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ABSTRACT

Various results show the ‘formal equivalence’ of kin and group selectionist methodolo-

gies, but this does not preclude there being a real and useful distinction between kin and

group selection processes. I distinguish individual- and population-centred approaches

to drawing such a distinction, and I proceed to develop the latter. On the account I

advance, the differences between kin and group selection are differences of degree in

the structural properties of populations. A spatial metaphor (‘K-G space’) provides a

useful framework for thinking about these differences: kin and group selection may be

conceptualized as large, overlapping regions of K-G space. I then consider some impli-

cations of the account, defend it from possible objections, and further argue that the

structural features characteristic of both kin and group selection may recur at multiple

levels of biological organization.
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1 Introduction

The relationship between kin selection and group (or multi-level) selection is a

longstanding source of controversy in the social evolution literature. In earlier

debates, biologists tended to regard kin and group selection as rival empirical

hypotheses (Maynard Smith [1964], [1976]; Dawkins [1982]). But many biolo-

gists now regard them as ‘formally equivalent’ approaches, and see this

equivalence as implying that they are not competing empirical hypotheses

after all (Marshall [2011]).1 Although there are high-profile dissenters from

this equivalence claim, including Martin Nowak and Edward O. Wilson, it

seems to be endorsed by a majority of social evolution theorists.2,3

Yet the debate has long been hampered by insufficient attention to the distinc-

tion between statistics and causality (Birch and Okasha [2015]; Okasha [2016]). It

is crucial to distinguish between the formal equivalence of two statistical descrip-

tions of change and the causal equivalence (or otherwise) of two types of selection

process responsible for change. The former does not imply the latter. Indeed, my

claim in this article is that, although there is an important sense in which kin and

group selection are formally equivalent when conceived as statistical descriptions

of change, there is a real and useful—but not sharp—distinction between kin and

group selection conceived as causal processes responsible for change. The key

differences lie in their commitments regarding population structure.

Here is the article in outline. In the next section, I consider the ‘formal

equivalence’ results mentioned above, explaining why these results are com-

patible with there being a biologically meaningful distinction between kin and

group selection. In Section 3, I set out two ways of making sense of this

distinction. One approach, developed by Samir Okasha ([2016]), locates the

difference in the causal path at the individual level between an organism’s

genotype and its fitness. I highlight some problems with Okasha’s approach

that, although not fatal, motivate the development of an alternative. My fa-

voured alternative, which I call the ‘population-centred’ approach, locates the

difference in the structural features of populations.

The rest of the article pursues the population-centred approach. In Section 4,

I draw inspiration from two sources: W. D. Hamilton’s ([1975]) views on the

1 Here, and throughout the article, the type of group selection I have in mind is ‘MLS1’ in the

terminology of Heisler and Damuth ([1987]). In other words, it is group selection in which the

fitness of a group is defined as the average fitness of its members, rather than the number of

offspring groups it produces. I use the term ‘group selection’ in preference to ‘multi-level selec-

tion’ because I see both kin and group selection as processes that can occur at multiple levels of

organization (see Section 7).
2 For example, Traulsen ([2010]), Nowak et al. ([2010]), and van Veelen et al. ([2012]) depart from

this view in various ways. Sober and Wilson ([1998]) depart from it by regarding kin selection as

a special case of group selection. As will become clear in due course, I do not regard either

process as a special case of the other.
3 For statements of the consensus view, see (Wenseleers et al. [2010]; Gardner et al. [2011];

Marshall [2015]).
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relationship between kin and group selection, and Peter Godfrey-Smith’s ([2006],

[2008]) recent work on the varieties of population structure. Section 5 combines

these influences into a positive proposal. The intuitive idea is that kin selection

occurs in populations that are structured such that relatives tend to interact

differentially, whereas group selection occurs in populations in which there are

stable, sharply bounded, and well-integrated social groups at the relevant grain of

analysis. Some populations have both features, but it is possible for one to occur

without the other. Since these structural features are matters of degree, a spatial

metaphor (‘K-G space’) is useful for thinking about the distinction.

The account also requires that rb 6¼ 0 as a precondition for both kin and

group selection; in Section 6, I explain and defend this requirement. In Section

7, I discuss the relationship between the kin/group selection distinction and

levels of biological organization, arguing that both types of selection process

can occur at multiple levels. In Section 8, I conclude by setting out the key

questions at stake, by the lights of my account, when we ask whether a process

is one of kin selection or group selection.

2 Equivalence Results and Their Limitations

2.1 An example of an equivalence result

The best-known argument for the ‘formal equivalence’ of kin and group se-

lection involves comparing a generalized version of Hamilton’s rule (Queller

[1992a]) with the multi-level version of the Price equation (Price [1972]), and

noting that both provide correct conditions for positive gene frequency change

in a group-structured population, given a small number of assumptions. I will

not recount the details of the argument here (for details, see Marshall [2011];

Frank [2013]; Birch and Okasha [2015]; Okasha [2016]), but I will briefly ex-

plain the source and nature of the equivalence result.

The route to the generalized version of Hamilton’s rule, in the case of a

social trait controlled by a single allele, involves mathematically decomposing

the overall change in allele frequency between ancestral and descendant popu-

lations (such as two consecutive generations of a discrete generations model)

into a ‘direct’ and an ‘indirect’ component4:

�p ¼
�cVarðpiÞ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{direct fitness effects

w
þ

rbVarðpiÞ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{indirect fitness effects

w
: ð1Þ

4 The same decomposition can be obtained for the change in a polygenic character, but in this case

we should interpret pi as a breeding value rather than an individual gene frequency (Queller

[1992a]; Falconer and Mackay [1996]; Frank [1998]; Marshall [2015]). Here I focus on the

single-allele case.
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Here, pi denotes the individual gene frequency, with respect to the allele of

interest, of the ith individual in the population; and Var(pi) is the variance of

pi in the ancestral population.5 �p is the change in the frequency of the allele

between the ancestral and descendant populations, and w is the mean fitness

in the ancestral population, where the ‘fitness’ of an individual is defined as

the number of descendants it contributes to the descendant population. r is

the coefficient of relatedness, defined, as in (Queller [1992a]), as a measure of

the statistical association between the genotypes of social partners.6 c and

b are, respectively, the coefficients of cost and benefit, defined, as in

(Queller [1992a]), as partial regression coefficients in a regression model

of fitness.

The key point to note about r, b, and c is that they are population statis-

tics, quantifying the overall associations in the population between the geno-

types of social partners (r), one’s own genotype and one’s fitness (c), and

one’s social partners’ genotypes and one’s fitness (b). With respect to r in

particular, I should emphasize that it is a measure of genotypic assortment,

which may or may not be attributable to kinship. As Hamilton ([1975])

stressed, there are sources of genotypic assortment that do not rely on kin-

ship, including shared habitat preference, and so-called greenbeard phenom-

ena in which altruists (or bearers or some other social trait) recognize each

other by means of a phenotypic marker (Dawkins [1976]; Gardner and West

[2010]).

The above decomposition implies the following condition for positive

change, which is a standard formulation of Hamilton’s rule:

�p > 0() rb > c; provided VarðpiÞ 6¼ 0:

Let us now compare this with a commonly seen formulation of group selection

theory: the multi-level Price equation (Price [1972]).7 This provides an alter-

native mathematical decomposition of change that applies whenever a

5 An individual’s gene frequency is the number of copies of the allele it possesses at the relevant

locus in its genome, divided by its ploidy (Price [1970]). For a haploid organism, pi ¼ 1 if the

individual has the allele and pi ¼ 0 otherwise.
6 Formally, r is defined as the regression coefficient when we regress pi on p0i , where p0i denotes the

average p-value of the ith individual’s social partners (Grafen [1985]; Queller [1992a]).
7 This way of formulating group selection is favoured by some theorists (such as Gardner and

Grafen [2009]; Marshall [2011]; Gardner [2015]; Birch and Okasha [2015]; Okasha [2016]), and

rejected by others in favour of an alternative approach known as contextual analysis (Heisler

and Damuth [1987]; Damuth and Heisler [1988]; Goodnight et al. [1992]; Goodnight [2013]).

Here I take the multi-level Price equation as my focal example of a multi-level approach; but, as

I explain in the next subsection, the same general point could be made using contextual analysis

as our focal example. The point of this section is simply that there is a close formal relationship

between kin selectionist and multi-level methods, and the formal relationship is even closer if we

take contextual analysis as our focal example of a multi-level method (see Okasha [2016],

p. 440).
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population is group-structured. It partitions change into a ‘between-group’

and ‘within-group’ component8:

�p ¼
Cov Wk;Pkð Þ
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{between�group

w
þ

Ek½Covk wjk; pjk

� �
�

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{indirect fitness effects

w
: ð2Þ

Here, wjk and pjk denote the fitness and individual gene frequency (respect-

ively) of the jth member of the kth group, while Wk and Pk denote (respect-

ively) the mean fitness and group gene frequency (respectively) of the kth

group. Cov(Wk, Pk) captures the covariance between a group’s gene frequency

and its mean fitness, while Ek[Covk (wjk, pjk)] captures the average across

groups of the within-group covariance between an individual’s gene frequency

and its fitness.

This decomposition also implies a condition for positive change, which we

might call ‘Price’s rule’:

�p > 0() rb > c() CovðWk;PkÞ þ Ek½Covkðwjk; pjkÞ� > 0:

The argument for the ‘equivalence’ of the two conditions relies on the fact

that both are derived from the Price equation (Price [1970]) with few add-

itional assumptions. Both derivations assume that the allele is transmitted

without bias. The only additional assumptions required for the derivation

of Hamilton’s rule are that Var(pi) 6¼ 0 and that pi and p0i are not collinear,

so that the cost and benefit coefficients are well defined. The only additional

assumption required for the derivation of Price’s rule is that the population is

group-structured. In all populations that satisfy the assumptions of both der-

ivations (that is, in all group-structured populations in which alleles are trans-

mitted without bias, pi and p0i are not collinear, and Var(pi) 6¼ 0) both

decompositions are correct and the following equivalence holds (Marshall

[2011]; Frank [2013]; Birch and Okasha [2015]; Okasha [2016]):

�p > 0() rb > c() CovðWk;PkÞ þ Ek½Covkðwjk; pjkÞ� > 0: ð3Þ

To understand the intuitive rationale for this, imagine the typical circum-

stances under which each condition would be satisfied for an altruistic trait

controlled by a single gene. First, consider what is required for rb> c. It must

be that bearers of the gene cluster together, so that the benefits of altruism fall

differentially on bearers of the gene. Second, consider what is required for the

selection against the trait within groups to be outweighed by selection for the

trait between groups. Again, it must be that bearers of the gene cluster to-

gether, so that the heritable variation in fitness within groups is suppressed

8 The ‘Cov’ in Cov(Wk, Pk) and the ‘E’ in Ek[Covk(wjk, pjk)] should be interpreted as

‘size-weighted’ functions in the sense of Price ([1972]); otherwise we need the further assumption

that all groups are equal in size.
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and the heritable variation in fitness between groups is boosted. Both

approaches can thus be seen as alternative ways of capturing the fundamental

requirement that bearers of the gene for altruism interact differentially with

each other.

2.2 Limitations

The result in Equation (3) is plainly an equivalence result of a sort. But we

should be clear about what it does and does not show. Four main limitations

are worth spelling out. First, the result holds only in populations with a

particular type of structure: group structure. Not all populations are group-

structured, and the multi-level Price equation can be applied in the absence of

group structure only by assigning organisms to groups arbitrarily, which de-

prives it of biological significance. I think the importance of this qualification

has been understated in the literature (Godfrey-Smith [2006], [2008] is an im-

portant exception; see Section 4).

Second, the result involves comparing highly abstract, purely genetic for-

mulations of kin selection and group selection theory, ignoring the complica-

tions that arise when we want to apply one of these approaches to analyse

change in a particular ecological scenario. For example, in both the kin selec-

tionist and multi-level modelling traditions, theorists tend to use phenotypic

rather than genetic predictors of fitness when they have empirical applications

in mind, since hypotheses about phenotypic selection gradients are easier to

test empirically (Grafen [1984]; Queller [1992b]; Frank [1998]; Goodnight and

Stevens [1997]; McGlothlin et al. [2014]). In fact, formal equivalence results

can still be derived in relation to phenotypic versions of the two approaches,

provided like is compared with like (Queller [1992b]; Birch and Marshall

[2014]).

Third, not all group selection theorists accept that the multi-level Price

equation succeeds in separating the effects of selection at the group and indi-

vidual levels. There is a prominent alternative—contextual analysis—

advanced by Lorraine Heisler and John Damuth (Heisler and Damuth

[1987]; Damuth and Heisler [1988]) and by Charles Goodnight and colleagues

(Goodnight et al. [1992]; Goodnight and Stevens [1997]; Goodnight [2013]).

The clash between contextual analysis and the multi-level Price equation is

long-running, and I do not aim to weigh into that debate here.9 It is sufficient

to note that contextual analysis involves decomposing change in a very similar

way to the generalized version of Hamilton’s rule: here too we decompose

fitness using a regression model, but rather than taking the average genotype

of the focal individual’s social partners as a predictor, we take properties of the

9 See (Okasha [2006]) for an overview of the issues.

Jonathan Birch6

D
ow

nloaded from
 https://academ

ic.oup.com
/bjps/advance-article-abstract/doi/10.1093/bjps/axx028/4100192 by guest on 13 M

ay 2019



focal individual’s social group (Heisler and Damuth [1987]). Thus the formal

relationship between kin selectionist and multi-level methodologies would be

even closer if we were to take contextual analysis as our flagship example of a

multi-level approach, and it would become even clearer that the methodo-

logical differences between these traditions reflect divergent modelling prefer-

ences and explanatory interests rather than divergent empirical commitments

(Okasha [2016], p. 440).10

Fourth, and most fundamentally, neither the generalized Hamilton’s rule

nor Price’s rule, taken in isolation, says much about the causal processes

driving evolutionary change. Like the Price equation itself, these rules are

highly abstract, statistical results, compatible with a wide range of underlying

causal explanations of change. There are many different causal explanations

for the satisfaction of Hamilton’s rule (for reviews, see West et al. [2007];

Bourke [2011]). The same goes for Price’s rule: it provides a different way of

carving up the change in gene frequency, but it too does so without implying

anything in particular about the causes of change. It would therefore be a

mistake to infer the identity of kin and group selection, conceived as causal

processes responsible for change, from an equivalence result that merely con-

cerns the relationship between two statistical conditions for change.

Of course, if we were to stipulate that by the term ‘kin selection’ we mean

Hamilton’s rule and by the term ‘group selection’ we mean Price’s rule, evad-

ing the issue of causality, then there would be little to add to the equivalence

result in Equation (3). But I doubt whether this is the most useful way to

employ these terms. After all, these terms intuitively refer to kinds of causal

process—to things that actually happen in natural populations, and that fea-

ture in causal explanations—and not to formal methods, modelling traditions,

or statistical conditions for change. I think we should hold on to that intuition.

I contend that the right moral to draw from the formal equivalence of

Hamilton’s rule and Price’s rule, and other similar equivalence results, is

not that kin and group selection are identical causal processes, but rather

that purely statistical formalisms lack the resources to capture the causal dis-

tinction between them.11

10 Goodnight ([2013]) suggests two ways in which the explanatory interests of the kin selectionist

and contextual analysis traditions diverge: contextual analysis focuses on phenotypes whereas

kin selectionist approaches tend to focus on genotypes (although many models in the kin

selectionist tradition also focus on phenotypes, such as (Queller [1992b]; Frank [1998];

McGlothlin et al. [2014])); and contextual analysis focuses on away-from-equilibrium change,

whereas kin selectionist approaches tend to focus on finding equilibria (although many models

in the kin selectionist tradition also focus on away-from-equilibrium change, such as (Hamilton

[1964]; Queller [1992b])). These differences indicate different modelling preferences and explana-

tory interests, not deep disagreements about the causes of evolution.
11 A point also stressed by Birch and Okasha ([2015]), Okasha ([2016]), and Lehtonen ([2016]).
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3 Individual- and Population-Centred Approaches

Broadly speaking, there are two approaches one can take to capturing the

causal distinction. One is an individual-centred approach that explicates the

distinction in terms of differences in the causal path that runs from a focal

individual’s genes to its fitness. The other, which I will develop in this article, is

a population-centred approach that explicates the distinction in terms of

structural properties of populations. To provide a rationale for pursuing the

second approach, I should comment briefly on the first.

Samir Okasha ([2016]) has recently pursued the first approach, drawing on

the notion of a causal graph (see Spirtes et al. [2000]; Pearl [2009]). Okasha

suggests that, in paradigm cases of group selection, a causal path runs ‘up-

wards’ from the individual gene frequency of a focal individual (pi) to the local

group’s gene frequency (Pi), then through the group gene frequency to the

group mean fitness (Wi), and finally ‘downwards’ from group mean fitness and

an ‘allocation mechanism’ to the focal individual’s fitness (wi) (see Okasha

[2016], Figures 8 and 9). In paradigm cases of kin selection, by contrast, there

is no causal path running via the group means and no allocation mechanism.

Instead, we have a causal path running directly, at the individual level, from

the genes of one individual, via its own behaviour, to the fitness of another

individual, and the fitness of the group is determined by the individual fitness

of its members (see Okasha [2016], Figure 6). Figure 1, reprinted from

(Okasha [2016]), depicts the relations between individual and group fitness

in the two cases, without including genotypes (for more detailed figures, see

Okasha [2016]).

Okasha’s graphs for paradigm cases of group selection posit ‘bottom-up’

causal relationships between individual gene frequencies and the group gene

frequency and ‘top-down’ causal relationships between the group mean fitness

and individual fitness values. I am uneasy with this aspect of the proposal,

because I do not see the relationship between a set of individual properties and

the group mean of those properties as one of causation. It strikes me as more

accurate to describe this as a relationship of supervenience, because two

groups cannot differ in their mean value of some property unless there is at

least one difference between their respective sets of individual values.

Foreseeing this problem, Okasha argues that, although these relationships

would not normally be considered causal, they ‘can be depicted as if [they]

were causal without violating the principles of causal modelling’ (Okasha

[2016], p. 449). However, this ‘as if’ move leads to a concern about whether

the direction of these arrows is adequately constrained by the causal facts. In

all cases, Wi supervenes on the set of wi values. In some cases, Okasha draws a

causal arrow from wi to Wi; in other cases, he draws a causal arrow from Wi

to wi. Why is the same relationship of supervenience to be represented in some
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cases by a top-down causal arrow and in other cases by a bottom-up causal

arrow, and what constrains this choice?

Okasha’s view is that the choice depends on the ‘direction of metaphysical

determination’ between wi and Wi, which may be ascertained using ‘modal

intuitions, empirical knowledge of the system being modelled, or both’ (p.

451). For example, Okasha suggests that, if wi depends on the sharing of a

group payoff, such as a large animal carcass, then it accords with intuition to

say that the individual fitness values are metaphysically determined by the

group mean fitness; whereas, if wi depends only on payoffs obtained separately

by individuals, such as smaller animals they have hunted individually, then it

accords with intuition to say that the group mean fitness is metaphysically

determined by the individual fitness values.

I do not share these intuitions: my intuition, for what it’s worth, is that a

group mean is always metaphysically determined by the individual values over

which it averages, and that this remains the case even when the individual

fitness values are causally explained by the sharing of a group resource. If this

is right, then the arrow between wi and Wi should always be a bottom-up

arrow, and never a top-down arrow. However, I take it that intuitions on this

question will differ, as will opinions regarding the evidential weight such in-

tuitions merit. The deeper concern here is that Okasha’s picture makes the

classification of a process as one of kin or group selection dependent on such

intuitions. This, I suggest, motivates the development of an alternative ap-

proach that can classify a process on the basis of its empirically observable

features, without relying on intuitions about the direction of metaphysical

determination that are subject to interpersonal variation.

Figure 1. An illustration of the causal graphs approach. Case (a) is a paradigm case

of kin selection; Case (b) is a paradigm case of group selection. The mathematical

relation between group fitness (Wi) and individual fitness (wi) is the same in both

cases: Wi is the group mean of wi. However, in Case (a) the individual fitness values

metaphysically determine the group mean; whereas in Case (b) the group mean, in

conjunction with an allocation mechanism, metaphysically determines the individ-

ual fitness values. Figure reprinted from (Okasha [2016], Figure 4).
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A related but subtly different problem for Okasha’s graphs concerns the

arrow at the group level that runs from Pi to Wi. If we accept that the true

relationship between a set of individual properties and the group mean of

those properties is one of supervenience rather than causation, we run into

traditional philosophical concerns about the causal efficacy of supervenient

properties. Can group means cause other group means, or can the appearance

of a causal relationship between two group means be explained away as a by-

product (that is, an ‘epiphenomenon’) of causation at the level of individual

properties? So-called causal exclusion arguments, a staple of the philosophy of

mind for several decades, seem to have some purchase here (Kim [2005]).

This is not the place for a lengthy discussion of such arguments, or of the

numerous responses to them (for a review of this area, see Robb and Heil

[2014]). Okasha ([2016], p. 450) is right, I think, to set this issue to one side for

his purposes. However, the way in which he does so leads to a problem. After

acknowledging that the question of causal exclusion is a ‘controversial meta-

physical issue that is better not to prejudge’, Okasha aims to sidestep the

question by explicating the meaning of causal arrows between group variables

in terms of hypothetical interventions on the supervenient property and its

lower-level supervenience base:

[. . .] the following convention is adopted here: in a causal graph in which

one variable supervenes on others, when we consider hypothetically

intervening on the supervenient variable we do not hold fixed the

variables on which it supervenes, but rather alter them to preserve

consistency. Modulo this convention, causal arrows going out of

supervenient variables, if any, can be understood in the usual way.

(Okasha [2016], p. 450)

Thus, we are to interpret a causal arrow running from Pi to Wi as implying

that a counterfactual intervention on Pi and the individual gene frequencies

over which it averages would lead to a change in Wi. This renders such arrows

neutral regarding the causal exclusion problem, since even a sceptic about

full-blooded causation between group means should not object to the meta-

physically thin relations of counterfactual dependence Okasha takes the

group-level arrows in his graphs to imply. The trouble with this manoeuvre

is that this thin sort of counterfactual dependence holds even in cases in which

there is intuitively no group selection at work.

Consider Williams’s ([1966]) famous example of a population of deer, struc-

tured into herds. Herds containing faster deer are more successful than those

containing slower deer, but only because faster individuals are more successful

at evading predators than slower individuals. This is usually considered a case

in which there is no genuine group selection—only covariance between a

group’s mean running speed and its mean fitness caused by natural selection

acting on individuals (Okasha [2006], Chapter 3). Yet if one were to intervene

Jonathan Birch10

D
ow

nloaded from
 https://academ

ic.oup.com
/bjps/advance-article-abstract/doi/10.1093/bjps/axx028/4100192 by guest on 13 M

ay 2019



on the mean running speed of a herd of deer, altering the individual running

speeds of the group members to preserve consistency, this would make a dif-

ference to the group mean fitness. Okasha cannot consistently omit a causal

arrow from Pi to Wi in such cases (as in Okasha [2016], Figure 5), given his

apparent interpretation of the meaning of such an arrow.

I do not see these as fatal objections to the individual-centred approach

Okasha pursues, but they are enough to motivate the development of an al-

ternative. There are two key ideas at the heart of my approach that mark

important departures from Okasha’s. First, I see the causal differences be-

tween kin selection and group selection as differences of degree, not all-

or-nothing differences explicable in terms of the presence or absence of certain

causal relationships. Second, I take it that the degree to which a selection

process resembles a paradigm case of kin selection or group selection depends

primarily on the structure of the population. Okasha’s graphs implicitly make

assumptions about population structure (for example, a graph containing a

‘group gene frequency’ variable implicitly assumes the existence of groups),

but they do not give population structure a central role. I favour an approach

that explicitly accounts for the differences between kin and group selection in

terms of the structural features of populations, bringing the role of population

structure to the fore.

4 Two Influences: Hamilton and Godfrey-Smith

Before setting out the details of my proposal, I want to acknowledge (and

highlight the insights of) two important influences. First, here are Hamilton’s

([1975], p. 337) own views on the relationship between kin and group (multi-

level) selection:

If we insist that group selection is different from kin selection the term

should be restricted to situations of assortation definitely not involving

kin. But it seems on the whole preferable to retain a more flexible use of

terms; to use group selection when groups are clearly in evidence and to

qualify with mention of ‘kin’ (as in the ‘kin group’ selection referred to by

Brown), ‘relatedness’ or ‘low migration’ (which is often the cause of

relatedness in groups), or else ‘assortation’, as appropriate. The term ‘kin

selection’ appeals most where pedigrees tend to be unbounded and

interwoven, as is so often the case with humans.

Although Hamilton in this passage initially sounds sceptical of there being a

useful distinction to be drawn between kin and group selection, he then pro-

ceeds to set out a nuanced way of thinking about that distinction. As I read it,

he takes the view that the terminology of ‘kin selection’ and ‘group selection’

does track real and biologically important differences, but the differences that

matter are differences of degree in aspects of population structure. The degree
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to which groups are ‘clearly in evidence’ matters, as does the degree to which

assortment is explained by kinship. But the distinction is not clean or neat; it is

not a dichotomy.

A second inspiration is Peter Godfrey-Smith’s ([2006], [2008]) work on the

varieties of population structure. Godfrey-Smith contrasts group-structured

populations with what he terms ‘neighbour-structured’ populations. In the for-

mer, social interactions are contained within sharply bounded, well-integrated

groups in which everyone interacts with everyone else. In the latter, every

individual interacts with its nearest neighbours, but there are no well-defined

groups: there are only continuously overlapping networks centred on individ-

uals. As Godfrey-Smith notes, one way to conceptualize the difference be-

tween these structures is in terms of the transitivity (or otherwise)

of connections in social neighbourhoods. In the paradigm case of a group-

structured network, the relation of fitness-affecting interaction is perfectly

transitive (if A affects the fitness of B, and B affects the fitness of C, then A

affects the fitness of C). By contrast, in the paradigm case of a neighbour-

structured network—one in which each individual interacts with its four ad-

jacent ‘von Neumann neighbours’ on a square lattice—the relation is perfectly

intransitive: if A affects the fitness of B, and B affects the fitness of C, then A

does not affect the fitness of C, assuming A 6¼C. These should be seen as

extreme cases: real social networks are typically neither perfectly transitive

nor perfectly intransitive, but instead have some intermediate level of

transitivity.

The mathematical literature on network analysis gives us some formal tools

with which to quantify the extent to which a network approximates these

extreme cases. Network analysis has grown rapidly in recent years, and a

great deal of work in this area has concentrated on the problem of identifying

communities within networks (reviewed by Fortunato [2010]). The starting

point for any approach to this problem is to represent the whole-population

social network as a graph in which the individuals are the vertices (or nodes)

and social interactions are the edges (or connections) between the vertices.

Social neighbourhoods of focal individuals can then be represented as sub-

graphs. The vertices to which a focal vertex (vi) is directly connected by an

edge are known as its adjacent vertices. The subgraph N[vi], comprising vi and

all vertices adjacent to vi is known as the closed neighbourhood of vi. This

gives us the basic framework we need to start thinking more formally about

the structure of social neighbourhoods.

One formal tool that is particularly useful for our purposes is the relative

density of a social neighbourhood. Informally, the relative density compares

the number of ‘inner’ connections joining up the members of a social neigh-

bourhood to the number of ‘outer’ connections linking the members to other

organisms outside the neighbourhood. Formally, the relative density is
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defined in terms of two other concepts: the internal and total degree of a

subgraph. Consider the subgraph N[vi], representing the closed neighbour-

hood of a focal vertex. The internal degree of an arbitrary vertex, vj, in N[vi]

is the number of edges directly linking vj to other vertices within N[vi]; the

external degree of vj is the number of edges directly linking it to vertices out-

side N[vi]; and the total degree of vj is the sum of its internal and external

degrees. The internal degree of subgraph N [vi] is then defined as the sum of the

internal degrees of its vertices, and the external and total degrees of the sub-

graph are likewise defined as the sum of the external and total degrees (re-

spectively) of its vertices. The relative density of N[vi] is the ratio of its internal

degree to its total degree (Fortunato [2010], p. 85).

In Godfrey-Smith’s paradigmatic neighbour-structured population, in

which each organism interacts with its four von Neumann neighbours on a

square lattice, the subgraph defined by a focal individual and its von Neumann

neighbourhood has a relative density of 2/5 (0.4): the internal degree is 8 and

the total degree is 20. By contrast, the subgraph defined by a hermetically

sealed social group, with no outward connections, has a relative density of 1.

An intermediate case is a square lattice in which each individual interacts with

its eight ‘Moore neighbours’ (including, in addition to its four von Neumann

neighbours on each side, the four neighbours on the corners between these

sides): the internal degree is 40 and the total degree is 72, implying a relative

density of 5/9 (0.55).

The relative density is very sensitive to external isolation—a subgraph with

some internal connections and no outward connections will always have a

relative density of 1, no matter how poorly integrated it is—but, for any

subgraph with some outward connections, it is also sensitive to the extent to

which the subgraph is internally joined-up. For these reasons, the relative

density provides an attractive way of quantifying the extent to which well-

defined groups are ‘clearly in evidence’ in a population.

5 K and G

My proposal is that we conceptualize the distinction between kin and group

selection in terms of gradated differences in two key structural properties of

populations. I will label these properties as K (for ‘kin-structure’) and G (for

‘group-structure’).12 Kin selection, roughly speaking, is selection on indirect

fitness differences (rb 6¼ 0) that occurs in a high-K population (a population

with a high degree of kin-structure); whereas group selection, roughly speak-

ing, is selection on indirect fitness differences (rb 6¼ 0) that occurs in a high-G

population (a population with a high degree of group-structure).

12 This form of labelling is inspired by that of Godfrey-Smith ([2009]).
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To be clear, this proposal is not intended to capture all current usages of the

terms ‘kin selection’ and ‘group selection’. Rather, it is a proposal about how

these concepts should be used, if we want them to mark a real and evolution-

arily significant distinction among selection processes. It is to some extent

a revisionary proposal, although, as I have been emphasizing, I see it as

well aligned with Hamilton’s own views on how the distinction should be

drawn.

Before explaining K and G, let me stress the condition that, for either kin or

group selection to occur, it must be the case that rb 6¼ 0 in the population as a

whole. In other words, both kin and group selection act on indirect fitness

differences, and therefore rely on the presence of positive genotypic assort-

ment. The requirement may be less restrictive than it initially appears, since, as

I emphasized in Section 2, positive genotypic assortment can arise from

sources that do not rely on genealogical kinship, such as shared habitat pref-

erence and greenbeard effects. If rb¼ 0, then the selection process at work

relies on direct fitness effects alone, and I claim that to count such a process as

one of kin or group selection unhelpfully obscures this fact. If what is on offer

is a direct fitness explanation, we should not invoke these concepts. While I

hope this sounds reasonable on first hearing, many group selection theorists

allow that group selection can occur when rb¼ 0, so I will comment further on

this issue below (in Section 6).

5.1 K

K, the degree of kin-structure in a population, is intended to capture the

overall extent to which genealogical relatives interact differentially with re-

spect to the character of interest. Accordingly, I will refer to populations in

which there is a high degree of differential interaction between relatives as

‘high-K’ populations; and I will refer to populations in which there is no

tendency for relatives to interact differentially as ‘zero-K’ populations.

I do not intend to commit to a single quantitative measure of K, first, be-

cause I want to allow that different measures may be appropriate in different

contexts and, second, because I do not need to commit to a measure in order

to use K to make qualitative comparisons among populations (cf. Godfrey-

Smith [2009]; Queller and Strassmann [2009]). However, for the purpose of

fixing ideas, it may be helpful to think of K as the correlation between social

partner genotypes (with respect to the character of interest) that would obtain

in the absence of any kinship-independent sources of such correlation, such as

greenbeard effects.13

13 In cases where kinship-independent sources are actually absent, this is related to r but not

identical to it, since r is a regression coefficient rather than a correlation coefficient.
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How high does the degree of differential interaction between relatives have

to be before we have a case of kin selection? Because we are dealing with a

continuum of cases here, any cut-off will be a pragmatic choice, and it is

arguably best to avoid any such cut-off. Following Godfrey-Smith ([2009]),

I prefer to talk of ‘marginal’ and ‘paradigm’ cases. Paradigm cases of kin

selection occur in high-K populations. When we have non-zero rb but very

low K, either because r is very low or because it is largely generated by kinship-

independent mechanisms, we have at best a marginal case of kin selection, and

such a selection process is probably more aptly described in other terms.

Human evolution may be an example of a marginal case, since estimates

based on studies of modern hunter-gatherers suggest a value of genetic re-

latedness of around 0.05 in such societies (Hill et al. [2011]; Bowles and Gintis

[2011]).

One might ask: why does K matter? Why is this a structural property worth

estimating? Why are comparisons among populations, in regard to their

degree of K, worth making? My answer is that kin-structure has a special

role to play in generating the conditions for the evolution of stable altruistic

or spiteful behaviour. Genetic correlations can certainly arise without kinship,

as shown by greenbeard phenomena (Hamilton [1975]; Dawkins [1976]). But

there is a standard concern regarding greenbeard effects: altruism that relies

on this mechanism will be stable only if, for some reason, the expression of the

altruistic behaviour cannot be suppressed without also suppressing the pheno-

typic marker (in Dawkins’s famous example, a literal green beard) that at-

tracts benefits from others. If this selective suppression is possible, then it will

pay to be a ‘falsebeard’: an organism who expresses the marker without ex-

pressing the altruism. By contrast, genetic correlations generated by kinship-

dependent mechanisms are not so easy to subvert, because kinship generates

genetic correlation at every locus in the genome (Ridley and Grafen [1981];

Okasha [2002]; Gardner and West [2010]).

5.2 G

G, the degree of group-structure in a population, is intended to capture the

overall extent to which a population contains well-defined social groups, at the

right grain of analysis for generating non-zero rb, that are stable over

the course of the life cycle. A ‘high-G’ population is one in which groups

are well integrated, highly stable, and effectively insulated from other

groups, with no room for ambiguity regarding group membership. John

Maynard Smith’s ([1964]) haystacks model, in which we imagine social inter-

action and reproduction occurring in isolated subpopulations (envisioned as

haystacks inhabited by mice), with occasional mixing events, is a good
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example of this.14 A ‘low-G’ population is one in which, although interaction

is locally structured to some extent, there are no discrete, well-defined social

groups to speak of, because—as in the von Neumann neighbour-structured

populations of Godfrey-Smith ([2008])—social neighbourhoods blur continu-

ously into one another. A ‘zero-G’ population is one in which we do not even

have neighbour-structure: individuals interact with social partners drawn

from the population as a whole, with no regard to their spatial location.

The qualification ‘at the right grain of analysis for generating non-zero rb’

merits emphasis. For example, one might worry that all populations of multi-

cellular animals are ultimately high-G populations: after all, there is always

group structure if one looks at a fine enough grain of analysis, because one can

always describe individual animals as groups of cells. However, this sort of

‘group-structure’ is at the wrong grain of analysis if we want to explain the

evolution of an organism-level social phenotype manifested in interactions

between organisms. The right grain of analysis is that of the organism-level

social network defined by fitness-affecting interactions with respect to the

phenotypic character of interest. The population is ‘high-G’ if that network

can be subdivided into sharp and stable social groups.

As with K, I do not intend to commit to a single quantitative measure of G.

I suspect there is no perfect measure, and that the most appropriate measure

will depend on the context, because the relative importance of the different

properties that contribute to G—internal integration, external isolation, and

stability over time—will depend on the context. But again, for the purpose of

fixing ideas, it may be helpful to have a possible measure in mind. One possible

measure with attractive features is the average, taken over all individuals in the

population and over an appropriate time period, of the relative density of a

focal individual’s social neighbourhood. As we saw in Section 4, this measure

ranges between 0 and 1, and places von Neumann neighbour-structure at 0.4,

Moore neighbour-structure at 0.55, and perfectly integrated, hermetically

sealed groups at 1. The range 0 to 0.4 is occupied by social structures in

which the average social neighbourhood has a greater external degree than

we see in a von Neumann neighbour-structured population, without display-

ing significantly more internal integration.15 The range 0.55 to 1 is occupied by

social structures that display less internal integration and/or external isolation

than in the idealized extreme case, but more internal integration and/or ex-

ternal isolation than we see in a Moore neighbourhood.

14 The place of a haystacks model on the K-axis depends on the parameter values: the size of the

founding population, the assortativity of group formation, and the time of isolation.
15 For example, imagine a structure in which every individual has five social partners drawn at

random from a very large population. This is likely to result in social neighbourhoods with

relative densities of around 1/3.
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The relative density is well suited to measuring internal integration and

external isolation of social neighbourhoods, but less well suited to measuring

their stability, underlining the point that there is probably no single perfect

measure of G. However, the time-average of the relative density over an ex-

tended time period will convey something about the stability of groups over

that time period: if well-defined groups are ephemeral and dissolve soon after

forming, the relative density will be high while they exist but lower once they

have dissolved, resulting in a lower time-average than in a population with

more stable group-structure. So, while the relative density is not intended as a

measure of group stability, time-averages of the relative density may some-

times be useful for that purpose.

As with K, one might ask: why does G matter? Why is this a structural

property worth measuring? Why are comparisons among populations, in

regard to their degree of G, worth making? My answer to this question is to

point to the special role of high-G populations in evolutionary transitions in

individuality. A population that is high-G contains identifiable, stable,

bounded, higher-level entities—namely, social groups—formed of collections

of lower-level entities. These groups are not automatically higher-level indi-

viduals. I take it that higher-level individuality requires some process of col-

lective reproduction (Godfrey-Smith [2009]), as well as the presence of

mechanisms that suppress selection within (or, in Godfrey-Smith’s memorable

terminology, ‘de-Darwinize’) the groups (Michod [1999]; Godfrey-Smith

[2009]; Queller and Strassmann [2009]; Clarke [2013]). Nevertheless, group-

structure is clearly an important precondition for the evolution of higher-level

individuals. When we identify a population as high-G, we cannot conclude

that a transition is underway, but we can conclude that an important precon-

dition for such a transition has been met.

5.3 K-G space

K and G can be imagined as the axes of a two-dimensional space, and we can

think of kin selection and group selection as large, overlapping regions of that

space. Paradigm cases of kin selection occur in high-K populations: they are

cases in which we find selection on indirect fitness differences in a population

with a fairly high degree of relatedness between social partners, and with

kinship-dependent mechanisms serving as the main source of this relatedness.

Paradigm instances of group selection occur in high-G populations: they are

cases in which we find selection on indirect fitness differences in a population

in which social interaction is structured by stable, well-integrated, and sharply

bounded groups. The distinction is not sharp, but nor is it merely arbitrary or

conventional.
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Figure 2 provides a visualization of K-G space, illustrated with some not-

able cases. The placement of the points is not exact and is open to debate: the

aim is simply to provide an intuitive visualization. In the bottom-left corner,

we have populations that are low-K and low-G—populations with neither kin-

structure nor group-structure. An important class of examples are so-called

well-mixed populations in which individuals interact at random such that no

pair of individuals is any more likely to interact than any other. These are

populations in which neither kin nor group selection can be said to occur,

since the required structural features are entirely lacking.

As we move up the K-axis, we come to populations in which organisms still

interact with sets of individuals drawn from the whole population with no

regard to their spatial location, rather than interacting in structured local

neighbourhoods, but in which there is some greater-than-chance probability

of interacting with a relative (such as a sibling). Models of this sort have a long

history in social evolution theory and continue to be studied (Queller [1984];

Allen and Nowak [2015]). These are aptly described as cases of kin selection,

but, since interactions are not contained within localized social groups, they

are not aptly described as cases of group selection.

Figure 2. K-G space. Kin selection and group selection can be visualized as over-

lapping regions of a two-dimensional space defined by the variables K and G.

Locations of points are approximate and for illustration only (see the main text

for commentary on some of the points).
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As we move along the G-axis, we come to Godfrey-Smith’s neighbour-

structured populations, in which there are discernible local neighbourhoods

that structure interaction, but nothing yet resembling well-defined social

groups. A square lattice in which organisms interact with their von

Neumann neighbours and are assigned to vertices at random, with no limited

dispersal, is a zero-K version of this. As we go up the K-axis here, introducing

differential interaction between kin due to limited dispersal, we arrive at popu-

lations that are high-K but still fairly low-G. Models of so-called viscous

populations that make use of von Neumann neighbourhoods and similar

structures, such as the models of Wilson et al. ([1992]), belong in this area;

their precise position will depend on the parameter values. In models of hap-

loid organisms, very high levels of relatedness can be attained due to limited

dispersal from the birth site (in one of the simulations discussed by Wilson

et al. ([1992]), r¼ 0.59), and this is reflected in the figure in the value of K.

Moving further along the G-axis, we arrive at the discrete ‘trait-groups’ of

Wilson ([1975]), which are externally isolated and fairly well integrated

(at least with respect to the trait of interest) while they exist, but which are

not stable for long periods and are typically outlived by their members.

These can be anywhere on the K-axis depending on the role of kinship in

generating assortative grouping, but for illustrative purposes I have put

them at low-K.

In the bottom-right corner, there are populations that are low-K and high-

G. Here, groups are ‘clearly in evidence’ but groups are not composed of close

kin. Bowles and Gintis’s ([2011]) models of human evolution belong in this

region. Bowles and Gintis assume that early human populations were struc-

tured into well-defined, stable groups with low relatedness. Finally, as we go

up the K-axis to the top-right, we arrive at populations that are high in both K

and G. These are the cases for which Hamilton favoured the term ‘kin-group

selection’. In these populations, there is sharp and stable group structure and a

high degree of genetic correlation between social partners due to kinship-

dependent mechanisms.

The evolution of multicellularity is a source of extreme cases in this

corner (Maynard Smith and Szathmáry [1995]; Michod [1999]). Consider

colonial algae such as Gonium: the colonies are clonal, implying high K, and

the group structure is sharp and stable over the course of the life cycle,

implying high G. There is little to be gained by arguing over whether the

selection processes that operate in these populations are cases of kin or

group selection, because they have the core structural features of both.

The term ‘kin-group selection’, which removes the misleading appearance

of competing hypotheses, seems apt for processes in this region of the

space.
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6 The rb 6¼ 0 Requirement

The proposal I have advanced includes the requirement that, for either kin or

group selection to occur, it must be the case that rb 6¼ 0. I noted above that this

requirement, traditionally associated with kin selection, might prove contro-

versial as a requirement on group selection, and it is now time to elaborate

further on the consequences of, and justification for, this requirement.

Let us first consider some of its implications. One is that not all processes of

natural selection occurring in populations that contain groups will qualify as

cases of group selection. Consider again Williams’s scenario in which a group

containing fast-running deer outperforms a group containing slower-running

deer because the faster deer, as individuals, evade predators more easily. This

is not group selection on my account, assuming the trait’s advantage arises

entirely from its direct fitness effects (Okasha [2006]). The intuitive motivation

for excluding these cases is that, although a form of group-structure is present,

it plays no role in explaining the selection for fast running. Similarly, processes

of natural selection that involve interactions among relatives do not qualify as

kin selection if the interactions fail to generate non-zero rb, perhaps because

the interactions are not fitness-affecting, or because social partners, though

related, are not differentially related relative to the population average.

Awkward cases arise when, although rb¼ 0, intergroup conflict plays an

essential role in the generation of a direct fitness benefit. Sterelny’s ([2013])

hypothesis regarding the evolution of hierarchy in early Holocene human

societies provides an interesting example. Sterelny proposes that ruling elites

were tolerated by the majority because the intense and frequent intergroup

warfare of the early Holocene put a fitness premium on strong and centralized

military leadership. Groups with strong leaders were more successful in war-

fare, causing traits associated with hierarchy to spread. Is this a group selec-

tion hypothesis? In one sense it is, because the advantage of acquiescing to the

demands of an elite depends on the existence of intergroup conflict. But on my

proposal, it is not, because the explanation on offer is a direct fitness explan-

ation. Norms of acquiescence evolve because, at an individual level, it pays in

direct fitness terms to adopt them; there is no requirement here that rb> 0.

Not a lot hangs on how we classify these cases, and I propose that we resist the

urge to describe them as cases of group selection. In so doing, however, we

should take care not to forget that direct fitness explanations can still appeal to

intergroup conflict as a source of direct fitness benefit.

If rb 6¼ 0, must we conclude that one or other of kin and group selection is at

work? Not necessarily, for recall that the requirement is intended as a neces-

sary but not sufficient condition. Consider greenbeard effects. Populations in

which the only genetic correlations between social partners are owed to green-

beard phenomena belong in the bottom-left quadrant of Figure 2. They do not
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require group-structure, provided we assume that bearers of the greenbeard

marker can still seek each other out successfully in a non-group-structured

population, but nor do they rely on differential interaction between genealo-

gical kin, since bearers of the greenbeard gene need not be kin in this sense.

Gardner et al. ([2011]) regard greenbeard effects as a form of kin selection,

broadly construed. I would say that these are, at most, marginal cases. It is

important to distinguish clearly between cases in which genealogical kinship is

pivotal, as in paradigm cases of kin selection, and marginal cases in which

kinship-dependent mechanisms are a minor or negligible contributor to r. In

microbes, gene mobility provides another source of locus-specific genetic cor-

relation that does not rely directly on identity of alleles by virtue of descent, as

discussed by Rankin et al. ([2011]), Mc Ginty et al. ([2013]), and Birch ([2014]).

Rankin et al. ([2011]) suggest that this too can be regarded as a form of kin

selection, but I regard it as a highly marginal case. Note that, in some cases,

kinship-independent mechanisms may operate in conjunction with kinship-

dependent mechanisms, such that both contribute to the value of r. We there-

fore have a continuum here—not a dichotomy—ranging from highly marginal

cases of kin selection in which shared ancestry is wholly unimportant to para-

digm cases in which it is essential.

The main reason I anticipate resistance to the idea that group selection

requires rb 6¼ 0 is that rb 6¼ 0 is neither necessary nor sufficient for there to

be variation in fitness between groups. Non-zero rb is unnecessary because, as

in the aforementioned cases of Williams’s fast-running deer and Sterelny’s

explanation for acquiescence to hierarchies, there can be fitness variation be-

tween groups even though direct fitness effects fully account for this variation.

However, as noted above, I think it is unhelpful to classify these as cases of

group selection. Non-zero rb is insufficient due to the possibility of soft selec-

tion with local population regulation, as discussed by Heisler and Damuth

([1987]), Goodnight et al. ([1992]), and Okasha ([2006]). In such cases, we have

a group-structured population, but each group makes the same, fixed contri-

bution to the next generation, and all fitness variation occurs within groups.

Yet grouping is assortative—altruists interact differentially with other altru-

ists—leading to non-zero rb. This population is high-G, suggesting a paradigm

case of group selection by the lights of my account, but there is no variation in

fitness between groups.

If one takes variation in fitness between groups to be the mark of group

selection, then one should take Cov(Wk, Pk) 6¼ 0, not rb 6¼ 0, as the minimal

statistical requirement all cases of group selection must satisfy. This would

add an extra layer of complexity to the account, since kin and group selection

would then differ in their minimal statistical requirements as well as in their

commitments regarding population structure. However, I resist this amend-

ment, because I do not see a compelling case for regarding variation in group
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fitness as necessary for group selection. If well-defined group-structure is

implicated in generating non-zero rb, I take the view that the selection process

can be aptly described as one of group selection, even if groups do not vary in

mean fitness.16

Why insist that group selection must require fitness variation between

groups? I see two main motivations. One is a desire that the conditions for

group selection should be directly analogous to the conditions for natural

selection in a population of individuals, but with ‘groups’ substituted for ‘in-

dividuals’. The conditions for natural selection include fitness variation

among individuals, so group selection must require fitness variation among

groups for a direct analogy to hold.

I reply that, although a direct analogy between the conditions for individual

and group selection would be elegant, it does not deserve high priority. It is

helpful here to invoke Heisler and Damuth’s ([1987]) MLS1/MLS2 distinc-

tion, and to recall that the type of group selection at issue in this article is

the MLS1 type. In MLS2, groups are higher-level individuals or proto-

individuals, reproducing in their own right. In this context, a direct analogy

between the conditions for individual and group selection seems important,

because ‘group selection’ in this sense is simply a higher-level form of individ-

ual selection. In MLS1, by contrast, groups structure interaction at the lower-

level but do not reproduce in their own right, making the need for a direct

analogy seem less pressing (Okasha [2006]). The priority, in my view, is that

the category of group selection demarcates (albeit not sharply) a real and

evolutionarily significant class of selection processes—a class that is worth

distinguishing from the class of kin selection processes. On my account, it

does this: the distinction between kin and group selection highlights real

and evolutionarily significant differences in population structure.

A second motivation is that group selection should be apt to generate group

adaptation, and there can be no group adaptation without fitness variation

between groups (Gardner and Grafen [2009]). I reply that, although the con-

nection between group selection and group adaptation is important, especially

in the context of evolutionary transitions, there should be no requirement that

group selection must be apt to generate group adaptation in all cases. It is

enough that this can happen under some further conditions—conditions that

will include variation in fitness between groups. To insist that group selection

16 My position here is well aligned with what Okasha ([2006]) calls the ‘neighbour approach’ of

Nunney ([1985]), which diagnoses group selection in a group-structured population whenever

there is positive rb. This is closely related to, although not identical to, the ‘contextual approach’

of (Heisler and Damuth [1987]). Both approaches decompose change using regression models of

fitness. The difference is that the contextual approach uses regression models that take group

characters (such as group gene frequencies) as predictors, whereas the neighbour approach uses

neighbourhood characters (such as the average gene frequency of the focal individual’s social

partners). The latter corresponds to the partition of change represented in Hamilton’s rule.

Jonathan Birch22

D
ow

nloaded from
 https://academ

ic.oup.com
/bjps/advance-article-abstract/doi/10.1093/bjps/axx028/4100192 by guest on 13 M

ay 2019



must require variation in fitness between groups is, I think, to insist on too

close a link between group selection and group adaptation.

7 Levels of Organization

One final clarifying remark deserves special emphasis: both kin-structured

(high-K) and group-structured (high-G) populations can occur at multiple

levels of biological organization. If we take a group-structured population

of base-level entities and ‘frameshift’ up a level to consider the population

of groups, this higher-level population will itself have a position in K-G space.

The population of groups may have higher-order group-structure: there

may be sharply bounded meta-groups, or groups of groups, defined by pat-

terns of social interaction. This may lead to higher-level group selection. For

example, there might be higher-level group selection for genes that promote

cooperation among members of the same meta-group who are located in dif-

ferent first-order groups.

The population of groups may also be kin-structured. This will be the case if

groups form well-defined lineages, and if groups that are closely related ge-

nealogically are more likely to interact with each other than groups that are

not. This may lead to a higher-level form of kin selection. For example, if

nearby groups tend to be ‘offspring’ groups of the same ‘parent’ group, there

might be higher-level kin selection for genes that promote cooperation among

nearby groups. This may occur even if the population of groups is simply a

viscous population, with no well-defined meta-groups.

These ideas may sound strange at first hearing, but they are simply unusual

ways of describing something familiar. From the point of view of social evo-

lution theory, multicellular organisms can be regarded as particularly well-

integrated social groups of cells (Queller and Strassmann [2009]; Bourke

[2011]). From this perspective, populations of animals are populations of

groups of lower-level entities, and standard cases of kin selection and group

selection occur in such populations.

This should alert us to the possibility of kin and group selection occurring at

higher levels of biological organization than we usually envisage: that is, in

kin- or group-structured populations of groups of organisms. For example, in

many ant species we find ‘supercolonies’, each consisting of multiple distinct

nests. This leads to the idea that supercolonies may be created and maintained

by group selection acting on groups of nests—a possibility highlighted by

Bourke ([2011]) and investigated by Kennedy et al. ([2014]). Moreover, dis-

persal of offspring nests from parental nests is limited within supercolonies,

raising the possibility that, within a supercolony, kin selection at the level of

the nest favours cooperation between adjacent nests—a possibility discussed

by Chapuisat et al. ([1997]).
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8 The Key Substantive Questions

Debates surrounding kin and group selection are easily derailed by semantic

confusion. This, combined with the plethora of ‘equivalence results’ described

in Section 2, gives rise to the suspicion that there are no worthwhile debates to

be had here at all. But I think this suspicion is misplaced. By identifying kin

and group selection with overlapping regions of K-G space, we make room for

worthwhile debates about the resemblance of a given selection process (such as

early human evolution, or social evolution in microbes, or the evolution of

eusociality in insects) to a paradigm case of kin or group selection. A popu-

lation’s position in K-G space will depend on the answers to the following

questions:

(1) How high is K in the population? That is, how strong are the

genetic correlations between social partners, and how important

are kinship-dependent sources, as opposed to greenbeard effects

and other kinship-independent sources, in generating those

correlations?

(2) How high is G in the population? That is, how internally inte-

grated, sharply bounded, and stable is the group-structure at the

relevant grain of analysis?

These are substantive questions: questions it takes empirical inquiry, and

not just stable semantic conventions, to settle. Moreover, the position of a

population in K-G space has significant consequences for its evolutionary fate:

K makes a difference to the long-term stability of altruism in the population,

while G makes a difference to its chances of undergoing an evolutionary tran-

sition in individuality. So, although the distinction between kin and group

selection is not sharp, these concepts still provide a useful way of

framing meaningful debates about the importance of kin-structure and

group-structure in real processes of social evolution. Kin and group selection

correspond to large, overlapping regions of a space of population structures,

and real populations can be found throughout these regions.
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