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Abstract

The paper deals with aggregation of AR(1) micro variables
driven by a common and an idiosyncratic shock with random
coefficients. We provide a rigorous analysis, based on
results on sums of r.v.’s with a possibly infinite first moment,
of the aggregate variance and spectral density, as the
number of micro units tends to infinity. If the AR coefficients
are not bounded away from unity, the aggregate process
may exhibit infinite variance and long memory. Surprisingly,
if the key parameter of the density function of the AR
coefficients lies below a critical value (high density near
unity), common and idiosyncratic components have the
same importance in explaining aggregate variance, whereas
the usual result, i.e. a vanishing importance of the
idiosyncratic component, is obtained when the parameter lies
above the critical value (low density near unity). Empirical
analysis relative to major U.S. macroeconomic series, both in
previous literature and in this paper, provides estimates of
the parameter below the critical value.

Keywords: aggregation; idiosyncratic-driven fluctuations;
long memory; nonstationarity.

JEL No.: C43

Copyright: by the authors. All rights reserved. Short sections of text,
not to exceed two paragraphs, may be quoted without explicit permission

provided that full credit, including copyright notice, is given to the
source.



1 Introduction

Linear dynamic macroeconomic models based on microeconomic theory usu-
ally contain an autoregressive polynomial. This is the case both with models
derived from intertemporal maximization and with models in which some
form of habit persistence contributes to explain the dynamic behaviour of
the agents. Among the innumerable examples see Sargent (1978), Hansen
and Sargent (1980, 1991), Nickell (1985). A famous exception is Hall (1992);
however, introduction of incomplete information in Hall’'s model produces an
auntoregressive polynomial, see Goodfriend (1992), Pischke (1995), Forni and
Lippi (1997).

If heterogeneity of agents is allowed, so that both the autoregressive co-
efficients and the shocks may vary across agents, the simplest form of the
autoregressive model is

(1 — 0iL)Tis = ue + €at, (1)

where ¢ denotes the individual agent, u; is a macroeconomic shock, common
to all agents, whereas ¢;; is an idiosyncratic shock. Aggregation of model (1),
or simple variants of it, is studied in Goodfriend (1992), Pischke (1995), in
which ¢; is constant across agents, so that only the shocks ¢; are heteroge-
neous, whereas o; may vary in Robinson (1978), Granger (1980), Gongalves
and Gourieroux {1988), Lewbel (1994), Forni and Lippi (1997).

The focus of the present paper is on long memory and non-stationarity
as results of the aggregation of model (1) with heterogeneity of the coeffi-
cients ;. The possibility of long memory for macrovariables resulting from
aggregation of ARMA microvariables had been firstly suggested in Robin-
son (1978), where the distribution for the coefficients a; has not a para-
metric specification. Systematic analysis is presented in Granger (1980),
and Gongalves and Gourieroux (1988): assuming that the coefficients o; are
drawn independently from a Beta distribution over the interval [0, 1], or
[—1, 1], these authors study the behaviour of the n-th cross-sectional aver-
age, i.e. n~' %, Ty, for n tending to infinity, and find that if the distribution
of the coefficients ¢; is sufficiently dense around unity the limit exhibits long
memory, with or without infinite variance. Long memory as a result of ag-
gregation of (1) is also noted in Lewbel (1994}, in which however the focus
is on different aspects of the aggregate variable.



In another line of research, long-memory processes have been shown to
be a valid alternative to the standard ARIMA modelling for many macro-
economic time series: see e.g. Diebold and Rudebusch (1989), Sowell (1992)
and Gil-Alana and Robinson (1997) among others. Thus, as noted e.g. in
Haubrich and Lo (1989) and, with some generalizations, in Michelacci and
Zaffaroni (1997), aggregation of model (1), modified as to include a time
trend, can reproduce relevant features of macroeconomic time series.

As we argue in Section 2, the results obtained so far on aggregation of
model (1) are not based on fully rigorous arguments. Rather, heuristic rea-
soning is often applied, like substituting first moments for averages even
when the former are not necessarily finite. As a consequence, the relative
importance of common and idiosyncratic components in explaining the ag-
gregate variance cannot be correctly assessed. Furthermore, the literature,
with the exception of Robinson (1978), has considered only the case of the
Beta distribution for the coefficients ¢;.

The main purpose of this paper is a rigorous and complete treatment of
the aggregation of model (1), focusing both on the relative importance of
common and idiosyncratic components for aggregate variance, and on the
persistence of aggregate variables. We will make the general assumption
that the o’s are drawn independently from a distribution on [0, 1] whose
probability density B(- ;b), depending on the real parameter b > —1, is as-
ymptotically equivalent to C (1 —a)®, for C > 0, when « approaches unity. If
b > —1/2 then almost surely, i.e. for almost every sequence of coefficients o
drawn independently from B, the n-th cross-section average of the common
component converges in variance to a stationary variable as n tends to in-
finity, whereas the average of the idiosyncratic component vanishes. By con-
trast, if b < —1/2 then almost surely common and idiosyncratic cross-section
averages explode in variance and, strikingly, at the same rate. Thus the el-
ementary result of a vanishing idiosyncratic component does not extend to
model (1) if the 's are, so to speak, dense enough near unity. However, there
is a crucial difference in the asymptotic behaviours of common and idiosyn-
cratic components for b < —1/2: the common component when differenced
converges almost surely to a stationary non-zero variable which gives by inte-
gration an infinite-variance long-memory variable, whereas the idiosyncratic
component, when differenced, tends to zero and nothing can be recovered
by integration. These results are valid for any parametric and nonparamet-
ric specification of the probability density B(: ;b), the Beta representing a
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particular parametric case.

The basic definitions and the results are given in Sections 3 to 6. The
proofs, given in Appendix B, are based partly upon the usual properties of
the Hilbert space generated by the z’s, partly upon a Lemma~—which is based
on a generalization of Kolmogorov’s strong law of large numbers—on sums of
independent random variables not necessarily possessing finite first moment
(see Lemma 1, Appendix A). Our model, as defined in Section 3, is very close
to the one analyzed in Al-Najjar (1995) and Uhlig (1996). However, here we
are mainly interested with the unbounded variance case.

In Sections 3 to 5 we deal with micro and macro stochastic variables
and processes, not with their realizations. In Section 6 we deal with a finite
time period 1,2,...,7T and the corresponding estimated micro and macro
variances, conditional on the values assumed for £ < 0. We obtain exact
asymptotic rates at which estimated variances converge or diverge almost
surely as T' and n tend to infinity. In particular, provided that T tends to
infinity fast enough with respect to n, the result of divergence at the same rate
for common and idiosyncratic averages is reobtained. However, if T is fixed
and n tends to infinity, then, irrespectively of whether b is greater or smaller
than —1/2, the common component tends weakly to a non-zero random
variable, whereas the idiosyncratic component variance tends to zero. Thus,
when we are facing a typical macroeconomic data set, with series resulting
from the aggregation of several millions of individual variables, and a T not
much bigger than few hundreds, the commonly held idea that no idiosyncratic
component is left in the aggregates appears as fairly sensible.

If model (1), modified as to include a time trend, is assumed as a good
approximation to the micro time series, then empirical evidence produced
so far points to a value of b between —1 and —1/2 (significantly less that
—1/2; see Gil-Alafia and Robinson (1997) for recent results on several annual
macroeconomic U.S. series and a survey of previous outcomes on fractional
differencing and macroeconomic time series). In Section 7 we report on an
empirical exercise that we have conducted using U.S. quarterly consumption
data. Consistently with previous results we find a value of b between —1 and
—3/4, thus well below —1/2. Section 8 concludes.



2 The problem

Let us rewrite here model (1) and add some specifications. We want to deal
with a countable infinity of individual processes:

(1 —oiL)zip = us + €54,

where 7 is a positive integer, u,; and ¢;; are white noises, u; 1. €;;_ for any
¢ and any integer k, €;, L €;;, for i # j and any integer k. Let o2 be the
variance of u, and assume that the variance of ¢;; does not depend on ¢, i.e.
that var(e;;) = o2. We are interested in the limit of the process

1>
=E§: i,y

for n tending to infinity under the assumption that the coefficients « are
independently drawn from a distribution on [0, 1} with probability density

B(a).

Consider firstly the aggregation of the idiosyncratic component

The corresponding spectral density is

1 o2 1
- 2
27rn2 E — et |2 2rn ( Z | 1 — e~ ]2) (2)

Then, following Granger (1980), for large n we replace the term within brack-
ets with the expectation of 1/|1 — ae™*|2, obtaining

1
2rn o |1 — ae ir |2

B(a)do. (3)

The spectral density at the zero frequency and the variance of E,; are re-
spectively

% /0 1 ( L Bla)do, (4)

2mn 1 - a)?



and

oz 1 1

Now, as long as the expectations of (1 — @)% and (1 — a?)~!, appearing
in (4) and (5) respectively, are finite, the replacement is correct and leads,
incidentally, to the result that the idiosyncratic component tends to zero in
mean-square as n tends to infinity. However, a uniform distribution for the
«’s is sufficient to yield an infinite integral both in (4) and (5). When this
is the case, (4) and (5) no longer help to know the asymptotic behaviour
of the corresponding averages What we really need to know are the rates
at which 3% (1 — ;)2 and 7, (1 — o)™ tend to infinity. Secondly, the
standard approach necessarily requires to evaluate the integrals in (4) and
(5), obtainable in closed-form only for specific parameterizations, e.g. when
B(a) is a Beta density.
Consider now the common component:

This may be rewritten as

1 & 1.2
Un,t = U + (-— ZCB,’) Up—1 + (—— Zaf) Up_o+ . (6)
iz nia

Then, following Gongalves and Gourieroux (1988), we replace (6) with
Up = us + paus—1 + pattie—o + -+, (7)

where gy is the k-th moment from zero of the density B{a) and therefore
the limit, almost surely, of %, af /n. The spectral density at zero and the
variance of U, are I

2—“(1+.u1 + iy + - )2 (8)

and ‘
oa(l+pd+pud+--1), (9)

respectively. However, firstly we must observe that the vectors U, and U,
belong to the infinite-dimensional Hilbert space spanned by u;_j, for & =



0,00. Convergeace of each of the cocficients of (6) to the corresponding
coefficient of (7) is a necessary but not sufficient condition for convergence of
U to U, in mean-square, i.e. in the metric of the Hilbert space. Secondly,
when (8) or (9) are not finite, the replacement, like in the idiosyncratic
case, does not give sufficient information on the asymptotic behaviour of
the finite-sample averages. Thus, we will have to deal simultaneously with
two problems: firstly, the asymptotic behaviour of averages that correspond
to random variables with no finite first moment; secondly, the asymptotic
behaviour of stochastic variables which take values in an infinite-dimensional
vector space. Moreover, the a’s will be drawn from an arbitrary density
function, instead of the Beta employed almost exclusively in the literature

on the problem.

3 Basic definitions and assumptions

In the sequel ~ will denote asymptotic equivalence, ¢y, Cp will denote con-
stants depending on a parameter 8.

Assumption 1. Let G be the interval [0, 1) and B o fomily of absolutely
continuous-distributions on G, depending upon a real parameter b € (~1, 00),
whose densities are indicated by B(- ;b). We assume that for a — 17, there
ezists a Cp > 0 such that

B(a;b) ~ Gy (1 — ). (10)

Remarks. (1) We point out that Assumption I does not impose any constraint
on the behaviour of the probability density B(- ; b) within any given interval
[0, &], with & < 1, and is therefore typically non-parametric.

(2) All our results still hold if we modify Assumption I in the following way:
for any member of the family B there exist a b, with —1 < b < 00, and a C
such that the density is asymptotically equivalent to C(1 — a)® for & — 1-,
so that there is a subset of By C B corresponding to each b. Assuming, as
we have done, thal therc is only one element in By for each b has ounly the
effect of simplilying the notation. As a particular case of the more general
assumption, we could assume that the members of B depend on a vector
" 8 € 6 € R s> 1, provided thal there exists a function b: © — (-1, 00)



such that B(a;6) ~ Cy(1 — 0)’@, as @ — 17. An example with more than
one parameter is that of the Beta density function.

Let (Q, F,P) be a probability space and let us denote by LJ the Hilbert
space of all real-valued, square-integrable, zero-mean random variables de-
fined on €. Restricting to L) implies that var(z) =E(z?) and that mean-
square convergence is equal to convergence in variance.

We want to give a precise meaning to the idea that any ‘individual’ in
G is endowed with an individual random process, whose variables belong to
LY. Random processes belonging to different individuals are orthogonal to
each other and are orthogonal to a random process which is ‘commeon’ to all
individuals. A rigorous definition of the individual processes requires that
we consider functions defined on G with values in L), i.e. random variables
associating with any a € G a real random variable defined on 2.
Assumption YI There exist: (1) a family of random variables

(;5; . G—}Lg,

fort = —o0, 00, with ¢i(r) denoted by €., (2) afamzly u; € LY, t = —o0, 00,
fulfilling the following properties

(i) u; is a white-noise process.

(¢i) The probability distribution of e, is independent of o and t. Moreover,
€.+ 18 @ white-noise process for any o € G.

(#ii) The random variables v, and €, are orthogonal for any o € G, any t
and 5. For o # 3, the random variables €, and eg s are orthogonal for any
t and s.

The white noises u, and €, will be called common and idiosyncratic shocks

respectively.
Considering first and second moments, Assumption II implies that:
Elens) = 0, for any ¢ and t.

s=t and any @, 0<o0?< oo,

COU(Ea,t: 6&,3) = s # t, and any .

0
- Lo
(1) = 0.

{

2 2
. o, s=t, 0<og, <00,
cov(u, us) = 0. st
cov(uy, €as) = 0, for any a and any ¢,s.
cov(€nt,€3s) = 0, for any a # 3 and any ¢,s.
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The definition of the variables that we want to aggregate is based on u,
and €,;. Precisely, the family v, : G — L} is defined as

1 1
ot =T L™ T-aL ™

Yi(a) =z

for t = —oo, 00. Thus any individual @ € G is now endowed with the process
Z o 1, Whose variables belong to L3, resulting from the summation of a common
and an idiosyncratic autoregressive component.

Remark. The variable z,, is I{0). However, no important change in our
results occurs if in the definition above we put (1 — L)z, instead of z,, so
that the microvariable is I{1) (see Lewbel’s model reported in Section 7). Ob-
viously the order of integration of the aggregate variable would be increased
by one.

Lastly, we want to consider infinite sequences of independent drawings
from G. It will be convenient to formalize this by considering the cartesian
product G = [I2, G;, with G; = G, with the product probability measure.
If

A - (051,6!2,...) e g,

A, will indicate the truncation (o, y,...,0,). Given A € G we define the
sample averages

1 k4
UAﬂ,t = —Z
n - 11
1 n
Egpr =-—
n ] 1 a; L

Xa,z U t—l—EAm

LT

The problems we want to study are: (1) whether there exists a vector in
L3 to which X4, ; converges almost surely, i.e. almost everywhere in G, in the
metric of LY, i.e. in the mean square of real-valued variables defined on ;
(2) under what circumstances this limit can be defined as the first moment
of 1, meant as a variable defined on G with values in L}. We shall be able
to give a complete answer, depending on the parameter b, separately for the
components Uy, ¢ and E4_ 4.



Closely linked to the variables ¢, is the variable f : G — L{—n, 7], where
L[~m, =] is the space of real-valued absolutely integrable functions defined
on [—m, w], which associates with any o the spectral density of z,;. By
Assumption IIiii, f associates with any o € G the function:

o2 1 o? 1

U + £ .
21 |1 — 0e~ 2 21 |1 — e |2

sa() =

Moreover, for the Spectra.l densities of Uy, ; and E4, ; we have, by Assump-
tion II:

i . 1 1
U _ %u
SA"( ) 27 n? wzzl (1—-053 —"‘l—ae"‘)
2 1 1
E A ae
Saan() 2 n2 Z|1——cu=3 A2’

where the second formula holds for all sequences A with no repetitions, and
therefore a.e. in G (since B(- ;b) has no atoms), the question being whether
there exist functions in L[—, ] to which such spectral densities converge.

Lastly, by Assumption II, the variances of Ua,; and E4,; are, respec-
tively:

U 0.2 n
Vi, =30 70—
An 2
n I,j—_-l ]. - O.’tQ!J
2 n
ag
VE =<
A
" n? ; I-— af

the second formula holding for all sequences A with no repetitions, and there-
fore a.e. in G.

4 The idiosyncratic component

We begin with a theorem that gives a complete description of the asymp-
totic behaviour of Vﬁ . We only need a few premises. Firstly, Assumptions I
and II will be tacitly supposed to hold in all the results below. Secondly, the
phrase “for A almost everywhere in G” has been preferred to “almost surely”,
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which is customary when stating strong laws of large numbers. Lastly, let us
introduce the concept of sufficiently fast growing sequence :

Definition A sequence {f,,n = 1,2,...} of positive real numbers is suffi-
ciently fast growing (SFG) if

o]

> 1/(nfa) < oo

n=1

Remark. For example, the sequence f; = log ¢ is not SFG, whereas the
sequence f; = (log 4)¢, for any d > 1 is SFG. The definition does not es-
tablish an upper bound to the speed at which an SFG sequence may grow.
However, as it will be clear below, we are interested in SFG sequences that
grow as slowly as possible, but not so slowly as to violate the above condition.

Theorem 1 Asn — o0
(i) If b > 0, then for A a.e. in G there exists a positive real C4 (depending
on A) such that

Vf‘ S CA‘!?,*I.

(i) If b = 0, then for A a.e. in G there ezist positive reals c4 and Cy4 such
that
can™t < Vi < Can~'logn.

(111) Let b < 0. Given an SFG sequence {f.}, for A a.e. in G there ezist
posttive reals cy and Cay (depending both on A and {f,}) such that

_2b41 E _2ba1 s
can” < VAn < CA,fn o+t fn .

Remarks. (1) It must be pointed out that for & > —1/2 Theorem 1 gives
the usual result that the average of the idiosyncratic component vanishes in
mean-square as 7 tends to infinity, i.e. that E4, . tends to zero in L for A
a.e. in G.

(2) For b = —1/2 Theorem 1 in inconclusive because the lower bound is
constant, but the upper bound is Cy ¢ f,.

(3) For b < —1/2 we have a rather striking result: the variance of E4, . tends
to infinity at least as fast as n~@+D/C+1) for 4 ae in G.

(4) When b > 0 (case (i)), we can easily obtain an exact rate result by some
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version of the law of iterated logarithm (Stout 1974). The same is true for
case (i) of Theorem 2, 8 and 9.

The following two theorems describe the asymptotic behaviour of the
spectral density of Ea_ ¢ at A =0, and A # 0 respectively.

Theorem 2 Asn — oc
(1) If b > 1, then for A a.e. in G there exists a positive real Cx such that

Si‘ (0) < OAn“l.

(1t) If b = 1, then for A a.e. in G there exist positive reals c4 and Ca such

that
can™' < 5 (0) < Can~'logn.

(1i1) Let b < 1. Given the SFG sequence {f,}, for A a.e. in G there exist c4
and Cy4 5 such that

26 2 L1zt
% E — 2 3T
CAn b+1 S SAn (0) S CA’fn b+t fn .

Remark. The spectral density of E4_ . at A = 0 tends to infinity when b < 0,
irrespective of whether the variance of E4, . tends to zero, for b > —1/2, or
to infinity, for b < —1/2.

Theorem 3 Asn — oo, for A a.e. in G the spectral density of E4, ; tends to
zero pointwise in (0, 7] for any b > —1 (and therefore irrespective of whether
the variance tends to zero or to infinity). If b > 0 pointwise convergence to
zero occurs in [0, 7).

Remark. The result of Theorem 1 for b < —1/2 must be integrated with
Theorem 3: when n is huge and b < —1/2 the contribution of E4,: to the
variance of X4, does not vanish but concentrates in a thin peak in the
vicinity of A = 0.

The usunal statement that the idiosyncratic component is washed away
by aggregation is valid in our model only for b > —1/2. However, the next
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theorem provides a weak generalization of the usual statement: the vari-
ance of the innovation to the aggregate idiosyncratic variable tends to zero
irrespective of the value of b. For, consider the Wold representation

EAn,t = agn (L)nAn)t’

where 14, ¢ is white noise, a§ _(0) = 1, while ¢} (L) has no roots of modulus
smaller that unity, i.e. is fundamental (Rozanov 1963).

Theorem 4 For A a.e. inG

lim var(n,:) = 0.

The last theorem gives a negative answer to the question whether the
asymptotic behaviour of E4_ ¢, for & < —1/2, could be recovered by firstly
differencing, taking the limit and then integrating.

Theorem 5 For any b > —1, and A a.e. in G, the first difference (1 —
L)E4, , converges to zero in LY.

The results obtained deserve some comments. Firstly, it is a fairly ele-
mentary observation that for A a.e. in G the average E4,; either converges
20 zero or does not converge. For,

1
Epg 1= —€qp+ —€app+ -+ —€a,t
n n n

If E4, 4 converges to E then
o oo
E =ciea; + Cobapp+ " = D Ci€ayp-
i=1

Since the €, are mutually orthogonal for A a.e. in G, then convergence
of E4,; to E implies that ¢; is the limit of 1/n, i.e. that ¢; = 0. Now,
Theorem 1 considerably improves on this observation: for b > ~1/2, E4_,
converges to zero, for b < —1/2, it diverges in variance and we know the rate
of divergence.

12



Secondly, Theorems 3, 4 and 5 are very important to understand the
difference between the asymptotic behaviour of common and idiosyncratic
component. For, consider the average

1& 1

i=1

Since the polynomial on the RHS is not necessarily fundamental (it might
have some roots inside the unit circle), let us write the Wold representation
of UAn,t as

Uspt = a3, (L)van e

with a§ (L) fundamental, a§ (0) = 1 and vg4,, white noise. As is well
known var(vg, ;) >var(u:), equality holding if u is fundamental for Ug, ;.
Therefore, unlike the innovation of the idiosyncratic component average, the
innovation of the common component average can never tend to zero, nor
does the spectral density tend to zero for any A # 0. Further observations
on the difference between common and idiosyncratic asymptotic behaviour
are postponed to the next section.

Thirdly, one may wonder whether the consequence of Theorem 1, that
E4,+ tends to zero a.s. when b > —1/2, can be read as a strong law of large
numbers, i.e. the statement that £, ; tends a.s. to the mean of the function
associating with @ € G the variable (1/(1 — aL)e,s € LJ. The answer
depends on the definition of the mean, i.e. of the integral of a function
defined on G with values in L. This problem has been recently addressed
in economic literature in Al-Najjar (1995) and Uhlig (1996). In both papers
the definition of Bochner and Pettis integrals are recalled. Given a function
F : G — L, the Bochner integral is a straightforward generalization of the
Lebesgue integral, i.e. the limit of the sum of simple functions approximating
F' in mean square. The Pettis integral of F is a function y € L3 such that
Jo9ydP = [g [ 9F(a)dP] B(a,b)de, for any g € LY. In both papers it is
observed that the Bochner integral of an idiosyncratic variable does not exist
(Al-Najjar (1995), p. 1220; Uhlig (1996), p. 46). However, both €,; and
(1/(1 ~ aL)e,, are Pettis integrable and the Pettis integral is zero. Uhlig
(1996) proves this result for a bounded idiosyncratic variable (p. 45), but
the proof can be easily extended to an unbounded idiosyncratic variable (for
instance, by using the argument employed in Al-Najjar (1995), p. 1200,
footnote). Thus Theorem 1, for b > —1/2, implies a strong law of large

13



numbers for the variable (1/(1 — aL)eq s, with the mean defined as the Pettis
integral. However, for b < —1/2, the Pettis mean is still zero whereas E4, ;
diverges in variance a.e. in G, so that the strong law breaks down.

5 The common component

Let us denote by usx the k-th moment from zero of the probability density
B(- ;b). We recall that for any integer k and real b

1 Tk +1(+1)
fo uh(1 - u)'du = T(k + b+ 2)

By Stirling formula and Assumption I, as £ — o0

poe ~ CT(b+ 1)k=0+0),

for C' > 0. Therefore 3%, 115, converges if and only if & > 0, while 22, 117,
converges if and only if b > —1/2. Thus for b > —1/2 the series

Ups = 1+ poiL 4 [J,b,gLQ + - )ut Mb(L)ut

is well defined in LY. Moreover, going back to the definition of Uy, ; (Section
3), and putting

n

Ma (L) = ~. Z

i=1

l—ag

each of the coefficients of M4, (L) converges, as already observed in Section 2,
to the corresponding coeflicient of M,(L) for A almost everywhere in G. The
following theorem gives a positive answer to the question whether there is
also convergence of Uy, ¢ to Uy in mean-square.

Theorem 6 Ifb> —1/2 then for A a.e. in G
Jim Uy, p=Usy in L3,
that s

JLIEO V&I‘(UAmt - Ub,g) = (.
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An easy consequence is the following:

Theorem 7 Ifb > —1/2, then s§ ()), the spectral density of Ua, s, con-
verges in first-mean to the spectral density of Uy, for A a.e. in G.

The next two theorems parallel Theorems 1 and 2.

Theorem 8
(i) If b > —1/2, then for A a.e. in G

ity V5, = vax (Ui
(this is a corollary to Theorem 6 and is listed here for completeness).
(11) If b = —1/2, then for A a.e. in G there exist positive reals ca and Cy
such that

calogn < VY < Cu(logn)’.

(11) Let b < —1/2. Given an SFG sequence {fn}, for A a.e. in G there exist
positive reals c4 and Cy s such that

_2b41 _241 2L
CaTy b+l SV,E’; SCAJTL T:Tfn AR

Remark. For b < —1/2 the variance of the common component average
diverges. This is precisely the same result obtained for the idiosyncratic
component average. Moreover, the speed at which VE‘ diverges is precisely
the speed at which V£ diverges. This may be surprising because, leaving
aside the difference between o2 and o2, given the matrix whose entries are
1/(1-ez0y), VE is obtained by summing only the n diagonal entries whereas
VX is obtained by summing all the n? entries. To reach an intuitive under-
standing of this fact let &, denote the maximum of A4,. The asymptotic
behaviour of VAD; depends on the speed at which &, tends to unity, i.e. on
how fast an oy, with A > n and oy > o, is drawn. It must be pointed out
that, irrespective of how fast this occurs, when a4, is drawn the diagonal term
1/(1 — of) dominates the terms 1/(1 — a;a ), with ¢ < A (so that o; < ).
Now, if & < —1/2 the maximum of A, shifts so frequently towards unity
that only the diagonal terms matter, so that there is no difference in the
asymptotic behaviour of the two components. By contrast, when & > —1/2,
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occurrence of big o’s is not so frequent as to compensate for the different
number of terms in Vg and Vﬁ respectively, so that the first converges to a
finite limit while the second vanishes.

Theorem 9

(i) If b > 0, then for A a.e. inG

2
U
lim 53 (0) (Eum) s (0).

(i1) If b = 0, then for A a.e. in G there exist positive reals c4 and Cy such
that

calogn < s§ (0) < Ca(logn)>.
(1i) Let b < 0. Given an SFG sequence {f,}, for A a.e. in G there exist
positive reals cq and Ca ¢ such that

2b 26— p2b
- U - 254
can” BT < sy (0) < Cypn™ 54 fr °7

As already observed, for & > —1/2 the sequence of the moments p, is
square summable, so that U, belongs to LY. As a consequence,

oo
2 —ilAs
O-U E p'bas €

s=0)

2 < 00 (11)

for A almost everywhere in [0 7| (this is an application of Riesz-Fischer The-
orem). In the next theorem we prove that the LHS in (11) converges for any
b> —1 and any A > 0. Thus sY(-) makes sense for any b > —1, denoting a
spectrum for b > —1/2, a pseudo-spectrum for b < —1/2.

Theorem 10
(i) Forb> —1 and A # 0

2
B(a; blda| < oo.

—iAs

2m

() = 22

If b > 0 finiteness holds for any A.

(1) For b > —1 and A a.e. in G the spectral density of Us, s, 1.e. s§ (A),
converges to sy (A) for any A € (0, x}. For b > 0 pointwise convergence
occurs in [0, 7]

et
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The next theorem contains a result on the memory of Uy ; for any feasible
b, i.e. b > —1 (more rigorously, on s{(}) in the vicinity of A = 0), and on
the memory of the limit of (1 — L)U,, ; for b £ —1/2. The theorem neatly
shows the link between the cross-sectional distribution of the coefficients ¢;
and the second order properties of the aggregate process: the fatter the tail
of the cross-sectional distribution around unity, the stronger the memory of
the aggregate process. It is worthwhile noting that since our model for the
cross-sectional density is non-parametric (see the Remarks on Assumption
I}, this simple yet powerful result is valid for any particular specification.

Theorem 11 As A — 01

c A2, b< 0
YN ~ 4 dlog(), b=0
¢, b>0

with ¢, , " positive.
Ifb < —1/2 then for A a.e. in G (1 — LYU,, converges in variance to a
stationary non-zero limit, whose order of integration is —(1 + b).

Remarks. (1) The asymptotic behaviour of s (-), for A — 0%, has been ob-
tained also for b < —1/2, when s¥(-) is a pseudo-spectrum. Summing up,
for b > —1/2 the spectral density s¥(-) corresponds to a stationary variable
(which is already known) with long memory for b < 0 and short memory for
b > 0; whereas for b < —1/2 s/ (-) is a long-memory non-stationary pseudo-
spectrum.

(2) An immediate implication of Theorem 11 is that the micro-parameter b
can be directly estimated from the estimate of the slope near the zero fre-
quency of the periodogram of the macro-data.

We conclude with two comments. Firstly, the dichotomy observed for
the idiosyncratic average, convergence to zero or no convergence, does not
hold for the common component: we have divergence for b < ~1/2 but
convergence to a non-zero vector for b > —1/2. The same observation holds
for the spectral density of the common component, that does not vanish
asymptotically for any A, unlike what has been shown for the idiosyncratic
component in Theorem 4. Lastly, comparing the second part of Theorem

17



11 to Theorem 5, we see that the first difference of the common component
average converges to a stationary non-zero limit irrespective of even when
b < —1/2, whereas differencing annihilates the limit of the idiosyncratic
component average even when b > —1/2.

Secondly, going back to the framework and results in Al-Najjar (1995)
and Uhlig (1996), for b > —1/2 the variable U, € L3 is the Bochner integral
of the common component, meant as the stochastic variable from G to LY as-
sociating (1/1—aL)u; with « (as recalled in Section 4, the Bochner integral of
the idiosyncratic does not exist). This may be shown either by applying the
Measurability Theorem mentioned in Al-Najjar (1995), p. 1219 (our common
component is weakly measurable and has an essentially separable range), or,
more directly, by writing the common component as UpF QU1+ Usg - 0,
and integrating term by term. Thus our Theorem 6, for b > —1/2, states a
strong law of large numbers for the random variable associating (1/1—aL)u,
with ¢, the mean being defined as the Bochner integral. For b < —1/2 nei-
ther the Bochner nor the Pettis integral of the common component exist.

6 Conditional results

In the previous sections, we have analyzed the behaviour of variance and
spectral density for the common and idiosyncratic component, evaluating
the expectations unconditionally with respect to time, and then letting n go
to infinity.

We will now consider a different situation, when both T and n are finite.
Thus we will evaluate the variance of both the idiosyncratic and common
component with respect to a sample of dimension T x n, hence conditioning
on the observations prior to time ¢ = 1. In the next theorem, on one hand, we
corroborate the ‘unconditional’ (with respect to time) results of the previous
sections and, one the other, we study the behaviour of the aggregate process
when, say, n is big compared to T". Only the variance will be considered here,
though the same method could be applied to the memory.

Let F, be the sigma-algebra generated by {uy, €,,1=1,2,..., [ 5,0 < t}.
Henceforth var(z | ;) denotes the variance of the r.v. z conditional on F;.
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Theorem 12 For A a.e. i G, asT, n — oo

(i) If b # —1/2:

var(Ua, 1 | Fo) ~

Cub _ C’ 7741 dcf, T~ (30+1)/2
o2 (gt -1+ B g, 1) g gy O
T—b;2+1;2 . T
UGT(EAmt | FU) ~ 052 (CE,bg(an: l‘:")1f2 _"'TL:"'T E,b‘—_-)

(i) If b= —1/2 :
V&I(UA“'T I .7:0) o~

2 ! TU? i 1/2 T
Oy CU,—-1/2log(T) + 2 CU.—U?Q(R: T: —1/2) —+ BCU,~1/29(H= T; _1/2) nl/2

T3/‘ T1f2

for positive constants cyp, cyyy, s CrY, Cpyp depending on b, where g{n, T,b) =
log log(n p:b’g'r).

Remarks. (1) It is easily seen that the rates of convergence or divergence
established in Theorem 12 apply with no modification if we consider the ex-
pectation of the estimated variances (idiosyncratic or common) of a sample
over the period 1,7

(2) When T//n — 0, we obtain a version of the commonly held statement
concerning the relative importance of the common and idiosyncratic compo-
nent, namely that the idiosyncratic component vanishes irrespective of b. A
fixed T is an important particular case.

(3) When b # —1/2 and n ~ ¢TI for a ¢ > 0, one obtains that either the
idiosyncratic component vanishes, for b > —1/2, or diverges, for b < —1/2.
In this last case it diverges exactly at the same rate as the common compo-
nent, as it would be expected given the results obtained in Theorems 1 and
8.

(4) Assume that b = —1/2 and nn ~ ¢T*¥!, ¢ > 0. This is the only case when
the variance of the idiosyncratic component has a bounded positive limit a.s.
In this case we are able to find a sharper result than with the ‘unconditional’
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analysis, in which the result was inconclusive for b = —1 /2 (see Remark (2)
to Theorem 1). On the other hand, the common component diverges at the
rate log (T"), consistently with Theorem 8-(ii).

(5) When n ~ c¢T%*! the function g(n, T, b) is asymptotically constant.

7 An empirical application: U.S. consump-
tion expenditure

In our empirical exercise we have studied U.S. consumption expenditure. Our
data is U.S. per-capita personal consumption expenditure, both including
and excluding durables (source NIPA, quarterly data, I-1947 :1V-1991).! The
same time series, up to minor differences, have been employed in Lewbel
(1994), whose results are obtained by fitting ARIMA(p, 0, ¢) models, with
intercept, to the first-difference of the series with 0 < p < 4,0 < g <1,
thus imposing a unit root plus a linear time trend. Lewbel analyses the
relationship between the moments of the distribution of the a’s and the
coefficients of the AR{oco) representation of the aggregate series. By and
large, our analysis and Lewbel’s are complementary, with Lewbel’s focussing
on the low-order moments while our analysis concentrates on the density of
the o’s around unity. However, in Lewbel’s paper the possibility of an order
of integration different from unity is not explored. The estimated model for
aggregate consumption is

_ ., al)
(1 — L)Ct =7+ muh

where a(L) and b(L) are finite polynomials, which is consistent with the
micromodel 1

1-— Ofg'L 1— O!,fL
By contrast, we estimate the order of integration of the aggregate C; and
find a number between 3/4 and unity, significantly smaller than unity. As a
consequence, aggregate consumption is consistent with the micromodel

1
Tl T-al

(1—"L)C§t=7—i+ U +

€it-

Cit = pit Tt + €t

1For a detailed description of our data set see Forni and Lippi {1997 ), Chapter 13.
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with the coefficient b between —1 and —3/4.

In the first stage we estimate ARIMA(p,1,q) models with 0 < p,g <
4, p+q > 1 with the results reported in Tables 1 and 2. The GGaussian Pseudo
Maximum Likelihood Estimator (PMLE) was employed with starting values
given by the Durbin-Levinson algorithm (Brockwell and Davis 1987)%.

In the second stage we estimate ARFIMA(p, 1 + ¢, g) models, where the
reparameterization d = 1 + e expresses that we use differenced data. The
results are reported in Table 3 and 4 for the parameter e only together with
the LM statistic to test the null hypothesis of a unit root

Hy:e=0,

a simple particular case of Robinson (1994) efficient test. Finally in the
third stage we estimate the parameter d only by using two different semi-
parametric estimators: the log-periodogram regression estimator, introduced
by Geweke and Porter Hudak (1983) and formalized in Robinson (1995b),
and the Gaussian local Whittle estimator introduced by Robinson (1995a).
The results are contained in Tables 5 and 6. We report the estimated val-
ues for the bandwidth parameter m ranging from 60 to 90, the latter being
half of the sample size T = 180. Furthermore we report the results ob-
tained by using the raw data as well as detrending the data by a linear OLS
trend. In fact, in order to be able to estimate the long memory parameter
using the lower periodogram frequencies, we have to eliminate any deter-
ministic component (Kunsch 1986)3. Alternatively, in order to eliminate
the bias induced by non-increasing monotonic trends which might perfectly
mimic (Bhattacharya, Gupta, and Waymire 1983) the presence of long-range
dependence, we report estimates obtained trimming out the first [T%/2] peri-
odogram ordinates, and thus based on the first m — ! + 1 Fourier frequencies
(As-- -, Am), with A; = 275/T and I = {T"/?] instead of [ = 1 (no trimming).

The last column of Tables 1 and 2 reports the AIC and BIC crite-
ria, computed as in Hannan (1980) which select an ARIMA(1,1,4) and an
ARIMA (4,1,4) for the time series of consumption excluding durables and an
ARIMA(1,1,2) and ARIMA(3,1,1) for total consumption. Nevertheless the
results of Tables 3 and 4 shows how the restriction e = 0, viz. a unit root,

2The optimization has been carried out with the GAUSS routine OPTMUM.
3In fact, the deterministic component would arise as a non-centrality parameter, explod-
ing for any increasing deterministic trend, in the periodogram ordinates {(Kunsch 1986).
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is generally rejected both by the significance of the estimates of e as well as
by the LM test statistics. The estimates of d = 1 + e, significantly different
from unity, do not show a clear pattern: as p and g vary we find values
both above and below unity. Thus we estimate the long memory parameter
by semiparametric techniques which are not, by construction, affected by
the short-run dynamics, which is left unspecified. In any case, in view of
the theoretical results, the relevant parameter is given by the long memory
parameter d only. We find estimates for d belonging to the open interval
(3/4,1) and, when the bandwidth is big enough, significantly smaller than 1.
Given that in this third stage we do not first-difference the data, we rely on
Hurvich and Ray (1995) and related work to be formally allowed to use the
log-periodogram and the Gaussian estimators in the non-stationary case.

This range mirtors the set of estimates found in the empirical literature
for U.S. GDP (see the references in the Introduction), as one would expect.
The estimates do not seem to be influenced by the detrending, suggesting
non-appropriateness of the linear time trend. Nevertheless we might expect
the presence of a (possibly nonlinear) deterministic component in the data,
hence justifying the trimming based results. |

Summing up, we have produced evidence in favour of a value of the pa-
rameter b between —1 and —3/4. For such values, as we have shown above,
both the common and the idiosyncratic component contribute to explaining
the variance of the aggregate variable (cf. Theorem 1 and 8). However, a
more careful consideration of the data, with T = 180 and n representing the
number of households in U.S.A., implies that we are in a fixed T and ‘large’
n situation, suggesting that the estimated aggregate variance is completely
explained by the common component (cf. Theorem 12).

8 Conclusions

In a vast and growing macroeconomic literature variables corresponding to
individual consumers or firms are modeled as the sum of a common and
an idiosyncratic component. The idiosyncratic component may play a cru-
cial role in micro modelling but disappears when aggregation over a huge
number of agents is considered: see, among others, Bertola and Caballero
(1990), Goodfriend (1992), Pischke (1995), Forni and Lippi (1997). This
is an elementary fact under the often implicit assumption that there is an
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upper bound for the variances of individual variables. However, a model
as simple as (1), with the autoregressive polynomial deriving from standard
microeconomic theory, does not necessarily fulfil the condition of bounded
variance.

We have studied aggregation of each of the two components of model (1)
separately, and established rigorous asymptotic results both for the variance
and the shape of the spectral density near the zero frequency. The features of
the aggregate depend crucially on the parameter b, governing the distribution
of the autoregressive coefficient in the vicinity of unity. As b takes on values
smaller than zero we observe, firstly, the emergence of aggregate long memory,
in spite of short memory micro variables; secondly, for b smaller than —1/2,
an exploding variance for both common and idiosyncratic components, with
the same rate of divergence: in other words, the relative importance of the
idiosyncratic component in the aggregate does not vanish, as it does in all
other cases.

Extension of our method and results to general ARMA structures can be
easily obtained: irrespective of the particular parameterization, the necessary
condition for the results summarized just above is that the support of at least
one autoregressive root has unity as least upper bound, the MA structure
being completely irrelevant. Thus our framework is applicable to a wide
range of micro behaviours, including nonlinear micro reaction functions well
approximated, in the proximity of an equilibrium, by an ARMA structure.
On the other hand, there are many other nonlinear frameworks which are
not covered.

An important simplification in our model is the assumption that the micro
variables are driven by only one common shock. Ad argued in Forni and
Lippi (1997), this assumption is untenable when macroeconomic time series
are considered. However, our theoretical results apply with no difficulty to
each common shock separately. Moreover, the task of the empirical exercise
in Section 7 is limited to the order of integration of the common component
in the consumption series (i.e. to the coefficient b in the probability density
of the coefficients a), so that the effect of our simplification should not be
dramatic.

QOur result on the idiosyncratic component for b < —1/2, i.e. that the
contribution of the idiosyncratic component to aggregate variance does not
vanish as n tends to infinity, links this paper to some recent research on the
relationship between individual, sectoral or regional shocks, and aggregate
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variation. We shall only mention here Bak, Chen, Scheinkman, and Wood-
ford (1993), in which a non-linearity in the model is employed to generate
aggregate variation from mutually orthogonal micro shocks; and a linear
model in Forni and Lippi (1997, Section 1.5) in which a general autoregres-
sive structure (each microvariable depending potentially on all the others
lagged) is superimposed to mutually orthogonal individual shocks (like in
an input-output model), so that the decline of the idiosyncratic component
may be much slower than in the standard case. In this paper (Theorem 1)
we find that aggregate fluctuations can be generated by purely idiosyncratic
uncertainty even within the simplest and most common linear framework.



Table 1: Real consumption (no durables): ARMA estimation results

L) & | ¢2 | ¢s | ¢ | 6 | 6 | 6 | 6. | AIC/BIC
0,1,1) . - - - 0.290 - - - 1360.49
(0.071) 1409.82
0,1,2) - - - . 0298 0.041 - - 1373.48
(0.075) (0.074) 1448.85
(0,1, 3) - - - - 0250 0135 0252 - 1307.37
(0.074) (0.075) (0.075) 1403.88
0,1,4) - - - - 0.267 0.135 0.242  0.049 1315.89
(0.074) (0.075) (0.075) (0.074) 1442.79
1,1,0) { 0.302 - - - - - - - 1345.50
(0.071) 1394.29
(1,1,1y | 0.522 . . . -0.401 - - - 1703.28
(0.416) (0.447) 1796.75
(1,1,2) | 2.398 - - - 22714 -0.727 - - 7058.64
(5.898) (6.274) (1.917) 7579.74
(1,1,3) [ 0.412 - - - -0.289 -0.033 0.214 - 1672.50
(0.274) (0.269) (0.082) (0.076) 1828.23
(1,1,4) | -0.076 - - - 0351 0.142 0270 0.158 1193.66
(0.526) (0.519) (0.147) (0.093) (0.134) 1328.25
(2,1,0) | 0.273  0.086 - - - - B _ 1360.38
(0.075) (0.074) 1424.48
@,1,1} [ 0.131  0.716 A - 0.145 - - - 3277.36
(0.077) (0.061) (0.109) . 3519.31
(2,1,2) | 0.138  0.805 - - 0122  -0.863 - - 1439.13
(0.061} (0.054) (0.066) (0.061) 1573.13
(2,1,3) | 0.658 -0.373 . - -0.551  0.396  0.267 - 1782.15
(0.229) (0.199) (0.225) (0.191) (0.092) 1983.10
(2,1,4) |- 1.004 0.355 . - 1.288 0.001 0267 0354 1825.26
(6.989) (1.802) (6.961) (0.443) (0.155) (1.966) 2067.56
(3,1,0) | 0251 0025  0.228 - - N - - 1204.29
(0.073) (0.075) (0.073) 1389.84
(3,1,1) | -0.087 -0.377  0.505 - 0.251 - - - 2841.04
(0.105) (0.061) (0.080) (0.119) 3105.59
(3,1,2) | -0.026° -0.445 0.546 - 0.219 0.678 - - 1888.31
(0.081) (0.077) (0.064) (0.081) (0.081) 2101.23
(3,1,3) | -0.007 -0.446 0.573 - 0214 0658 -0.327 - 1680.18
(0.218) (0.142) (0.181) (0.244) (0.142) (0.216) 1903.22
(3,1,4) | 0.252 -0596  0.552 - -0.105 0.764 -0.292 -0.023 1827.46
(0.300) (0.145) (0.227) (0.319) (0.206) (0.288) (0.142) 2107.24
{4,1,0) | 0.256 0.025 0233 -0.020 - - - - 130830
(0.074) (0.075) (0.075) (0.074) 1430.13
(4,1,1) | -0.449 -0.689 0.217 0.546 0.848 - - - 2050.62
(0.139) (0.107) (0.143) (0.148) (0.107) 2281.84
(4,1,2) | - 0467 -0.707 0.223 0.561 0800 1.019 X - 1232.15
(0.073) (0.095) (0.097) (0.079) (0.014) (0.028) 1395.72
(4,1,3) | -0.469 -0.709 0.220  0.560 0.798 1015  0.253 - 1196.73
(0.242) (0.103) (0.184) (0.099) (0.244) (0.154) (0.191) 1379.95
(4,1,4) | -0.469 -0.707  0.227 0569 0.795 1014 0249 -0.369 114111
(1.426) (1.299) (0.921) (0.662) (1.404) (1.510) (0.807) (0.410) 1339.45

The parameter ¢; denotes the autoregressive coefficient and §; the moving average coefficient at lag i .
We used the Gaussian Pseudo Maximum Likelihood Estimator (PMLE) in the frequency domain
with initia) values given by Durbin-Levinson algorithm. Standard errors are in parentheses.

The last twe columns contains the AIC and BIC model selection criteria {(multiplied by 10%).




Table 2: Total real consumption: ARMA estimation results

(p,1,q) $r | 2 | #s [ 4 | 6 I 8, I fs [ 8. | AIC/BIC
0,1, - . - - 0.141 . - - 4596.38
(0.074) 4763.02
GLE T - - - T 0081 0216 - - 4455.53
(0.073)  (0.073) 4700.02
GL3) | - - - . 0131 0233 018 - 1324.45
(0.073) (0.072) (0.073) 4643.71
0,1,4) - - - - 0.131 0.235 0.185 -0.004 4324.45
(0.075) (0.074) (0.074) (0.075)  4780.26
1,1,0) | 0.199 . 5 . - . : - 4543.58
(0.073) 4708.31
@,1,0 ] 1293 - - T 122 - - - 7629.08
(0.477) (0.422) 8047.71
[1,1,2) | 0.796 - - 0900 0.156 » - 3602.92
(2.453) (2461) (0.544) 3065.55
(1,1,3) 0.199 - - - -0.337 0.234 0.152 - 4075.53
(0.357) (0.354) (0.102) (0.120) 4455.03
(1,1,4) 0.319 - - - -0.507 (.225 0.110 -0.050 3802.23
(32.51) (3252) (6.119) (5.354) (5.337)  4230.96
@1,0) | 0.151 0222 - : : - - - 4368.40
(0.073)  (0.073) 4608.10
Z,1,1) | 1289 -0893 - T L1 - - - 11885.3
(0.034)  (0.033) (0.039) 12762.7
21,2 1461 1075 - 1414 1408 - - 574B.04
(0.037)  (0.040) (0.084) (0.082) 7376.40
2.1,3) | 0.119 0014 - T 0.i87  0.149  0.195 - 4533.03
(0.518)  (0.391) (0.512) (0.413) (0.141) 5044.16
(2, 1, 4) 1.258 -0.207 - - -1.195 0.512 -0.136 -0.193 6100.81
(0.319) (0.326) (0.201) (0.332) (0.174) (0.127)  6910.67
(37,07 0119 0199 0.145 » - - - - 132414
(0.074) (0.073) (0.074) 4643.37
(3,1,1) | 0.163 -0.001  0.026 0293 - - - 2841.04
(4.553) (0.592) (0.181) (4.554) 4896.17
B.1,2) | 0.174 -0.046  0.035 - 0286 0.310 - - 4072.22
(0.702) (0.311) (0.211) (0.699)  (0.351) 4531.39
(3,1,3) | 0.171 -0.043 0.022 - -0.286 0.305 0.074 - 4141.73
(3.224) (1.487) (0.573) (3.224) (1.855) (1.499) 4691.54
(3, 1, 4) 2.68% -0.492 -0.006 - -2.760 1.109 -0.631 -0.473 14102.3
(87.67) (17.65) (1.987) (89.57) (27.05) (28.99) (18.17) 162614
@L,0) | 0124 0210 0151 0043 - - - - 4364.33
©.075) (0.074) (0.074) (0.075) 4770.72
4,1,1) | -2.719 0.582 -0.194 0.388 3.827 - - - 41001.4
(8.001) (L428) (0.526) (0.802) (10.12) 45624.5
(4,1, Q) -3.136 0.844 -0.043 0.512 3.876 -1.398 - - 19963.9
(21.56) (7.007) (0.382) (2.975) (2637) (11.52) 22614.1
(4,1,3) | -3.428 0.940 -(0.362 0.574 3.893 -3.425 1.968 - 15667.8
(51.91) (15.03) (6.221) (7.103) (57.06) (13.74) (27.12) 18066.5
(4,1,4) | -3.433 0.997 -0.3590 0.626 3.862 -0.427 1.894 -0.639 15538.1
(88.39) (32.11) (12.41) (13.82) (96.81) (20.28) (47.79) (15.41)  18238.9

| See description in Table 1 .
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Table 3: Real consumption (no durables): estimation of d and LM test for
Hy:e=0

(p,1+e,q) e | LM [(p,1+eq) e T LM |(pl+eq e [ LM
0, 1+e,0) | 0240 1649 | (I,1+e,0) | 0.721 3095 (2,1+e,0) | 0.399 230.1
(0.062) (0.085) (0.110)
©.1+e1) | 0240 0171 | (1,1+e1) | 0608 0036 | (3,1+¢1) | 0363 2988
(0.103) (0.226) (0.118)
0,1+¢,2) | 0280 0453 (1,1+e3) | 0481 0472 | (3,1+e,2) | 0357 11.54
(0.160) (0.114) (0.076)
0,1+e,3) | 0091 1892 | (1,1+e,3) | 0814 897 |(%1+e3) | 0478 5507
(0.119) (0.225) (0.174)
0. 1+ed) | 0.081 1240 (L,1+¢,4) | -0619 2336 | (2,1+e,4) | 0.831  4.15
(0.161) (1.071) (0.464)
3.1+¢0) | 0040 1083 | (4,1+¢0) ] -0036 40.10
(0.385) (0.473)
B.1%e,1) | 0636 1717 | (4,1+e,1)| 0927 1156
(0.320) (0.212)
(3,1+e,2) | 0-0.749 2085 | (4,1+¢,2) { -0.036 40.10
(0.096) (0.132)
(3.1+¢,3) | 0380 5506 (4,1+e3) | 0712 4209
(0.099) (0.304)
BG.ited) | -0.712 0885 | (4,1+e,4d) | 0643 2851
(0.301) (0.806)

For each ARFIMA(p,1 + e,q) we report the the estimate of the parameter ¢ only
and the LM Lest atatistic for the null hypothesis g 1 e = 0. 'We used the Gaussian
Pseudo Maximum Likelihood Estimator (PMLE) in the frequency domain

with initial values given by the Durbin-Levinson algorithm and a grid search.

Standard errors are in parentheses,




Table 4: Total real consumption : estimation of d and LM test for Hy:e =0

wlten| e [LM [@ited]| e | LM |lied]| e | IM
(,1+e,0) | 0.191 733 | (1,1+¢,0) | 0772 0.781 | (2,1+¢,0) | -0.124 47.10
(0.062) (0.087) (0.358)
0,1+e,1) | 0.302 0.113] (I,1+e 1) | 0.208 1011 ] (2, 1+e1) | -0012 5754
(0.122) (0.115) (0.576)
0,7+e,2) | 0211  2.057 | (1,1+e,2) | -0588 0858 | (2,1+¢,2) | -0.038 67.22
(0.121) (0.371) (0.099)
(0,1¥e,3) | 0034 2143 | (1,1+e,3) | 0399 4470 | (2,1+e,3) | 0434 27.61
(0.117) (0.139) (0.142)
0,1+¢,4) | 0053 1704 | (I,1+e¢,4) | -0.775 24.72 | (5,14 ¢,4) | -0.667 1.687
(0.168) (0.584) (0.429)
(3.1+e,0) | 0218 7071 | (4,1 +e,0) | -LOI8  B88.7
(0.489) (0.149)
(3,1%e,1) | 0374 27.09 | (4,1+e,1) | 0.243 3.981
(0.191) (0.186)
G,1+e2) | 0.-0.713 2904 | (4,14 ¢,2) | -0.507 27.33
(0.311) (0.571)
(3,1+e,3) | -0.523 1.068] (4,1+¢,3) | 0672 24.28
(0.199) (0.385)
(B,1+e,4) | 0759 6.048 | (4,1 +e,4) | -0.346 12.43
(0.636) (1.080)

See description in Table 3 .




Table 5: Real consumption (no durables): semiparametric estimation of d

Logperiodogram | Gaussian
m | raw [ detrended | raw | detrended |  n.obs
No trimming: [ = 1.
60 | 0.965 0.782 0.984 0.886 60
(0.083) (0.064)
65 | 0.949 0.817 0.969 0.909 65
(0.079) (0.062)
70 { 0.937 0.827 0.958 0.916 70
(0.077) (0.059)
75 | 0.921 0.868 0.944 0.935 75
(0.074) (0.057)
&0 | 0.911 0.839 0.935 0.906 80
(0.671) (0.056)
85 { 0.895 0.852 0.921 0.914 85
(0.069) (0.054)
90 | 0.879 0.851 0.508 0.815 90
{0.067) (0.053)
Trimming : | = [T/
60 | 0.875 0.896 0.899 0.871 47
(0.083) (0.064)
65 | 0.846 0.970 0.871 0.939 52
(0.079) (0.062)
70 | 0.828 0.972 0.853 0.953 a7
(0.077) (0.059)
75 1 0.801 0.1.053 0.826 1.101 62
(0.074) (0.057)
80 | 0.791 0.961 0.817 0.919 67
(0.071) (0.056)
85 | 0.766 0.976 0.792 0.939 T2
(0.069) (0.054)
50 | 0.743 0.960 0.769 0.935 i
(0.067) (0.053)
The m repr tes the bandwith which may differ from
the numbar of ahaecvations (n.ebs.) due to the trimming.
The second half of the table expresses the estimates obtained
leaving out {trimming) the fivat (T7/2] - | Fourier frequencies.
Waea report the satimates of d using two semiparametric estimators 1
the Logperiodogram estimator (column 3 and 3} and the Gaussian
estimator {(column 4 and 6). Standard ercors are in parantheses.
For sach cose we obtain the result for the raw dota as well as
for the data detrended by a linear trend (OLS).




Table 6: Total real consumption : semiparametric estimation of d

Logperiodogram | Gaussian

m | row | detrended | row [ detrended | n.obs
No trimming : { = 1.

60 | 0.966 1.001 0.985 0.966 60
(0.083) (0.064)

65 | 0.851 1.021 0.971 0.989 65
(0.079) (0.062)

70 | 0.945 1.003 0.965 0.947 70
(0.077) (0.059)

75 1 0.926 1.027 0.948 0.965 7b
(0.074) (0.057)

80 | 0.917 0.986 0.940 0.939 80
(0.071) (0.056)

856 | 0.900 1.010 0.924 0.935 85
(0.069) (0.054)

90 | 0.888 0.978 0.914 0.913 90
(0.067) (0.053)
Trimming : | = [T"/%]

60 §j 0.857 1.059 0.885 0.968 47
(0.083) (0.064)

65 | 0.833 1.105 0.861 1.026 52
(0.079) (0.062)

70 | 0.835 1.028 0.859 (.919 LY
(0.077) (0.059)

76 | 0.801 0.1.084 0.824 0.965 62
{0.074) {(0.057}

80 | 0.792 0.974 0.816 0.907 67
(0.071) (0.056)

85 | 0.766 1.032 0.787 0.900 72
(0.068) (0.054)

90 | 0.752 0.955 0.774 0.856 77
(0.067) (0.053)

| See description in Table 5 .




9 Appendix A

In this appendix C will denote an arbitrary constant, not necessarily the
same, the symbol ~ will denote asymptotic equivalence and P(A) the prob-
ability of any event A.

Lemma 1 Assume that the random variables §3;, i = 1,00, are i.i.d. with
support [0, 1] and density f. Assume that for u — 0% there ezist C > 0 and
b > —1 such that f(u) ~ Cub. Let k be such that 2 > (b+ 1)/k > 0. Let
{an} be a sequence of positive real numbers such that as n — o

o)
a, = 00, ¥ a0V <o,

n=1

Then as n — co:

@ rigl+1

1 13 _1___( ~(b+1)/k+1 _ 4

) — 0 a.s.

1 &1 1 &
— Y ——— ) loga; =0, as..
an,; F ani-.:zl

Proof: Obviously we cannot use a standard LLN because we allow for an
unbounded first moment for 1/8F when (b + 1)/k < 1. Note that restricting
to the case 2 > (b -+ 1)/k is innocuous because if (b + 1)/k > 2, then 1/8F
has a finite first moment so that standard LLN applies.

Let us set y; = 1/85. We will use Lodve (1977, Ch.5 Theorem 16.4 A)
setting, in the notation there adopted, ¢, = c=¢ =1 and gnl(z) = 1(z >
1) + 22 1(0 < z < 1), where 1{A) denotes the indicator function of the event
A.

To prove (i) let us denote by f, the probability density function of the
variables y;. We have

fy(u) = %f(ﬂ_lﬁc)u_llk'l, 1 <u<og,
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with f,(u) ~ Cu@+/k-1 a5 4 — oo for a 0 < C < co. Therefore, as n — oo
Py > nz) ~ C [ -0t o Czan) O,
since (b+ 1)/k > 0. Moreover, since (b+ 1}/k < 2:

1
f 2= O+ gy oo
0

so that the above mentioned theorem (Loéve (1977)) applies and

an 1
E(1®) ~ C/ Dk gy — O —(b+1) k41
(va") 1 bt 1)/k+1 (an 1)
as n — 00.
In case (7) we have E(y2") ~ C [{"y'dy = Clog an, asn —>oco.  QED

Remark. Case (i) includes the umform distribution on [0, 1] corresponding
to b= 0.

The following Corollary is an immediate implication of Lemma 1, provid-
ing a link to the assumption and results of the paper.

Corollary 1 Let { f,,} be an SFG sequence (for the definition of a ‘suffi-
ciently fast growing’ sequence see Section 4). Assume that the random vari-
ables oy, © = 1,00, are i.i.d. and that their probability density B(- :b) fulfils
Assumption I (see Section 3). Then for A a.e. in G, as n — oo:

(1) If (b+1)/k#1,

iz:;(l —104)'c = b—:+1 [”_ b-,:l B Caz -1)] +o((n fa)#),
3 e 2 gy =] o (7).

@) If(b+1)/k=1,

i(_l":l?x_)ﬁ =zn:1°gfi+n(10gn— 1} + o(n fa).

i=1 i=1

It must be pointed out that all the o(-)’s depend on the sequence A.

Proof. Apply Lemma 1 setting 3; = 1 — o; and
an = (nfa) 1.
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10 Appendix B

Proof of Theorem 1. We have

1?1
521

=1

so that Corollary 1 can be applied with &k = 1. If b > 0 we are in case (1).
The term on the RHS of the first inequality is dominated, for n — oo, by
n/b, i.e.

_at -"053

n 1 1 bo(n)
;l = bn+o()—bn(l+ ” )
As remarked in Corollary 1, o(n) depends on the sequence A. Dividing
by n?, statement (i) follows with C depending on A. Case b = 0 requires
the application of Corollary 1, statement (2). When b < 0 we apply again
Corollary 1, statement {1). In this case however the term n/b is dominated
for n tending to infinity. We end up with

1 b+1 _2p41 - _ 2b41
— o <—-b—-n .-sﬁfn*. +o(n -“-""Ll)

1 b+1 _= 1
= o >—-—b——-n '5{1—-{—0( 'ﬁ-l-l_)

-

= S -
It

s

]
ju

The conclusion follows. : QED
Proof of Theorem 2. Since

E
54, (0 271'712 Z (1— 03)2’

we can apply Corollary 1 with & = 2. The proof follows the lines of the proof
of Theorem 1. QED

Proof of Theorem 3. If A > 0, the real random variable 1/|1 — ae A2,
has a finite expectation. Therefore

L)
n\n & 1= ae PP
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tends to zero for A a.e. in G. The function s (1)) is decreasing, being the

sum of decreasing functions, and tends therefore to zero pointwise in (A, 7]
for A a.e. in G. Since (0,n] is the union of a countable sequence of sets
[Ag, 7], the result follows. QED

Proof of Theorem 4. We remind that
1 r7 E
ax(14,.) = exp — [ " [log s, (N)] dh.
7 Jo

Since s§ (A} is decreasing:

S, () < g5()

where
sA (0)1f0<A<A

A
95(A) = { E (3)if A> X
For A a.e. in G there exists D, 5 such that s (X) < D,snt. We have

var(na,.) < Alogsh (0) — (7 — M(logn — log Dys)-
For b > 1 the first term on the left hand side tends to —oc, so that the whole
sum tend to —oo. For b < 1, applying Theorem 2, (iii), we have
var(na,. ) < _;\b% logn — (x — A)logn — (7 — A) log D4 5
+2logCa s + :\%_"{_'—i’ log fn.

Taking {f,} slow enough and ) such that

- 2b

we get the result. QED

Proof of Theorem 5. Let b assume any value greater than —1. The spectral
density of (1 — L)E4, ;, i.e. |1 — 2|%s§ (2), is zero at z = 1 and is strictly
increasing in [0 7]. Since s (m) tends to zero (Theorem 3) for A a.e. in G,
then (1 — L)Ea, ; converges in variance to zero for A a.e. in G. QED
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Proof of Theorem 6. Put uu, i = (1/n) %, of, and

Unwor = (1 tana L+ pag 2L’ + - pan s L) we
Unse = (1+mal + pal®+ - 'ﬂ'b,sLs_l) Uy
ﬁAn:ﬂ,t = (ﬁAn,sLs + uAn,3+1Ls+1 -+- N .) Ut
Uhs = (“b,sLs + pp s L+ - ) u
We have:
var(Ug, s — Uss)  =var(Ua, s¢ — Upsy) + var(Ua, sz — Unst)
x - 2
< var(Uag,st — Ubst) + (\/var(UA,,,s,t) + \/var(Ub,s,t))
We have
N 2 n 23 25
=u
var (Uan,sz) = = Z_ = a,aj
Since
(1 —eey)? > (1 - of)(1— o), (12)
then

a3 ] <]

For A a.e. in G the expression within the square brackets in the last expres-
sion tends to a limit fi, s, which is asymptotically equivalent, for s — oo, to
K 1722, (remind that b—1 /2 > —1 by assumption). Given a positive real

7 take s such that I, ; < 7/2 and var (U;, s t) < 1. For A a.e. in G there exists
an na, such that for n > ng4,

ar (UAn,s,t — Ub,s,t) < T, var (UAn,s,t) < T,

so that
var (Ua, s — Usp) < 7+ (VT +/7)°.
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Since 7 is arbitrary the theorem is proved. QED

Proof of Theorem 7. In general, if z, € L) and z, — z, then s, — s in
first-mean, where s, and s denote the spectral density of z, and z respectively.
For, denote by 8, the spectral density of z, — 2, by 3, the (1,2) entry of the
joint spectral density matrix of 2, and 2, and by 5, the (1,2) entry of the
joint spectral density matrix of z and 2z, — z. We have

|80 — 8| = |8 — 25 + 2RE,| = |8, + 2R5;| < 8, + [205,]-

The integral over the interval [—m, =] of §,, being the variance of 2z, — z,
tends to zero. Moreover

l /; mgn()\)d,\{ < \/ / ’; §n(}\)d)\\/ ]_ : s(A)dA.
QED

Proof of Theorem 8. (i) To prove (ii) and (iii) we observe that (see (12):

T n n 1 2
< -
ftgs it < Bl

i=1 =1

I

and apply Corollary 1 for Kk =1/2and k£ = 1. QED

Proof of Theorem 9. For b > 0 the random variable 1/(1 — «) has finite
expectation

/G - B(a; b)dt;z.

-«
We have:
ak-l-l
/ —————B(a b)do — Zﬂb,s =[ T _ aB(a; b)der < Mpip g1
For (ii) and (iii) apply Corollary 1 with £ = 1. QED

Proof of Theorem 10. For A # 0 the modulus of (1—ae™*)7! is bounded,
so that the integral

ae""lA
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is finite. On the other hand, like in the proof of Theorem 9:

/ — ! _B(a;b)da- Z g=irs / C"kﬂe_wﬂnB(o.f- b)da
61— ae A Hoss ¢ 1— qeir ,

< Mpps1

<

Thus, for A # 0 and b > —1 we have that s¥()) is equal to the squared
modulus of (13), this proving (i). From (i) one obtains immediately that given
A#0, for Aae inG, s§ (A) converges to s¥()). As an easy consequence
we have that for A a.e. in G, s§ () converges to i (A) for A belonging to
a countable dense subset of [0 7r] the rational frequencies for example. We
only have to show that (13) is continuous for A # 0. But, for A; — A,

1 1
V [1 — ae—"" 1 ae“i‘\i] Ble; b)da‘

—tA i/\j)
e !A)( ae“”‘:‘)B(a’ b)do

< Myle™ — e Pjpy .

QED
Proof of Theorem 11. (i) By construction the sequence {s;} is monotone.
Moreover g ~ CT(b+1) k~®+D for C > 0, as k — co. The spectral density
s (M) can be written as

o0

> poscos( /\)) L (2 iy sin(k ,x)) 2} |

so that no convolutions of the s x’s, not defined when b < —1/2, are involved.
The result follows by applying Yong (1974): Theorem I-9 and Theorem I-10
when b < 0, Theorem I-18 and Theorem I-21 when b = 0, Theorem I-31 and
Theorem I-32 when b > 0.

(i) Taking the first difference (1—L)Uy, ; and adapting Theorem 6, we have
a stationary limit, call it Ub ., for A a.e. in G, whose Wold representation
and spectral density are, respectively,

%3
27

2
o

55 (A) =

Erb,t = g + (o) — 1)ty + (L2 — Mp1)Ug—2 + -
T =[1- e PPy ).

37



The order of integration of ffb,t is —(1+b), so that the non-stationary variable
produced by integrating U, ; has order of integration —b. QED
Proof of Theorem 12. (i) Starting with

T-1 1.0 N 0 1.2 %

Uspr = 2 (—Zai) ur—x + Y (—Za,-) UT ks
k=0 \T¥i=} k=T [ gomr

and evaluating the conditional variance, the result follows from the fact that

as n — oo

1 & 212 part/2(of)
Z 20k~ ~ St loglog(nvar(af))) s, (14)

by a version of the law of iterated logarithm (Stout 1974, Corollary 5.2.1)%,
and from the asymptotic equivalences, for £ — oo:

fo g ~ CT(b+ 1)k~ 0+, var{a¥) ~ pp -
For, E 4, r one obtains

2 n 2T 2 n T
o {1 1 - of co 1 1 —aj

for a constant ¢ > 0, as n — oo. By the mean value theorem, for some

0<T<T

1--af _ _aflogaT-
l—« 1 -«

Using 1 —1/a < log a < @ — 1 for any a > 0 one obtains
' n . n — T n .
Tsoftclylooe Lot

n =t T =1

; ; 1— Gy
Then the result follows by using (14) and summing terms applying Yong
(1974, Lemma I-11 (1-32’) and Lemma I-16 (1-41’)).
(ii) For the common component, the proof follows (i) and uses
T
1

Z E ~ log (T)}

k=1

as T — oo. For the idiosyncratic component just set b= —1/2in (i). QED

4We can assume that 2-¢H) (b + 1) ¢+ > 1) so that the double logarithm is
always well defined asymptotically. This condition for instance is satisfied for n ~ e T+
provided that ¢ > 2**}/T'(b+ 1) .
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