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ESTIMATION OF NONSEPARABLE MODELS WITH CENSORED
DEPENDENT VARIABLES AND ENDOGENOUS REGRESSORS

LUKE TAYLOR AND TAISUKE OTSU

Abstract. In this paper we develop a nonparametric estimator for the local average response

of a censored dependent variable to endogenous regressors in a nonseparable model where the

unobservable error term is not restricted to be scalar and where the nonseparable function

need not be monotone in the unobservables. We formalise the identification argument put

forward in Altonji, Ichimura and Otsu (2012), construct a nonparametric estimator, characterise

its asymptotic property, and conduct a Monte Carlo investigation to study its small sample

properties. Identification is constructive and is achieved through a control function approach.

We show that the estimator is consistent and asymptotically normally distributed. The Monte

Carlo results are encouraging.

1. Introduction

One of the greatest contributions of econometrics is the development of estimation and infer-

ence methods in the presence of endogenous explanatory variables. The classic literature mostly

focuses on linear simultaneous equation systems and has been extended to various contexts. In

the case of censored dependent variables, Amemiya (1979) and Smith and Blundell (1986) stud-

ied estimation and testing of simultaneous equation Tobit models, where the linear regression

function and joint normality of the error distribution are maintained. In this paper, we study

how to evaluate nonparametrically the marginal effects of the endogenous explanatory variables

to the censored dependent variable when both the regression function and distributional forms

are unknown and the error term may not be additively separable.

In particular, we seek to extend the work by Altonji, Ichimura and Otsu (2012), AIO hence-

forth, by introducing endogeneity into a nonseparable model with a censored dependent variable.

AIO (Sections 5.1 and 5.2) described how to accommodate endogenous regressors into their iden-

tification analysis. The aims of this paper are to formalise their identification argument, develop

a nonparametric estimator for the local average response, and derive its asymptotic properties.

We also carry out a Monte Carlo investigation to study the small sample properties.

The authors would like to thank Javier Hidalgo for helpful comments. The authors acknowledge financial support
from the ERC Consolidator Grant under SNP 615882 (Otsu) and ESRC (Taylor).
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Our estimator can be seen as an extension of the classic Tobit maximum likelihood estimator in

several directions. We allow the unobservable error term to enter into the model in a nonseparable

manner; this is a far more realistic assumption and the popularity of such models in the recent

literature highlights this fact (see, e.g., Matzkin, 2007, and references therein). We allow the

dependent variable to depend on the regressors and error term in a nonlinear way, in the same

manner as AIO. We also do not constrain the dependent variable to be monotonic in the error

term and allow it to be censored from both above and below, moreover we allow the censoring

points to depend on the regressors. Finally, we allow the regressors to be correlated with the

error term.

Since endogeneity is an issue that plagues many economic models, the possible applications

of the estimator we consider are extensive. Commonly cited examples of nonseparable models

with censoring are consumer demand functions at corner solutions. An interesting example is

Altonji, Hayashi and Kotlikoff (1997) where a monetary transfer from parents to children only

occurs if the marginal utility gained from the additional consumption of their child is greater

than the marginal utility lost from the fall in their own consumption. Auctions provide another

possible application for this estimator. Different forms of the Tobit estimator are commonly

used to analyse auction data because of the various forms of censoring found in these settings,

for example Jofre-Bonet and Pesendorfer (2003). In general, the estimator developed in this

paper is applicable in all settings where the Tobit estimator is used. For example, Shishko and

Rostker (1976) estimated the supply of labour for second jobs using the Tobit estimator. In this

setting it is highly likely that unobservable characteristics such as ability and tastes for spending

enter the supply function in a nonseparable way. See McDonald and Moffitt (1980) for further

examples. More recently there has been much interest in nonseparable models, however many

cases have failed to take into account censoring. For example, several examples of hedonic models

considered in Heckman, Matzkin and Nesheim (2010) are likely to suffer from censoring.

The identification strategy used in this paper follows AIO very closely. However, the strat-

egy must be adapted to take into account endogeneity. In this paper we use a control function

approach, which involves conditioning on the residuals from a first stage regression of the en-

dogenous regressors on instruments to fix the distribution of the unobservable error term and

then undoing this conditioning by averaging over the distribution of the residuals (see Blundell

and Powell, 2003). As a parameter of interest, we focus on the local average response conditional

on the dependent variable being uncensored. This is in contrast to the local average response

2



across the whole sample, which would be more suited to cases where censoring is due to fail-

ures in measurement. AIO focus on the exogenous case and only briefly introduce endogeneity

as an extension to the model. Whilst Altonji and Matzkin (2005) discussed identification and

estimation of the local average response in a nonseparable model without censoring.

There has been considerable interest in nonseparable models with endogenous regressors over

the last 15 years (e.g., Chesher, 2003, Imbens and Newey, 2009, and a review by Matzkin, 2007).

Schennach, White and Chalak (2012) consider triangular structural systems with nonseparable

functions that are not monotonic in the scalar unobservable. They find that local indirect least

squares is unable to estimate the local average response, but can be used to test if there is no

effect from the regressor in this general case. Hoderlein and Mammen (2007) also dropped the

assumption of monotonicity and showed that by using regression quantiles identification can be

achieved. However this result was obtained in the absence of endogenous regressors. Censoring in

nonseparable models has received little attention; Lewbel and Linton (2002) considered censoring

in a separable model and Chen, Dhal and Khan (2005) studied a partially separable model.

The paper is organized as follows. Section 2 presents the main results: nonparametric identifi-

cation of the local average response (Section 2.1) and nonparametric estimation of the identified

object (Section 2.2). In Section 3, we assess the small sample properties of the proposed estimator

via Monte Carlo simulation. Section 4 concludes.

2. Main results

In this section, we consider identification and estimation of the model based on cross-section

data. Our notation closely follows that of AIO. The model is set up such that the dependent

variable Y is observed only when a latent variable falls within a certain interval,

Y =


M(X,U) if L(X) < M(X,U) < H(X),

CL if M(X,U) ≤ L(X),

CH if H(X) ≤M(X,U),

where X is a d-dimensional vector of observables andM : Rd×U 7→ R is a differentiable function

with respect to the first argument, indexed by an unobservable random object U . The support

U of U is possibly infinite dimensional. Also L(X) and H(X) are scalar-valued functions of

X,1 and CL and CH are indicators to signify censoring from below and above, respectively. For

1It is possible to allow both L(·) and H(·) to depend on additional observed variables, for example L(X̃) and
H(X̃) where X̃ contains X as a subvector, without affecting the proceeding results. We restrict attention only to
X for ease of exposition.
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example, they may be coded as CL =“censored from below” and CH =“censored from above”.

This model represents a generalization of the Tobit model, whereM(X,U) = X ′β+U , L(X) = 0,

H(X) =∞, and U is normal and independent from X.

Let IM (X,U) = I{L(X) < M(X,U) < H(X)}, where I{·} is the indicator function. As a

parameter of interest, we focus on the local average response given that X = x and Y is not

censored, that is

β(x) = E[OM(X,U)|X = x, IM (X,U) = 1], (1)

where OM(X,U) is the partial derivative ofM with respect toX. AIO investigated identification

and estimation of β(x) when X and U are independent and discussed briefly identification of

β(x) when X is endogenous and can be correlated with U . Here we formalise their identification

argument and develop a nonparametric estimator of β(x).

Without censoring, the local average response βAM (x) = E[OM(X,U)|X = x] with endoge-

nous X was proposed and studied in Altonji and Matzkin (2005). For example, Aaronson (1998)

investigated the effects of average neighborhood income X on college attendance Y holding the

distribution of U |X = x fixed. Thus, βAM (x) is a parameter of interest in Aaronson’s (1998)

empirical analysis. See further discussions in Altonji and Matzkin (2005) for motivations of the

local average response βAM (x). Our object of interest, β(x), in (1) shares similar motivations.

We note that for the linear case M(X,U) = X ′β + U , the object β(x) coincides with the slope

parameter β in the Tobit model with endogenous X. Also, as briefly mentioned in Section 1,

in an empirical study, Altonji, Hayashi and Kotlikoff (1997) considered altruism based models

of money transfers from parents to children, and studied the effects of endowments X to money

transfers Y . The money transfers are obviously censored from below by 0 and it is reasonable

to suspect correlation between the endowments X and unobserved preferences U of the parents

and children. Thus, β(x) is a parameter of interest in the empirical study of Altonji, Hayashi

and Kotlikoff (1997). See, e.g., Raut and Tran (2005) and Kaziango (2006) for further examples.

2.1. Identification. To identify the average derivative β(x) in the presence of endogeneity of

X, we employ a control function approach. This is a standard approach in the literature (see,

e.g., Blundell and Powell, 2003). It is assumed that the researcher observes a vector of random

variables W satisfying

X = ϕ(W ) + V, E[V |W ] = 0 a.s.,

U⊥W |V,
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where V is the error term. Under this setup, we wish to identify the local average response

β(x) in (1) based on the observables (Y,X,W ). Note that the function ϕ(·) is identified by

the conditional mean ϕ(w) = E[X|W = w]. Thus in the identification analysis below, we

treat V as observable. Although conditional independence U⊥W |V is a strong assumption, it

is hard to avoid unless further restrictions are placed on the functional form of M(x, u), such as

monotonicity in scalar u.

Using the auxiliary variable V , the parameter of interest can be written as

β(x) =

∫
u
OM(x, u)dP (u|X = x, IM (X,U) = 1)

=

∫
v
β(x, v)dP (v|X = x, IM (X,U) = 1), (2)

where dP is the Lebesgue density of U and β(x, v) =
∫
uOM(x, u)dP (u|X = x, IM (X,U) =

1, V = v). Note that we observe X and IM (X,U) = I{Y 6= CL, CH}, and that V is treated as

observable. Thus the conditional distribution of V given X = x and IM (X,U) = 1 is identified.

Based on (2), it is sufficient to identify β(x, v). LetGM (x, v) = Pr{IM (X,U) = 1|X = x, V = v}.

By using the assumptions on V , the object β(x, v) can be written as

β(x, v) =

∫
u∈{u:IM (x,u)=1}

OM(x, u)dP (u|X = x, V = v)/GM (x, v)

=

∫
u∈{u:IM (x,u)=1}

OM(x, u)dP (u|ϕ(W ) = ϕ(w), V = v)/GM (x, v)

=

∫
u∈{u:IM (x,u)=1}

OM(x, u)dP (u|V = v)/GM (x, v).

Similarly, observe that

Ψ(x, v) = E[M(X,U)|X = x, IM (X,U) = 1, V = v]

=

∫
u∈{u:IM (x,u)=1}

M(x, u)dP (u|V = v)/GM (x, v).

Note that Ψ(x, v) is identified as the conditional mean of Y given X = x, V = v, and IM (X,U) =

1 (uncensored). The basic idea for identification is to compare the derivative of the conditional

mean OΨ(x, v) with the conditional mean of the derivative of β(x, v).

For expositional purposes only, we tentatively assume that M(x, u) is continuous and mono-

tonic in scalar u for each x; this assumption will be dropped later. Using the Leibniz rule to
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differentiate Ψ(x, v) with respect to x while holding v constant gives

O[Ψ(x, v)GM (x, v)] =

∫ uH(x)

uL(x)
OM(x, u)dP (u|V = v)

+M(x, uH(x))dP (uH(x)|V = v)OuH(x)

−M(x, uL(x))dP (uL(x)|V = v)OuL(x), (3)

where uH(x) and uL(x) solve M(x, u) = H(x) and M(x, u) = L(x), respectively. Note that

M(x, uH(x)) = H(x) and M(x, uL(x)) = L(x). Also, denoting GH(x, v) = Pr{Y = CH |X =

x, V = v} and GL(x, v) = Pr{Y = CL|X = x, V = v}, we obtain OGH(x, v) = −dP (uH(x)|V =

v)OuH(x) and OGL(x, v) = dP (uL(x)|V = v)OuL(x). Combining these results, β(x, v) can be

written as

β(x, v) = OΨ(x, v) + {Ψ(x, v)OGM (x, v) +H(x)OGH(x, v) + L(x)OGL(x, v)}/GM (x, v). (4)

Since each term on the right hand side of this equation is identified, we conclude that the

parameter of interest β(x) is identified.

It is instructive to give an intuitive outline of why the identification argument of AIO fails in

the presence of endogeneity. Notice, under exogeneity of X,

Ψ∗(x)G∗M (x) =

∫ uH(x)

uL(x)
M(x, u)dP (u|X = x) =

∫ uH(x)

uL(x)
M(x, u)dP (u), (5)

where Ψ∗(x) = E[M(X,U)|X = x, IM (X,U) = 1] and G∗M (x) = Pr{IM (X,U) = 1|X = x}.

Identification of β(x) in AIO is achieved by differentiating (5) with respect to x and solving for

β(x). However, when X is endogenous, this argument does not apply. In particular, letting

p(u|x) denote the conditional density of U |X = x, the Leibniz rule yields

O[Ψ∗(x)G∗M (x)] = O

[∫ uH(x)

uL(x)
M(x, u)p(u|x)du

]

= β(x) +

∫ uH(x)

uL(x)
M(x, u)Op(u|x)du

+M(x, uH(x))p(uH(x)|x)OuH(x)

−M(x, uL(x))p(uL(x)|x)OuL(x).

Note that the second term on the right hand side is not estimable. Therefore, the identification

strategy of AIO based on the above equation does not apply to the case of endogenous X.
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We now show that the above argument for identification holds under more general conditions.

The following assumptions are imposed.

Assumption 1.

(i): X = ϕ(W ) + V with E[V |W ] = 0 a.s. and U ⊥W |V .

(ii): L(·) and H(·) are continuous at x and satisfy L(x′) < H(x′) for all x′ in a neighbour-

hood of x, and Pr{M(X,U) = L(X)|X = x} = Pr{M(X,U) = H(X)|X = x} = 0.

(iii): GL(·, V ), GM (·, V ), and GH(·, V ) are differentiable a.s. at x and GM (x, V ) > 0 a.s.

(iv): M(·, U) is differentiable a.s. at each x′ in a neighbourhood of x, and there exists

an integrable function B : U → R such that |OM(x′, U)| ≤ B(U) a.s. for all x′ in a

neighbourhood of x.

Assumption 1 (i) is a key condition required to use a control function approach. This assump-

tion is considered as an alternative to using instrumental variables, say Z satisfying U ⊥ Z. As

explained in Blundell and Powell (2003, p. 332), the control function assumption is “no more nor

less general” than the instrumental variable assumption, and both are implied by the stronger

assumption (U, V )⊥Z. Assumption 1 (ii)-(iv) are adaptations of those in AIO to allow endoge-

nous X. Assumption 1 (ii) is reasonable given that H(x) and L(x) are defined as the upper and

lower bound. Assumption 1 (iii) and (iv) simply reflect that we wish to estimate some form of

derivatives. The last condition of (iv) allows the order of integration and differentiation to be

changed. Under these assumptions, we can show that the identification formula for β(x) based

on (2) and (4) still holds true.

Theorem 1. Under Assumption 1, β(x) is identified by (2), where β(x, v) is identified by (4).

This theorem formalises the identification argument described in AIO (Section 5.1). It should

be noted that for this theorem, the object U can be a scalar, vector, or even infinite dimensional

object, the function M(x, u) need not be monotone in u, and the region of integration for u need

not be rectangular. A key insight for this result is that the Leibniz-type identity in (3) holds

under weaker conditions (see Lemma 1 in Appendix A).

2.2. Estimation. Based on Theorem 1, the local average response is written as

β(x) =

∫
v

OΨ(x, v) +
1

GM (x, v)


Ψ(x, v)OGM (x, v)

+H(x)OGH(x, v)

+L(x)OGL(x, v)


 dP (v|X = x, IM (X,U) = 1). (6)

7



To estimate β(x), we estimate each unknown component on the right hand side by a nonparamet-

ric estimator. Suppose X and V are absolutely continuous with respect to the Lebesgue measure.

Let fM (·) be generic notation for the joint or conditional density given that IM (X,U) = 1 (Y

is uncensored). For example, fM (y|x) means the conditional density of Y given X = x and

IM (X,U) = 1; EM [·] and V arM (·) are defined analogously. For estimation, it is convenient to

rewrite β(x) in the following form

β(x) = fM (x)−1(1, 1, H(x), L(x))


ξ(x)

ζ(x)

η(x)

θ(x)


, (7)

where

ξ(x) =

∫
y
yOfM (y, x)dy −

∫
v

∫
y yfM (y, x, v)dyOfM (x, v)

fM (x, v)
dv,

ζ(x) =

∫
v

∫
y
yfM (y, x, v)dy

OGM (x, v)

GM (x, v)
dv,

η(x) =

∫
v
fM (x, v)

OGH(x, v)

GM (x, v)
dv, θ(x) =

∫
v
fM (x, v)

OGL(x, v)

GM (x, v)
dv.

Each component in β(x) is estimated as follows. The boundary functions H(x) and L(x) are

estimated by the local maximum and minimum, respectively, i.e.,

Ĥ(x) = max
i:|Xi−x|≤bHn ,Yi 6=CL,CH

Yi,

L̂(x) = min
i:|Xi−x|≤bLn ,Yi 6=CL,CH

Yi,

where bHn and bLn are bandwidths. Let K(a) be a dim(a)-variate product kernel function such

that K(a) =
∏dim(a)
k=1 κ(a(k)). As a proxy for Vi = Xi − ϕ(Wi) with ϕ(w) = E[Xi|Wi = w], we

employ

V̂i = Xi − ϕ̂(Wi),

where

ϕ̂(Wi) = τ(f̂(Wi), hn)
1

nbdn

n∑
j=1

XjK

(
Wi −Wj

bn

)
,

8



f̂(w) = 1
nbdn

∑n
j=1K

(
w−Wj

bn

)
is the kernel density estimator for W , and

τ(t, hn) =


1/t if t ≥ 2hn,

1
8

{
49(t−hn)3

h4n
− 76(t−hn)4

h5n
+ 31(t−hn)5

h6n

}
if hn ≤ t < 2hn,

0 if t < hn.

is a trimming function parameterised by hn. This trimming term, due to Ai (1997), is introduced

to deal with the denominator (or small density) problem for kernel estimation. The choice of

hn is briefly discussed in Ai (1997), and it seems to be of little importance provided hn → 0.

Integrating out GM (x, v), our estimator for Pr{Yi 6= CL, CH} is given by ĜM = nM/n, where

nM =
∑n

i=1 I{Yi 6= CL, CH} is the number of uncensored observations. Similarly, define nH =∑n
i=1 I{Yi = CH}, nL =

∑n
i=1 I{Yi = CL}, ĜH = nH/n, and ĜL = nL/n. The conditional

densities and their derivatives are estimated by

f̂M (y, x, v) =
1

nMb
2d+1
n

∑
i:Yi 6=CL,CH

K

(
y − Yi
bn

)
K

(
x−Xi

bn

)
K

(
v − V̂i
bn

)
,

f̂M (x, v) =
1

nMb2dn

∑
i:Yi 6=CL,CH

K

(
x−Xi

bn

)
K

(
v − V̂i
bn

)
,

Of̂M (y, x) =
1

nMb
d+2
n

∑
i:Yi 6=CL,CH

K

(
y − Yi
bn

)
OK

(
x−Xi

bn

)
,

Of̂M (x, v) =
1

nMb
2d+1
n

∑
i:Yi 6=CL,CH

OK

(
x−Xi

bn

)
K

(
v − V̂i
bn

)
,

f̂(x, v) =
1

nb2dn

n∑
i=1

K

(
x−Xi

bn

)
K

(
v − V̂i
bn

)
,

Of̂(x, v) =
1

nb2d+1
n

n∑
i=1

OK

(
x−Xi

bn

)
K

(
v − V̂i
bn

)
.

The conditional probability GM (x, v) and its derivative are estimated by

ĜM (x, v) = ĜM
f̂M (x, v)

f̂(x, v)
,

OĜM (x, v) = ĜM
Of̂M (x, v)

f̂(x, v)
− ĜM

f̂M (x, v)Of̂(x, v)

f̂(x, v)2
.
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Similarly, OGH(x, v) and OGL(x, v) are estimated by

OĜH(x, v) = ĜH
Of̂H(x, v)

f̂(x, v)
− ĜH

f̂H(x, v)Of̂(x, v)

f̂(x, v)2
,

OĜL(x, v) = ĜL
Of̂L(x, v)

f̂(x, v)
− ĜL

f̂L(x, v)Of̂(x, v)

f̂(x, v)2
,

respectively, where f̂H(x, v), f̂L(x, v),Of̂H(x, v),Of̂L(x, v), ĜH and ĜL are defined analogously

to their uncensored counterparts.

Based on the above notation and introducing the trimming terms τ(f̂M (x, v), hn) and τ(f̂(x, v), hn),

the components in β(x) are estimated by

ξ̂(x) =

∫
y
yOf̂M (y, x)dy −

∫
v

{∫
y
yf̂M (y, x, v)dy

}
Of̂M (x, v)τ(f̂M (x, v), hn)dv,

ζ̂(x) =

∫
v

{∫
y
yf̂M (y, x, v)dy

}
Of̂M (x, v)τ(f̂M (x, v), hn)dv

−
∫
v

{∫
y
yf̂M (y, x, v)dy

}
Of̂(x, v)τ(f̂(x, v), hn)dv,

η̂(x) =
ĜH

ĜM

∫
v
Of̂H(x, v)dv − ĜH

ĜM

∫
v
f̂H(x, v)Of̂(x, v)τ(f̂(x, v), hn)dv,

θ̂(x) =
ĜL

ĜM

∫
v
Of̂L(x, v)dv − ĜL

ĜM

∫
v
f̂L(x, v)Of̂(x, v)τ(f̂(x, v), hn)dv.

The estimator β̂(x) is obtained by plugging the above estimators into (7).2 If there is no censoring

from above or below (i.e., L(X) = −∞ or H(X) = +∞, respectively), then we remove the term

η̂(x) or θ̂(x), respectively.

To analyse the asymptotic behaviour of β̂(x), we introduce the following assumptions. Let | · |

be the Euclidean norm and mM (x, v) = E[Y |X = x, IM (X,U) = 1, V = v].

Assumption 2.

(i): {Yi, Xi,Wi, Vi}ni=1 is i.i.d.

(ii): E[a(W,X)|X] <∞ for a(W,X) = E[Y 4|W,X], E
[∣∣∣OfM (X,V )

fM (X,V )

∣∣∣4∣∣∣∣W,X],
E

[∣∣∣Of(X,V )
f(X,V )

∣∣∣4∣∣∣∣W,X], E [∣∣∣Ov′ (OfM (X,V )
fM (X,V )

)∣∣∣4∣∣∣∣W,X], and E

[∣∣∣Ov′ (Of(X,V )
f(X,V )

)∣∣∣4∣∣∣∣W,X].
2In this paper, we employ the Nadaraya-Watson kernel estimator to construct β̂(x) because it simplifies the
theoretical analysis below. It is also possible to use the formula in (6) and estimate the right hand side by local
linear or polynomial estimators as in AIO. It is known that local polynomial fitting has some desirable properties,
such as an absence of boundary effects and minimax efficiency (see, Section 3.2 of Fan and Gijbels, 1996). On
the other hand, to estimate the conditional probabilities GM , GH , and GL, local polynomial estimators are
not constrained to lie between 0 and 1 (Hall, Wolff and Yao, 1999). Furthermore, the formula in (6) involves
the conditional density dP (v|X = x, IM (X,U) = 1), and its local polynomial fitting may require an additional
bandwidth parameter for the dependent variable (Fan, Yao and Tong, 1996). A full comparison of different
estimation methods is beyond the scope of this paper.
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Furthermore, E[|ϕ(W )|4|X] <∞, E[|mM (X,V )|4+δ] <∞, E[|GM (X,V )|4+δ] <∞,

E[|GH(X,V )|2+δ] <∞, and E[|GL(X,V )|2+δ] <∞ for some δ > 0.

(iii): fM (x, v) and f(w) are continuously differentiable of order s with respect to (x, v) and

w, respectively, and all the derivatives are bounded over (x, v) and w, respectively. Also∫
v

∫
x fM (x, v)1−adxdv <∞ and

∫
v

∫
x f(x, v)1−adxdv <∞ for some 0 < a ≤ 1.

(iv): EM [Y |X = x, V = v]fM (x, v) and E[X|W = w]f(w) are continuously first-order

differentiable with respect to (x, v) and w, respectively. Also, sup
x,v
|EM [Y |X = x, V =

v]fM (x, v)| <∞ and sup
w
|E[X|W = w]f(w)| <∞.

(v): K is a product kernel taking the form of K(a) =
∏dim(a)
k=1 κ(a(k)), where κ is bounded

and symmetric around zero. K satisfies
∫
a |K(a)|2+δda <∞ for some δ > 0,

∫
a |aOK(a)|da <

∞, and |a||K(a)| → 0 as |a| → ∞, and the Fourier transform Ψ ofK satisfies
∫
u sup
b≥1
|Ψ(bu)|du <

∞. In addition,

∫
a
ajK(a)du


= 1 if j = 0,

= 0 if 1 ≤ j ≤ s− 1,

<∞ if j = s.

(vi): As n→∞, it holds hn → 0, bn → 0, nbd+2
n →∞, nbd+2+2s

n → 0,

nbd+2
n

∫
w I{f(w) < 2hn}f(w, x)dw → 0,

√
nbd+2

n {Ĥ(x)−H(x)} p→ 0, and√
nbd+2

n {L̂(x)− L(x)} p→ 0.

(vii): The partial derivatives with respect to x of fM (y, x), f(x, v), fM (x, v), fH(x, v), and

fL(x, v) exist up to the third order and are bounded. The partial derivatives with respect

to v of fM (x, v), f(x, v), log(OfM (x, v)), and log(Of(x, v)) exist and are bounded.

Assumption 2 (i) is on the sampling of data. This assumption can be weakened to allow

for near-epoch dependent random variables (see Andrews, 1995). Assumption 2 (ii) contains

boundedness conditions for the moments. Assumption 2 (iii) and (iv) are required to establish

uniform convergence results for the kernel estimators in β̂(x). In particular, the last condition

in (iii) is a restriction on the thickness of the tails of fM (x, v) and f(x, v), which is required for

the uniform convergence of the trimming terms. Assumption 2 (iv) is required for the uniform

convergence of the kernel estimators to conditional expectations. Assumption 2 (v) contains

standard bias-reducing conditions for a higher order kernel. Assumption 2 (vi) lists conditions

on the bandwidth bn and trimming parameter hn as well as assumptions on the speed of conver-

gence of the boundary function estimators Ĥ(x) and L̂(x). Chernozhukov (1998) and Altonji,

Ichimura and Otsu (2013) provide primitive conditions for the convergence rates of Ĥ(x) and
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L̂(x). Assumption 2 (vii) is required since we need to estimate the first order derivatives of these

functions.

The asymptotic distribution of the nonparametric estimator β̂(x) for the local average response

β(x) is obtained as follows.

Theorem 2. Under Assumptions 1 and 2,√
nbd+2

n {β̂(x)− β(x)} d→ N(0, c(x)′V (x)c(x)),

where c(x) = (1, 1, H(x), L(x))′ and

V (x) =


σ2ξ 0 0 0

0 σ2ζ σζη σζθ

0 σζη σ2η σηθ

0 σζθ σηθ σ2θ


⊗ fM (x, v)−1G−2M

∫
a
OK(a)OK(a)′da,

σ2ξ =

∫
v

V arM (Y |x, v)

GM (x, v)
fM (x, v)dv,

σ2ζ =

∫
v
mM (x, v)2GM (x, v)(1−GM (x, v))fM (x, v)dv,

σ2η = H(x)2
∫
v
GH(x, v)(1−GH(x, v))fM (x, v)dv,

σ2θ = L(x)2
∫
v
GL(x, v)(1−GL(x, v))fM (x, v)dv,

σζη = −H(x)2
∫
v
mM (x, v)GM (x, v)GH(x, v)fM (x, v)dv,

σζθ = −L(x)2
∫
v
mM (x, v)GM (x, v)GL(x, v)fM (x, v)dv,

σηθ = −H(x)2L(x)2
∫
v
GL(x, v)GH(x, v)fM (x, v)dv.

This theorem says that our nonparametric estimator β̂(x) is consistent and asymptotically

normal. Note that the
√
nbd+2

n -convergence rate of β̂(x) is identical to that of AIO for the case

of exogenous X. However, the asymptotic variance is different from that of AIO. Both c(x) and

V (x) can be estimated consistently in the same manner as the estimator itself; by replacing each

component by the nonparametric estimator.
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Here we focus on the estimation of β(x) for a given x. As a summary of β(x) over some range

X, it is also interesting to consider the average estimator

β̂ =

∑n
i=1 I{Xi ∈ X}β̂(Xi)∑n

i=1 I{Xi ∈ X}
.

For the case of exogenousX, the working paper version of AIO (Altonji, Ichimura and Otsu, 2008)

studied the asymptotic properties of β̂ and showed it is
√
n-consistent and asymptotically normal.

Although a formal investigation is significantly more complicated and lengthy, we conjecture that

β̂ possesses similar asymptotic properties.

3. Simulation

We now evaluate the small sample properties of our nonparametric estimator. As a data

generating process, we consider the following model:

Y =


M(X,U) if 1 < M(X,U) < 8,

1 if M(X,U) ≤ 1,

8 if 8 ≤M(X,U),

M(X,U) = α0 + α1X + α2XU + U,

X = W + U + ε,

W ∼ U [0, 6], ε ∼ U [−1, 1], U ∼ N(0, 1).

Note that L(X) = 1, H(X) = 8, ϕ(W ) = W and the variable V = U + ε plays the role of

the control variable. We consider four parametrisations (α0, α1, α2) = (1, 0.5, 0.5), (0, 1, 0.5),

(2, 0, 1.5), and (1.5, 1, 0) (called Models 1-4, respectively). In all cases the censoring points are

treated as known. The local average response β(x) is evaluated at x ∈ {1, 2, 3, 4, 5}. The sample

size is set at n = 1000.

The simulation results are reported in Appendix B. All results are based on 1000 Monte Carlo

replications. In the tables, the rows labeled “Value of x” denote the values of x at which to eval-

uate β(x), and the rows labeled “True Value” report the true values of β(x) (computed by Monte

Carlo integrations). The rows labeled “NPE” report the mean over Monte Carlo replications

for the nonparametric estimator developed in this paper. The rows labeled “No Endogeneity

Control” report the mean for the nonparametric estimator without controlling for endogeneity,

which is created by excluding the control function from our estimator. This estimator can be
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viewed as the nonparametric estimator developed in AIO. In this simulation study, we use ker-

nel estimators rather than local polynomial estimators as adopted in AIO. The rows labeled “No

Censoring Control” report the mean for the nonparametric estimator without controlling for cen-

soring. This estimator can be viewed as the nonparametric estimator developed in Altonji and

Matzkin (2005). In this paper it refers to using only ξ̂(x) as the estimator. For all nonparametric

estimators, we use Silverman’s plug-in bandwidth for bn and the Gaussian kernel for K. Also,

in the simulation study, we do not incorporate the trimming term (i.e., set as τ(t, hn) = 1/t).

To evaluate the integrals in the estimators, we employ adaptive quadratures. The rows labeled

“Tobit” report the mean over Monte Carlo replications for the maximum likelihood Tobit esti-

mator using the fourth-order polynomial regression function with no adjustment for endogeneity.

The rows labeled “SD” report the standard deviation over Monte Carlo replications for each

estimator. Finally, the rows labeled “NPE (Half Bandwidth)” report the mean over Monte Carlo

replications for our nonparametric estimator using half of the bandwidth.

Model 1 is the benchmark case. The proposed estimator “NPE” shows a superb performance.

It has small bias across all values of x and reasonably small standard deviations (compared to

Tobit, for example). The half bandwidth estimator also shows reasonable results. Compared to

“NPE”, the half bandwidth estimator yields smaller bias but larger standard deviation. The “No

Endogeneity Control” estimator proposed in AIO incurs biases for all values of x. It seems there

is no noticeable pattern in the bias. It has large upward bias at x = 2 and large downward bias

at x = 5. Also, the “No Censoring Control” estimator proposed in Altonji and Matzkin (2005)

shows severe downward biases. These results show that in the current setting, it is crucial to

control for both endogeneity and censoring problems at the same time. The “Tobit” estimator

also shows considerable bias for most values of x which is not surprising.

Models 2 and 3 consider the case without an intercept and without the linear term in X,

respectively. For both cases, we obtained similar results. The “NPE” estimator and the half

bandwidth estimator show reasonable performance for most values of x; other estimators are

(often significantly) biased. Model 4 considers the linear separable model. However, since X is

endogenous, the Tobit estimator is still inconsistent and the simulation confirms the presence of

the endogeneity bias.

Our “NPE” estimator works well for most cases. However, when x = 1 or 5 (i.e., near the

boundaries of the support of X), it may incur non-negligible bias (see, Model 3 with x = 1 and

Model 4 with x = 5). For such cases, we should introduce a trimming term to avoid low density

problems or boundary correction kernel.
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4. Concluding remarks

In this paper we develop a nonparametric estimator for the local average response of a censored

dependent variable to an endogenous regressor in a nonseparable model. The unobservable error

term is not restricted to be scalar and the nonseparable function need not be monotone in the

unobservable. We formalise the identification argument in Altonji, Ichimura and Otsu (2012)

in the case of endogenous regressors, and study the asymptotic properties of the nonparametric

estimator. Our simulation suggests that it is important to correct for the effects of both censoring

and endogeneity.

Further research is needed in dynamic settings, as well as looking at how measurement error

impacts such models and how discrete regressors complicate the identification argument.
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Appendix A. Mathematical Appendix

A.1. Proof of Theorem 1. Theorem 1 follows directly from (2), (4), and Lemma 1 below.

Lemma 1. Under Assumption 1,

O
∫
M(x, u)IM (x, u)dP (u|V = v) =

∫
OM(x, u)IM (x, u)dP (u|V = v)

−H(x)OGH(x, v)− L(x)OGL(x, v),

for almost every v.

The proof of Lemma 1 follows trivially from the proof of AIO (2012, Lemma 3.1); the adapted

proof is included here for completeness.

It is sufficient to prove Lemma 1 for O1, the partial derivative with respect to the first element

of x:

O1

∫
M(x, u)IM (x, u)dP (u|V = v)

=

∫
O1M(x, u)IM (x, u)dP (u|V = v)−H(x)O1GH(x, v)− L(x)O1GL(x, v),

for almost every v. The left hand side is given by

lim
ε→0

[∫
M(x+ εe1, u)IM (x+ εe1, u)dP (u|V = v)−

∫
M(x, u)IM (x, u)dP (u|V = v)

]
/ε

= lim
ε→0

∫
[M(x+ εe1, u)−M(x, u)]IM (x+ εe1, u)dP (u|V = v)/ε

+ lim
ε→0

∫
M(x, u)[IM (x+ εe1, u)− IM (x, u)]dP (u|V = v)/ε

= T1 + T2,

where e = (1, 0, . . . , 0)′. Assumption 1 (ii) and (iv) imply

lim
ε→0

IM (x+ εe, U) = IM (x, U) a.s.

Thus, the Lebesgue dominated convergence theorem implies

T1 =

∫
O1M(x, u)IM (x, u)dP (u|V = v),
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for almost every v. For T2, using Assumption 1 (ii),

IM (x+ εe, U)− IM (x, U)

= I{L(x+ εe) < M(x+ εe, U)} − I{L(x) < M(x, U)}

+I{M(x+ εe, U) < H(x+ εe)} − I{M(x, U) < H(x)} a.s.,

for all ε > 0 sufficiently close to 0. Therefore,

T2 = lim
ε→0

∫
M(x, u)[I{L(x+ εe) < M(x+ εe, u)} − I{L(x) < M(x, u)}]dP (u|V = v)/ε

+ lim
ε→0

∫
M(x, u)[I{M(x+ εe, u) < H(x+ εe1)} − I{M(x, u) < H(x)}]dP (u|V = v)/ε.

Noting that I{L(x + εe) < M(x + εe, u)} = 1 − I{L(x + εe) ≥ M(x + εe, u)}, the proof is

completed by the following lemma.

Lemma 2. Under Assumption 1,

lim
ε→0

∫
M(x, u)[I{M(x+εe, u) > L(x+εe)}−I{M(x, u) > L(x)}]dP (u|V = v)/ε = −L(x)O1GL(x, v),

(8)

for almost every v.

Proof of Lemma 2. Presented here is only the argument for the lower bound. The argument

for the upper bound is analogous. To prove this lemma, it is sufficient to show that both an

upper bound and a lower bound of the left hand side converge to the right hand side as ε → 0.

The left hand side can be written as

lim
ε→0

∫
M(x, u)I{M(x+ εe, u) > L(x+ εe)}I{M(x, u) ≤ L(x)}dP (u|V = v)/ε

− lim
ε→0

∫
M(x, u)I{M(x+ εe, u) ≤ L(x+ εe)}I{M(x, u) > L(x)}dP (u|V = v)/ε,

for almost every v. Assumption 1 (iv) implies that if M(x+ εe, u) ≤ L(x+ εe), then M(x, u) ≤

L(x + εe) + εB(u) for all ε sufficiently close to 0. Similarly, M(x + εe, u) > L(x + εe) implies

M(x, u) > L(x+ εe)− εB(u) for all ε sufficiently close to 0. Consequently, the left hand side of
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(8) can be bounded from below by

lim
ε→0

∫
L(x+ εe)I{M(x+ εe, u) > L(x+ εe)}I{M(x, u) ≤ L(x)}dP (u|V = v)/ε

− lim
ε→0

∫
B(u)I{M(x+ εe, u) > L(x+ εe)}I{M(x, u) ≤ L(x)}dP (u|V = v)

− lim
ε→0

∫
L(x+ εe)I{M(x+ εe, u) ≤ L(x+ εe)}I{M(x, u) > L(x)}dP (u|V = v)/ε

− lim
ε→0

∫
B(u)I{M(x+ εe, u) ≤ L(x+ εe)}I{M(x, u) > L(x)}dP (u|V = v),

for almost every v. By Assumption 1 (ii) and (iv), the Lebesgue dominated convergence theorem

implies that the second and fourth terms converge to 0. The first and third terms can be combined

to give

lim
ε→0

L(x+εe)

∫
[I{M(x+εe, u) > L(x+εe)}−I{M(x, u) > L(x)}]dP (u|V = v)/ε = −L(x)O1GL(x, v),

for almost every v. The same reasoning obtains an equivalent result for −H(x)O1GH(x, v).

Therefore, the conclusion follows.

A.2. Proof of Theorem 2. Note that the convergence rates of f̂M (x), Ĥ(x), and L̂(x) are faster

than the derivative estimators contained in (ξ̂(x), ζ̂(x), η̂(x), θ̂(x)). Thus, under Assumption 2

(i), (ii), (v), and (vi),

√
nbd+2

n {β̂(x)− β(x)} = c(x)′
√
nbd+2

n


ξ̂(x)− ξ(x)

ζ̂(x)− ζ(x)

η̂(x)− η(x)

θ̂(x)− θ(x)


+ op(1),

where c(x)′ = fM (x)−1(1, 1, H(x), L(x)).

In the following lemma, we derive the asymptotic linear form of ξ̂(x) − ξ(x). Let f̃M (a) be

the object defined by replacing V̂i in f̂M (a) with Vi.
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Lemma 3. Under Assumption 2,

ξ̂(x)− ξ(x) =

 1

nMb
d+1
n

∑
i:Yi 6=CL,CH

YiOK

(
x−Xi

bn

)
−
∫
y
yOfM (y, x)dy


−

 1

nMb
d+1
n

∑
i:Yi 6=CL,CH

mM (x, Vi)OK

(
x−Xi

bn

)
−
∫
v
mM (x, v)OfM (x, v)dv


+op((nb

d+2
n )−1/2).

Proof of Lemma 3. Decompose

ξ̂(x)− ξ(x) =

∫
y
y{Of̂M (y, x)− OfM (y, x)}dy

−
∫
v

{∫
y
yf̂M (y, x, v)dy −

∫
y
yfM (y, x, v)dy

}
Of̂M (x, v)τ(f̂M (x, v), hn)dv

−
∫
v

{∫
y
yfM (y, x, v)dy

}
{Of̂M (x, v)− OfM (x, v)}τ(f̂M (x, v), hn)dv

−
∫
v

{∫
y
yfM (y, x, v)dy

}
OfM (x, v){τ(f̂M (x, v), hn)− τ(fM (x, v), 0)}dv

≡ T1 − T2 − T3 − T4.

For T2, decompose

T2 =

∫
v

{∫
y
yf̂M (y, x, v)dy −

∫
y
yfM (y, x, v)dy

}
{Of̂M (x, v)− OfM (x, v)}τ(f̂M (x, v), hn)dv

+

∫
v

{∫
y
yf̂M (y, x, v)dy −

∫
y
yfM (y, x, v)dy

}
OfM (x, v){τ(f̂M (x, v), hn)− τ(fM (x, v), 0)}dv

+

∫
v

{∫
y
yf̂M (y, x, v)dy −

∫
y
yfM (y, x, v)dy

}
OfM (x, v)τ(fM (x, v), 0)dv

≡ T21 + T22 + T23.

For T23,

T23 =

∫
v

{∫
y
yf̂M (y, x, v)dy −

∫
y
yf̃M (y, x, v)dy

}
OfM (x, v)fM (x, v)−1dv

+

∫
v

{∫
y
yf̃M (y, x, v)dy −

∫
y
yfM (y, x, v)dy

}
OfM (x, v)fM (x, v)−1dv

≡ T231 + T232.
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For T232,

T232 =

∫
v

{
1

nMb
2d+1
n

∑
i:Yi 6=CL,CH

∫
y
yK

(
y − Yi
bn

)
dyK

(
x−Xi

bn

)
K

(
v − Vi
bn

)

−
∫
y
yfM (y, x, v)dy

}
OfM (x, v)

fM (x, v)
dv

=

∫
v

 1

nMb2dn

∑
i:Yi 6=CL,CH

YiK

(
x−Xi

bn

)
K

(
v − Vi
bn

)
−
∫
y
yfM (y, x, v)dy

 OfM (x, v)

fM (x, v)
dv

=
1

nMbdn

∑
i:Yi 6=CL,CH

Yi
OfM (x, Vi)

fM (x, Vi)
K

(
x−Xi

bn

)
−
∫
v

∫
y
y
OfM (x, v)

fM (x, v)
fM (y, x, v)dydv +Op(b

s
n)

= Op((nb
d
n)−1/2) +Op(b

s
n),

where the second equality follows from the change of variables a = y−Yi
bn

and Assumption 2 (v),

the third equality also follows from the change of variables a = v−Vi
bn

and Assumption 2 (v),

and the last equality follows from a central limit theorem for the kernel estimator in the form of
1

nM bdn

∑
i:Yi 6=CL,CH

g1(Yi, Vi)K
(
x−Xi
bn

)
with g1(Yi, Vi) ≡ YiOfM (x,Vi)

fM (x,Vi)
.

For T231,

T231 =

∫
v

1

nMb2dn

∑
i:Yi 6=CL,CH

YiK

(
x−Xi

bn

){
K

(
v − Vi + êi

bn

)
−K

(
v − Vi
bn

)}
OfM (x, v)

fM (x, v)
dv

=

∫
v

1

nMb2dn

∑
i:Yi 6=CL,CH

YiK

(
x−Xi

bn

)
K ′
(
v − Vi
bn

)
êi
bn

OfM (x, v)

fM (x, v)
dv + op(n

−1/2)

=
1

nMbdn

∑
i:Yi 6=CL,CH

g2(Yi, Vi)êiK

(
x−Xi

bn

)
(1 + o(1)) + op(n

−1/2),

where the first equality follows from the change of variables a = y−Yi
bn

and the definition êi ≡

ϕ̂(Wi)−ϕ(Wi), the second equality follows from an expansion around êi = 0 and max1≤i≤n |êi| =

op(n
−1/4) (by applying the uniform convergence result in Andrews (1995, Theorem 1) based on

Assumption 2), and the third equality follows from the change of variables a = v−Vi
bn

with
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∫
aK
′ (a) da = 0 and the definition g2(Yi, Vi) ≡ YiOv′

(
OfM (x,Vi)
fM (x,Vi)

) ∫
aK
′ (a) ada based on Assump-

tion 2 (ii) and (v). We can break down T231 further as follows

1

nMbdn

∑
i:Yi 6=CL,CH

êig2(Yi, Vi)K

(
x−Xi

bn

)

=
1

nMbdn

∑
i:Yi 6=CL,CH

τ(f̂W (Wi), hn)
1

nbdn

n∑
j=1

XjK

(
Wi −Wj

bn

)
− ϕ(Wi)

 g2(Yi, Vi)K

(
x−Xi

bn

)

=
1

nMbdn

∑
i:Yi 6=CL,CH

{τ(f̂W (Wi), hn)− τ(f(Wi), 0)} 1

nbdn

n∑
j=1

XjK

(
Wi −Wj

bn

) g2(Yi, Vi)K

(
x−Xi

bn

)

+
1

nMbdn

∑
i:Yi 6=CL,CH

f(Wi)
−1 1

nbdn

n∑
j=1

XjK

(
Wi −Wj

bn

)
− ϕ(Wi)

 g2(Yi, Vi)K

(
x−Xi

bn

)
= T2311 + T2312.

We denote T2312 = 1
nnM bdn

∑
i:Yi 6=CL,CH

∑n
j=1Cij . Using the definition of ϕ(Wi), the mean of Cij

is

E[Cij ]

= E

[
g2(Yi, Vi)

f(Wi)

{
Xj

1

bdn
K

(
Wi −Wj

bn

)
−
∫
x̃f(x̃,Wi)dx̃

}
K

(
x−Xi

bn

)]
= E

[{
E

[
Xj

1

bdn
K

(
Wi −Wj

bn

)∣∣∣∣Yi, Vi, Xi,Wi

]
−
∫
x̃f(x̃,Wi)dx̃

}
g2(Yi, Vi)

f(Wi)
K

(
x−Xi

bn

)]
.

Note that by the change of variables a = Wi−w
bn

and Assumption 2 (v),

E

[
Xj

1

bdn
K

(
Wi −Wj

bn

)∣∣∣∣Yi, Vi, Xi,Wi

]
=

∫
x̃f(x̃,Wi)dx̃+O(bsn),

and therefore E[T2312] = Op(b
s−d
n ). Similarly, we obtain E[C2

ij ] = Op(bn) by using Assumption

2 (ii), (v), and (vi), which implies V ar(T2312) = Op(n
−2b−d+1

n ). Combining these results, we

obtain T2312 = op((nb
d+2
n )−1/2).
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For T2311, an expansion of τ(f̂(Wi), hn) around f̂(Wi) = f(Wi) yields

T2311

=
1

nMbdn

∑
i:Yi 6=CL,CH

{τ(f(Wi), hn)− τ(f(Wi), 0)} 1

nbdn

n∑
j=1

XjK

(
Wi −Wj

bn

) g(Yi, Vi)K

(
x−Xi

bn

)

+
1

nMbdn

∑
i:Yi 6=CL,CH

{τ ′(f(Wi), hn)
{
f̂(Wi)− f(Wi)

} 1

nbdn

n∑
j=1

XjK

(
Wi −Wj

bn

) g(Yi, Vi)K

(
x−Xi

bn

)

+
1

nMbdn

∑
i:Yi 6=CL,CH

Op
(

max
1≤i≤n

|f̂(Wi)− f(Wi)|2
)

1

nbdn

n∑
j=1

XjK

(
Wi −Wj

bn

) g(Yi, Vi)K

(
x−Xi

bn

)
≡ T23111 + T23112 + T23113.

By applying the uniform convergence result of Andrews (1995, Theorem 1), we obtain max1≤i≤n |f̂(Wi)−

f(Wi)| = op(n
−1/4), which implies T23113 = op(n

−1/2). For T23111, using two change of variable

arguments, Taylor expansions, the Cauchy-Scwharz inequality, and noting that {τ(f(w), hn)f(w)−

1} is bounded, we can write the mean of T23111 as

E[T23111] = E

[
{τ(f(Wi), hn)− τ(f(Wi), 0)} 1

bdn
XjK

(
Wi −Wj

bn

)
1

bdn
g2(Yi, Vi)K

(
x−Xi

bn

)]
= E

[
{τ(f(Wi), hn)− τ(f(Wi), 0)}ϕ(Wi)f(Wi)

1

bdn
g2(Yi, Vi)K

(
x−Xi

bn

)]
+O(bsn)

=

∫
I{f(w) < 2hn}{τ(f(w), hn)f(w)− 1}ϕ(w)E[g2(y, v)|w, x]f(w, x)dw +O(bsn)

≤

√∫
I{f(w) < 2hn}f(w, x)dw

√∫
|ϕ(w)E[g2(y, v)|w, x]|2f(w, x)dw +O(bsn),

where
∫
|ϕ(w)E[g2(y, v)|w, x]|2f(w, x)dw <∞ by Assumption 2 (ii). Thus

√
nbd+2

n E[T23111]→ 0

by Assumption 2 (vi). Using similar arguments, we have

E[T 2
23111]

=
1

nnM
E

[
{τ(f(Wi), hn)− τ(f(Wi), 0)}2 1

b2dn
X2
jK

(
Wi −Wj

bn

)2 1

b2dn
g2(Yi, Vi)

2K

(
x−Xi

bn

)2
]

≤

√∫
I{f(w) < 2hn}f(w, x)dw

√∫
|E[g2(y, v)2|w, x]|2f(w, x)dwO(n−2b−2d+1

n ),

which implies
√
nbd+2

n V ar(T23111)→ 0. Combining these results, we obtain
√
nbd+2

n T23111
p→ 0.

For T23112, a similar argument to T2312 implies that T23112 = op((nb
d+2
n )−1/2).
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For T22, it holds

T22 =

∫
v

{∫
y
yf̂M (y, x, v)dy −

∫
y
yfM (y, x, v)dy

}
OfM (x, v){τ(f̂M (x, v), hn)− τ(fM (x, v), 0)}dv

≤ C sup
x,v

∣∣∣∣∫
y
yf̂M (y, x, v)dy −

∫
y
yfM (y, x, v)dy

∣∣∣∣ sup
x,v
|τ(f̂M (x, v), hn)− τ(fM (x, v), 0)|

= op(n
−1/2),

where the last equality follows from

sup
x,v

∣∣∣∣∫
y
yf̂M (y, x, v)dy −

∫
y
yfM (y, x, v)dy

∣∣∣∣ = Op(n
−1/2b−2dn ),

sup
x,v

∣∣∣τ(f̂M (x, v), hn)− τ(fM (x, v), 0)
∣∣∣ = Op(n

−1/2b−2dn ),

again, using Andrews (1995, Theorem 1). Thus we obtain
√
nbd+2

n T22
p→ 0. Similarly, we can

show that
√
nbd+2

n T21
p→ 0. Combining these results, we obtain

√
nbd+2

n T2
p→ 0. By a similar

approach to T2, we can show that
√
nbd+2

n T4
p→ 0. For T3, following a similar argument to T22

and T231,

T3 =

∫
v

{∫
y
yfM (y, x, v)dy

}
{Of̂M (x, v)− OfM (x, v)}{τ(f̂M (x, v), hn)− τ(fM (x, v), 0)}dv

+

∫
v

{∫
y
yfM (y, x, v)dy

}
{Of̂M (x, v)− Of̃M (x, v)}fM (x, v)−1dv

+

∫
v

{∫
y
yfM (y, x, v)dy

}
{Of̃M (x, v)− OfM (x, v)}fM (x, v)−1dv

=

∫
v

{∫
y
yfM (y, x, v)dy

}
{Of̃M (x, v)− OfM (x, v)}fM (x, v)−1dv + op((nb

d+2
n )−1/2).

For T1, again in a similar way to T231, we can show

T1 =

∫
y
y{Of̂M (y, x)− Of̃M (y, x)}dy +

∫
y
y{Of̃M (y, x)− OfM (y, x)}dy

=

∫
y
y{Of̃M (y, x)− OfM (y, x)}dy + op((nb

d+2
n )−1/2).

Combining these results, the conclusion follows.

By repeating these steps, we can obtain the asymptotic linear forms for ζ̂(x), η̂(x), and θ̂(x)

as follows (the proofs are omitted).
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Lemma 4. Under Assumption 2,

ζ̂(x)− ζ(x) =
1

nMb
d+1
n

∑
i:Yi 6=CL,CH

mM (x, Vi)OK

(
x−Xi

bn

)

− 1

nMb
d+1
n

n∑
i=1

mM (x, Vi)GM (x, Vi)OK

(
x−Xi

bn

)

+

∫
v
mM (x, v)

fM (x, v)

f(x, v)
Of(x, v)dv −

∫
v
mM (x, v)OfM (x, v)dv + op((nb

d+2
n )−1/2),

η̂(x)− η(x) =
1

nMb
d+1
n

∑
i:Yi=CH

OK

(
x−Xi

bn

)
− 1

nMb
d+1
n

n∑
i=1

GH(x, Vi)OK

(
x−Xi

bn

)

+
GH
GM

∫
v

fH(x, v)

f(x, v)
Of(x, v)dv − GH

GM

∫
v
OfH(x, v)dv + op((nb

d+2
n )−1/2),

θ̂(x)− θ(x) =
1

nMb
d+1
n

∑
i:Yi=CL

OK

(
x−Xi

bn

)
− 1

nMb
d+1
n

n∑
i=1

GL(x, Vi)OK

(
x−Xi

bn

)

+
GL
GM

∫
v

fL(x, v)

f(x, v)
Of(x, v)dv − GL

GM

∫
v
OfL(x, v)dy + op((nb

d+2
n )−1/2).

It remains to derive the asymptotic variance for our estimator. By Lemma 3, the asymptotic

variance of ξ̂(x) is

V ar

(√
nbd+2

n {ξ̂(x)− ξ(x)}
)
→ lim

n→∞

n2

n2Mb
d
n

E

[
I{Yi 6= CL, CH}(Yi −mM (x, Vi))

2OK

(
x−Xi

bn

)2
]

= G−2M

∫
v

V arM (Y |x, v)

GM (x, v)
f(x, v)dv

∫
a
OK(a)2da,

where the equality follows from the change of variables. Also, by Lemma 4,

V ar

(√
nbd+2

n {ζ̂(x)− ζ(x)}
)
→ G−2M

∫
v
mM (x, v)2GM (x, v)(1−GM (x, v))f(x, v)dv

∫
a
OK(a)2da,

V ar

(√
nbd+2

n {η̂(x)− η(x)}
)
→ G−2M

∫
v
GH(x, v)(1−GH(x, v))f(x, v)dv

∫
a
OK(a)2da,

V ar

(√
nbd+2

n {θ̂(x)− θ(x)}
)
→ G−2M

∫
v
GL(x, v)(1−GL(x, v))f(x, v)dv

∫
a
OK(a)2da.

For the asymptotic covariance terms, we have

Cov

(√
nbd+2

n {ξ̂(x)− ξ(x)},
√
nbd+2

n {ζ̂(x)− ζ(x)}
)
→ 0,

Cov

(√
nbd+2

n {ξ̂(x)− ξ(x)},
√
nbd+2

n {η̂(x)− η(x)}
)
→ 0,

Cov

(√
nbd+2

n {ξ̂(x)− ξ(x)},
√
nbd+2

n {θ̂(x)− θ(x)}
)
→ 0.
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Also note that

Cov

(√
nbd+2

n {ζ̂(x)− ζ(x)},
√
nbd+2

n {η̂(x)− η(x)}
)

= lim
n→∞

n2

n2Mb
d
n



E

[
mM (x, Vi)GM (x, Vi)GH(x, Vi)OK

(
x−Xi
bn

)2]
−E

[
I{Yi = CH}mM (x, Vi)GM (x, Vi)OK

(
x−Xi
bn

)2]
−E

[
I{Yi 6= CH , CL}mM (x, Vi)GH(x, Vi)OK

(
x−Xi
bn

)2]


= −G−2M

∫
v
mM (x, v)GM (x, v)GH(x, v)f(x, v)dv

∫
a
OK(a)2da.

Similarly,

Cov

(√
nbd+2

n {ζ̂(x)− ζ(x)},
√
nbd+2

n {θ̂(x)− θ(x)}
)

→ −G−2M
∫
v
mM (x, v)GM (x, v)GL(x, v)f(x, v)dv

∫
a
OK(a)2da,

and

Cov

(√
nbd+2

n {η̂(x)− η(x)},
√
nbd+2

n {θ̂(x)− θ(x)}
)

→ −G−2M
∫
v
GL(x, v)GH(x, v)f(x, v)dv

∫
a
OK(a)2da.

Under Assumption 2, the proof is completed by applying a central limit theorem to the linear

form of (ξ̂(x), ζ̂(x), η̂(x), θ̂(x)) obtained in Lemmas 3 and 4.
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Appendix B. Simulation results

Model 1 Y = 1 + 0.5X + 0.5XU + U , 58.5% uncensored

Value of x 1 2 3 4 5

True Value 0.799 0.752 0.709 0.657 0.601

NPE 0.735 0.678 0.623 0.619 0.666

SD (0.119) (0.119) (0.130) (0.155) (0.208)

NPE (Half Bandwidth) 0.781 0.754 0.675 0.634 0.611

SD (0.280) (0.316) (0.367) (0.446) (0.554)

No Endogeneity Control 1.086 1.231 0.808 0.553 0.194

SD (0.170) (0.251) (0.304) (0.341) (0.454)

No Censoring Control 0.392 0.529 0.509 0.414 0.341

SD (0.074) (0.088) (0.093) (0.104) (0.112)

Tobit 1.639 0.925 0.675 0.890 1.554

SD (0.152) (0.163) (0.109) (0.127) (0.182)
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Model 2 Y = X + 0.5XU + U , 60.4% uncensored

Value of x 1 2 3 4 5

True Value 1.399 1.252 1.154 1.052 0.949

NPE 1.336 1.119 0.986 1.051 1.024

SD (0.276) (0.234) (0.267) (0.340) (0.471)

NPE (Half Bandwidth) 1.415 1.264 1.083 1.015 0.892

SD (0.513) (0.500) (0.619) (0.756) (1.016)

No Endogeneity Control 1.667 1.695 1.180 0.913 0.522

SD (0.245) (0.319) (0.378) (0.477) (0.643)

No Censoring Control 0.496 0.809 0.765 0.611 0.489

SD (0.102) (0.114) (0.118) (0.124) (0.142)

Tobit 2.924 1.535 1.081 1.338 2.101

SD (0.285) (0.156) (0.120) (0.137) (0.174)
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Model 3 Y = 2 + 1.5XU + U , 53.8% uncensored

Value of x 1 2 3 4 5

True Value 0.802 0.725 0.595 0.493 0.417

NPE 0.166 0.516 0.641 0.565 0.622

SD (0.121) (0.186) (0.252) (0.317) (0.441)

NPE (Half Bandwidth) 0.259 0.601 0.610 0.504 0.412

SD (0.309) (0.472) (0.689) (0.968) (1.234)

No Endogeneity Control 0.850 1.520 1.014 0.779 1.282

SD (0.180) (0.288) (0.382) (0.500) (0.680)

No Censoring Control 0.349 0.368 0.282 0.192 0.171

SD (0.072) (0.091) (0.108) (0.123) (0.138)

Tobit 0.597 0.830 0.768 0.930 1.873

SD (0.179) (0.136) (0.163) (0.215) (0.237)
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Model 4 Y = 1.5 +X + U , 79.5% uncensored

Value of x 1 2 3 4 5

True Value 1 1 1 1 1

NPE 1.024 0.984 0.939 0.721 0.448

SD (0.126) (0.134) (0.168) (0.202) (0.360)

NPE (Half Bandwidth) 1.091 0.990 1.016 0.866 0.477

SD (0.319) (0.365) (0.462) (0.589) (1.028)

No Endogeneity Control 1.221 1.442 1.033 0.286 -1.047

SD (0.123) (0.309) (0.360) (0.442) (0.696)

No Censoring Control 0.738 0.936 0.931 0.683 0.312

SD (0.069) (0.070) (0.070) (0.063) (0.086)

Tobit 1.350 1.115 1.039 1.116 1.352

SD (0.052) (0.050) (0.035) (0.050) (0.053)
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