓0

ψ′′(w) = 0, lim
w↓0

[

ψ(w) − wψ′(w)
]

= 0, (E.16)

and
d

dw

[

ψ(w) − wψ′(w)
]

≡ −wψ′′(w) > 0 for all w > 0. (E.17)

Furthermore,

lim
w↓0

ψ′′(w)

ϕ′′(w)
= 0,

(

ψ′′

ϕ′′

)′

(w) < 0 for all w > 0, and lim
w→∞

ψ′′(w)

ϕ′′(w)
= −∞. (E.18)

(III) If ζ > δ, then

exp

(

ζ

σ2λ2
w2

)

ψ′(w)− 1 > 0 for all w > 0. (E.19)

81



Proof. The properties (E.4), (E.6), (E.8) and the fact that ϕ satisfies the ODE (E.9) imply
immediately (E.13)–(E.15).

The limits in (E.16) follow immediately once we combine (E.7) with the fact that ψ
satisfies the ODE (E.9). Since ψ′ > 0 satisfies the ODE

1

2
σ2λ2f ′′′(w) + ζwf ′′(w) + (ζ − δ)f ′(w) = 0 (E.20)

in ]0,∞[, which follows from differentiating (E.9), we can see that ψ′′′(w) < 0 for all w > 0
such that ψ′′(w) = 0. Furthermore, (E.16) and (E.20) imply that

ψ′′′(0) ≡ lim
w↓0

ψ′′′(w) = −(ζ − δ)ψ′(0) = −(ζ − δ) < 0.

This inequality and (E.16) imply that ψ′′(w) < 0 for all w > 0 sufficiently small. In view of
these observations, a simple contradiction argument reveals that ψ′′(w) < 0 for all w > 0,
and (E.17) follows.

To establish (E.18), we note that the first limit follows immediately from (E.13) and

(E.16). If we define b(w) = ψ′′(w)
ϕ′′(w) , then we can use the fact that ϕ, ψ satisfy the ODEs

(E.9) and (E.20) to calculate

b′(w) = −
4δ(ζ − δ)

σ4λ4
exp

(

−
ζ

σ2λ2
w2

)

[

ϕ′′(w)
]−2

< 0,

which establishes the inequality in (E.18). On the other hand, we can differentiate (E.12)
to obtain

ϕ(w)b(w) − ψ(w) = −
2ζ

σ2λ2
w exp

(

−
ζ

σ2λ2
w2

)

[

ϕ′′(w)
]−1

=
ζσ2λ2

2δ(ζ − δ)
wϕ′′(w)b′(w). (E.21)

Furthermore, we note that, since ϕ satisfies (E.20),

lim
w→∞

wϕ′′(w) = lim
w→∞

[

−
σ2λ2

2ζ
ϕ′′′(w)−

ζ − δ

ζ
ϕ′(w)

]

= 0. (E.22)

We now argue by contradiction and we assume that limw→∞ b(w) > −∞. Such an as-
sumption implies that limw→∞

[

ϕ(w)b(w) − ψ(w)
]

= −∞ thanks to (E.8). This limit and
(E.21) imply that limw→∞wϕ′′(w)b′(w) = −∞. Combining this result with (E.22), we can
see that limw→∞ b′(w) = −∞, which contradicts the assumption that limw→∞ b(w) > −∞,
and the second limit in (E.18) follows.

Finally, (E.19) follows immediately from the calculation

d

dw

[

exp

(

ζ

σ2λ2
w2

)

ψ′(w) − 1

]

= exp

(

ζ

σ2λ2
w2

)[

ψ′′(w) +
2ζ

σ2λ2
wψ′(w)

]

=
2δ

σ2λ2
exp

(

ζ

σ2λ2
w2

)

ψ(w)

> 0,

and the fact that ψ′(0) = 1 (see (E.11)).
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Lemma E-2. Suppose that ζ > δ. There exists a strictly increasing continuous function
g : R+ → R+ such that

w < g(w) and
ψ′(w)

ϕ′(w)
=
ψ′′
(

g(w)
)

ϕ′′
(

g(w)
) for all w ≥ 0. (E.23)

Furthermore, such a function is unique.

Proof. Given any w > 0, we use (E.9) and (E.12), to obtain

ϕ′(w)ψ′′(w)− ϕ′′(w)ψ′(w) = −
2δ

σ2λ2
[

ϕ(w)ψ′(w) − ϕ′(w)ψ(w)
]

< 0.

In view of (E.4) and (E.15), it follows that

ψ′′(w)

ϕ′′(w)
>
ψ′(w)

ϕ′(w)
.

Combining this inequality with (E.18), we can see that, given any w > 0, there exists a
unique g(w) > w such that the identity in (E.23) holds true. We are going to prove that the
function g thus defined is strictly increasing. Since all functions involved are continuous,
we can therefore define g(0) = limw↓0 g(w).

To show that g is strictly increasing, we differentiate the identity

ϕ′(w)ψ′′
(

g(w)
)

− ϕ′′
(

g(w)
)

ψ′(w) = 0 (E.24)

to obtain
[

ψ′(w)ϕ′′′
(

g(w)
)

− ϕ′(w)ψ′′′
(

g(w)
)

]

g′(w) = ϕ′′(w)ψ′′
(

g(w)
)

− ψ′′(w)ϕ′′
(

g(w)
)

.

Using the calculations

ψ′(w)ϕ′′′
(

g(w)
)

− ϕ′(w)ψ′′′
(

g(w)
)

=
4δ(ζ − δ)

σ4λ4
exp

(

−
ζ

σ2λ2
g2(w)

)

ϕ′(w)

ϕ′′
(

g(w)
)

and ϕ′′(w)ψ′′
(

g(w)
)

− ψ′′(w)ϕ′′
(

g(w)
)

=
2δ

σ2λ2
exp

(

−
ζ

σ2λ2
w2

)

ϕ′′
(

g(w)
)

ϕ′(w)
,

which make use of (E.9), (E.12), (E.20) and (E.24), we obtain

g′(w) =
σ2λ2

2(ζ − δ)
exp

(

−
ζ

σ2λ2
(

g2(w) − w2
)

)

(

ϕ′′
(

g(w)
)

ϕ′(w)

)2

> 0,

which establishes that g is strictly increasing.
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Lemma E-3. Suppose that ζ > δ, and consider the functions h : R2
+ → R, H : R+ → R

and J : R+ → R defined by

h(x, y) ≡ h

(

x, y;
ζ

σ2λ2
,

δ

σ2λ2

)

= exp

(

ζ

σ2λ2
y2
)

[

ψ(x)ϕ′′(y) +
(

1− ϕ(x)
)

ψ′′(y)
]

, (E.25)

H(x) ≡ H

(

x;
ζ

σ2λ2
,

δ

σ2λ2

)

= h(x, x) (E.26)

and J(x) ≡ J

(

x;
ζ

σ2λ2
,

δ

σ2λ2

)

= h
(

x, g(x)
)

, (E.27)

where g is the function defined by Lemma E-2. The following statements hold true.

(I) The function h is such that

h(x, 0) =
2δ

σ2λ2
ψ(x) > 0, h(0, y) = 0, (E.28)

∂2h(x, y)

∂y2
< 0, lim

y→∞

∂2h(x, y)

∂y2
= −∞ and lim

y→∞
h(x, y) = −∞, (E.29)

for all x, y > 0,

∂h(x, y)

∂x

∣

∣

∣

∣

y=g(x)

= 0 and
∂h(x, y)

∂y
< 0 for all y ≥ x > 0. (E.30)

(II) The function H is strictly concave and such that

H(0) = 0, H ′(0) > 0 and lim
x→∞

H(x) = −∞.

(III) The function J is such that

J(0) = 0, J ′(x) < 0 and J(x) < H(x) for all x > 0.

Proof. The identities in (E.28) follow immediately from the definition (E.25) of h, (E.5),
(E.7), (E.11), (E.13) and (E.16). Differentiating h with respect to y and using the fact that
the functions ϕ, ψ satisfy (E.20), we obtain

∂h(x, y)

∂y
= −

2(ζ − δ)

σ2λ2
exp

(

ζ

σ2λ2
y2
)

[

ψ(x)ϕ′(y) +
(

1− ϕ(x)
)

ψ′(y)
]

and
∂2h(x, y)

∂y2
= −

4(ζ − δ)δ

σ4λ4
exp

(

ζ

σ2λ2
y2
)

[

ψ(x)ϕ(y) +
(

1− ϕ(x)
)

ψ(y)
]

.

The properties listed in (E.29) follow from (E.4), (E.5), (E.8) and (E.11).
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To prove (E.30), we use (E.12), (E.19) and the fact that ∂2h(x,y)
∂y2

< 0 for all x, y > 0 to
obtain

∂h(x, y)

∂y
≤
∂h(x, x)

∂y

= −
2(ζ − δ)

σ2λ2
exp

(

ζ

σ2λ2
x2
)

[

ψ(x)ϕ′(x) +
(

1− ϕ(x)
)

ψ′(x)
]

=
2(ζ − δ)

σ2λ2

[

1− exp

(

ζ

σ2λ2
x2
)

ψ′(x)
]

< 0 for all y ≥ x. (E.31)

Furthermore, the calculation

∂h(x, y)

∂x
= exp

(

ζ

σ2λ2
y2
)

[

ψ′(x)ϕ′′(y)− ϕ′(x)ψ′′(y)
]

, (E.32)

and (E.24) imply that the identity in (E.30) holds true.
To establish (II), we note that the definition (E.26) of H yields the expressions

H(x) = exp

(

ζ

σ2λ2
x2
)

[

ψ(x)ϕ′′(x) +
(

1− ϕ(x)
)

ψ′′(x)
]

= exp

(

ζ

σ2λ2
x2
)

ψ′′(x) +
2ζ

σ2λ2
x, (E.33)

where the second equality follows from the fact that ϕ, ψ satisfy (E.9) and (E.12). Differ-
entiating, we obtain

H ′(x) =
2ζ

σ2λ2
−

2(ζ − δ)

σ2λ2
exp

(

ζ

σ2λ2
x2
)

ψ′(x)

and H ′′(x) = −
4δ(ζ − δ)

σ4λ4
exp

(

ζ

σ2λ2
x2
)

ψ(x).

It follows thatH is strictly concave and limx→∞H ′′(x) = −∞, which implies that limx→∞H(x) =
−∞. Furthermore, using (E.16) and the normalisation in (E.11), we calculate

H(0) = 0 and H ′(0) =
2δ

σ2λ2
> 0.

To prove (III), we first note that J(0) = 0 follows from (E.28). Combined with (E.30),
the facts that g is strictly increasing and g(x) > x imply that

J ′(x) =
∂h
(

x, g(x)
)

∂y
g′(x) < 0 and J(x) ≡ h

(

x, g(x)
)

< h(x, x) ≡ H(x).
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F The High-Growth Case

In this appendix, we consider the case arising from the verification Theorem D-1 when
wg = ∞. In this context, we construct an appropriate solution to the HJB equation

max

{

1

2
σ2λ2u′′(w) + (̺+ q)wu′(w)− (r + q)u(w)

+ µ+ q
[

(1 + γ)u(wh)− κ
]

, − u′(w)− 1

}

= 0 (F.1)

that satisfies the Wentzel-type boundary condition

u(0) = u(wh)− κ, (F.2)

where wh := w̄ ∨ w◦ := w̄ ∨ argmaxw>0 u(w).
To this end, we look for a concave C2 function u : R+ → R and a free-boundary point

wc > 0 such that u satisfies the ODE

1

2
σ2λ2u′′(w) + (̺+ q)wu′(w)− (r + q)u(w) + µ+ q

[

(1 + γ)u(wh)− κ
]

= 0 (F.3)

in ]0, wc[, and is given by

u(w) = u(wc)− (w −wc), for w > wc. (F.4)

For future reference, we note that (F.2) and (F.4) imply that

w◦ = argmax
w>0

u(w) ∈ ]0, wc[. (F.5)

We look for a solution to (F.1)–(F.2) of the form

u(w) =

{

Aϕ1(w) +Bψ1(w) +
µ+q[(1+γ)u(wh)−κ]

r+q , if w ≤ wc

u(wc)− (w − wc), if w > wc

}

, (F.6)

for some constants A,B ∈ R, where

ϕ1 = ϕ1

(

· ;
̺+ q

σ2λ2
,
r + q

σ2λ2

)

and ψ1 = ψ1

(

· ;
̺+ q

σ2λ2
,
r + q

σ2λ2

)

,

identify with the functions ϕ and ψ in Appendix E for ζ = ̺+q and δ = r+q. Our analysis
in this appendix will make repeated use of the functions

h(·, ·) ≡ h

(

·, ·;
̺+ q

σ2λ2
,
r + q

σ2λ2

)

, (F.7)

H(·) ≡ H

(

·;
̺+ q

σ2λ2
,
r + q

σ2λ2

)

and J(·) ≡ J

(

·;
̺+ q

σ2λ2
,
r + q

σ2λ2

)

(F.8)

that are defined as in Lemma E-3 with ̺+ q, r + q in place of ζ, δ and ϕ1, ψ1 in place of
ϕ, ψ.
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F.1 Analysis of the Free-Boundary Problem

To determine the constants A, B and the free-boundary point wc appearing in (F.6), we
require that u should be C2 at wc, which yields the system of equations

u′(wc−) ≡ Aϕ′
1(wc) +Bψ′

1(wc) = −1 ≡ u′(wc+) (F.9)

and

u′′(wc−) ≡ Aϕ′′
1(wc) +Bψ′′

1 (wc) = 0 ≡ u′′(wc+). (F.10)

For future reference, we observe that, given any point wc > 0, the solution to (F.3) satisfying
these conditions is such that

G(wc) = 0, (F.11)

where

G(w) = −(r + q)u(w) − (̺+ q)w + µ+ q
[

(1 + γ)u(wh)− κ
]

. (F.12)

Also, we note that the boundary condition (F.2) implies that, if wh ≤ wc, then

u(0) ≡ A+
µ+ q

[

(1 + γ)u(wh)− κ]

r + q

= Aϕ1(wh) +Bψ1(wh) +
µ+ q

[

(1 + γ)u(wh)− κ]

r + q
− κ ≡ u(wh)− κ (F.13)

(see also (E.7) and (E.11)). Using the fact that ϕ1, ψ1 satisfy (E.9) and (E.12) in Appendix E
for ζ = ̺+ q and δ = r + q, we can see that the equations (F.9)–(F.10) are equivalent to

A = exp

(

̺+ q

σ2λ2
w2
c

)[

ψ1(wc)−
̺+ q

r + q
wcψ

′
1(wc)

]

=
σ2λ2

2(r + q)
exp

(

̺+ q

σ2λ2
w2
c

)

ψ′′
1 (wc) < 0 (F.14)

and

B = − exp

(

̺+ q

σ2λ2
w2
c

)[

ϕ1(wc)−
̺+ q

r + q
wcϕ

′
1(wc)

]

= −
σ2λ2

2(r + q)
exp

(

̺+ q

σ2λ2
w2
c

)

ϕ′′
1(wc) < 0, (F.15)

the inequalities following thanks to the results in Lemma E-1.
In view of (F.5), we can see that three possible cases can arise:

- w̄ ≤ w◦, in which case wh = w◦ and wh < wc, or
- w◦ < w̄ ≤ wc, in which case wh = w̄ and wh ≤ wc, or
- wc < w̄, in which case wh = w̄ and wh > wc.

87



We first consider the case arising when it turns out that w◦ < w̄ ≤ wc. Substituting the
expressions for A and B given by (F.14) and (F.15) in (F.13) with w̄ in place of wh, we
obtain the equation

h(w̄, wc) = −
2κ(r + q)

σ2λ2
, (F.16)

where h and its associated functions H, J are as in (F.7), (F.8).

Lemma F-1. There exist a unique wc = wc

(

w̄, ̺+q
σ2λ2

, r+q
σ2λ2

, κ
)

> 0 such that (F.16) holds

true. Also, there exist unique points w̄† = w̄†

(

̺+q
σ2λ2

, r+q
σ2λ2

, κ
)

and w̄‡ = w̄‡

(

̺+q
σ2λ2

, r+q
σ2λ2

, κ
)

such that

0 < w̄† < w̄‡, J(w̄†) = −
2κ(r + q)

σ2λ2
and H(w̄‡) = −

2κ(r + q)

σ2λ2
. (F.17)

These points are such that

wc ≥ w̄ ⇔ w̄ ≤ w̄‡ and wc = w̄ ⇔ w̄ = w̄‡. (F.18)

If the problem data is such that w̄ ≤ w̄‡, then the function u defined by (F.6) for A, B
given by (F.14), (F.15), and wc being the solution to (F.16), is a concave C2 solution to
the HJB equation (F.1) that satisfies the inequality

∣

∣u′(w)
∣

∣ ≤ K for all w ≥ 0, (F.19)

for some constant K > 0. Furthermore, this function u satisfies the boundary condition
(F.2) as well, namely, wh = w̄ > w◦, if and only if w̄ ∈ ]w̄†, w̄‡].

Proof. The existence and uniqueness of a solution wc to (F.16) follows immediately from
the properties (E.28) and (E.29) of the function h that we established in Lemma E-3.(I).
The existence and uniqueness of points w̄† and w̄‡ such that all statements in (F.17) hold
true follows immediately from the properties of the functions J and H stated in Lemma E-
3.(II)-(III). It is straightforward to check that

wc ≥ w̄ ⇔ h(w̄, w̄) ≡ H(w̄) ≥ −
2κ(r + q)

σ2λ2
⇔ w̄ ≤ w̄‡. (F.20)

Furthermore, we use Lemmas E-2 and E-3 to derive the equivalences

w̄ > w◦ ⇔ u′(w̄) < 0 ⇔
ψ′′(wc)

ϕ′′(wc)
>
ψ′(w̄)

ϕ′(w̄)
⇔ wc < g(w̄)

⇔ J(w̄) ≡ h
(

w̄, g(w̄)
)

< h(w̄, wc) = −
2κ(r + q)

σ2λ2
⇔ w̄ > w̄†. (F.21)

Therefore, wh = w̄ > w◦ and (F.20) both hold true if and only if w̄ ∈ ]w̄†, w̄‡].
By construction, the function u defined by (F.6) is C2 and satisfies the boundary con-

dition (F.2). To complete the proof, we need to show that u is concave, and that the
inequalities

u′(w) ≥ −1 for all w ∈ [0, wc[ (F.22)
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and

1

2
σ2λ2u′′(w) + (̺+ q)wu′(w) − (r + q)u(w)

+ µ+ q
[

(1 + γ)u(w̄) − κ
]

≤ 0 for all w > wc (F.23)

hold true.
To show that (F.22) holds with strict inequality and that the restriction of u in ]0, wc[

is strictly concave, we define

w̃ = sup
{

w ∈ [0, wc[ | u
′(w) ≤ −1

}

∨ 0 ∈ [0, wc[, (F.24)

with the usual convention that sup ∅ = −∞. The inequality w̃ < wc stated here follows
immediately once we combine the boundary conditions u′′(wc) = 0 and u′(wc) = −1 with
the observation that limw↑wc

u′′′(w) > 0, which is true because u′ satisfies the ODE

1

2
σ2λ2u′′′(w) + (̺+ q)wu′′(w) + (̺− r)u′(w) = 0

in ]0, wc[. The fact that u satisfies the ODE (F.3) in ]0, wc[ also implies that

1

2
σ2λ2u′′(w) + (̺+ q)w

[

u′(w) + 1
]

+G(w) = 0, (F.25)

where G is defined by (F.12). In view of the assumption that ̺ > r (see condition (12))
and the definition of w̃, we can see that

G′(w) = −(r + q)
[

u′(w) + 1
]

− (̺− r) < 0 for all w ∈ [w̃, wc],

which, combined with (F.11), implies that G(w) > 0 for all w ∈ [w̃, wc[. This observation,
the definition (F.24) of w̃, and (F.25) imply that

u′′(w) < 0 for all w ∈ [w̃, wc[.

This result and the boundary condition u′(wc) = −1 imply that u′(w) > −1 for all w ∈
[w̃, wc[. Combining this inequality with the definition of w̃ and the continuity of u′, we can
see that w̃ = 0. Furthermore, (F.22) holds true with strict inequality and the restriction of
u in ]0, wc[ is strictly concave.

Using (F.6), we can see that (F.23) is equivalent to

−(̺+ q)
[

wc + (w − wc)
]

− (r + q)
[

u(wc)− (w − wc)
]

+ µ+ q
[

(1 + γ)u(w̄) − κ
]

≤ 0 for all w > wc.

In view of (F.11), we note that this inequality is equivalent to −(̺− r)(w−wc) ≤ 0, which
holds true because ̺ > r.

Finally, we note that (E.6)–(E.7) and the fact that A,B ∈ R imply that limw↓0

∣

∣u′(w)
∣

∣ =
∣

∣Aϕ′(0) +Bψ′(0)
∣

∣ <∞. Combining this observation with the continuity of u′ and the fact
that u′(w) = −1 for all w ≥ wc, we can see that (F.19) holds true.
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We now turn to the case arising when it turns out that w̄ ≤ w◦ = wh. In this case,
C2-continuity of the function u defined by (F.6) at wc implies that the parameters A and
B should again be given by (F.14) and (F.15). On the other hand, the boundary condition
(F.13) should now be considered for wh = w◦. As a result, we now obtain equation

h(w◦, wc) = −
2κ(r + q)

σ2λ2
. (F.26)

in place of (F.16). Furthermore, (F.5) yields the equation

u′(w◦) ≡ Aϕ′
1(w◦) +Bψ′

1(w◦) = 0. (F.27)

Substituting the expressions for A, B from (F.14), (F.15) in (F.27), we obtain

ψ′′(wc)

ϕ′′(wc)
=
ψ′(w◦)

ϕ′(w◦)
, (F.28)

which implies that

wc = g(w◦) > w◦, (F.29)

where g is defined in Lemma E-2. Substituting this expression for wc in (F.26) we see that,
if it exists, then w◦ must satisfy

J(w◦) ≡ h
(

w◦, g(w◦)
)

= −
2κ(r + q)

σ2λ2
. (F.30)

Lemma F-2. Equation (F.30) has a unique solution w◦ that identifies with the point w̄† in
Lemma F-1. If the problem data is such that w̄ ≤ w̄†, then the function u defined by (F.6)
for A, B given by (F.14), (F.15), and wc being given by (F.29), is a concave C2 solution
to the HJB equation (F.1) that satisfies the boundary condition (F.2) with wh = w◦ ≥ w̄ as
well as the inequality

∣

∣u′(w)
∣

∣ ≤ K for all w ≥ 0, (F.31)

for some constant K > 0.

Proof. The claims about w◦ follow immediately from Lemma F-1 and a straightforward
comparison of (F.17) and (F.30). Also, the equivalences in (F.21) imply that wh = w◦ ≥ w̄
if and only if w̄ ≤ w̄†. The rest of the proof is the same as in the proof of Lemma F-1.

Finally, we consider the case arising when it turns out that wc < w̄ = wh. In this case,
C2-continuity of the function u defined by (F.6) at wc implies that the parameters A and
B should again be given by (F.14) and (F.15). On the other hand, (F.6) and the inequality
wc < w̄ imply that

u(wh) = u(w̄) = u(wc)− (w̄ − wc)

= Aϕ1(wc) +Bψ1(wc) +
µ+ q[(1 + γ)u(w̄) − κ]

r + q
− (w̄ − wc).
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Using this expression and (F.14)–(F.15), we can see that the boundary condition (F.2)
yields the equation

ĥ(wc, w̄) = −
2κ(r + q)

σ2λ2
, (F.32)

where

ĥ(w, w̄) = H(w) +
2(r + q)

σ2λ2
(w̄ − w),

with H being as in (F.8).

Lemma F-3. There exists a unique point wc = wc

(

w̄, ̺+q
σ2λ2

, r+q
σ2λ2

, κ
)

> 0 such that (F.32)

holds true. Also, wc < w̄ if and only if w̄ > w̄‡, where the point w̄‡ = w̄‡

(

̺+q
σ2λ2

, r+q
σ2λ2

, κ
)

> 0
is as in Lemma F-1. Furthermore, if the problem data is such that w̄ > w̄‡, then the
function u defined by (F.6) for A, B given by (F.14), (F.15), and wc being the solution
of (F.32), is a concave C2 solution to the HJB equation (F.1) that satisfies the boundary
condition (F.2) with wh = w̄ > w◦ as well as the inequality

∣

∣u′(w)
∣

∣ ≤ K for all w ≥ 0,

for some constant K > 0.

Proof. In view of the properties of the function H that we established in Lemma E-3.(II),

we can see that ĥ(·, w̄) is strictly concave, ĥ(0, w̄) = 2(r+q)
σ2λ2

w̄ > 0 and limw→∞ ĥ(w, w̄) =
−∞. It follows that there exists a unique solution wc > 0 to the equation (F.32). Fur-

thermore, this solution is strictly less that w̄ if and only if ĥ(w̄, w̄) = H(w̄) < −2κ(r+q)
σ2λ2

,
which is equivalent to w̄ > w̄‡. The rest of the proof is exactly the same as in the proof of
Lemma F-1.

The following result provides a necessary and sufficient condition for the function u to
identify with the value function.

Lemma F-4. The concave C2 function u studied in Lemma F-1, Lemma F-2 or Lemma F-
3, depending on whether w̄ ∈ ]w̄†, w̄‡], w̄ ∈ ]0, w̄†] or w̄ > w̄‡, where 0 < w̄† < w̄‡ are as in
Lemma F-1, identifies with the value function v if and only if the problem data is such that
the inequality

γ(µ+ rκ) ≥ (r + γ̺)wc −
σ2λ2r(1 + γ)

2(r + q)
H(wc) (F.33)

holds true, where H is as in (F.8) and wc is given by (F.16), (F.29) or (F.32), depending
on the case.

Proof. By construction, the function u will satisfy the HJB equation (D.1)–(D.2) in The-
orem D-1 if and only if

1

2
σ2λ2u′′(w) + ̺wu′(w)− ru(w) + µ ≤ 0 for all w ∈ ]0, wc[. (F.34)
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Since u satisfies the ODE (F.3), we can see that (F.34) holds true if and only if

−wu′(w) + u(w)− (1 + γ)u(wh) + κ ≤ 0 for all w ∈ ]0, wc[.

Furthermore, the concavity of u and (F.9) imply that this inequality is equivalent to

u(wc) ≤ −wc + (1 + γ)u(wh)− κ, (F.35)

which, in view of (F.11), is equivalent to

wc ≥
µ+ rκ− r(1 + γ)u(wh)

̺− r
. (F.36)

Using the identities

u(wh) = u(0) + κ = A+
µ+ q

[

(1 + γ)u(wh)− κ]

r + q
+ κ

to derive an expression for u(wh), and substituting for A using (F.14) and the definition of
H in (E.33), we calculate

u(wh) =
r + q

r − qγ
A+

µ+ rκ

r − qγ

=
σ2λ2

2(r − qγ)
H(wc)−

̺+ q

r − qγ
+
µ+ rκ

r − qγ

(note that this result is valid in the context of either one of Lemmas F-1–F-3). It is then a
matter of simple algebraic manipulation to derive the equivalence of (F.36) and (F.33).

In view of the results derived in Lemmas F-1–F-3, we conclude that u satisfies all of the
requirements of Theorem D-1, and therefore u = v, if and only if the problem’s parameters
are such that (F.33) holds true.

F.2 Proof of Proposition 4

Apart from (i) and (iv), all claims follow immediately from Lemmas F-1–F-4. To prove
statement (i), we first recall that the set of all permissible parameter values is

{

(r, ̺, µ, σ, q, γ, λ, κ, w̄) ∈ R9 | r, ̺, σ, q, γ, κ > 0, λ ∈ (0, 1],

̺ > r > qγ and
γµ

r
> κ+ (1 + γ)w̄

}

(see Conditions (12)–(14)). We next fix any values of r, ̺, σ, q, γ, κ > 0 and λ ∈ (0, 1] such
that ̺ > r > qγ, and we note that these determine the value of w̄‡ = w̄‡

(

̺+q
σ2λ2

, r+q
σ2λ2

, κ
)

defined in Lemma F-1 (see (F.17)). Furthermore, we consider the inequality

γµ

r
> κ+ (1 + γ)w̄ (F.37)
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(see Condition (14)), as well as the inequality

γµ

r
≥ ℓ(w̄), (F.38)

where

ℓ(w̄) = ℓ(w̄; r, ̺, σ, q, γ, λ, κ)

= κ+ (1 + γ)w̄ +
(̺− r)γ

r
wc

+ (1 + γ)(wc − w̄)−
σ2λ2r(1 + γ)

2(r + q)

[

H(wc) +
2κ(r + q)

σ2λ2

]

,

which is equivalent to (F.33) (recall that wc = wc

(

w̄, ̺+q
σ2λ2

, r+q
σ2λ2

, κ
)

). In view of Lemma F-4,
the result will follow if we show that the set of values of µ, w̄ > 0 for which (F.37)–(F.38)
both hold true contains an open subset of R2. To this end, we use (F.17) and the identity
wc

(

w̄‡,
̺+q
σ2λ2

, r+q
σ2λ2

, κ
)

= w̄‡ (see (F.18)) to calculate

ℓ(w̄‡) = κ+ (1 + γ)w̄‡ +
(̺− r)γ

r
w̄‡. (F.39)

The continuity of the functions H and wc

(

·, ̺+q
σ2λ2

, r+q
σ2λ2

, κ
)

implies that there exists ε1 ∈
]0, w̄‡] such that

ℓ(w̄) < ℓ(w̄‡) + 1 for all w̄ ∈ ]w̄‡ − ε1, w̄‡ + ε1[. (F.40)

If we define ε = ε1 ∧ (1 + γ)−1, then

κ+ (1 + γ)w̄ < κ+ (1 + γ)w̄‡ + (1 + γ)ε

≤ κ+ (1 + γ)w̄‡ + 1

< ℓ(w̄‡) + 1 for all w̄ ∈ ]w̄‡ − ε, w̄‡ + ε[.

It follows that, given any point (µ, w̄) in the open set
]

r
(

ℓ(w̄‡)+1
)

/γ,∞
[

× ]w̄‡− ε, w̄‡+ ε[,
the inequalities (F.37)–(F.38) both hold true, and the proof of statement (i) is complete.

Finally, statement (iv) follows immediately once we combine (F.17) and (F.18) in
Lemma F-1 with the claim associated with (F.33) in Lemma F-4. In particular, we note
for future reference that, if w̄ = w̄‡, then the equivalence of (F.33) and (F.35) implies that

(1 + γ)u(w̄) − κ− wc − u(wc) ≥ 0 ⇔ γµ ≥ rκ+ (r + γ̺)w̄ (F.41)

and

(1 + γ)u(w̄) − κ−wc − u(wc) = 0 ⇔ γµ = rκ+ (r + γ̺)w̄. (F.42)

F.3 Proof of Proposition 5

We fix any initial permissible values r0, ̺0, µ0, σ0, q0, γ0, λ0, κ0, w̄0 of the parameters r,
̺, µ, σ, q, γ, λ, κ, w̄ such that

w̄0 = w̄‡

(

̺0 + q0
σ20λ

2
0

,
r0 + q0
σ20λ

2
0

, κ0

)

and γ0µ0 = r0κ0 + (r0 + γ0̺0)w̄0. (F.43)

93



It is immediate to see that a drop in µ causes (35) to fail. Moreover, the second equality
in (F.43) is equivalent to

γ0(µ0 − ̺0w̄0) = r0(κ0 + w̄0) > 0,

from which it is immediate to see that a drop in γ also causes (35) to fail.
Using p to stand for either λ, σ, κ or q, we define

Θ(p) = (1 + γ)u(w̄; p) − κ− wc(p)− u
(

wc(p); p
)

,

where we write u(·; p) and wc(p) to stress the dependence on p of the solution u and wc to
the free-boundary problem. We also use the notation

u′ =
∂u

∂w
, u′′ =

∂2u

∂w2
, up =

∂u

∂p
, u′p =

∂2u

∂p ∂w
and u′′p =

∂3u

∂p ∂w2
.

In view of the identity u′
(

wc(p); p
)

= −1, we can see that

Θ′(p) = (1 + γ)up(w̄; p) −
∂κ

∂p
−w′

c(p)−
[

w′
c(p)u

′
(

wc(p); p
)

+ up
(

wc(p); p
)]

= (1 + γ)up(w̄; p) −
∂κ

∂p
− up

(

wc(p); p
)

.

This calculation and the identity wc(p0) = w̄0 (see also (F.18)), where p0 stands for either
λ0, σ0, κ0 or q0, imply that

Θ′(p0) = γup(w̄0; p0)−
∂κ

∂p
. (F.44)

Furthermore, we can see that (F.42) implies that

Θ(p0) = 0. (F.45)

To proceed further, we note that, for w̄ ≥ w̄†, the C
2 function u satisfies the ODE (F.3)

in ]0, wc[ with w̄ in place of wh, as well as the boundary conditions

u(0) = u(w̄)− κ and u′(wc) = −1 (F.46)

(see Proposition 4.(ii)). Differentiating with respect to λ, we can see that uλ satisfies the
ODE

1

2
σ2λ2u′′λ(w) + (̺+ q)wu′λ(w) − (r + q)uλ(w) + σ2λu′′(w) + q(1 + γ)uλ(w̄) = 0

in ]0, wc[, with boundary conditions

uλ(0) = uλ(w̄) and u′λ(wc) = 0.

In view of these expressions, a Feynman-Kac type of formula implies that

uλ(w) = σ2λE

[
∫ τ

0
e−(r+q)tu′′(W̃t) dt

]

+ q(1 + γ)E

[
∫ τ

0
e−(r+q)t dt

]

uλ(w̄) +Quλ(w̄)

= σ2λE

[∫ τ

0
e−(r+q)tu′′(W̃t) dt

]

+

(

q(1 + γ)

r + q
(1−Q) +Q

)

uλ(w̄), (F.47)
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where W̃ is the solution to the SDE

dW̃t = (̺+ q)W̃t dt− dCt + σλ dZt, W̃0 = w, (F.48)

with C reflecting W̃ in wc in the negative direction, τ is the first hitting time of zero by
W̃ , and

Q = E

[

e−(r+q)τ
]

. (F.49)

Evaluating the left-hand side of (F.47) at w = w̄ and rearranging terms, we obtain

uλ(w̄) =
(r + q)σ2λ2

(1−Q)(r − qγ)
E

[∫ τ

0
e−(r+q)tu′′(W̃t) dt

]

< 0, (F.50)

the inequality following thanks to the strict concavity of u in ]0, wc[ and the fact that
Q ∈ ]0, 1[. Combining this result with (F.44)–(F.45) for p standing for λ and the equivalence
stated in (F.41), we can see that, if λ0 < 1, then Θ(λ) < 0 and (35) fails for all λ > λ0
sufficiently close to λ0. Using exactly the same arguments, we can prove the required result
involving σ.

Differentiating (F.3) and (F.46) with respect to κ, we can see that uκ satisfies the ODE

1

2
σ2λ2u′′κ(w) + (̺+ q)wu′κ(w) − (r + q)uκ(w) + q(1 + γ)uκ(w̄) − q = 0

in ]0, wc[, with boundary conditions

uκ(0) = uκ(w̄)− 1 and u′κ(wc) = 0.

It follows that

uκ(w) = q
[

(1 + γ)uκ(w̄)− 1
]

E

[∫ τ

0
e−(r+q)t dt

]

+Q
[

uκ(w̄)− 1
]

= q
[

(1 + γ)uκ(w̄)− 1
]1−Q

r + q
+Q

[

uκ(w̄)− 1
]

,

where W̃ , τ and Q are as in (F.48)–(F.49). Evaluating the left-hand side of this expression
at w = w̄ and rearranging terms, we obtain

(1−Q)
r − qγ

r + q
uκ(w̄) = −Q−

1−Q

r + q
< 0,

which implies uκ(w̄) < 0. Combining this inequality with (F.44)–(F.45) for p standing for κ
and the equivalence stated in (F.41) we can see that Θ(κ) < 0 and (35) fails for all κ > κ0
sufficiently close to κ0.

Finally, differentiating (F.3) and (F.46) with respect to q, we can see that uq satisfies
the ODE

1

2
σ2λ2u′′q(w) + (̺+ q)wu′q(w) − (r + q)uq(w)

+ q(1 + γ)uq(w̄) + (1 + γ)u(w̄) − κ+wu′(w) − u(w) = 0
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in ]0, wc[, with boundary conditions

uq(0) = uq(w̄) and u′q(wc) = 0.

Using the same arguments as above, we obtain

(1−Q)
r − qγ

r + q
uq(w̄) = E

[
∫ τ

0
e−(r+q)tf(W̃t) dt

]

, (F.51)

where W̃ , τ and Q are as in (F.48)–(F.49), and

f(w) = (1 + γ)u(w̄) − κ+ wu′(w)− u(w). (F.52)

The concavity of u implies that the function f is decreasing in w. On the other hand, the
identity u′(wc) = −1 and (F.42) imply that f(wc) = 0 if the parameter values are such
that (F.43) holds true. Therefore, the right-hand side of (F.51) is positive and uq(w̄) > 0
for such parameter values. This inequality and (F.44)–(F.45) for p standing for q, together
with the equivalence stated in (F.41) imply that Θ(q) < 0 and (35) fails for all q < q0
sufficiently close to q0.

F.4 Proof of Proposition 6

Fix any (r, ̺, µ, σ, q, γ, λ, κ, w̄) in the interior of the set of permissible parameter values for
which the firm is of a high-growth type. Statement (i) follows from (F.16), (F.29)–(F.30)
and (F.32).

To establish statement (ii), we further assume that the parameters are initially such
that w̄ = w̄‡

(

̺+q
σ2λ2

, r+q
σ2λ2

, κ
)

, so that wc = wh = w̄ (see Proposition 4). To establish the
sensitivity of wc with respect to λ, we consider equation (F.11) that wc satisfies, namely,

−(r + q)u(wc)− (̺+ q)wc + µ+ q
[

(1 + γ)u(w̄) − κ
]

= 0. (F.53)

Differentiating with respect to λ and using the same notation as the one introduced at the
beginning of Section F.3, we obtain

w′
c(λ) = −

(r + q)uλ(wc)− q(1 + γ)uλ(w̄)

̺− r
= −

r − qγ

̺− r
uλ(w̄) > 0,

the second identity being true because wc = w̄ = w̄† (see also (F.17)), and the strict
inequality following from (F.50) and the permissibility conditions ̺ > r > qγ.

The sensitivity of wc with respect to σ is the same as the one with respect to λ because
wc depends on either of these two parameters via the product σλ.

To establish the sensitivity of wc with respect to q and complete the proof, we differen-
tiate (F.53) with respect to q to obtain

(̺− r)w′
c(q) = −

(

(r + q)uq(wc)− q(1 + γ)uq(w̄)−
[

(1 + γ)u(w̄) − κ− wc − u(wc)
]

)

= −
(

(r − qγ)uq(w̄) −
[

(1 + γ)u(w̄)− κ− wc − u(wc)
]

)

,
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where the second identity follows from the fact that wc = w̄ = w̄†. Therefore,

w′
c(q) = −

(r − qγ)uq(w̄) − f(wc)

̺− r
,

where f is defined by (F.52). Combining the fact that f is decreasing in w, which follows
from the concavity of u, with (F.51) and the definition (F.49) of Q, we can see that

(r − qγ)uq(w̄) >
r + q

1−Q
E

[
∫ τ

0
e−(r+q)tf(wc) dt

]

= f(wc),

and the desired inequality w′
c(q) < 0 follows.

F.5 The “No-Growth” Case

We close this appendix by considering the “no-growth” configuration that arises from the
verification Theorem D-1 when

−wu′(w) + u(w)− (1 + γ)u(wh) + κ > 0 for all w ∈ [0, wc], (F.54)

in which case the point wg defined by (D.3) is equal to zero. In such a configuration, the
value function v should identify with a concave solution u to the HJB equation

max

{

1

2
σ2λ2u′′(w) + ̺wu′(w)− ru(w) + µ, −u′(w)− 1

}

= 0 (F.55)

that satisfies (F.54) as well as the boundary condition

u(0) = u(wh)− κ, (F.56)

where wh := w̄ ∨ argmaxw>0 u(w). The concavity of the solution to (F.55)–(F.56) implies
that (F.54) is satisfied if and only if the inequality is true for w = 0. Therefore, in view of
the fact that limw↓0

∣

∣u′(w)
∣

∣ <∞ and the boundary condition (F.56), we can see that, if the
solution to (F.55)–(F.56) is such that (F.54) holds, then u(wh) < 0.
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G The Low-Growth Case

In this appendix, we consider the case arising from the verification Theorem D-1 when
0 < wg < wc. In this context, we address the problem of constructing a solution to the
HJB equation (D.1)–(D.2) such that

wu′(w)− u(w) + (1 + γ)u(wh)− κ

{

> 0, if w ∈ [0, wg[

< 0, if w ∈ ]wg, wc]

}

. (G.1)

To this end, we look for a concave C2 function u : R+ → R and for strictly positive
free-boundary points wg < wc such that u satisfies the ODE

1

2
σ2λ2u′′(w) + (̺+ q)wu′(w)− (r + q)u(w) + µ+ q

[

(1 + γ)u(wh)− κ
]

= 0 (G.2)

in ]0, wg[, the ODE

1

2
σ2λ2u′′(w) + ̺wu′(w) − ru(w) + µ = 0 (G.3)

in ]wg, wc[, is given by

u(w) = u(wc)− (w −wc), for w > wc, (G.4)

and satisfies the Wentzel-type boundary condition

u(0) = u(wh)− κ, (G.5)

where wh := w̄∨w◦ := w̄∨argmaxw>0 u(w). We also note that (G.4) and (G.5) imply that

w◦ = argmax
w>0

u(w) ∈ ]0, wc[. (G.6)

G.1 Analysis of the Free-Boundary Problem

If it exists, then the solution to the free-boundary problem (G.2)–(G.5) is of the form

u(w) =











A1ϕ1(w) +B1ψ1(w) +
µ
r+q +

q
r+qVg, if w ∈ [0, wg]

A2ϕ2(w) +B2ψ2(w) +
µ
r
, if w ∈ ]wg, wc]

u(wc)− (w −wc), if w ∈ ]wc,∞[











, (G.7)

where

Vg = (1 + γ)u(wh)− κ, (G.8)

for some constants A1, B1, A2, B2 ∈ R, where ϕ1 and ψ1 identify with the functions ϕ and
ψ in Appendix E for ζ = ̺+ q and δ = r + q, while ϕ2 and ψ2 identify with the functions
ϕ and ψ in Appendix E for ζ = ̺ and δ = r.
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To determine the four parameters A1, B1, A2, B2 and the two free-boundary points wg,
wc, we note that C1 continuity of u at wg implies

u(wg−) ≡ A1ϕ1(wg) +B1ψ1(wg) +
µ

r + q
+

q

r + q
Vg

= A2ϕ2(wg) +B2ψ2(wg) +
µ

r
≡ u(wg+) (G.9)

and

u′(wg−) ≡ A1ϕ
′
1(wg) +B1ψ

′
1(wg) = A2ϕ

′
2(wg) +B2ψ

′
2(wg) ≡ u′(wg+). (G.10)

Furthermore, C2 continuity of u at wg and the fact that u satisfies (G.2)–(G.3) imply that

wgu
′(wg)− u(wg) + Vg = 0. (G.11)

This equation is equivalent to u′(wg) =
[

u(wg)− Vg
]

/wg, and can therefore be viewed as a
“tangency condition” at wg. C

2 continuity of u at wc gives rise to the equations

u′(wc−) ≡ A2ϕ
′
2(wc) +B2ψ

′
2(wc) = −1 ≡ u′(wc+) (G.12)

and

u′′(wc−) ≡ A2ϕ
′′
2(wc) +B2ψ

′′
2 (wc) = 0 ≡ u′′(wc+). (G.13)

For future reference, we observe that, given any point wc > 0, the solution to (G.3) satisfying
(G.12)–(G.13) is such that

−̺wc − ru(wc) + µ = 0. (G.14)

Finally, the boundary condition (G.5) implies that

u(0) ≡ A1 +
µ

r + q
+

q

r + q
Vg = u(wh)− κ (G.15)

(see also (E.7) and (E.11)).
Using the fact that ϕ2, ψ2 satisfy (E.9) and (E.12) in Appendix E for ζ = ̺ and δ = r,

we can see that the equations (G.12)–(G.13) are equivalent to

A2 ≡ A2(wc) = exp
( ̺

σ2λ2
w2
c

) [

ψ2(wc)−
̺

r
wcψ

′
2(wc)

]

=
σ2λ2

2r
exp

( ̺

σ2λ2
w2
c

)

ψ′′
2 (wc) < 0 (G.16)

and

B2 ≡ B2(wc) = − exp
( ̺

σ2λ2
w2
c

) [

ϕ2(wc)−
̺

r
wcϕ

′
2(wc)

]

= −
σ2λ2

2r
exp

( ̺

σ2λ2
w2
c

)

ϕ′′
2(wc) < 0, (G.17)

99



the inequalities following thanks to the results in Lemma E-1. Also, we can verify that
(G.9)–(G.10) are equivalent to

A1 ≡ A1(wg, wc, Vg) = Q1(wg, wc)−
q

r + q
exp

(

̺+ q

σ2λ2
w2
g

)

ψ′
1(wg)Vg (G.18)

and

B1 ≡ A1(wg, wc, Vg) = Q2(wg, wc) +
q

r + q
exp

(

̺+ q

σ2λ2
w2
g

)

ϕ′
1(wg)Vg, (G.19)

where

Q1(wg, wc) =
σ2λ2

2r
exp

(

̺+ q

σ2λ2
w2
g

)

exp
( ̺

σ2λ2
w2
c

)

×

(

[

ϕ2(wg)ψ
′
1(wg)− ϕ′

2(wg)ψ1(wg)
]

ψ′′
2 (wc)

+
[

ψ1(wg)ψ
′
2(wg)− ψ′

1(wg)ψ2(wg)
]

ϕ′′
2(wc)

)

+
µq

r(r + q)
exp

(

̺+ q

σ2λ2
w2
g

)

ψ′
1(wg) (G.20)

and

Q2(wg, wc) =
σ2λ2

2r
exp

(

̺+ q

σ2λ2
w2
g

)

exp
( ̺

σ2λ2
w2
c

)

×

(

[

ϕ1(wg)ϕ
′
2(wg)− ϕ′

1(wg)ϕ2(wg)
]

ψ′′
2 (wc)

−
[

ϕ1(wg)ψ
′
2(wg)− ϕ′

1(wg)ψ2(wg)
]

ϕ′′
2(wc)

)

−
µq

r(r + q)
exp

(

̺+ q

σ2λ2
w2
g

)

ϕ′
1(wg). (G.21)

The tangency condition (G.11) gives rise to the equation

lim
w↓wg

[

u(w) − wu′(w)
]

−
µ

r
≡ A2

[

ϕ2(wg)− wgϕ
′
2(wg)

]

+B2

[

ψ2(wg)− wgψ
′
2(wg)

]

= Vg −
µ

r
.

Substituting for A2 and B2 from (G.16)–(G.17), we obtain the identity

σ2λ2

2r
exp

( ̺

σ2λ2
w2
c

)

(

[

ϕ2(wg)− wgϕ
′
2(wg)

]

ψ′′
2 (wc)

−
[

ψ2(wg)− wgψ
′
2(wg)

]

ϕ′′
2(wc)

)

= Vg −
µ

r
. (G.22)
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On the other hand, the boundary condition (G.15), combined with (G.8) and (G.18), yields
the equation

Q1(wg, wc) = −
µ

r + q
−

γκ

1 + γ
+

1

r + q

[

q exp

(

̺+ q

σ2λ2
w2
g

)

ψ′
1(wg) +

r − qγ

1 + γ

]

Vg. (G.23)

Similarly to the high-growth case that we have studied in Appendix F, any of the
possibilities

w̄ < w◦ and
(

w◦ ≤ wg < wc or wg < w◦

)

or w◦ ≤ w̄ ≤ wc and
(

w̄ ≤ wg < wc or wg < w̄
)

or w̄ > wc > wg

may hold true, where w◦ = argmaxw>0 u(w) ∈ ]0, wc[ (see also (G.6)). In view of (G.7)–
(G.8) and (G.18)–(G.19), the case w◦ ≤ w̄ ≤ wg < wc is associated with the expressions

Vg =
(r + q)

[

ϕ1(w̄)Q1(wg, wc) + ψ1(w̄)Q2(wg, wc) +
µ
r+q −

κ
1+γ

]

r−qγ
1+γ + q exp

(

̺+q
σ2λ2

w2
g

) [

ϕ1(w̄)ψ′
1(wg)− ψ1(w̄)ϕ′

1(wg)
] (G.24)

and A1(wg, wc, Vg)ϕ
′
1(w̄) +B1(wg, wc, Vg)ψ

′
1(w̄) ≤ 0. (G.25)

In view of (G.7)–(G.8) and (G.16)–(G.17), the case w◦ ≤ w̄ and wg < w̄ ≤ wc is associated
with the expressions

Vg = (1 + γ)
[

A2(wc)ϕ2(w̄) +B2(wc)ψ2(w̄) +
µ

r

]

− κ (G.26)

and A2(wc)ϕ
′
2(w̄) +B2(wc)ψ

′
2(w̄) ≤ 0, (G.27)

while the case w̄ > wc > wg is associated with the expression

Vg = (1 + γ)
[

A2(wc)ϕ2(wc) +B2(wc)ψ2(wc) +
µ

r
− (w̄ − wc)

]

− κ. (G.28)

Similarly, the case w̄ < w◦ ≤ wg < wc is associated with the identities

Vg =
(r + q)

[

ϕ1(w◦)Q1(wg, wc) + ψ1(w◦)Q2(wg, wc) +
µ
r+q −

κ
1+γ

]

r−qγ
1+γ + q exp

(

̺+q
σ2λ2

w2
g

) [

ϕ1(w◦)ψ′
1(wg)− ψ1(w◦)ϕ′

1(wg)
] (G.29)

and A1(wg, wc, Vg)ϕ
′
1(w◦) +B1(wg, wc, Vg)ψ

′
1(w◦) = 0, (G.30)

while the case w̄ < w◦ and wg < w◦ is associated with the identities

Vg = (1 + γ)
[

A2(wc)ϕ2(w◦) +B2(wc)ψ2(w◦) +
µ

r

]

− κ (G.31)

and A2(wc)ϕ
′
2(w◦) +B2(wc)ψ

′
2(w◦) = 0, (G.32)

We are thus faced with the following problem.
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Problem G-0. Determine necessary and sufficient conditions on the permissible values of
the parameters r, ̺, µ, σ, q, γ, λ, κ, w̄ such that

(I) the system of equations (G.22)–(G.24) has a solution (wg, wc, Vg) such that w̄ ≤ wg < wc

and (G.25) holds true;

(II) the system of equations (G.22)–(G.23), (G.26) has a solution (wg, wc, Vg) such that
0 < wg < w̄ ≤ wc and (G.25) holds true;

(III) the system of equations (G.22)–(G.23), (G.28) has a solution (wg, wc, Vg) such that
wg < wc < w̄.

(IV) the system of equations (G.22)–(G.23), (G.29)–(G.30) has a solution (w◦, wg, wc, Vg)
such that w̄ < w◦ ≤ wg < wc.

(V) the system of equations (G.22)–(G.23), (G.31)–(G.32) has a solution (w◦, wg, wc, Vg)
such that w̄ < w◦ and wg < w◦.

Problem G-0 is substantially more challenging than the one we solved in Appendix F.1.
Deriving necessary and sufficient conditions under which each of these five systems has
an appropriate solution is a most challenging exercise indeed. Instead of attempting to
solve this, we have opted for a less ambitious approach: we show that the low-growth
configuration can arise, namely, there exists a set of permissible parameter values of strictly
positive Lebesgue measure in which the HJB equation (D.1)–(D.2) has a solution satisfying
(G.1). To this end, we will need the following result.

Proposition G-1. Assume that there exists a C2 function u : R+ → R whose restriction
in [0, wc] is strictly concave that satisfies the free-boundary problem (G.2)–(G.5) for some
free-boundary points 0 < wg < wc. The following statements hold true:

(I) u is given by (G.7) for A1, B1, A2 and B2 being defined by (G.16)–(G.19) (see also
(G.8)).

(II) u satisfies the HJB equation (D.1)–(D.2) as well as (G.1).

(III) u identifies with the value function v. Furthermore, wc and wg identify with the
corresponding thresholds in Properties 2 and 5, respectively.

Proof. Statement (I) follows immediately from the analysis at the beginning of this section,
while Statement (III) follows from (II) and Theorem D-1.

To establish statement (II), we first note that that (G.1) holds true thanks to the identity
(G.11) and the strict concavity of the restriction of u in ]0, wc[. We will show that u satisfies
the HJB (D.1) if we prove that the inequalities

u′(w) ≥ −1 for all w ∈ [0, wc[, (G.33)

1

2
σ2λ2u′′(w) + ̺wu′(w)− ru(w) + µ ≤ 0 for all w ∈ ]0, wg[ ∪ ]wc,∞[ (G.34)

and

1

2
σ2λ2u′′(w) + (̺+ q)wu′(w)− (r + q)u(w) + µ+ qVg ≤ 0 for all w > wg (G.35)
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hold true. The inequality (G.33) follows immediately from the concavity of u and the fact
that u′(wc) = −1. To prove (G.34), we first note that, inside the interval ]0, wg[, u satisfies
the ODE (G.2), which can be rewritten

1

2
σ2λ2u′′(w) + ̺wu′(w)− ru(w) + µ+ q

[

wu′(w) − u(w) + Vg
]

= 0.

In view of this identity, (G.11) and the concavity of u we can see that (G.34) holds true
inside the interval ]0, wg[. Inside the interval ]wc,∞[, (G.34) is equivalent to

−̺w − r
[

u(wc)− (w − wc)
]

+ µ ≤ 0 ⇔ −̺wc − ru(wc)− (̺− r)(w − wc) + µ ≤ 0

(see (G.7)). Using (G.14), we see that this inequality is equivalent to −(̺− r)(w−wc) ≤ 0,
which is true because ̺ > r.

To establish (G.35), we first note that the inequality is equivalent to

1

2
σ2λ2u′′(w) + ̺wu′(w)− ru(w) + µ+ q

[

wu′(w) − u(w) + Vg
]

≤ 0.

Combining the fact that u satisfies the ODE (G.3) inside ]wg, wc[ with the fact that wu′(w)−
u(w) + Vg < 0 for all w ∈ ]wg, wc[ (see (G.1)), we see that (G.35) is true inside ]wg, wc[.
Finally, inside ]wc,∞[, (G.35) is equivalent to

−(̺+ q)w − (r + q)
[

u(wc)− (w − wc)
]

+ µ+ qVg ≤ 0

(see (G.7)). In view of (G.14), we see that this inequality is equivalent to

−(̺− r)(w − wc) + q
[

− wc − u(wc) + Vg
]

≤ 0,

which is true thanks to (G.1), (G.12), and the fact that ̺ > r.

G.2 Auxiliary Problems

We now study a pair of auxiliary problems on which the analysis of our main construction
in Section G.3 relies.

Problem G-1. Given permissible values for the parameters r, ̺, µ, σ, q, λ and constants
wg, Vg, s such that

wg > 0 and 0 < Vg <
µ

r
, (G.36)

find a function u1 : [0, wg] → R that satisfies the ODE

1

2
σ2λ2u′′1(w) + (̺+ q)wu′1(w)− (r + q)u1(w) + µ+ qVg = 0, (G.37)

with boundary conditions

u1(wg) = Vg + swg and u′1(wg) = s. (G.38)
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Problem G-2. Given permissible values for the parameters r, ̺, µ, σ, λ and strictly
positive constants wg, Vg, find a free-boundary point wc > wg and a function u2 : [0, wc] → R

such that u2 satisfies the ODE

1

2
σ2λ2u′′2(w) + ̺wu′2(w)− ru2(w) + µ = 0 (G.39)

and the conditions

u′2(wc) = −1, u′′2(wc) = 0 and u2(wg)− wgu
′
2(wg) = Vg. (G.40)

The next results are concerned with properties of the solutions to these problems.

Lemma G-1. Problem G-1 has a unique solution. This solution is such that

u1(0) = exp

(

̺+ q

σ2λ2
w2
g

)[

rVg − µ

r + q
ψ′
1(wg)− s

[

ψ1(wg)− wgψ
′
1(wg)

]

]

+
µ+ qVg
r + q

. (G.41)

Furthermore, if s ≥ 0, then the function u1 is strictly increasing and strictly concave, and
u1(0) < Vg.

Proof. If it exists, the solution of Problem G-1 is of the form

u1(w) = A1ϕ1(w) +B1ψ1(w) +
µ+ qVg
r + q

, for w ∈ [0, wg].

The two boundary conditions at wg provide a system of two linear equations for A1 and
B1, which has a unique solution because its determinant is non-zero (see (E.12)). It follows
that Problem G-1 has a unique solution. In particular,

A1 = exp

(

̺+ q

σ2λ2
w2
g

)[

rVg − µ

r + q
ψ′
1(wg)− s

[

ψ1(wg)− wgψ
′
1(wg)

]

]

,

and (G.41) follows because u1(0) = A1 +
µ+qVg
r+q (see (E.7) and (E.11)).

In the rest of the proof, we assume that s ≥ 0. To show that u1 is strictly concave, we
define

ŵ = sup
{

w ∈ [0, wg[ | u
′
1(w) ≤ s

}

∨ 0 ∈ [0, wg[, (G.42)

with the usual convention that sup ∅ = −∞. Here, the inequality ŵ < wg follows from the
boundary condition u′1(wg) = s and the observation that (G.36)–(G.38) imply that

lim
w↑wg

u′′1(wg) = −
2

σ2λ2
[

(̺− r)swg + µ− rVg
]

< 0.

In view of (G.37), the strict concavity of u1 is equivalent to the inequality

(̺+ q)w
[

u′1(w) − s
]

− (r + q)u1(w) + (̺+ q)sw + µ+ qVg > 0 (G.43)
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holding true in ]0, wg[. In the next paragraph, we show that

−(r + q)u1(w) + (̺+ q)sw + µ+ qVg > 0 for all w ∈ [ŵ, wg[. (G.44)

In view of the definition (G.42) of ŵ, this inequality implies that (G.43) is true for all
w ∈ [ŵ, wg[, therefore

u′′1(w) < 0 for all w ∈ [ŵ, wg[.

This result and the fact that u′1(wg) = s imply that u′1(w) > s for all w ∈ [ŵ, wg[. It follows
that ŵ = 0, and u1 is strictly concave.

To show (G.44), we note that this is equivalent to

u1(w) <
̺+ q

r + q
sw +

µ+ qVg
r + q

for all w ∈ [ŵ, wg[.

Combining the boundary condition u1(wg) = Vg + swg with the fact that u′1(w) > s for all
w ∈ [ŵ, wg[, we can see that u1(w) < Vg + sw for all w ∈ [ŵ, wg[. It follows that a sufficient
condition for (G.44) to be true is given by

µ− rVg + (̺− r)sw > 0,

which holds true under our assumptions.
Finally, we note that the strict concavity of u1 and the boundary condition u′1(wg) =

s ≥ 0 imply that u1 is strictly increasing in [0, wg]. Furthermore, the concavity of u1 and
(G.38) imply that

u1(0) = u1(wg)−

∫ wg

0
u′1(w) dw < Vg + swg − s

∫ wg

0
dw = Vg.

Lemma G-2. Problem G-2 has a solution if and only if the inequality

̺− r

r
wg <

µ

r
− Vg (G.45)

is true, in which case the solution is unique, and the following statements hold true:

(I) The function u2 is strictly concave and u2(0) < Vg. Furthermore, u2(0) > 0 if

1−
r

µ
Vg < ϕ2(wg)− wgϕ

′
2(wg). (G.46)

(II) There exists δ⋆ = δ⋆(r, ̺, σ, λ,wg) >
̺−r
r
wg such that

u′2(wg) > 0 ⇔
µ

r
− Vg > δ⋆ (G.47)

and u′2(wg) = 0 ⇔
µ

r
− Vg = δ⋆. (G.48)

Furthermore,

∂δ⋆(r, ̺, σ, λ,wg)

∂wg
> 0. (G.49)
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Proof. By inspection, if Problem G-2 has a solution, then it is of the form

u2(w) = A2ϕ2(w) +B2ψ2(w) +
µ

r
, for w ∈ [0, wc].

The two boundary conditions at wc imply that A2 and B2 are given by (G.16)–(G.17).
Furthermore, the tangency condition u2(wg)−wgu

′
2(wg) = Vg implies that, if it exists, the

free-boundary point wc should satisfy (G.22), namely,

ℓ(wc) = Vg −
µ

r
, (G.50)

where

ℓ(w) ≡ ℓ(w; r, ̺, σ, λ,wg) :=
σ2λ2

2r
exp

( ̺

σ2λ2
w2
)

(

[

ϕ2(wg)− wgϕ
′
2(wg)

]

ψ′′
2 (w)

−
[

ψ2(wg)− wgψ
′
2(wg)

]

ϕ′′
2(w)

)

.

Differentiating the function ℓ and using the ODEs satisfied by ϕ2, ψ2 and their first deriva-
tives, we obtain

ℓ′(w) = −
̺− r

r
exp

( ̺

σ2λ2
w2
)

(

(

ϕ2(wg)− wgϕ
′
2(wg)

)

ψ′
2(w)

−
(

ψ2(wg)− wgψ
′
2(wg)

)

ϕ′
2(w)

)

and

ℓ′′(w) = −
2(̺− r)

σ2λ2
exp

( ̺

σ2λ2
w2
)

(

(

ϕ2(wg)− wgϕ
′
2(wg)

)

ψ2(w)

−
(

ψ2(wg)− wgψ
′
2(wg)

)

ϕ2(w)

)

.

An inspection of these expressions reveals that

ℓ(w) < 0 and ℓ′(w) < 0 for all w > 0, (G.51)

thanks to the inequalities established in Lemma E-1. Furthermore, the inequalities in
Lemma E-1 imply that limw→∞ ℓ′′(w) < 0, which, combined with (G.51), implies that
limw→∞ ℓ(w) = −∞. It follows that (G.50) has a solution wc > wg if and only if ℓ(wg) >
Vg −

µ
r
. This inequality is equivalent to (G.45) thanks to the calculations

ℓ(wg) = −
̺− r

r
wg exp

( ̺

σ2λ2
w2
g

)

[

ϕ2(wg)ψ
′
2(wg)− ϕ′

2(wg)ψ2(wg)
]

= −
̺− r

r
wg, (G.52)

where we have used the ODE satisfied by ϕ2, ψ2 for the first identity, and (E.12) for the
second identity.
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To proceed further, we assume that Problem G-2 has a solution, namely, (G.45) holds
true. To establish the strict concavity of u2, we define

w̃ = sup
{

w ∈ [0, wc[ | u
′
2(w) ≤ −1

}

∨ 0 ∈ [0, wc[, (G.53)

with the usual convention that sup ∅ = −∞. The inequality w̃ < wc stated here follows
immediately once we combine the boundary conditions u′2(wc) = −1 and u′′2(wc) = 0 with
the observation that limw↑wc

u′′′2 (w) > 0, which is true because u′2 satisfies the ODE

1

2
σ2λ2u′′′2 (w) + ̺wu′′2(w) + ̺u′2(w) = 0

in ]0, wc[. The fact that u2 satisfies the ODE (G.39) in ]0, wc[ also implies that

1

2
σ2λ2u′′2(w) + ̺w

[

u′2(w) + 1
]

+ F (w) = 0 (G.54)

in ]0, wc[, where

F (w) = −̺w − ru2(w) + µ.

In view of the assumption that ̺ > r (see condition (12)) and the definition of w̃, we can
see that

F ′(w) = −r
[

u′2(w) + 1
]

− (̺− r) < 0 for all w ∈ [w̃, wc],

which, combined with (G.14), implies that F (w) > 0 for all w ∈ [w̃, wc[. This observation,
the definition (G.53) of w̃, and (G.54) imply that

u′′2(w) < 0 for all w ∈ [w̃, wc[. (G.55)

This result and the boundary condition u′2(wc) = −1 imply that u′2(w) > −1 for all w ∈
[w̃, wc[. Combining this inequality with the definition of w̃ and the continuity of u′2, we can
see that w̃ = 0. In view of (G.55), it follows that u2 is strictly concave on ]0, wc[.

To complete the proof of statement (I), we first note that the concavity of u2 and (G.40)
imply that

u2(0) = u2(wg)−

∫ wg

0
u′2(w) dw < Vg + wgu

′
2(wg)− u′2(wg)

∫ wg

0
dw = Vg.

We also note that, in view of (G.16) and the definition of the function ℓ, (G.50) is equivalent
to

A2

(

ϕ2(wg)− wgϕ
′
2(wg)−

[

ψ2(wg)− wgψ
′
2(wg)

]ϕ′′
2(wc)

ψ′′
2 (wc)

)

= Vg −
µ

r
.

Therefore

u2(0) = A2 +
µ

r
=



1−
1− rVg

µ

ϕ2(wg)− wgϕ
′
2(wg)−

[

ψ2(wg)− wgψ
′
2(wg)

]ϕ′′
2 (wc)

ψ′′
2 (wc)





µ

r
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(see (E.7) and (E.11)). In view of (E.14)–(E.18) in Lemma E-1, we can see that

0 < ϕ2(wg)− wgϕ
′
2(wg) < ϕ2(wg)− wgϕ

′
2(wg)−

[

ψ2(wg)−wgψ
′
2(wg)

]ϕ′′
2(wc)

ψ′′
2 (wc)

,

and the sufficient condition (G.46) ensures that the inequality u2(0) > 0 holds true.
To complete the proof, we still need to establish (II). To this end, we note that the

expressions for A2, B2 given by (G.16), (G.17) and the inequalities (E.4) and (E.15) yield

u′2(wg) ≡ A2(wc)ϕ
′
2(wg) +B2(wc)ψ

′
2(wg) > 0 ⇔ ψ′′

2 (wc)ϕ
′
2(wg)− ϕ′′

2(wc)ψ
′
2(wg) > 0

⇔
ψ′′
2 (wc)

ϕ′′
2(wc)

<
ψ′
2(wg)

ϕ′(wg)
(G.56)

and

u′2(wg) ≡ A2(wc)ϕ
′
2(wg) +B2(wc)ψ

′
2(wg) = 0 ⇔

ψ′′
2 (wc)

ϕ′′
2(wc)

=
ψ′
2(wg)

ϕ′(wg)
. (G.57)

The point w∗
c ≡ w∗

c (r, ̺, σ, λ,wg) := g(wg) > wg, where g is as in Lemma E-2, is such that

ψ′′
2 (w

∗
c )

ϕ′′
2(w

∗
c )

=
ψ′
2(wg)

ϕ′
2(wg)

.

In view of (E.18), we can see that (G.56) (resp., (G.57)) is satisfied if and only if wc > w∗
c

(resp., wc = w∗
c ). Furthermore, an inspection of (G.50)–(G.51) reveals that wc > w∗

c (resp.,
wc = w∗

c ) if and only if Vg −
µ
r
< ℓ(w∗

c ) (resp., Vg −
µ
r
= ℓ(w∗

c )). By construction, the point
δ⋆ := −ℓ(w∗

c) > 0 is determined uniquely by r, ̺, σ, λ and wg. In particular, it does not
depend on µ or Vg. Also, combining the inequality w∗

c > wg with (G.51) and (G.52), we
obtain

δ⋆ = −ℓ(w∗
c ) > −ℓ(wg) =

̺− r

r
wg.

Finally, (G.49) follows from the calculations

∂δ⋆(r, ̺, σ, λ,wg)

∂wg
= −ℓ′(w∗

c )
∂w∗

c (r, ̺, σ, λ,wg)

∂wg

= −ℓ′
(

g(wg)
)

g′(wg),

> 0,

where the strictly increasing function g is defined in Lemma E-2 and we have also used
(G.51).

Lemma G-3. Fix any permissible values for the parameters r, ̺, µ, σ, q, λ, and let wg,
Vg be strictly positive constants such that (G.45) and (G.47) or (G.48) hold true, namely,

δ⋆ ≤
µ

r
− Vg,
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where δ⋆ = δ⋆(r, ̺, σ, λ,wg) > 0 is as in Lemma G-2.(II). Given the solution wc and u2 to
Problem G-2, if u1 is the solution to Problem G-1 for s = u′2(wg) ≥ 0 and we define

u(w) =











u1(w), if w ∈ [0, wg[

u2(w), if w ∈ [wg, wc]

u2(wc)− (w −wc), if w > wc











, (G.58)

then u is C2, strictly increasing in [0, wg], strictly concave in [0, wc], and such that u(0) <
Vg. Furthermore, if there exists γ, κ and w̄ such that

u(wh)− κ = u(0) and (1 + γ)u(wh)− κ = Vg, (G.59)

which are equivalent to

κ = u(wh)− u(0) and γ =
Vg − u(0)

u(wh)
, (G.60)

where wh := w̄ ∨ w◦ := w̄ ∨ argmaxw>0 u(w), then u is a solution to the free-boundary
problem (G.2)–(G.5) for the given values of the parameters r, ̺, µ, σ, q, γ, λ, κ, w̄.

Proof. In view of (G.37)–(G.39), the C2 continuity of u at wg follows immediately from
the fact that s = u′2(wg). The results derived in Lemmas G-1 and G-2 imply the strict
concavity of u in [0, wc] as well as the facts that u is strictly increasing on [0, wg] and the
inequality u(0) < Vg. Finally, it is immediate to verify that u satisfies the free-boundary
problem (G.2)–(G.5) if (G.59) hold true.

G.3 Proof of Proposition 7

In view of Proposition G-1, we need to show that the set of permissible parameter values
for which the free-boundary problem (G.2)–(G.5) has a C2 strictly concave solution has
non-empty interior in R9. To prove that this is indeed the case, we rely on Lemma G-3.
Our constructive argument proceeds in several steps.

Step 1. We consider any

̺ > r > 0, σ > 0, λ ∈ ]0, 1], w̃g > 0,

and

µ >
rδ⋆(r, ̺, σ, λ, w̃g)

ϕ2(w̃g)− w̃gϕ
′
2(w̃g)

> 0,

where δ⋆ ≡ δ⋆(r, ̺, σ, λ, w̃g) > 0 is as in Lemma G-2. We also define

Ṽg ≡ Ṽg(r, ̺, µ, σ, λ, w̃g) =
µ

r
− δ⋆(r, ̺, σ, λ, w̃g) > 0. (G.61)

Note that the strict positivity of µ and Ṽg follows from (E.14)–(E.15). For any such choices
of r, ̺, µ, σ, λ, w̃g and for Ṽg given by (G.61), inequalities (G.45) and (G.46) are both
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satisfied. Therefore, Lemma G-2 implies that the solution u2 to Problem G-2, with w̃g, Ṽg
in place of wg, Vg, exists, is unique, and satisfies

0 < u2(0) < Ṽg = u2(w̃g) and u′2(w̃g) = 0, (G.62)

while

wc = g(w̃g),

where g is defined in Lemma E-2 (see also the analysis of (G.57)). Furthermore, using
the fact that u2 satisfies the ODE (G.39) with boundary conditions u2(w̃g) = Ṽg and
u′2(w̃g) = 0, we can show that

u2(w) = − exp
( ̺

σ2λ2
w̃2
g

)

[

ψ′
2(w̃g)ϕ2(w)− ϕ′

2(w̃g)ψ2(w)
]

δ⋆(w̃g) +
µ

r
. (G.63)

Step 2. Given any wg ∈ ]0, w̃g] and q > 0, we consider the solution u1 to Problem G-1 with
boundary conditions at wg given by

Vg = u2(wg)− wgu
′
2(wg) < Ṽg and s = u′2(wg) > 0, (G.64)

which we studied in Lemma G-1. In view of the ODEs (G.37), (G.39), which u1, u2 satisfy,
and the identities

u1(wg) = u2(wg) and u′1(wg) = u′2(wg),

we can see that the function q 7→ u1(0; q) is continuous and limq↓0 u1(0; q) = u2(0). It
follows that, given any ǫ > 0, there exists q⋆(ǫ) = q⋆(ǫ; r, ̺, µ, σ, λ,wg , w̃g) > 0 such that

u1(0; q) ∈ ]u2(0)− ǫ, u2(0) + ǫ[ for all q ∈ ]0, q⋆(ǫ)[. (G.65)

Step 3. In the context of the previous two steps (in particular, see (G.61), (G.62), (G.64)
and (G.65)), we can see that the continuity of all functions involved implies that there exist
constants

0 < ε < C1 < C2

and an open set O0 ⊆ R8 such that

0 < q < r
C1 − ε

C2 − C1 + ε
, C1 < w̃g, C1 + ε < Vg < Ṽg < C2,

u1(0) ∈ ]C1 − ε, C1 + ε[ and 0 < wg < w̃g for all (r, ̺, µ, σ, q, λ, wg , w̃g) ∈ O0. (G.66)

Given any point in O0, the function u that is defined as in (G.58) by pasting u1 and u2 at
wg

is C2, strictly increasing in [0, w̃g], strictly concave in [0, wc], and such that

0 < C1 − ε < u(0) < C1 + ε < Vg < Ṽg = u(w̃g) < C2 and u′(w̃g) = 0. (G.67)
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It is straightforward to see that

w◦ := argmax
w>0

u(w) = w̃g,

which implies that

u(w◦) = Ṽg > u(0) > 0.

Step 4. Noting that wh := w̄ ∨ w◦ = w̃g for all w̄ ≤ w̃g, we can see that, for

κ = u(w◦)− u(0) = Ṽg − u(0) > 0 and γ =
Vg − u(0)

u(w◦)
=
Vg − u(0)

Ṽg
> 0, (G.68)

the function u constructed in Step 3 satisfies (G.60). Therefore, u provides a solution to
the free-boundary problem (G.2)–(G.5) for all values of the parameters r, ̺, µ, σ, q, λ in
the relevant projection of O0, for w̄ ≤ w̃g, and for κ, γ given by (G.68).

Step 5. We now consider whether the implied values for κ and γ given by (G.68) satisfy
conditions (13) and (14). In the current context, these conditions are equivalent to

Vg − u(0)

Ṽg
<
r

q
(G.69)

and

Vg − u(0)

Ṽg
>
κ+ w̄
µ
r
− w̄

≡
Ṽg − u(0) + w̄

µ
r
− w̄

, (G.70)

respectively. Using the fact that Ṽg > u(0), we can see that (G.69), and therefore Condi-
tion (13), holds true if

q < r
u(0)

Vg − u(0)
,

which follows immediately from (G.66). On the other hand, inequality (G.70) holds true in
the limit as w̄ ↓ 0 and wg ↑ w̃g because Vg ↑ Ṽg <

µ
r
as wg ↑ w̃g. Therefore, Condition (14)

is satisfied as long as w̄ ∈ ]0, C1[ is sufficiently small and wg is sufficiently close to w̃g.

Step 6. In view of the conclusion of the previous step and the continuity of all functions
involved, there exists an open set O1 of points (r, ̺, µ, σ, q, λ, w̄, wg , w̃g) ∈ R9 such that
(r, ̺, µ, σ, q, λ, wg , w̃g) ∈ O0 and

the function u defined as in Step 3 satisfies (G.67)

and solves the free-boundary problem (G.2)–(G.5) for κ, γ given by (G.68), (G.71)

while Conditions (13) and (14) hold true.
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Step 7. Given any point in O1, we denote ppp = (r, ̺, µ, σ, q, λ, w̄), and we note that

κ = κ(ppp,wg, w̃g), γ = γ(ppp,wg, w̃g), δ⋆ = δ⋆(ppp, w̃g),

u1 = u1(·;ppp,wg, w̃g), u2 = u2(·;ppp, w̃g) and Vg = Vg(ppp,wg, w̃g).

To simplify the notation, we drop the dependence on ppp throughout this step.
In view of (G.61), we can see that (G.68) yield the expressions

κ(wg, w̃g) =
µ

r
− δ⋆(w̃g)− u1(0;wg, w̃g)

and γ(wg, w̃g) =
Vg(wg, w̃g)− u1(0;wg, w̃g)

µ
r
− δ⋆(w̃g)

.

We consider the Jacobian determinant of κ, γ as functions of wg, w̃g, which is defined by

J(wg, w̃g) :=

∣

∣

∣

∣

∣

∂κ(wg,w̃g)
∂wg

∂κ(wg,w̃g)
∂w̃g

∂γ(wg,w̃g)
∂wg

∂γ(wg,w̃g)
∂w̃g

∣

∣

∣

∣

∣

,

and we compute

J(wg, w̃g) =
1

Ṽg(w̃g)

[

∂Vg(wg, w̃g)

∂wg

∂u1(0;wg, w̃g)

∂w̃g
−
∂Vg(wg; w̃g)

∂w̃g

∂u1(0;wg, w̃g)

∂wg

− γ(wg, w̃g)
∂u1(0;wg, w̃g)

∂wg
δ′⋆(w̃g) +

∂Vg(wg, w̃g)

∂wg
δ′⋆(w̃g)

−
∂u1(0;wg, w̃g)

∂wg
δ′⋆(w̃g)

]

. (G.72)

Recalling the definition

Vg(wg, w̃g) = u2(wg; w̃g)− wgu
′
2(wg; w̃g), (G.73)

we compute

∂Vg(wg, w̃g)

∂wg
= −wgu

′′
2(wg; w̃g) (G.74)

and
∂Vg(wg, w̃g)

∂w̃g
=
∂u2(wg; w̃g)

∂w̃g
− wg

∂u′2(wg; w̃g)

∂w̃g
. (G.75)

Here, as well as in what follows, we use the notation

u′2(wg; w̃g) =
∂u2(wg; w̃g)

∂wg
and u′′2(wg; w̃g) =

∂2u2(wg; w̃g)

∂w2
g

.

Differentiating the expression

u2(wg; w̃g) = − exp
( ̺

σ2λ2
w̃2
g

)

[

ψ′
2(w̃g)ϕ2(wg)− ϕ′

2(w̃g)ψ2(wg)
]

δ⋆(w̃g) +
µ

r
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(see (G.63)), we obtain

∂u2(wg; w̃g)

∂w̃g
= − exp

( ̺

σ2λ2
w̃2
g

)

[

2r

σ2λ2
[

ϕ2(wg)ψ2(w̃g)− ϕ2(w̃g)ψ2(wg)
]

δ⋆(w̃g)

+
[

ϕ2(wg)ψ
′
2(w̃g)− ϕ′

2(w̃g)ψ2(wg)
]

δ′⋆(w̃g)

]

and
∂u′2(wg; w̃g)

∂w̃g
= − exp

( ̺

σ2λ2
w̃2
g

)

[

2r

σ2λ2
[

ϕ′
2(wg)ψ2(w̃g)− ϕ2(w̃g)ψ

′
2(wg)

]

δ⋆(w̃g)

+
[

ϕ′
2(wg)ψ

′
2(w̃g)− ϕ′

2(w̃g)ψ
′
2(wg)

]

δ′⋆(w̃g)

]

.

In particular, we note that

∂u2(wg; w̃g)

∂w̃g

∣

∣

∣

∣

wg=w̃g

= −δ′⋆(w̃g) and
∂u′2(wg; w̃g)

∂w̃g

∣

∣

∣

∣

wg=w̃g

=
2r

σ2λ2
δ⋆(w̃g). (G.76)

Combining these identities with (G.75), we can see that

∂Vg(wg, w̃g)

∂w̃g

∣

∣

∣

∣

wg=w̃g

= −δ′⋆(w̃g)−
2r

σ2λ2
w̃gδ⋆(w̃g). (G.77)

Differentiating the expression (see (G.41))

u1(0;wg, w̃g) = exp

(

̺+ q

σ2λ2
w2
g

)[

rVg(wg, w̃g)− µ

r + q
ψ′
1(wg)

− s(wg, w̃g)
[

ψ1(wg)− wgψ
′
1(wg)

]

]

+
µ+ qVg(wg, w̃g)

r + q
,

with Vg given by (G.73) and s(wg, w̃g) = u′2(wg; w̃g), we calculate

∂u1(0;wg, w̃g)

∂wg
=

q

r + q

[

exp

(

̺+ q

σ2λ2
w2
g

)

ψ′
1(wg)− 1

]

wgu
′′
2(wg; w̃g). (G.78)

Differentiating the same expression with respect to w̃g, and using (G.76), (G.77) to evaluate
the partial derivatives at wg = w̃g, we compute

∂u1(0;wg, w̃g)

∂w̃g

∣

∣

∣

∣

wg=w̃g

= − exp

(

̺+ q

σ2λ2
w̃2
g

)[

r

r + q
ψ′
1(w̃g)δ

′
⋆(w̃g) +

2r

σ2λ2
ψ1(w̃g)δ⋆(w̃g)

]

+
q

r + q

2r

σ2λ2

[

exp

(

̺+ q

σ2λ2
w̃2
g

)

ψ′
1(w̃g)− 1

]

w̃gδ⋆(w̃g)

−
q

r + q
δ′⋆(w̃g). (G.79)

In view of (G.74) and (G.77)–(G.79), the Jacobian determinant given by (G.72) evaluated
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at wg = w̃g admits the expression

J(w̃g, w̃g) =

[

2r

σ2λ2
exp

(

̺+ q

σ2λ2
w̃2
g

)

ψ1(w̃g)δ⋆(w̃g)

+
r − qγ(w̃g, w̃g)

r + q

[

exp

(

̺+ q

σ2λ2
w̃2
g

)

ψ′
1(w̃g)− 1

]

δ′⋆(w̃g)

]

w̃gu
′′
2(w̃g; w̃g)

Ṽg(w̃g)

< 0. (G.80)

The inequality here follows from (E.19), (G.49), the strict concavity of the restriction of u2
in ]0, wc[ ∋ w̃g and the fact that Condition (13), namely, the inequality r > qγ, holds true
for every point in O1 (see (G.71)).

Step 8. By continuity, (G.80) implies that there exists an open set O2 ⊆ O1 of points
(r, ̺, µ, σ, q, λ, w̄, wg , w̃g) ∈ R9 such that J(ppp,wg, w̃g) < 0. It follows that κ(ppp,wg, w̃g) and
γ(ppp,wg, w̃g) as functions of wg and w̃g are invertible for each ppp in the appropriate projection
of O2 in R7. Combining this observation with (G.71), we conclude that there exists an open
set of permissible parameter values in R9 such that, for any value of (r, ̺, µ, σ, q, γ, λ, κ, w̄)
in this set, there exist points 0 < wg < wc as well as a concave C2 function u such that
(G.2)–(G.5) all hold true.
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H Data Sources and Variable Construction

Data Sources. Our sample relies on information on CEO turnover and CEO compensation
as reported in the widely used Standard and Poors ExecuComp database from January
1992 to December 2014. Accounting information comes from the Compustat Industrial
Annual files, and stock price and stock return information comes from the monthly CRSP
tapes. The dataset is at annual frequency (on a calendar year basis), although our measure
of past performance is constructed using stock return data at monthly frequency.

CEO Episodes and Turnover. The starting point of the construction of the data set is to
identify CEO episodes, which track the tenure of a given manager as CEO of a given firm.
Using the information available in ExecuComp, we define the first year of a CEO episode
as the first year in which the CEO is reported as being in charge of the firm. The variable
TenureYear is set at 1 in the year of his appointment and is incremented for each calendar
year he remains in office. A turnover event is recorded in the year that ExecuComp reports
the CEO leaves office. In cases where ExecuComp does not report a date leaving office but a
new CEO is reported for the same firm in a subsequent year, a turnover event is recorded in
the last year of the old CEO’s reported tenure. The variable Turnover is a binary variable
which equals 1 for a CEO episode in the year of a turnover event and zero otherwise. For
all CEO episodes completed within our sample period, the variable TotTenure equals the
total length of the episode, in years.

Compensation. We define the variable TotPay as the total annual compensation as recorded
in the ExecuComp variable tdc1. This includes salary, cash bonus, retirement benefits,
stock, and stock options in the year they are awarded.

Average Q and Growth-Related Proxies. For a given CEO episode, the variable QInit is
equal to the ‘average Q’ of each firm in the year before the CEO was appointed. Average Q
or simply Q is defined as the ratio of the market value of assets divided by the book value
of assets (at). The market value of assets is equal to total assets (at), plus the product
of common stock holdings (csho) times the closing stock price at the end of the fiscal year
(prcc c), minus the book value of common equity (ceq). Consistent with Almeida and
Campello (2007), we set as missing those values of Q above 10. Our proxy for the arrival of
a growth opportunity in year t, RatioQ, is equal to the ratio of the firm’s average Q in year
t − 1 to QInit. Our results are robust to using, in the construction of QInit and RatioQ,
the arithmetic mean of the average Q of all firms in the same 4-digit SIC industry group
rather than the firm’s own Q.

Cumulative Abnormal Returns. In the regressions reported in the main text, we control for
past performance in year t using the 2-year annualized cumulative abnormal stock returns
between January of year t− 2 and December of year t− 1, which we denote by CAR. The
results presented in the paper are robust to computing the performance measure between
January of year t− 1 and December of year t, and to the use of shorter or longer window
lengths for the measurement of past performance. To construct our CAR variable, we
use monthly return data from CRSP to obtain abnormal returns at monthly frequency,
compute compounded cumulative abnormal returns over 24 months, and annualize. To
obtain monthly abnormal returns, we compute Dimson betas using rolling regressions over
a 60-month time window, where the explanatory variables in the regressions include the
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current, lagged and forward values of the return on the market portfolio proxied by the
CRSP value-weighted index.

Other Controls. In a given year t, the variable lnAssets equals the logarithm of the total
assets of the firm as reported in Compustat (at) for year t−1. The variable ROA, or return
on assets, equals the ratio of earnings (ib) over total assets (at) in year t− 1. All variables
are winsorized at the 1% level.

Compensation Duration. The variable PayDuration is computed according to the duration
formula (40) displayed in the main text. The sample of CEO episodes for which this
variable is computed comprises: (i) all completed episodes for which we observe annual
compensation from year 1 of the CEO’s tenure until he leaves post; and (ii) episodes in
which the CEO is still in office by the end of our sample period and has been managing
the firm for at least 13 years with no interruption in reported compensation (thirteen years
corresponds to the 90% percentile of the variable TotTenure in our sample). The results
presented in Section 4.3 of the paper are qualitatively unaffected when the latter group of
episodes is removed from the sample.
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